
Hybrid Type Checking

Cormac Flanagan
Department of Computer Science

University of California, Santa Cruz
cormac@cs.ucsc.edu

Abstract
Traditional static type systems are very effective for verifying ba-
sic interface specifications, but are somewhat limited in the kinds
specifications they support. Dynamically-checked contracts can en-
force more precise specifications, but these are not checked until
run time, resulting in incomplete detection of defects.
Hybrid type checking is a synthesis of these two approaches that
enforces precise interface specifications, via static analysis where
possible, but also via dynamic checks where necessary. This paper
explores the key ideas and implications of hybrid type checking,
in the context of the simply-typed λ-calculus with arbitrary refine-
ments of base types.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages: Formal Definitions and Theory]: specification and verifi-
cation

General Terms Languages, Theory, Verification

Keywords Type systems, contracts, static checking, dynamic
checking

1. Motivation
The construction of reliable software is extremely difficult. For
large systems, it requires a modular development strategy that,
ideally, is based on precise and trusted interface specifications. In
practice, however, programmers typically work in the context of
a large collection of APIs whose behavior is only informally and
imprecisely specified and understood. Practical mechanisms for
specifying and verifying precise, behavioral aspects of interfaces
are clearly needed.

Static type systems have proven to be extremely effective and
practical tools for specifying and verifying basic interface spec-
ifications, and are widely adopted by most software engineering
projects. However, traditional type systems are somewhat limited in
the kinds of specifications they support. Ongoing research on more
powerful type systems (e.g., [45, 44, 17, 29, 11]) attempts to over-
come some of these restrictions, via advanced features such as de-
pendent and refinement types. Yet these systems are designed to be
statically type safe, and so the specification language is intention-
ally restricted to ensure that specifications can always be checked
statically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

In contrast, dynamic contract checking [30, 14, 26, 19, 24, 27,
36, 25] provides a simple method for checking more expressive
specifications. Dynamic checking can easily support precise speci-
fications, such as:

- Subrange types, e.g., the function printDigit requires an in-
teger in the range [0,9].

- Aliasing restrictions, e.g., swap requires that its arguments are
distinct reference cells.

- Ordering restrictions, e.g., binarySearch requires that its ar-
gument is a sorted array.

- Size specifications, e.g., the function serializeMatrix takes
as input a matrix of size n by m, and returns a one-dimensional
array of size n × m.

- Arbitrary predicates: an interpreter (or code generator) for a
typed language (or intermediate representation [39]) might nat-
urally require that its input be well-typed, i.e., that it satisfies
the predicate wellTyped : Expr→ Bool.

However, dynamic checking suffers from two limitations. First,
it consumes cycles that could otherwise perform useful computa-
tion. More seriously, dynamic checking provides only limited cov-
erage – specifications are only checked on data values and code
paths of actual executions. Thus, dynamic checking often results
in incomplete and late (possibly post-deployment) detection of de-
fects.

Thus, the twin goals of complete checking and expressive spec-
ifications appear to be incompatible in practice.1 Static type check-
ing focuses on complete checking of restricted specifications. Dy-
namic checking focuses on incomplete checking of expressive
specifications. Neither approach in isolation provides an entirely
satisfactory solution for checking precise interface specifications.

In this paper, we describe an approach for validating precise in-
terface specifications using a synthesis of static and dynamic tech-
niques. By checking correctness properties and detecting defects
statically (whenever possible) and dynamically (only when neces-
sary), this approach of hybrid type checking provides a potential
solution to the limitations of purely-static and purely-dynamic ap-
proaches.

We illustrate the key idea of hybrid type checking by consider-
ing the type rule for function application:

E ` t1 : T → T ′ E ` t2 : S E ` S <: T

E ` (t1 t2) : T ′

1 Complete checking of expressive specifications could be achieved by
requiring that each program be accompanied by a proof (perhaps expressed
as type annotations) that the program satisfies its specification, but this
approach is too heavyweight for widespread use.

Ill-typed programs Well-typed programs
Clearly ill-typed Subtle programs Clearly well-typed

Rejected Accepted Accepted
with casts without casts

Casts Casts
may never
fail fail

Figure 1. Hybrid type checking on various programs.

This rule uses the antecedent E ` S <: T to check compatibility
of the actual and formal parameter types. If the type checker can
prove this subtyping relation, then this application is well-typed.
Conversely, if the type checker can prove that this subtyping rela-
tion does not hold, then the program is rejected. In a conventional,
decidable type system, one of these two cases always holds.

However, once we consider expressive type languages that are
not statically decidable, the type checker may encounter situations
where its algorithms can neither prove, nor refute, the subtype judg-
ment E ` S <: T (particularly within the time bounds imposed by
interactive compilation). A fundamental question in the develop-
ment of expressive type systems is how to deal with such situations
where the compiler cannot statically classify the program as either
ill-typed or well-typed:

- Statically rejecting such programs would cause the compiler to
reject some programs that, on deeper analysis, could be shown
to be well-typed. This approach seems too brittle for use in
practice, since it would be difficult to predict which programs
the compiler would accept.

- Statically accepting such programs (based on the optimistic
assumption that the unproven subtype relations actually hold)
may result in specifications being violated at run time, which is
undesirable.

Hence, we argue that the most satisfactory approach is for the com-
piler to accept such programs on a provisional basis, but to insert
sufficient dynamic checks to ensure that specification violations
never occur at run time. Of course, checking that E ` S <: T at
run time is still a difficult problem and would violate the principle
of phase distinction [9]. Instead, our hybrid type checking approach
transforms the above application into the code

t1 (〈S B T 〉 t2)

where the additional type cast or coercion 〈S B T 〉 t2 dynamically
checks that the value produced by t2 is in the domain type T . Note
that hybrid type checking supports very precise types, and T could
in fact specify a detailed precondition of the function, for example,
that it only accepts prime numbers. In this case, the run-time cast
would involve performing a primality check.

The behavior of hybrid type checking on various kinds of pro-
grams is illustrated in Figure 1. Although every program can be
classified as either ill-typed or well-typed, for expressive type sys-
tems it is not always possible to make this classification statically.
However, the compiler can still identify some (hopefully many)
clearly ill-typed programs, which are rejected, and similarly can
identify some clearly well-typed programs, which are accepted un-
changed.

For the remaining subtle programs, dynamic type casts are in-
serted to check any unverified correctness properties at run time.
If the original program is actually well-typed, these casts are re-
dundant and will never fail. Conversely, if the original program is
ill-typed in a subtle manner that cannot easily be detected at com-
pile time, the inserted casts may fail. As static analysis technology

E
xp

re
ss

iv
en

es
s

Coverage

Dynamic
Checking

Type
Checking

Full
Program

Verification

Hybrid
Type

Checking

100%

Figure 2. Rough sketch of the relationship between hybrid type
checking, dynamic checking, type checking, and full program ver-
ification.

improves, we expect that the category of subtle programs in Fig-
ure 1 will shrink, as more ill-typed programs are rejected and more
well-typed programs are fully verified at compile time.

Hybrid type checking provides several desirable characteristics:

1. It supports precise interface specifications, which are essential
for modular development of reliable software.

2. As many defects as is possible and practical are detected at
compile time (and we expect this set will increase as static
analysis technology evolves).

3. All well-typed programs are accepted by the checker.

4. Due to decidability limitations, the hybrid type checker may
statically accept some subtly ill-typed programs, but it will in-
sert sufficient dynamic casts to guarantee that specification vi-
olations never occur; they are always detected, either statically
or dynamically.

5. The output of the hybrid type checker is always a well-typed
program (and so, for example, type-directed optimizations are
applicable).

6. If the source program is well-typed, then the inserted casts
are guaranteed to succeed, and so the source and compiled
programs are behaviorally equivalent (or bisimilar).

Figure 2 contains a rough sketch of the relationship between
hybrid type checking and prior approaches for program checking,
in terms of expressiveness (y-axis) and coverage (x-axis). Dynamic
checking is expressive but obtains limited coverage. Type checking
obtains full coverage but has somewhat limited expressiveness.
In theory, full program verification could provide full coverage
for expressive specifications, but it is intractable for all but small
programs. Motivated by the need for more expressive specification
languages, the continuum between type checking and full program
verification is being explored by a range of research projects (see,
for example, [37, 5, 23, 45]). The goal of this paper is to investigate
the interior of the triangle defined by these three extremes.

Our proposed specifications extend traditional static types, and
so we view hybrid type checking as an extension of traditional
static type checking. In particular, hybrid type checking supports
precise specifications while preserving a key benefit of static type
systems; namely, the ability to detect simple, syntactic errors at
compile time. Moreover, as we shall see, for any decidable static
type checker S, it is possible to develop a hybrid type checker H
that performs somewhat better than S in the following sense:

1. H dynamically detects errors that would be missed by S, since
H supports more precise specifications than S and can detect
violations of these specifications dynamically.

2. H statically detects all errors that would be detected by S, since
H can statically perform the same reasoning as S.

3. H actually detects more errors statically than S, since H sup-
ports more precise specifications, and could reasonably detect
some violations of these precise specifications statically.

The last property is perhaps the most surprising; Section 6 contains
a proof that clarifies this argument.

Hybrid type checking may facilitiate the evolution and adoption
of advanced static analyses, by allowing software engineers to
experiment with sophisticated specification strategies that cannot
(yet) be verified statically. Such experiments can then motivate and
direct static analysis research. In particular, if a hybrid compiler
fails to decide (i.e., verify or refute) a subtyping query, it could
send that query back to the compiler writer. Similarly, if a hybrid-
typed program fails a compiler-inserted cast 〈S BT 〉 v, the value v
is a witness that refutes an undecided subtyping query, and such
witnesses could also be sent back to the compiler writer. This
information would provide concrete and quantifiable motivation for
subsequent improvements in the compiler’s analysis.

Indeed, just like different compilers for the same language may
yield object code of different quality, we might imagine a variety
of hybrid type checkers with different trade-offs between static and
dynamic checks (and between static and dynamic error messages).
Fast interactive hybrid compilers might perform only limited static
analysis to detect obvious type errors, while production compilers
could perform deeper analyses to detect more defects statically and
to generate improved code with fewer dynamic checks.

Hybrid type checking is inspired by prior work on soft typ-
ing [28, 42, 3, 15], but it extends soft typing by rejecting many ill-
typed programs, in the spirit of static type checkers. The interaction
between static typing and dynamic checks has also been studied in
the context of type systems with the type Dynamic [1, 38], and in
systems that combine dynamic checks with dependant types [35].
Hybrid type checking extends these ideas to support more precise
specifications.

The general approach of hybrid type checking appears to be
applicable to a variety of programming languages and to various
specification languages. In this paper, we illustrate the key ideas
of hybrid type checking for a fairly expressive dependent type
system that is statically undecidable. Specifically, we work with
an extension of the simply-typed λ-calculus that supports arbitrary
refinements of base types.

This language and type system is described in the following sec-
tion. Section 3 then presents a hybrid type checking algorithm for
this language. Section 4 illustrates this algorithm on an example
program. Section 5 verifies key correctness properties of our lan-
guage and compilation algorithm. Section 6 performs a detailed
comparison of the static and hybrid approaches to type checking.
Section 7 discusses related work, and Section 8 describes opportu-
nities for future research.

Figure 3: Syntax

s, t ::= Terms:
x variable
c constant
λx :S. t abstraction
(t t)l application
〈S B T 〉l t type cast

S, T ::= Types:
x :S → T dependent function type
{x :B | t} refinement type

B ::= Base types:
Int base type of integers
Bool base type of booleans

E ::= Environments:
∅ empty environment
E,x : T environment extension

2. The Language λ
H

This section introduces a variant of the simply-typed λ-calculus
extended with casts and with precise (and hence undecidable) re-
finement types. We refer to this language as λH .

2.1 Syntax of λH

The syntax of λH is summarized in Figure 3. Terms include vari-
ables, constants, functions, applications, and casts . The cast 〈S B

T 〉 t dynamically checks that the result of t is of type T (in a man-
ner similar to coercions [38], contracts [13, 14], and to type casts
in languages such as Java [20]). For technical reasons, the cast also
includes that static type S of the term t. Type casts are annotated
with associated labels l ∈ Label, which are used to map run-time
errors back to locations in the source program. Applications are
also annotated with labels, for similar reasons. For clarity, we omit
these labels when they are irrelevant.

The λH type language includes dependent function types [10],
for which we use the syntax x : S → T of Cayenne [4] (in
preference to the equivalent syntax Πx : S. T). Here, S is the
domain type of the function and the formal parameter x may occur
in the range type T . We omit x if it does not occur free in T ,
yielding the standard function type syntax S → T .

We use B to range over base types, which includes at least Bool
and Int. As in many languages, these base types are fairly coarse
and cannot, for example, denote integer subranges. To overcome
this limitation, we introduce base refinement types of the form

{x :B | t}
Here, the variable x (of type B) can occur within the boolean term
or predicate t. This refinement type denotes the set of constants c of
type B that satisfy this predicate, i.e., for which the term t[x := c]
evaluates to true. Thus, {x :B | t} denotes a subtype of B, and we
use a base type B as an abbreviation for the trivial refinement type
{x :B | true}.

Our refinement types are inspired by prior work on decidable re-
finement type systems [29, 17, 11, 45, 44, 35]. However, our refine-
ment types support arbitrary predicates, and this expressive power
causes type checking to become undecidable. For example, sub-
typing between two refinement types {x : B | t1} and {x : B | t2}

reduces to checking implication between the corresponding predi-
cates, which is clearly undecidable. These decidability difficulties
are circumvented by our hybrid type checking algorithm, which we
describe in Section 3.

The type of each constant is defined by the following function
ty : Constant → Type, and the set Constant is implicitly defined as
the domain of this mapping.

true : {b :Bool | b}
false : {b :Bool | not b}

⇔ : b1 :Bool→ b2 :Bool→ {b :Bool | b ⇔ (b1 ⇔ b2)}
not : b :Bool → {b′ :Bool | b ⇔ not b}

n : {m :Int |m = n}
+ : n :Int → m :Int→ {z :Int | z = n + m}

+n : m :Int→ {z :Int | z = n + m}
= : n :Int → m :Int→ {b :Bool | b ⇔ (n = m)}

ifT : Bool→ T → T → T
fixT : (T → T) → T

A basic constant is a constant whose type is a base refinement type.
Each basic constant is assigned a singleton type that denotes exactly
that constant. For example, the type of an integer n denotes the
singleton set {n}.

A primitive function is a constant of function type. For clarity,
we use infix syntax for applications of some primitive functions
(e.g., +, =, ⇔). The types for primitive functions are quite precise.
For example, the type for the primitive function +:

n :Int → m :Int→ {z :Int | z = n + m}

exactly specifies that this function performs addition. That is, the
term n + m has the type {z : Int | z = n + m} denoting the
singleton set {n + m}. Note that even though the type of “+” is
defined in terms of “+” itself, this does not cause any problems
in our technical development, since the semantics of refinement
predicates is defined in terms of the operational semantics.

The constant fixT is the fixpoint constructor of type T , and
enables the definition of recursive functions. For example, the fac-
torial function can be defined as:

fixInt→Int

λf : (Int → Int). λn :Int.
ifInt (n = 0) 1 (n ∗ (f (n − 1)))

Refinement types can express many precise specifications, such
as:

- printDigit : {x :Int | 0 ≤ x ∧ x ≤ 9} → Unit.

- swap : x :RefInt→ {y :RefInt |x 6= y} → Bool.

- binarySearch : {a :Array | sorted a} → Int→ Bool.

Here, we assume that Unit, Array, and RefInt are additional
base types, and the primitive function sorted : Array → Bool

identifies sorted arrays.

2.2 Operational Semantics of λH

We next describe the run-time behavior of λH terms, since the
semantics of the type language depends on the semantics of terms.
The relation s −→ t performs a single evaluation step, and the
relation −→∗ is the reflexive-transitive closure of −→.

As shown in Figure 4, the rule [E-β] performs standard β-
reduction of function applications. The rule [E-PRIM] evaluates
applications of primitive functions. This rule is defined in terms
of the partial function:

[[·]] · : Constant × Term →p Term

Figure 4: Evaluation Rules

Evaluation s −→ t

(λx :S. t) s −→ t[x := s] [E-β]

c t −→ [[c]](t) [E-PRIM]

〈(x :S1 → S2) B (x :T1 → T2)〉l t [E-CAST-F]
−→

λx :T1. 〈S2 B T2〉l (t (〈T1 B S1〉l x))

〈{x :B | s} B {x :B | t}〉 c −→ c [E-CAST-C]
if t[x := c] −→∗ true

C[s] −→ C[t] if s −→ t [E-COMPAT]

Contexts C

C ::= • | • t | t • | 〈S B T 〉 •

which defines the semantics of primitive functions. For example:

[[not]](true) = false

[[+]](3) = +3

[[+3]](4) = 7
[[not]](3) = undefined

[[ifT]](true) = λx :T. λy :T. x
[[ifT]](false) = λx :T. λy :T. y

[[fixT]](t) = t (fixT t)

The operational semantics of casts is a little more complicated.
As described by the rule [E-CAST-F], casting a term t of type
x :S1 → S2 to a function type x :T1 → T2 yields a new function

λx :T1. 〈S2 B T2〉l (t (〈T1 B S1〉l x))

This function is of the desired type x : T1 → T2 ; it takes an
argument x of type T1 , casts it to a value of type S1 , which is
passed to the original function t, and the result of that application is
then cast to the desired result type T2 . Thus, higher-order casts are
performed a lazy fashion – the new casts 〈S2BT2〉l and 〈T1BS1〉l
are performed at every application of the resulting function, in a
manner reminiscent of higher-order contracts [14]. If either of the
two new casts fail, their label l then assigns the blame back to the
original cast 〈(x :S1 → S2) B (x :T1 → T2)〉l .

The rule [E-CAST2] deals with casting a basic constant c to a
base refinement type {x :B | t}. This rule checks that the predicate
t holds on c, i.e., that t[x := c] evaluates to true.

Note that these casts involve only tag checks, predicate checks,
and creating checking wrappers for functions. Thus, our approach
adheres to the principle of phase separation [9], in that there is no
type checking of actual program syntax at run time.

2.3 The λH Type System

We next describe the (undecidable) λH type system via the collec-
tion of type judgments and rules shown in Figure 5. The judgment
E ` t : T checks that the term t has type T in environment E; the
judgment E ` T checks that T is a well-formed type in environ-
ment E; and the judgment E ` S <: T checks that S is a subtype
of T in environment E.

Figure 5: Type Rules

Type rules E ` t : T

(x : T) ∈ E

E ` x : T
[T-VAR]

E ` c : ty(c)
[T-CONST]

E ` S E,x : S ` t : T

E ` (λx :S. t) : (x :S → T)
[T-FUN]

E ` t1 : (x :S → T) E ` t2 : S

E ` t1 t2 : T [x := t2]
[T-APP]

E ` t : S E ` T

E ` 〈S B T 〉 t : T
[T-CAST]

E ` t : S E ` S <: T E ` T

E ` t : T
[T-SUB]

Well-formed types E ` T

E ` S E, x : S ` T

E ` x :S → T
[WT-ARROW]

E, x : B ` t : Bool

E ` {x :B | t} [WT-BASE]

Subtyping E ` S <: T

E ` T1 <: S1 E, x : T1 ` S2 <: T2

E ` (x :S1 → S2) <: (x :T1 → T2)
[S-ARROW]

E,x : B ` s ⇒ t

E ` {x :B | s} <: {x :B | t} [S-BASE]

Implication E ` s ⇒ t

∀σ. (E |= σ and σ(s) →∗
true implies σ(t) →∗

true)

E ` s ⇒ t
[IMP]

Consistent Substitutions E |= σ

∅ |= ∅ [CS-EMPTY]

∅ ` t : T (x := t)E |= σ

x : T, E |= (x := t, σ)
[CS-EXT]

The rules defining these judgments are mostly straightforward.
The rule [T-APP] for applications differs somewhat from the rule
presented in the introduction because it supports dependent func-
tion types, and because the subtyping relation is factored out into
the separate subsumption rule [T-SUB]. We assume that variables
are bound at most once in an environment. As customary, we apply
implicit α-renaming of bound variables to maintain this assumption
and to ensure substitutions are capture-avoiding.

The novel aspects of this system arise from its support of refine-
ment types. Recall that a type {x : B | t} denotes the set of con-
stants c of type B for which t[x := c] evaluates to true. We use
two auxiliary judgments to express the correct subtyping relation
between refinement types. The implication judgment E ` t1 ⇒ t2
holds if whenever the term t1 evaluates to true then t2 also evalu-
ates to true. This relation is defined in terms of substitutions that
are consistent with E. Specifically, a substitution σ (from variables
to terms) is consistent with the environment E if σ(x) is of type
E(x) for each x ∈ dom(E). Finally, the rule [S-BASE] states that
the subtyping judgment E ` {x :B | t1} <: {x :B | t2} holds if

E,x : B ` t1 ⇒ t2

meaning that every constant of type {x : B | t1} also has type
{x :B | t2}.

As an example, the subtyping relation:

∅ ` {x :Int |x > 0} <: {x :Int |x ≥ 0}
follows from the validity of the implication:

x : Int ` (x > 0) ⇒ (x ≥ 0)

Of course, checking implication between arbitrary predicates is
undecidable, which motivates the development of the hybrid type
checking algorithm in the following section.

3. Hybrid Type Checking for λ
H

We now describe how to perform hybrid type checking for the
language λH . We believe this general approach extends to other
languages with similarly expressive type systems.

Hybrid type checking relies on an algorithm for conservatively
approximating implication between predicates. We assume that for
any conjectured implication E ` s ⇒ t, this algorithm returns one
of three possible results, which we denote as follows:

• The judgment E `
√

alg s ⇒ t means the algorithm finds a proof
that E ` s ⇒ t.

• The judgment E `×
alg s ⇒ t means the algorithm finds a proof

that E 6` s ⇒ t.

• The judgment E `?

alg s ⇒ t means the algorithm terminates
due to a timeout without either discovering a proof of either
E ` s ⇒ t or E 6` s ⇒ t.

We lift this 3-valued algorithmic implication judgment E `a
alg

s ⇒ t (where a ∈ {√,×, ?}) to a 3-valued algorithmic subtyping
judgment:

E `a
alg S <: T

as shown in Figure 6. The subtyping judgment between base re-
finement types reduces to a corresponding implication judgment,
via the rule [SA-BASE]. Subtyping between function types reduces
to subtyping between corresponding contravariant domain and co-
variant range types, via the rule [SA-ARROW]. This rule uses the
following conjunction operation ⊗ between three-valued results:

⊗ √
? ×√ √
? ×

? ? ? ×
× × × ×

Figure 6: Compilation Rules

Compilation of terms E ` s ↪→ t : T

(x : T) ∈ E

E ` x ↪→ x : T
[C-VAR]

E ` c ↪→ c : ty(c)
[C-CONST]

E ` S ↪→ T
E, x : T ` s ↪→ t : T ′

E ` (λx :S. s) ↪→ (λx :T. t) : (x :T → T ′)
[C-FUN]

E ` s1 ↪→ t1 : (x :T → T ′)
E ` s2 ↪→ t2 ↓l T

E ` (s1 s2)
l ↪→ (t1 t2)

l : T ′[x := t2]
[C-APP]

E ` S1 ↪→ T1 E ` S2 ↪→ T2

E ` s ↪→ t ↓l T1

E ` 〈S1 B S2〉l s ↪→ 〈T1 B T2〉l t : T2

[C-CAST]

Compilation and checking E ` s ↪→ t ↓l T

E ` s ↪→ t : S E `
√

alg S <: T

E ` s ↪→ t ↓l T
[CC-OK]

E ` s ↪→ t : S

E `?

alg S <: T

E ` s ↪→ 〈S B T 〉l t ↓l T
[CC-CHK]

Compilation of types E ` S ↪→ T

E ` S1 ↪→ T1 E, x : T1 ` S2 ↪→ T2

E ` (x :S1 → S2) ↪→ (x :T1 → T2)
[C-ARROW]

E,x : B ` s ↪→ t : {y :Bool | t′}
E ` {x :B | s} ↪→ {x :B | t} [C-BASE]

Subtyping Algorithm E `a
alg S <: T

E `b
alg T1 <: S1 E, x : T1 `c

alg S2 <: T2

a = b ⊗ c

E `a
alg (x :S1 → S2) <: (x :T1 → T2)

[SA-ARROW]

E, x : B `a
alg s ⇒ t a ∈ {√,×, ?}

E `a
alg {x :B | s} <: {x :B | t} [SA-BASE]

Implication Algorithm E `a
alg s ⇒ t

separate algorithm

If the appropriate subtyping relation holds for certain between
the domain and range components (i.e., b = c =

√
), then the

subtyping relation holds between the function types (i.e., a =
√

).
If the appropriate subtyping relation does not hold between either
the corresponding domain or range components (i.e., b = × or
c = ×), then the subtyping relation does not hold between the
function types (i.e., a = ×). Otherwise, in the uncertain case,
subtyping may hold between the function types (i.e., a = ?). Thus,
like the implication algorithm, the subtyping algorithm may not
return a definite answer in all cases.

Hybrid type checking uses this subtyping algorithm to type
check the source program, and to simultaneously insert dynamic
casts to compensate for any indefinite answers returned by the
subtyping algorithm. We characterize this process of simultaneous
type checking and cast insertion via the compilation judgment:

E ` s ↪→ t : T

Here, the environment E provides bindings for free variables, s is
the original source program, t is a modified version of the original
program with additional casts, and T is the inferred type for t. Since
types contain terms, we extend this compilation process to types via
the judgment E ` S ↪→ T . Some of the compilation rules rely on
the auxiliary compilation and checking judgment

E ` s ↪→ t ↓l
T

This judgment takes as input an environment E, a source term s,
and a desired result type T , and checks that s compiles to a term of
this result type. The label l is used to appropriately annotate casts
inserted by this compilation and checking process.

The rules defining these judgments are shown in Figure 6. Most
of the rules are straightforward. The rules [C-VAR] and [C-CONST]
say that variable references and constants do not require additional
casts. The rule [C-FUN] compiles an abstraction λx : S. t by com-
piling the type S to S′ and compiling t to t′ of type T , and then
yielding the compiled abstraction λx : S′. t′ of type x : S′ → T .
The rule [C-APP] for an application s1 s2 compiles s1 to a term t1
of function type x :T → T ′ , and uses the compilation and check-
ing judgment to ensure that the argument term s2 compiles into a
term of the appropriate argument type T . The rule [C-CAST] for a
cast 〈S1 B S2〉 s compiles the two types S1 and S2 into T1 and T2 ,
respectively, and then uses the compilation and checking judgment
to ensure that s compiles to a term t of type expected type T1.

The two rules defining the compilation and checking judgment
E ` s ↪→ u ↓l T demonstrate the key idea of hybrid type
checking. Both rules start by compiling s to a term t of some type
S. The crucial question is then whether this type S is a subtype of
the expect type T :

• If the subtyping algorithm succeeds in proving that S is a sub-
type of T (i.e., E `

√

alg S <: T), then t is clearly of the desired
type T , and so the rule [CC-OK] returns t as the compiled form
of s.

• If the subtyping algorithm can show that S is not a subtype of
T (i.e., E `×

alg S <: T), then the program is rejected since no
compilation rule is applicable.

• Otherwise, in the uncertain case where E `?

alg S <: T , the
rule [CC-CHK] inserts the type cast 〈S B T 〉l to dynamically
ensure that values returned by t are actually of the desired type
T .

These rules for compilation and checking illustrate the key benefit
of hybrid type checking – specific static analysis problem instances
(such as E ` S <: T) that are undecidable or computationally in-
tractable can be avoided in a convenient manner simply by insert-

ing appropriate dynamic checks. Of course, we should not abuse
this facility, and so ideally the subtyping algorithm should yield a
precise answer in most cases. However, the critical contribution of
hybrid type checking is that it avoids the very strict requirement of
demanding a precise answer for all (arbitrarily complicated) sub-
typing questions.

Compilation of types is straightforward. The rule [C-ARROW]
compiles a dependent function type x : S → T by recursively
compiling the types S and T (in appropriate environments) to S ′

and T ′ respectively, and then yielding the compiled function type
x : S′ → T ′ . The rule [C-BASE] compiles a base refinement type
{x : B | t} by compiling the term t to t′ (whose type should be a
subtype of Bool), and then yielding the compiled base refinement
type {x :B | t′}.

Note that checking that a type is well-formed is actually a com-
pilation process that returns a well-formed type (possibly with
added casts). Thus, we only perform compilation of types where
necessary, at λ-abstractions and casts, when we encounter (possi-
bly ill-formed) types in the source program. In particular, the com-
pilation rules do not explicitly check that the environment is well-
formed, since that would involve repeatedly compiling all types in
that environment. Instead, the compilation rules assume that the
environment is well-formed; this assumption is explicit in the cor-
rectness theorems later in the paper.

4. An Example
To illustrate the behavior of the hybrid compilation algorithm,
consider a function serializeMatrix that serializes an n by m
matrix into an array of size n × m. We extend the language λH

with two additional base types:

• Array, the type of one dimensional arrays containing integers.

• Matrix, the type of two dimensional matrices, again containing
integers.

The following primitive functions return the size of an array; create
a new array of the given size; and return the width and height of a
matrix, respectively:

asize : a :Array → Int

newArray : n :Int → {a :Array | asize a = n}
matrixWidth : a :Matrix→ Int

matrixHeight : a :Matrix→ Int

We introduce the following type abbreviations to denote arrays of
size n and matrices of size n by m:

Arrayn

def
= {a :Array | (asize a = n)}

Matrixn,m
def
= {a :Matrix |

(

matrixWidth a = n
∧ matrixHeight a = m

)

}

The shorthand t asl T ensures that the term t has type T by passing
t as an argument to the identity function of type T → T :

t as
l
T

def
= ((λx :T. x) t)l

We now define the function serializeMatrix as:

(

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray e in . . . ; r

)

as
l
T

The elided term . . . initializes the new array r with the contents of
the matrix a, and we will consider several possibilities for the size
expressione. The type T is the specification of serializeMatrix:

T
def
= (n :Int → m :Int → Matrixn,m → Arrayn×m)

For this declaration to type check, the inferred type Arraye of
the function’s body must be a subtype of the declared return type:

n : Int, m : Int ` Arraye <: Arrayn×m

Checking this subtype relation reduces to checking the implication:

n : Int, m : Int, a : Array ` (asize a = e)
⇒ (asize a = (n × m))

which in turn reduces to checking the equality:

∀n, m ∈ Int. e = n × m

The implication checking algorithm might use an automatic theo-
rem prover (e.g., [12, 6]) to verify or refute such conjectured equal-
ities.

We now consider three possibilities for the expression e.

1. If e is the expression n × m, the equality is trivially true, and
the program compiles without any additional casts.

2. If e is m × n (i.e., the order of the multiplicands is reversed),
and the underlying theorem prover can verify

∀n, m ∈ Int. m × n = n × m

then again no casts are necessary. Note that a theorem prover
that is not complete for arbitrary multiplications might still have
a specific axiom about the commutativity of multiplication.

If the theorem prover is too limited to verify this equality, the
hybrid type checker will still accept this program. However, to
compensate for the limitations of the theorem prover, the hybrid
type checker will insert a redundant cast, yielding the compiled
function (where due to space constraints we have elided the
source type of the cast):
(

〈· · · B T 〉l

(

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray e in . . . ; r

))

as
l T

This term can be optimized, via [E-β] and [E-CAST-F] steps and
via removal of clearly redundant 〈IntB Int〉 casts, to:

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray (m × n) in

. . . ;
〈Arraym×n B Arrayn×m〉l r

The remaining cast checks that the result value r is of the
declared return type Arrayn×m , which reduces to dynamically
checking that the predicate:

asize r = n × m

evaluates to true, which it does.

3. Finally, if e is erroneously m× m, the function is ill-typed. By
performing random or directed [18] testing of several values
for n and m until it finds a counterexample, the theorem prover
might reasonably refute the conjectured equality:

∀n,m ∈ Int. m × m = n × m

In this case, the hybrid type checker reports a static type error.

Conversely, if the theorem prover is too limited to refute the
conjectured equality, then the hybrid type checker will produce
(after optimization) the compiled program:

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray (m × m) in

. . . ;
〈Arraym×m B Arrayn×m〉l r

If this function is ever called with arguments for which m ×
m 6= n × m, then the cast will detect the type error. Moreover,

Figure 7: Well-formed Environments

Well-formed environment ` E

` ∅ [WE-EMPTY]

` E E ` T

` E,x : T
[WE-EXT]

the cast label l will identify the as
l construct in the original

program as the location of this type error, thus indicating that
the original definition of serializeMatrix did not satisfy its
specification.

Note that prior work on practical dependent types [45] could
not handle any of these cases, since the type T uses non-linear
arithmetic expressions. In contrast, case 2 of this example demon-
strates that even fairly partial techniques for reasoning about com-
plex specifications (e.g., commutativity of multiplication, random
testing of equalities) can facilitate static detection of defects. Fur-
thermore, even though catching errors at compile time is ideal,
catching errors at run time (as in case 3) is still clearly an improve-
ment over not detecting these errors at all, and getting subsequent
crashes or incorrect results.

5. Correctness
We now study what correctness properties are guaranteed by hybrid
type checking, starting with the type system, which provides the
specification for our hybrid compilation algorithm.

5.1 Correctness of the Type System

As usual, a term is considered to be in normal form if it does
not reduce to any subsequent term, and a value v is either a λ-
abstraction or a constant. We assume that the function ty maps each
constant to an appropriate type, in the following sense:

ASSUMPTION 1 (Types of Constants). For each c ∈ Constant:

• c has a well-formed type, i.e. ∅ ` ty(c).
• If c is a primitive function then it cannot get stuck and its

operational behavior is compatible with its type, i.e.
if E ` c v : T then [[c]](v) is defined
if E ` c t : T and [[c]](t) is defined then E ` [[c]](t) : T .

• If c is a basic constant then it is a member of its type, which is
a singleton type, i.e.

if ty(c) = {x :B | t} then t[x := c] −→∗
true

if ty(c) = {x :B | t} then ∀c′ ∈ Constant.
t[x := c′] −→∗ true implies c = c′

The type system satisfies the following type preservation or sub-
ject reduction property [43]. This theorem includes a requirement
that the environment E is well-formed (` E), a notion that is de-
fined in Figure 7. Note that the type rules do not refer to this judg-
ment directly in order to yield a closer correspondence with the
compilation rules.

THEOREM 2 (Preservation).
If ` E and E ` s : T and s −→ t then E ` t : T .

PROOF: By induction on the typing derivation E ` s : T , based
on the usual substitution lemma. �

The type system also satisfies the progress property, with the
caveat that type casts may fail. A failed cast is one that either (1)
casts a basic constant to a function type, (2) casts a function to
a base refinement type, or (3) casts a constant to an incompatible
refinement type (i.e., one with a different base type or an incompat-
ible predicate)

DEFINITION 3 (Failed Casts). A failed cast is one of:

1. 〈{x :B | s} B (x :T1 → T2)〉l v.
2. 〈(x :T1 → T2) B {x :B | s}〉l v.
3. 〈{x :B1 | t1} B {x :B2 | t2}〉l c unless B1 = B2 and

t2[x := c] −→∗
true

THEOREM 4 (Progress).
Every well-typed, closed normal form is either a value or contains
a failed cast.

PROOF: By induction of the derivation showing that the normal
form is well-typed. �

5.2 Type Correctness of Compilation

Since hybrid type checking relies on necessarily incomplete algo-
rithms for subtyping and implication, we next investigate what cor-
rectness properties are guaranteed by this compilation process.

We assume the 3-valued algorithm for checking implication
between boolean terms is sound in the following sense:

ASSUMPTION 5 (Soundness of E `a
alg s ⇒ t). Suppose ` E.

1. If E `
√

alg s ⇒ t then E ` s ⇒ t.

2. If E `×
alg s ⇒ t then E 6` s ⇒ t.

Note that this algorithm does not need to be complete (indeed,
an extremely naive algorithm could simply return E `?

alg s <: t in
all cases). A consequence of the soundness of the implication algo-
rithm is that the algorithmic subtyping judgment E `alg S <: T
is also sound.

LEMMA 6 (Soundness of E `a
alg S <: T). Suppose ` E.

1. If E `
√

alg S <: T then E ` S <: T .

2. If E `×
alg S <: T then E 6` S <: T .

PROOF: By induction on derivations using Assumption 5. �

Becasue algorithmic subtyping is sound, the hybrid compilation
algorithm generates only well-typed programs:

LEMMA 7 (Compilation Soundness). Suppose ` E.

1. If E ` t ↪→ t′ : T then E ` t′ : T .
2. If E ` t ↪→ t′ ↓ T and E ` T then E ` t′ : T .
3. If E ` T ↪→ T ′ then E ` T ′ .

PROOF: By induction on compilation derivations. �

Since the generated code is well-typed, standard type-directed
compilation and optimization techniques [39, 31] are applicable.
Furthermore, the generated code includes all the type specifications
present in the original program, and so by the Preservation Theo-
rem these specifications will never be violated at run time. Any
attempt to violate a specification is detected via a combination of
static checking (where possible) and dynamic checking (only when
necessary).

Figure 8: UpCast Insertion

Upcast insertion E ` s ' t

E ` t ' t
[UP-REFL]

E ` t1 ' t2 E ` t2 ' t3

E ` t1 ' t3
[UP-TRANS]

E ` S <: T

E ` t ' 〈S B T 〉 t
[UP-ADD]

E ` t ' λx :T. t x
[UP-ETA]

E ` (λx :S. t) ' (λx :T. t)
[UP-FUNTY]

E,x : T ` s ' t

E ` (λx :T. s) ' (λx :T. t)
[UP-FUNBODY]

E ` s ' s′

E ` s t ' s′ t
[UP-APPL]

E ` t ' t′

E ` s t ' s t′
[UP-APPR]

E ` S = S′

E ` 〈S B T 〉 s ' 〈S′
B T 〉l s

[UP-CASTL]

E ` T = T ′

E ` 〈S B T 〉 s ' 〈S B T ′〉l s
[UP-CASTR]

E ` s ' t

E ` 〈S B T 〉 s ' 〈S B T 〉l t
[UP-CASTBODY]

5.3 Bisimulation

In this section we prove that compilation does not change the
meaning of well-typed programs, so that the original and compiled
programs are behaviorally equivalent, or bisimilar.

As a first step towards defining this bisimulation relation, the
cast insertion relation ' shown in Figure 8 characterizes some
aspects of the relationship between source and compiled terms.
The rule [UP-ADDCAST] states that, if E ` S <: T , then the
cast 〈S B T 〉 is redundant, and any term t is considered to be
'-equivalent to 〈S B T 〉 t. Note that this rule requires that we
track the current environment. The remaining rules implement the
reflexive-transitive-compatible closure of this rule, updating the
current environment as appropriate. The rule [UP-ETA] also allows
for η-expansion, which is in part performed by the evaluation
rule [E-CAST-FN] for function casts.

As a technical requirement, we assume that application of prim-
itive functions preserves '-equivalence:

ASSUMPTION 8 (Constant Bisimulation). For all primitive func-
tions c, if s ' t then [[c]](s) ' [[c]](t).

The desired bisimulation relation R is then obtained by strength-
ening the cast insertion relation with the additional requirement that
both the original program and compiled programs are well-typed:

R = {(s, t) | s ' t and ∃S. ∅ ` s : S and ∃T. ∅ ` t : T}
This relation R is a bisimulation relation, i.e., if R(s, t) holds then
s and t exhibit equivalent behavior.

LEMMA 9 (Bisimulation). Suppose R(s, t).

1. If s −→ s′ then ∃t′ such that t −→∗ t′ and R(s′, t′).
2. If t −→ t′ then ∃s′ such that s −→∗ s′ and R(s′, t′).

PROOF: By induction on the cast insertion derivation. �

Finally, we prove that the compilation E ` s ↪→ t : T of
a well-typed program s yields a bisimilar program t. Proving this
property requires an inductive hypothesis that also characterizes the
compilation relations E ` s ↪→ t ↓ T and E ` S ↪→ T .

LEMMA 10 (Compilation is Upcasting). Suppose ` E.

1. If E ` s : S and E ` s ↪→ t : T then E ` T <: S and
E ` s ' t.

2. If E ` s : S and E ` s ↪→ t ↓ T and E ` S <: T then
E ` s ' t.

3. If E ` S and E ` S ↪→ T then E ` S = T .

PROOF: By induction on compilation derivations. �

It follows that compilation does not change the behavior of well-
typed programs.

LEMMA 11 (Correctness of Compilation). Suppose ∅ ` s : S
and ∅ ` s ↪→ t : T .

1. If s −→∗ s′ then ∃t′ such that t −→∗ t′ and s′ ' t′.
2. If t −→∗ t′ then ∃s′ such that s −→∗ s′ and s′ ' t′.

PROOF: By Lemma 10, s ' t. Also, t is well-typed by Lemma 7,
and s is also well-typed, so R(s, t). The first case then follows by
induction on the length of the reduction sequence s −→∗ s′. The
base case clearly holds. For the inductive case, if s −→ s′ then by
Lemma 9 ∃t′ such that t −→∗ t′ and s′ ' t′. Furthermore, by the
Preservation Theorem, s′ and t′ are well-typed, and so R(s, t). The
second case is similar. �

From part 3 of Lemma 10, compilation of a well-formed type
yields an equivalent type. It follows via a straightforward induction
that the compilation algorithm is guaranteed to accept all well-
typed programs.

LEMMA 12 (Compilation Completeness). Suppose` E.

1. If E ` s : S then ∃t, T such that E ` s ↪→ t : T .
2. If E ` s : S and E ` S <: T then ∃t such that E ` s ↪→

t ↓ T .
3. If E ` S then ∃T such that E ` S ↪→ T .

PROOF: By induction on typing derivations. �

6. Static Checking vs. Hybrid Checking
Given the proven benefits of traditional, purely-static type systems,
an important question that arises is how hybrid type checkers relate
to conventional static type checkers.

To study this question, we assume the static type checker tar-
gets a restricted subset of λH for which type checking is statically
decidable. Specifically, we assume there exists a subset D of Term
such that for all t1, t2 ∈ D and for all environments E (containing

only D-terms), the judgment E ` t1 ⇒ t2 is decidable. We intro-
duce the language λS that is obtained from λH by only permitting
D-terms in refinement types.

As an extreme, we could take D = {true}, in which case the
λS type language is essentially:

T ::= B | T → T

However, to yield a more general argument, we assume only that
D is a subset of Term for which implication is decidable. It then
follows that subtyping and type checking for λS are also decidable,
and we denote this type checking judgment as E `S t : T .

Clearly, the hybrid implication algorithm can give precise an-
swers on (decidable) D-terms, and so we assume that for all
t1, t2 ∈ D and for all environments E, the judgment E `a

alg t1 ⇒
t2 holds for some a ∈ {√,×}. Under this assumption, hybrid type
checking behaves identically to static type checking on (well-typed
or ill-typed) λS programs.

THEOREM 13. For all λS terms t, λS environments E, and λS

types T , the following three statements are equivalent:

1. E `S t : T

2. E ` t : T

3. E ` t ↪→ t : T

PROOF: The hybrid implication algorithm is complete onD-terms,
and hence the hybrid subtyping algorithm is complete for λS types.
The proof then follows by induction on typing derivations. �

Thus, to a λS programmer, a hybrid type checker behaves exactly
like a traditional static type checker.

We now compare static and hybrid type checking from the
perspective of a λH programmer. To enable this comparison, we
need to map expressive λH types into the more restrictive λS types,
and in particular to map arbitrary boolean terms into D-terms. We
assume the computable function

γ : Term → D
performs this mapping. The function erase then maps λH refine-
ment types to λS refinement types by using γ to abstract boolean
terms:

erase{x :B | t} = {x :B | γ(t)}
We extend erase in a compatible manner to map λH types, terms,
and environments to corresponding λS types, terms, and environ-
ments. Thus, for any λH program P , this function yields the corre-
sponding λS program erase(P).

As might be expected, the erase function must lose information,
with the consequence that for any computable mapping γ there ex-
ists some program P such that hybrid type checking of P performs
better than static type checking of erase(P). In other words, be-
cause the hybrid type checker supports more precise specifications,
it performs better than a traditional static type checker, which nec-
essarily must work with less precise but decidable specifications.

THEOREM 14. For any computable mapping γ either:

1. the static type checker rejects the erased version of some well-
typed λH program, or

2. the static type checker accepts the erased version of some ill-
typed λH program for which the hybrid type checker would
statically detect the error.

PROOF: Let E be the environment x : Int.
By reduction from the halting problem, the judgment E ` t ⇒

false for arbitrary boolean terms t is undecidable. However, the

implication judgment E ` γ(t) ⇒ γ(false) is decidable. Hence
these two judgments are not equivalent, i.e.:

{t | (E ` t ⇒ false)} 6= {t | (E ` γ(t) ⇒ γ(false))}
It follows that there must exists some witness w that is in one of
these sets but not the other, and so one of the following two cases
must hold.

1. Suppose:
E ` w ⇒ false

E 6` γ(w) ⇒ γ(false)

We construct as a counter-example the program P1:

P1 = λx :{x :Int |w}. (x as {x :Int | false})
From the assumption E ` w ⇒ false the subtyping judgment

∅ ` {x :Int |w} <: {x :Int | false}
holds. Hence, P1 is well-typed, and by Lemma 12 accepted by
the hybrid type checker.

∅ ` P1 : {x :Int |w} → {x :Int | false}

However, from the assumption E 6` γ(w) ⇒ γ(false) the
erased version of the subtyping judgment does not hold:

∅ 6` erase({x :Int |w}) <: erase({x :Int | false})
Hence erase(P1) is ill-typed and rejected by the static type
checker.

∀T. ∅ 6`S erase(P1) : T

2. Conversely, suppose:

E 6` w ⇒ false

E ` γ(w) ⇒ γ(false)

From the first supposition and by the definition of the implica-
tion judgment, there exists integers n and m such that

w[x := n] −→m
true

We now construct as a counter-example the program P2:

P2 = λx :{x :Int |w}. (x as {x :Int | false∧ (n = m)})
In the program P2, the term n = m has no semantic meaning
since it is conjoined with false. The purpose of this term is to
serve only as a “hint” to the following rule for refuting implica-
tions (which we assume is included in the reasoning performed
by the implication algorithm). In this rule, the integers a and b
serve as hints, and take the place of randomly generated values
for testing if t ever evaluates to true.

t[x := a] −→b true

E `×
alg t ⇒ (false∧ a = b)

This rule enables the implication algorithm to conclude that:

E `×
alg w ⇒ false∧ (n = m)

Hence, the subtyping algorithm can conclude:

`×
alg {x :Int |w} <: {x :Int | false∧ (n = m)}

Therefore, the hybrid type checker rejects P2, which by Lemma 12
is therefore ill-typed.

∀P, T. 6` P2 ↪→ P : T

We next consider how the static type checker behaves on the
program erase(P2). We consider two cases, depending on
whether the following implication judgement holds:

E ` γ(false) ⇒ γ(false∧ (n = m))

(a) If this judgment holds then by the transitivity of implication
and the assumption E ` γ(w) ⇒ γ(false) we have that:

E ` γ(w) ⇒ γ(false∧ (n = m))

Hence the subtyping judgement

∅ ` {x :Int | γ(w)} <: {x :Int | γ(false∧ (n = m))}
holds and the program erase(P2) is accepted by the static
type checker:

∅ ` erase(P2) : {x :Int | γ(w)} →
{x :Int | γ(false∧ (n = m))}

(b) If the above judgment does not hold then consider as a
counter-example the program P3:

P3 = λx :{x :Int |false}.
(x as {x :Int | false∧ (n=m)})

This program is well-typed, from the subtype judgment:

∅ ` {x :Int | false} <: {x :Int | false∧ (n = m)}

However, the erased version of this subtype judgment does
not hold:

∅ 6` erase({x :Int |false})
<: erase({x :Int | false∧(n=m)})

Hence, erase(P3) is rejected by the static type checker:

∀T. ∅ 6`S erase(P3) : T
�

7. Related Work
Much prior work has focused on dynamic checking of expressive
specifications, or contracts [30, 14, 26, 19, 24, 27, 36, 25]. An en-
tire design philosophy, Contract Oriented Design, has been based
on dynamically-checked specifications. Hybrid type checking em-
braces precise specifications, but extends prior purely-dynamic
techniques to verify (or detect violations of) expressive specifi-
cations statically, wherever possible.

The programming language Eiffel [30] supports a notion of
hybrid specifications by providing both statically-checked types as
well as dynamically-checked contracts. Having separate (static and
dynamic) specification languages is somewhat awkward, since it
requires the programmer to factor each specification into its static
and dynamic components. Furthermore, the factoring is too rigid,
since the specification needs to be manually refactored to exploit
improvements in static checking technology.

Other authors have considered pragmatic combinations of
both static and dynamic checking. Abadi, Cardelli, Pierce and
Plotkin [1] extended a static type system with a type Dynamic that
could be explicitly cast to and from any other type (with appropri-
ate run-time checks). Henglein characterized the completion pro-
cess of inserting the necessary coercions, and presented a rewriting
system for generating minimal completions [22]. Thatte developed
a similar system in which the necessary casts are implicit [38].
These systems are intended to support looser type specifications.
In contrast, our work uses similar, automatically-inserted casts to
support more precise type specifications. An interesting avenue for
further exploration is the combination of both approaches to sup-
port a large range of specifications, from Dynamic at one end to
precise hybrid-checked specifications at the other.

Research on advanced type systems has influenced our choice
of how to express program invariants. In particular, Freeman and
Pfenning [17] extended ML with another form of refinement types.
They do not support arbitrary refinement predicates, since their sys-
tem provides both decidable type checking and type inference. Xi
and Pfenning have explored the practical application of dependent

types in an extension of ML called Dependent ML [45, 44]. De-
cidability of type checking is preserved by appropriately restricting
which terms can appear in types. Despite these restrictions, a num-
ber of interesting examples can be expressed in Dependent ML.

In recent work, Ou, Tan, Mandelbaum, and Walker developed a
type system similar to ours that combines dynamic checks with re-
finement and dependent types [35]. They leverage dynamic checks
to reduce the need for precise type annotations in explicitly labeled
regions of programs. Unlike our approach, their type system is de-
cidable, since they do not support arbitrary refinement predicates.
Their system can also handle mutable data.

The static checking tool ESC/Java [16] checks expressive
JML specifications [8, 26] using the Simplify automatic theorem
prover [12]. However, Simplify does not distinguish between fail-
ing to prove a theorem and finding a counter-example that refutes
the theorem, and so ESC/Java’s error messages may be caused ei-
ther by incorrect programs or by limitations in its theorem prover.

The limitations of purely-static and purely-dynamic approaches
have also motivated other work on hybrid analyses. For example,
CCured [33] is a sophisticated hybrid analysis for preventing the
ubiqutous array bounds violations in the C programming language.
Unlike our proposed approach, it does not detect errors statically -
instead, the static analysis is used to optimize the run-time analysis.
Specialized hybrid analyses have been proposed for other problems
as well, such as data race condition checking [41, 34, 2].

Prior work (e.g. [7]) introduced and studied implicit coercions
in type systems. Note that there are no implicit coercions in the λH

type system itself, but only in the compilation algorithm, and so we
do not need a coherence theorem for λH , but instead reason about
the connection between the type system and compilation algorithm.

8. Conclusions and Future Work
Precise specifications are essential for modular software develop-
ment. Hybrid type checking appears to be a promising approach
for providing high coverage checking of precise specifications. This
paper explores hybrid type checking in the idealized context of the
λ-calculus, and highlights some of the key principles and implica-
tions of hybrid type checking.

Many areas remain to be explored, such as how hybrid type
checking interacts with the many features of realistic program-
ming languages, such as records, variants, recursive types, poly-
morphism, type operators, side-effects, exceptions, objects, con-
currency, etc. Our initial investigations suggests that hybrid type
checking can be extended to support these additional features,
though with some restrictions. In an imperative context, we might
require that refinement predicates be pure [45].

Another important area of investigation is type inference for
hybrid type systems. A promising approach is to develop type
inference algorithms that infer most type annotations, and to use
occasional dynamic checks to compensate for limitations in the
type inference algorithm.

In terms of software deployment, an important topic is recovery
methods for post-deployment cast failures; transactional roll-back
mechanisms [21, 40] may be useful in this regard. Hybrid type
checking may also allow precise types to be preserved during the
compilation and distribution process, via techniques such as proof-
carrying code [32] and typed assembly language [31].

Acknowledgements Thanks to Matthias Felleisen, Stephen Fre-
und, Robby Findler, Martı́n Abadi, Shriram Krishnamurthi, David
Walker, Aaron Tomb, Kenneth Knowles, and Jessica Gronski for
valuable feedback on this paper. This work was supported by the
National Science Foundation under Grants CCR-0341179, and by
faculty research funds granted by the University of California at
Santa Cruz.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in

a statically-typed language. In Proceedings of the ACM Symposium
on Principles of Programming Languages, pages 213–227, 1989.

[2] R. Agarwal and S. D. Stoller. Type inference for parameterized race-
free Java. In Proceedings of the Conference on Verification, Model
Checking, and Abstract Interpretation, pages 149–160, 2004.

[3] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 163–173, 1994.

[4] L. Augustsson. Cayenne — a language with dependent types. In
Proceedings of the ACM International Conference on Functional
Programming, pages 239–250, 1998.

[5] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Predicate
abstraction of C programs. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 203–
213, June 2001.

[6] D. Blei, C. Harrelson, R. Jhala, R. Majumdar, G. C. Necula, S. P.
Rahul, W. Weimer, and D. Weitz. Vampyre. Information available
from http://www-cad.eecs.berkeley.edu/~rupak/Vampyre/,
2000.

[7] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov.
Inheritance as implicit coercion. Inf. Comput., 93(1):172–221, 1991.

[8] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll. An overview of JML tools and applications, 2003.

[9] L. Cardelli. Phase distinctions in type theory. Manuscript, 1988.

[10] L. Cardelli. Typechecking dependent types and subtypes. In Lecture
notes in computer science on Foundations of logic and functional
programming, pages 45–57, 1988.

[11] R. Davies and F. Pfenning. Intersection types and computational
effects. In Proceedings of the ACM International Conference on
Functional Programming, pages 198–208, 2000.

[12] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[13] R. B. Findler. Behavioral Software Contracts. PhD thesis, Rice
University, 2002.

[14] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In Proceedings of the International Conference on Functional
Programming, pages 48–59, 2002.

[15] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen.
Finding bugs in the web of program invariants. In Proceedings
of the ACM Conference on Programming Language Design and
Implementation, pages 23–32, 1996.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proceedings
of the ACM Conference on Programming Language Design and
Implementation, pages 234–245, 2002.

[17] T. Freeman and F. Pfenning. Refinement types for ML. In
Proceedings of the ACM Conference on Programming Language
Design and Implementation, pages 268–277, 1991.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proceedings of the ACM Conference on
Programming Language Design and Implementation, pages 213–
223, 2005.

[19] B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter. A language
manual for Sather 1.1, 1996.

[20] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification (3rd Edition). Addison-Wesley, 2005.

[21] N. Haines, D. Kindred, J. G. Morrisett, S. Nettles, and J. M.
Wing. Composing first-class transactions. In ACM Transactions on
Programming Languages and Systems, volume 16(6), pages 1719–
1736, 1994.

[22] F. Henglein. Dynamic typing: Syntax and proof theory. Science of
Computer Programming, 22(3):197–230, 1994.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In Proceedings
of the IEEE Conference on Computer Aided Verification, pages 526–
538, 2002.

[24] R. C. Holt and J. R. Cordy. The Turing programming language.
Communications of the ACM, 31:1310–1424, 1988.

[25] M. Kölling and J. Rosenberg. Blue: Language specification, version
0.94, 1997.

[26] G. T. Leavens and Y. Cheon. Design by contract with JML, 2005.
avaiable at http://www.cs.iastate.edu/~leavens/JML/.

[27] D. Luckham. Programming with specifications. Texts and Mono-
graphs in Computer Science, 1990.

[28] M. Fagan. Soft Typing. PhD thesis, Rice University, 1990.

[29] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of
type refinements. In Proceedings of the International Conference on
Functional Programming, pages 213–225, 2003.

[30] B. Meyer. Object-oriented Software Construction. Prentice Hall,
1988.

[31] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):527–568, 1999.

[32] G. C. Necula. Proof-carrying code. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages 106–
119, 1997.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 128–139, 2002.

[34] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detec-
tion. In ACM Symposium on Principles and Practice of Parallel
Programming, pages 167–178, 2003.

[35] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In IFIP International Conference on Theoretical
Computer Science, pages 437–450, 2004.

[36] D. L. Parnas. A technique for software module specification with
examples. Communications of the ACM, 15(5):330–336, 1972.

[37] Reynolds, J.C. Definitional interpreters for higher-orderprogramming
languages. In Proc. ACM Annual Conference, pages 717–740, 1972.

[38] S. Thatte. Quasi-static typing. In Proceedings of the ACM Symposium
on Principles of Programming Languages, pages 367–381, 1990.

[39] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. ACM SIGPLAN
Notices, 31(5):181–192, 1996.

[40] J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A semantic
framework for designer transactions. In Proceedings of European
Symposium on Programming, pages 249–263, 2004.

[41] C. von Praun and T. Gross. Object race detection. In Proceedings
of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 70–82, 2001.

[42] A. Wright and R. Cartwright. A practical soft type system for scheme.
In Proceedings of the ACM Conference on Lisp and Functional
Programming, pages 250–262, 1994.

[43] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Info. Comput., 115(1):38–94, 1994.

[44] H. Xi. Imperative programmingwith dependent types. In Proceedings
of the IEEE Symposium on Logic in Computer Science, pages 375–
387, 2000.

[45] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proceedings of the ACM Symposium on Principles of Programming
Languages, pages 214–227, 1999.

A. Proofs from Subsection 5.1
LEMMA 15 (Weakening). Suppose

E = E1, E2

E′ = E1, x : P,E2

Then:

1. If E′ |= (σ, x := t) then E |= σ.
2. If E ` s ⇒ t then E′ ` s ⇒ t.
3. If E ` S <: T then E′ ` S <: T .
4. If E ` t : T then E′ ` t : T .
5. If E ` T then E′ ` T .

PROOF: By simultaneous induction on typing derivations. �

LEMMA 16 (Narrowing). Suppose

E1 ` P <: Q
E = E1, x : Q, E2

E′ = E1, x : P,E2

Then:

1. If E′ |= σ then E |= σ.
2. If E ` s ⇒ t then E′ ` s ⇒ t.
3. If E ` S <: T then E′ ` S <: T .
4. If E ` t : T then E′ ` t : T .
5. If E ` T then E′ ` T .

PROOF: By simultaneous induction on typing derivations. �

LEMMA 17. Subtyping is reflexively-transitively closed:

1. E ` T <: T .
2. If E ` T1 <: T2 and E ` T2 <: T3 then E ` T1 <: T3 .

PROOF: By induction on typing derivations. �

LEMMA 18 (Substitution). Suppose

E1 ` s : S
θ = (x := s)
E = E1, x : S, E2

E′ = E1, θE2

Then:

1. If E′ |= (σ1, σ2) where |E1| = |σ1| then
E |= (σ1, x := σ1(s), σ2).

2. If E ` t1 ⇒ t2 then E′ ` θt1 ⇒ θt2.
3. If E ` T1 <: T2 then E′ ` θT1 <: θT2.
4. If E ` T then E′ ` θT .
5. If E ` t : T then E′ ` θt : θT .

PROOF: By simultaneous induction on typing derivations. �

LEMMA 19 (Canonical Forms). If ` v : (x : T1 → T2) then
either

1. v = λx :S. s and ` T1 <: S and x : S ` s : T2 , or
2. v is a constant and ty(c) is a subtype of x :T1 → T2 .

B. Proofs from Subsection 5.2

C. Proofs from Subsection 5.3
LEMMA 20 (UpCast Substitution).
If E,x : T ` s ' s′ and E ` t ' t′ then E ` s[x := t] '
s′[x := t′].

PROOF: By induction on the derivation that s ' s′. �

LEMMA 21 (Inversion of the UpCast Relation).
If λx :S. s ' v then v = λx :T. t and s ' t.

PROOF: By induction on the derivation λx :S. s ' v. �

LEMMA 22 (Bisimilar Values). Suppose R(s, t) and s a value.
Then ∃t′ such that t −→∗ t′ and R(s, t′) and t′ a value.

PROOF: By induction on s ' t. All cases are straightforward
except for [UP-ADDCAST], for which we perform a case analysis on
the casted type. �

LEMMA 23. If ` (E, x : U) and E,x : U ` S and E,x :
U ` S <: T and E ` s : U and E ` s ' t then E `
S[x := s] <: T [x := t].

PROOF: By induction on the subtyping derivation. �

RESTATEMENT OF LEMMA 9 (Bisimulation) Suppose R(s, t).

1. If s −→ s′ then ∃t′ such that t −→∗ t′ and R(s′, t′).
2. If t −→ t′ then ∃s′ such that s −→∗ s′ and R(s′, t′).

PROOF: The proof of part 1 is by induction on derivation that
s ' t.

• [UP-REFL] This case clearly holds.

• [UP-TRANS] Suppose s ' t via s ' u and u ' t. By
induction ∃u′ such that u −→∗ u′ and s′ ' u′ . Therefore (by
an additional induction argument of the length of u −→∗ u′)
∃t′ such that t −→∗ t′ and u′ ' t′. Hence s′ ' t′.

• [UP-ETA] Suppose t = λx : T. s x. Take t′ = λx : T. s′ x and
then s′ ' t′ and t −→ t′.

• [UP-FUNTY], [UP-FUNBODY] Contradicts assumption that s is
reducible.

• [UP-ADD] Suppose t = 〈S B T 〉 s. Take t′ = 〈S B T 〉 s′ and
then s′ ' t′ and t −→ t′.

• [UP-CASTL] Supposes = 〈SBT 〉 s1 ' 〈S′
BT 〉 s1 = t where

` S = S′ . We perform a cast analysis on s −→ s′.

[E-COMPAT] Suppose s −→ 〈S BT 〉 s′1 because s1 −→ s′1.
Take t′ = 〈S′

B T 〉 s′1 and then s′ ' t′ and t −→ t′.

[E-CAST-F] Suppose

s = 〈x :S1 → S2 B x :T1 → T2〉 s1

−→ s′ = λx :T1. 〈S2 B T2〉l (t (〈T1 B S1〉l x))

where S′ = x :S′
1 → S′

2 and ` S1 = S′
1 and ` S2 = S′

2 .
Take t′ = λx :T1. 〈S′

2 B T2〉l (t (〈T1 B S′
1〉l x)) and then

s′ ' t′ and t −→ t′.

[E-CAST-C] Suppose s = 〈S B {x : B | t}〉 c −→ c = s′

because t[x := c] −→∗
true. Take t′ = c and then s′ ' t′

and t −→ t′.

• [UP-CASTR] Similar to [UP-CASTL].

• [UP-APPR] Suppose s = s1 s2 ' s1 t2 = t because s2 ' t2.
We perform a cast analysis on s −→ s′.

[E-COMPAT] Straightforward.

[E-β] Suppose s = (λx :S. s3) s2 −→ s′ = s3[x := s2].
Take t′ = s3[x := t2] and by Lemma 20 we have that
s′ ' t′ and t −→ t′.

[E-PRIM] Suppose s = c s2 −→ s′ = [[c]] s2. Take
t′ = [[c]] t2 and by Assumption 8 we have that s′ ' t′

and t −→ t′.

• [UP-APPL] Suppose s = s1 s2 ' t1 s2 = t because s1 ' t1.
We perform a cast analysis on s −→ s′.

[E-COMPAT] Straightforward.

[E-β] Suppose s = (λx : S. s3) s2 −→ s′ = s3[x := s2].
By Lemma 21, t1 = λx : T. t3 and s3 ' t3. Take t′ =
t3[x := s2] and then by Lemma 20 we have that s′ ' t′

and t −→ t′.

[E-PRIM] Suppose s = c s2 −→ s′ = [[c]] s2. We prove by
induction on the derivation that c ' t1 that there exists t′

such that t1 s2 −→∗ t′ ' c s2.

− [UP-REFL], [UP-TRANS] Straightforward.

− [UP-ETA] Suppose t1 = λx :T. cx then t1 s2 −→ c s2.

− [UP-ADD] Suppose t1 = 〈S B T 〉 c. Since s is well-
typed, c must have a function type, and since t is well-
typed t1 must be a function cast. Hence

t = (〈x :S1 → S2 B x :T1 → T2〉 c) s2

−→ (λx :T1. 〈S2 B T2〉l (c (〈T1 B S1〉l x))) s2

−→ 〈S2 B T2〉l (c (〈T1 B S1〉l s2))
= t′ ' c s2

− No other rules are applicable.

• [UP-CASTBODY] Suppose s = 〈S B T 〉 s1 ' 〈S B T 〉 t1 = t
because s1 ' t1. We perform a cast analysis on s −→ s′.

[E-COMPAT] Straightforward.

[E-CAST-F] Suppose

s = 〈x :S1 → S2 B x :T1 → T2〉 s1

−→ λx :T1. 〈S2 B T2〉l (s1 (〈T1 B S1〉l x))

Take t′ = λx :T1 . 〈S2 B T2〉l (t1 (〈T1 B S1〉l x)) and then
s′ ' t′ and t −→ t′.

[E-CAST-C] Suppose s = 〈S B {x : B | t}〉 c −→ c = s′

because t[x := c] −→∗
true, where s1 = c. By this

bisimulation lemma, t[x := t1] −→∗
true, and so s =

〈S B {x :B | t}〉 t1 −→ t1. Take t′ = t1 and then s′ ' t′

and t −→ t′.

The proof of part 2 of Lemma 9 is again by induction on derivation
that s ' t.

• [UP-REFL] This case clearly holds.

• [UP-TRANS] Suppose s ' t via s ' u and u ' t. By
induction ∃u′ such that u −→∗ u′ and u′ ' t′. Therefore (by
an additional induction argument of the length of u −→∗ u′)
∃s′ such that s −→∗ s′ and s′ ' u′. Hence s′ ' t′.

• [UP-ETA], [UP-FUNTY], [UP-FUNBODY] Contradicts assumption
that t is reducible.

• [UP-ADD] Suppose t = 〈S B T 〉 s1 where ` S <: T . We
perform a cast analysis on t −→ t′ .

[E-COMPAT] Straightforward.

[E-CAST-F] Suppose

t = 〈x :S1 → S2 B x :T1 → T2〉 s1

−→ t′ = λx :T1. 〈S2 B T2〉l (s1 (〈T1 B S1〉l x))

where ` T1 <: S1 and x : T1 ` S2 <: T2 . Take s′ = s
and then s′ ' t′.

[E-CAST-C] Suppose t = 〈S B {x : B | t1}〉 c −→ c = t′.
Then s = c. Take s′ = s.

• [UP-APPL] Suppose s = s1 s2 ' t1 s2 = t because s1 ' t1.
We perform a cast analysis on t −→ t′.

[E-COMPAT] Straightforward.

[E-β] Suppose t = (λx : S. t3) s2 −→ t′ = t3[x := s2].
We prove by induction on the derivation that s1 ' t1 =
lamxSt3 that there exists s′ such that s1 s2 −→∗ s′ ' t′.

− [UP-REFL], [UP-TRANS], [UP-FUNTY], [UP-FUNBODY]
Straightforward.

− [UP-ETA] Then t3 = s1 x. Take s′ = s and then s′ ' t′.

− No other rules are applicable.

E-Prim Suppose t = c s2 −→ t′ = [[c]] s2. Then s1 = t1 =
c and this case clearly holds.

• [UP-APPR] Suppose s = s1 s2 ' s1 t2 = t because s2 ' t2.
We perform a cast analysis on t −→ t′.

[E-COMPAT] Straightforward.

[E-β] Suppose t = (λx : S. s3) t2 −→ t′ = s3[x := t2].
Take s′ = s3[x := s2] and by Lemma 20 we have that
s′ ' t′ and s −→ s′.

[E-PRIM] Suppose t = c t2 −→ t′ = [[c]] t2 . Take s′ =
[[c]] s2 and by Assumption 8 we have that s′ ' t′ and
s −→ s′.

• [UP-CASTL] Supposes = 〈SBT 〉 s1 ' 〈S′
BT 〉 s1 = t where

` S = S′ . We perform a cast analysis on s −→ s′.

[E-COMPAT] Straightforward.

[E-CAST-F] Suppose

t = 〈x :S′
1 → S′

2 B x :T1 → T2〉 s1

−→ t′ = λx :T1. 〈S′
2 B T2〉l (t (〈T1 B S′

1〉l x))

where S′ = x : S′
1 → S′

2 and S = x : S1 →
S2 and ` S1 = S′

1 and ` S2 = S′
2 . Take s′ =

λx :T1. 〈S2 B T2〉l (t (〈T1 B S1〉l x)) and then s′ ' t′

and s −→ s′.

[E-CAST-C] Suppose t = 〈S B {x : B | t1}〉 c −→ c = t′

because t1[x := c] −→∗
true. Take s′ = c and then

s′ ' t′ and s −→ s′.

• [UP-CASTR] Similar to [UP-CASTL].

• [UP-CASTBODY] Suppose s = 〈S B T 〉 s1 ' 〈S B T 〉 t1 = t
because s1 ' t1. We perform a cast analysis on s −→ s′.

[E-COMPAT] Straightforward.

[E-CAST-F] Suppose

t = 〈x :S1 → S2 B x :T1 → T2〉 t1
−→ λx :T1. 〈S2 B T2〉l (t1 (〈T1 B S1〉l x))

Take s′ = λx :T1. 〈S2 B T2〉l (s1 (〈T1 B S1〉l x)) and
then s′ ' t′ and s −→ s′.

[E-CAST-C] Suppose t = 〈S B {x : B | t2}〉 c −→ c = t′

because t2[x := c] −→∗
true, where t1 = c. Then s1 = c.

Take s′ = c and then s′ ' t′ and s −→ s′ .

�

RESTATEMENT OF LEMMA 10 (Compilation is Upcasting) Suppose
` E.

1. If E ` s : S and E ` s ↪→ t : T then E ` T <: S and
E ` s ' t.

2. If E ` s : S and E ` s ↪→ t ↓ T and E ` S <: T then
E ` s ' t.

3. If E ` S and E ` S ↪→ T then E ` S = T .

PROOF: By simultaneous induction on compilation derivations.
Part 1.

• [C-VAR], [C-CONST]. Straightforward.

• [C-FUN] In this case

E ` (λx :S. s) ↪→ (λx :T. t) : (x :T → T ′)
E ` S ↪→ T antecedent
E,x : T ` s ↪→ t : T ′ antecedent

E ` (λx :S. s) : (x :S → S′)
E ` S antecedent
E,x : S ` s : S′ antecedent

E ` S = T induction
E,x : T ` s : S′ Lemma 18
E,x : T ` s ' t induction
E ` λx :T. s ' λx :T. t [UP-FUNBODY]
E ` λx :S. s ' λx :T. t [UP-FUNTY]

E,x : T ` T ′ <: S′ induction
E ` (x :T → T ′) <: (x :S → S′) [S-ARROW]

• [C-APP] In this case

E ` (s1 s2) ↪→ (t1 t2) : T ′[x := t2]
E ` s1 ↪→ t1 : (x :T → T ′) antecedent
E ` s2 ↪→ t2 ↓ T antecedent

E ` s1 s2 : S[x := s2]
E ` s1 : (x :S → S′) antecedent
E ` s2 : S antecedent

E ` s1 ' t1 induction
E ` (x :T → T ′) <: (x :S → S′) induction
E ` S <: T [S-ARROW]
E ` s2 ' t2 induction
E ` s1 s2 ' t1 t2 [UP-· · ·]
E,x : S ` T ′ <: S′ [S-ARROW]
E,x : S ` T ′[x := t2] <: S′[x := s2] Lemma 23

• [C-CAST] In this case

E ` 〈S1 B S2〉 s ↪→ 〈T1 B T2〉 t : T2

E ` S1 ↪→ T1 antecedent
E ` S2 ↪→ T2 antecedent
E ` s ↪→ t ↓l T1 antecedent

E ` 〈S1 B S2〉 s : S
E ` s : S1 antecedent
E ` S2 : antecedent

E ` S1 = T1 induction
E ` S2 = T2 induction
E ` s ' t induction
E ` 〈S1 B S2〉 s ' 〈T1 B T2〉 t [UP-· · ·]

Part 2.

• [CC-OK] In this case

E ` s ↪→ t ↓T

E ` s ↪→ t : S′ antecedent
E ` s : S
E ` s ' t induction

• [CC-CHK] In this case

E ` s ↪→ t ↓T E ` s ↪→ t : S′ antecedent

E ` s : S
E ` S <: T
E ` s ' t induction
E ` s ' 〈S B T 〉 t [UP-ADD]

Part 3.

• [C-BASE] Suppose E ` {x : B | s} ↪→ {x : B | t} via
E,x : B ` s ↪→ t : {y : Bool | t′}. By [WT-BASE]
E,x : B ` s : Bool. By Lemma 7, E, x : B ` t : Bool.

Let σ be any substitution consistent with E,x : B. Then by
Lemma 20 and 18, we have that

` σ(s) ↪→ σ(t) : ({y :Bool |σ(t′)})
` σ(s) : Bool

` σ(t) : Bool

Hence R(σ(s), σ(t)), and so by Lemma 9, σ(s) −→∗
true iff

σ(t) −→∗ true. Thus

E,x : B ` s ⇒ t
E, x : B ` t ⇒ s

Hence E ` {x :B | s} = {x :B | t}.

• [C-ARROW] In this case

E ` (x :S1 → S2) ↪→ (x :T1 → T2)
E ` S1 ↪→ T1 antecedent
E, x : T1 ` S2 ↪→ S2 antecedent

E ` (x :S1 → S2)
E ` S1 antecedent
E, x : S1 ` S2 antecedent

E ` S1 = T1 induction
E, x : T1 ` S2 Lemma 18
E, x : T1 ` S2 = T2 induction
E ` (x :S1 → S2) <: (x :T1 → T2) [S-ARROW]

E, x : S1 ` S2 = T2 Lemma 18
E ` (x :T1 → T2) <: (x :S1 → S2) [S-ARROW]

�

RESTATEMENT OF LEMMA 12 (Compilation Completeness) Suppose
` E.

1. If E ` s : S then ∃t, T such that E ` s ↪→ t : T .
2. If E ` s : S and E ` S <: T then ∃t such that E ` s ↪→

t ↓ T .
3. If E ` S then ∃T such that E ` S ↪→ T .

PROOF: By induction on the typing derivation.

1. • [T-VAR], [T-CONST] Straightforward.

• [T-FUN] In this case, there exists T, t, T ′ such that

E ` (λx :S. s) : (x :S → S′) conclusion
E ` S antecedent
E,x : S ` s : S′ antecedent

E ` S ↪→ T induction
E ` S = T Lemma 10
E,x : T ` s : S′ Lemma 18
E ` s ↪→ t : T ′ induction
E ` (λx :S. s) ↪→ (λx :T. t) : (x :T → T ′) [C-FUN]

• [T-APP] In this case, there exists T1, t, T, T ′ such that

E ` s1 s2 : S′[x := s2] conclusion
E ` t1 : (x :S → S′) antecedent
E ` t2 : S antecedent

E ` s1 ↪→ t1 : T1 induction
E ` T1 <: (x :S → S′) Lemma 10
T1 = (x :T → T ′) [S-ARROW]
E ` S <: T [S-ARROW]
E ` s2 ↪→ t2 ↓ T induction
E ` s1 s2 ↪→ t1 t2 : T ′[x := t2] [C-APP]

• [T-CAST] In this case, there exists T1, T2, t such that

E ` 〈S1 B S2〉 s : S2 conclusion
E ` s : S1 antecedent
E ` S2 antecedent

E ` S1

E ` S1 ↪→ T1 induction
E ` S2 ↪→ T2 induction
E ` S1 = T1 Lemma 10
E ` s ↪→ t ↓ T1 induction
E ` 〈S1 B S2〉 s ↪→ 〈T1 B T2〉 s : T2 [C-CAST]

• [T-SUB] If E ` s : S via [T-SUB] then E ` s : S′ for
some S′ and this case holds by induction

2. From E ` s : S by induction there exists t, U such that
E ` s ↪→ t : U . By Lemma 10, E ` U <: S, and by the
transitivity of subtyping, E ` U <: T .

If E `
√

alg U <: T then E ` s ↪→ t ↓ T via [CC-OK].

Otherwise, by Lemma 6, E `?

alg U <: T , and henceE ` s ↪→
〈U B T 〉 t ↓ T via [CC-CHK].

3. [WT-ARROW], [WT-BASE] Straightforward.

�

