On the Inferenceof Configuration Structuresfrom Source Code

Reseath Paper

Maren Krone and Gregor Snelting
ArbeitsgruppeSoftwaretechnologie
TechnischeUniversitt Braunschweig
Gaul3stral3d.7, D-38106 Braunschweig

Abstract

We apply mathematicakonceptanalysisto the problemof

infering configurationstructuresfrom existingsource code.
Conceptanalysishasbeendevelopedhy Germanmathemati-
ciansoverthelast years;it canbe seenas a discrete anal-

ogonto Fourier analysis. Basedon this theory, our tool

will acceptsource code,whete configuration-spedic state-
mentsare controlled by the preprocessor. The algorithm

will computea so-calledconceptlattice, which — whenvi-

sually displayed— allows remarkablensightinto the struc-

ture and propertiesof possibleconfigurations. The lattice

not only displaysfine-graineddependencie®etweencon-

figuration threads,but also visualizesthe overall quality of

corfiguration structures accoiding to softwae engineering
principles. The paperpresentsa shortintroductionto con-

cept analysis, as well as experimentalresultson various
programs.

1 Intr oduction

A simpleandwidely usedtechniquefor configurationman-

agementis the use of the C preprocessor.Configuration-
dependensourcecodepiecesareenclosedn “#ifdef ... #en-

dif” brackets,andby defining preprocessosymbolsduring

compilerinvocation(e.g. “cc —Dultrix prog.c), aconfigura-
tion threadis determinedandtheappropriateeodepiecesare

selectedand compiled. Although much more sophisticated
configurationmanagemernsystemshavebeendevelopede-

cently (seee.g.[2]), alot of codestickingto “configuration

managemenby preprocessingfs around,anda reverseen-

gineeringtool which allows to extractthe underlyingstruc-

ture from suchsourcesis certainly useful.

As an example,considersomecode piecesfrom the X-
Window tool “xload”; this tool displaysvarious machine
load factors (figure 1). The 724-line programis quite
platform dependent:43 preprocessosymbolsare usedto
control a variety of configurationthreads(e.g. SYSV,
macll, ultrix, sun, CRAY, sony). A code piece may de-
pendnot only on simple preprocessosymbols,but on arbi-
trary booleancombinationsof suchsymbols. Furthermore,

#if (!defined(SVR4)|| !defined(__STDC_)&& !defined(sgi)&&
ldefined(MOTOROLA)
externvoid nlist();
#endif
#ifdef AIXV3
knlist(namelist, 1, sizeof(structnlist));
#else
nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist{LOADA/].n_type== 0 &&
#else
it (namelist{LOADA/].n_type == 0 ||
#endif /* hcx */
namelist{LOADA/].n_value == 0) {
xload_error("cannoget namelist from", KERNEL_FILE);
exit(-1);

loadavg_seek namelistiLOADA/].n_value;
#if defined(umips)&& defined(SYSTYPE_SYSV)
loadavg_seel&= OxTfffffff;
#endif /* umips && SYSTYPE_SYSV¥/
#if (defined(CRA) && defined(SYSINFO))
loadavg_seek= ((char*) (((structsysinfo*)NULL)- >avenrun))
- ((char*) NULL);
#endif * CRAY && SYSINFO*/
kmem = open(KMEM _FILE, O_RDONLY);
if (kmem< 0) xload_error("cannobpen”, KMEM_FILE);
#endif

Figurel: X-Window tool “x_load.c’

“#ifdef’s and“#definé's may be nested resultingin rather
incomprehensiblsourcetexts. Evenexperiencegrogram-
merswill have difficulties to obtain someinsight into the
configurationstructure andwhena new configurationvari-
antis to becoveredtheintroductionof errorsis very likely.
Fortunately, there is a method, called formal concept
analysig[13,15],which allowsto reconstrucsemanticstruc-
turesfrom raw dataasgivenin our case.This methodhas
beendevelopedatthe universalalgebragroupin the Depart-
mentof Mathematicsat the TechnicalUniversity of Darm-
stadt,andhasbeenappliedto variousproblemdomainssuch
as classification of finite lattices, analysisof Rembrandt’s
paintings,or behaviourof drug addicts. The methodcom-
putesa so-calledconceptattice, wherea conceptis a pair,
consisting— in our case— of a setof codepieces(so-called
objectd and a set of preprocessosymbols (so-calledat-
tributeg. Such conceptsrepresentsemanticpropertiesof

the underlying problem domain. The lattice structureim-
posesa partial order on concepts(more specific vs. more
general),andfor two conceptsthereexist supremum(gen-
eralization)and infimum (unification).

A conceptlattice which arisesfrom a sourcetext similar
to “x_load.c” is presentedn figure 2%. It revealssimple
facts e.g.that the CRAY configuration comprisessource
lines 21-28, 29-40, 201-207, and 11-20. But it also
displayslessobviousinformation, e.g.that there are three
main configurationschemegmacll, SYSV, sun); thatlines
11-20appearin all corfigurationsexceptsequentalliant,
and386 platforms;thatapolloandultrix configurationshave
lines126—200,201-207 11-20in common;andthatsource
lines valid for sony or ultrix are valid for sun as well.
Furthermore violations of softwareengineeringprinciples
like high cohesionor low coupling show up immediately.

1 Figure2 andfigure 3 areisomorphiccopiesof aninstructiveexample

presentedn [15]

Figure2: A conceptlattice

All thatis a consequencef the conceptattice structure as
explainedin the paper.

2 Basic Notions of Concept Analysis

2.1 The concept lattice

Formal conceptanalysishas beenintroducedby R. Wille

about ten yearsago. For beginners,it is not that easy
to understandhencewe restrict ourselvesto the absolute
minimum of the theory. Formal conceptanalysis starts
with a triple C = (0, A, P), called a (formal) context,

whereQ is a finite set (the so-calledobjects), A is a finite

set (the so-calledattributes), and P is a relation between
O and A, henceP C O x A. If (o,a) € P, we say
objecto hasattributea. Figure 3 gives an exampleof a
formal context, namely a characterizatiorof sourcelines
by governing preprocessosymbols, as extractedfrom a
program’ssourcetext.

Forasetof objectsX C O, we definethe setof common
attributes o(X) = {a € A | Yo € X : (0,a) € P}.
Similarly, for a setof attributesY C A the common objects
aredefinedby 7(Y) := {0 € O |Va € Y : (0,a) € P}.
The mappingss : 2¢ — 24 andr : 24 — 29 form a
Galois connection andcanbe characterizethy thefollowing
conditions:for X, X;, X, C O, Y,Y,,Y, C A

X1 g XQ — U(XZ) g O'(Xl)

and
Y1 g Y2 e T(YQ) g T(Yl)

thatis, both mappingsare antimonotone;
X C7(0(X)) and o(X) = o(7(c(X)))
as well as

Y C o(r(Y)) and 7(Y) = 7(a(r(Y)))

SYSV | SYSV386 | macll |i386| ultrix | sun | AIX | CRAY | apollo |sony | sequent | alliant
1-10 X X X X X X X
11 - 20 X X X X X X X X
21-28 X X X X
29 - 40 X X X X X X
41 - 100 X X X
101 - 106 X X X X X X
107 - 115 X X X
116 - 125 X X X
126 - 200 X X X X X
201 - 207 X X X X X X

Figure 3: Sampleclassfication of sourcelines accordingto governingpreprocessosymbols

thatis, both mappingsare extensive, in particularthe com-
mon objectsof the commonattributesof anobjectsetarea
supersedf this objectset, and their commonattributesare
equal;finally, for anindexset/ and X; C O,Y; C A

o(|JXi) = (e(X) () =)r%)

iel iel i€l i€l

and

A (formal) concept is a pair (X,Y), whereX C 0,Y C
AandY = o(X),X = 7(Y). Hence, a conceptis
characterizedoy a set of objects(called its extent) and a
setof attributes(calledits intent) suchthat all objectshave
all attributesandall attributedfit to all objects. Thesetof all
conceptsis denotedby B(O, A, P). Intuitively, a concept
is a maximalfilled rectanglein a tablelike figure 3, where
permutationf lines or columnsof coursedo not matter.

A concept(X,,Y;) is a subconcept of anotherconcept
(X2,Y2) if Xy C X, (or, equivalently,Y; D Y,). It is
easyto seethat this definition imposesa partial order on
B(0, A, P), thuswewrite (X;,Y7) < (X,,Y>2). Moreover,
B(0,A,P) = (B(0,A,P),<) is a completelattice, due
to the
Basic Theorem for Concept Lattices [13]: Let C =
(0, A, P) be a context. Then B(O, A, P) is a complete
lattice, called the concept lattice of C, for which infimum
and supremumare given by

A = (N Xeo(=(U¥)

i€l i€l i€l

and
Vx:, v = (re(J X)), %)
i€l i€l i€l

This remarkabletheoremsaysthatin orderto computethe
infimum (greatestcommon subconcept)of two concepts,
their extentsmust be intersectedand their intents must be
joined; the latter set of attributesmustthenbe “blown up”
in order to fit to the object set of the infimum. Analo-
geously,the supremum(smallestcommonsuperconceptdf
two conceptds computedby intersectingthe attributesand
joining the objects.

The lattice structureallows a labelling of the concepts:
a conceptis labelled with an object, if it is the smallest
conceptin the lattice subsumingthat object; a concept
is labelled with an attribute, if it is the largest concept
subsumingthat attribute. In fact, a conceptc labelled
with an objecto is of the form ¢ = (r(o({o})),o({o})).
and if ¢ is labelled with attribute a, it is of the form
¢ = (r({a}),o(r({a}))). Utilizing this labelling, the
extentof ¢ canbe obtainedby collecting all objectswhich
appearaslabelson conceptsbelow ¢, andthe intentof ¢ is
obtainedby collectingall attributeswhich appearabove c.

For two attributesetsA and B we say*“ A implies B”
(written A = B) if 7(4) C 7(B) (or equivalently, if

B C o(r(A))). This can be read as “any object having
all attributesin A also has all attributesin B”. Now if
A and B constitutetwo conceptsC = (r(4),A) and
= (7(B), B), andC < D, thenA = B obviouslyholds.
The conceptaattice canbe consideredhsa graph,thatis,
arelation. Whathappensf we againapply conceptanalysis
to this derivedrelation?It turnsout that the conceptlattice
reproducestself [1]! Thus conceptsdo not “breed” new
conceptsthereis no proliferation of virtual information.
Thereis much more to say about conceptlattices, but
for the purposesof this paper,the basictheoremsuffices.
The interestedreadershould consult [1], which contains
a chapteron conceptanalysis. We concludethis section
with the remark that there are severalalgorithms which
actuallycomputea conceptattice (see[3]); thetypical time
complexityis O(n®), wheren = maz(| O |,| A |).

2.2 Interpretation of context lattices

Let us applythe basictheoremto the contexttable of figure
3 andits conceptlattice, givenin figure 2. In orderto get
a feeling what kind of insight can be obtainedfrom such
a lattice, we first remembeithat a subconcepbf a concept
hasa smallerobject set, but (note the symmetry)a larger
attributeset. Thatis, if we go down in the lattice, we get
more preciseinformation aboutsmallerobjectsets.

The above-mentionethbelling allows a concisecharac-
terisationof concepts. For example,the conceptlabelled
CRAY is in fact the concept({ 11-20, 21-28, 29-40, 201-
207},{ CRAY, apollo, macll, SYSV}). And indeed figure
3 revealsthat this conceptis a rectanglein the contextta-
ble. Hence,we haveinferred that the lines 11-20, 21-28,
29-40,and 201-207characterizehe CRAY, apollo, macll,
andSYSV configurationgandvice versa). The conceptla-
belledapollo standsfor ({11-20, 21-28, 29-40, 126-200,
201-207},{ apollo, macll, SYSV}), which againis a rec-
tanglein the contexttable, higher but leanerthan the first
one: CRAY apollo. Thus,the CRAY configurationcom-
priseslines 11-20, 21-28, 29-40, 201-207 (and no other),
but theselines appearin the apollo configurationaswell.

This example already demonstratene possibility to
interpreta conceptlattice: it canbe seenasa hierarchical
conceptional clustering of objects. Objectsaregroupednto
setsand the lattice structureimposesa taxonomyon these
object sets.

If we want to know what an apollo and an ultrix con-
figuration havein common,we look at the infimum in the
lattice, which is labelled 126—200; going down we see
thatlines 126—200,201-207and11-20 appeaiin bothcon-
figurations. On the other hand, if we want to seewhich
attributesgovernboth lines 126-200and 101-106 we look
at the supremumof the correspondingconcepts,which is
ultrix; going up, we seethat the sun andthe ultrix config-
urations(and no other)will include both codepieces.

Upward arcsin the lattice diagram can be interpreted
as implications “If a code piece appearsin the sonyor
ultrix configuration,it will appearin thesuncorfigurationas
well’. Suchknowledgeis not easilyextractedby handfrom
a sourcefile like “x_load.c”! This exampledemonstrates
the secondmain possibility to interpreta conceptlattice: it
representsall implications (that is, dependencigsbetween
setsof attributes.

The original contextcan always be reconstructedrom
the lattice, e.g. the columnfor i386 hasentriesfor all ob-
jectsbelow concepti386, namely1-10,101-106 whereas
the row labelled 41-100 has entries for all attributes
above,namelysun, SYSV, and ultrix. Hence,a context
(i.e. relation) and its conceptlattice are analogeouso a
function and its Fourier transform (which also can be re-
constructedrom eachother): conceptanalysisis similarin
spirit to spectralanalysisof continuoussignals.

3 The Reverse Engineering Tool

We havedevelopeda tool which implementsthe approach
describedn the previoussections.This tool acceptssource
codeasinput and producesa graphicaldisplay of the con-
ceptlattice asoutput. The sourcelanguageis arbitrary,but
the input file must stick to the conventionsof the C pre-
processor.Our tool consistsof the following phases:

1. front end: the front end separategode piecesand pre-
processorstatements syntactically analysesthe latter,
and constructsthe contexttable accordingto the rules
describedbelow.

2. kernel: the kernelis is a softwarepackagedevelopedoy
P. Burmeisterin Darmstadt;jit readsa contexttable and
computesthe correspondingconceptlattice.

3. back end: the back end acceptsa descriptionof the
conceptlattice and producesa graphicaldisplay.

As usual,our tool is invokedasa UNIX commandwith the
sourcefile nameas a parameteradditional options which
control somedisplay parametersnay be added.

3.1 Construction of the context table

In our applicationof conceptanalysis,code piecesare not
only governedby simple preprocessasymbols,but also by
complex expressionse.g.

#if defined(A)||defined(B)&&defined(C)
We will now describethe treatmentof suchexpressions.

After syntax analysis,the contexttable is constructed
accordingto thefollowing semiformalrules(A, B, C denote
preprocessosymbols,p-p, n-n, g-q denotecodepieces).

» The basicrule for code piecesgovernedby single pre-

processorsymbolsis:

...n-n... == | n-n X
#endif)

Of course,#if hasthe samemeaning

as #ifdef A
If a code pieceis governedby a conjunctionof pre-
processorsymbols,the rule is:

defined(A)

.p-p--.
#if defined(A) &&
defined(B) &&
&& defined(C)
..n-n...
#endif .|A|B|..|C
--g-q... PP | | .o
n-n|..l X| X |..] X
—
a-q

Thisis correct,sincea setof columnsin aformal context
is itself a conjunctionof single columns.

If asymboloccursin negatedorm, this negatedsymbol
needsa columnof its own, sincea basicformal context
canexpressonly positive statementsThe rule thusis:

#if defined(A) |
.pp-.. | AL LA
#endif = |(pp|..| X

#if !defined(A) n-nl ... Ll x
..n-n...

#endif

A similar rule appliesto

#ifdef #else #endif

In the theory of conceptlattices, the resulting table is
calledthe “dichotomisedcontext”. Prolog programmers
have known the sametrick (explicit rules for negated
predicates¥or a long time.

Disjunctions of symbolsare a little bit more compli-
cated. The basicideais asfollows: In orderto handle
#if defined(A) || defined(B) , we introduce
a separatecolumnfor AV B. As both A and B imply

AV B, we mustthereforeplacea crossin the AV B

columnwhenevemwe placea crossin the columnfor A

or B. The basicrule for disjunctionshenceis:

#if defined(A)
..p-p...

#endif

#if defined(A) Il
...n-n...

#endif

#if defined(B)
...g-q...
#endif .. |A| B | ...|AB
p-p| ... | X| ... |...] X
n-ni .. e | | X
gaq| ... | ...| X | .| X

defined(B)

Simple disjunctionsshow up as supremain the concept
lattice. In casethereare complexconditionsarbitrarily
built up from conjunctions,disjunctionsand negations,
thesearefirst transformednto conjunctivenormalform
by applying the distributive and de Morgan laws. Af-
terwards, all expressionsare of the form (4; v A, V
all A,, B,,C, areeithersimplesymbolsor negatedsym-
bols. Expressionsn conjunctivenormal form canthen
be treatedby the aboverules.

* Nested#ifdefs, #definesand #undefsare treatedasim-
plications. For example,in

#ifdef A
...p-p...
#define B
#ifdef B
...n-n...
#endif
#endif
..q-g...

we must add a crossin the “B”-column wheneverwe

placea crossin the “A”-column; a similar mechanisnis
usedfor “#undef’s.

pp | .. | X
n-n | .. X X
9-9

It shouldbe notedthat transformingan expressionnto an
equivalentone (e.g. AV A A B = A) doesnot changethe
conceptlattice. In particular, it is not necessaryto usea
minimal conjunctivenormal form; any conjunctivenormal
form will do. Intuitively, the reasonis that a conceptis a
maximalfilled rectanglein a table.

3.2 A small example

Considerthe sourcetext andits correspondingonceptiat-
tice:

#ifdef UNIX DOS || X_wj UNIX || DOS
I 1
#endif UNIX || X_win
#ifdef DOS v
| Do UNIX
#endif g LIV
#if defined(DOS) ||
defined(X_win)
]
#endif
#ifdef UNIX
AV
#endif
#if defined(UNIX) ||
(defined(DOS)&&defined(X_win))
AV
#endif

Thelattice showsthatcodepiecesl andlV aregovernedoy
UNIX, codepiecell is governedby DOS, UNIX || X_win
implies UNIX || DOS (which meansthat any code piece
valid for X-windows is alsovalid for UNIX or DOS) etc.
Suchdependencieare not easyto seein morecomplicated
sources,but neverthelesghe readermight ask: so what?
After all, we mentionedthe analogyto spectralanalysis,
and using spectralanalysis,astronomershave shown that
the universeis expanding!

Although we cannotoffer suchspectaculainsights,the
lattice clearly shows that the configuration structure is
faulty. Two importantsoftware engineeringprinciplesare
separationof concernsandanticipationof change For ex-
ample, operatingsystemissuesshould be separatedrom
userinterfaceissues,andit should be easyto incorporate
anotherwindow systeminto a future version. The lattice
showsthat OS aswell as Ul issuesshowup in both main
configurationthreads,and that —worse—thereis a cross
dependencypetweernthem. Crossdependenciepreventthe
lattice from beingdecomposethto independensublattices,
andthis showsthereis low coherenceand strongcoupling
betweencorfigurationthreads.Hence,conceptanalysisnot
only providesa detailedaccountof all dependencieshut
canserveasa quality assurancéool in orderto checkfor
good designof the configurationstructure,or to limit en-
tropy increaseas a softwaresystemevolves.

In general, low coupling of configuration threads is
achievedwhen “semanticallydifferent” preprocessosym-

bolsappeain disjointsublattices: < > .

Pathswhich are glued togetherin their top or bottom sec-
tions are acceptableput crossarcsbetweensublatticesal-

waysindicateinterferencéoetweerorthogonalkonfiguration
threads.

High cohesion is achievedif, for asubsebf preprocessor
symbolsin the samesemantiqsub)domainthe correspond-

ing sublatticeis a grid: @ . Missing arcsindicate

that certaincombinationsof definedsymbolshavenot been
takeninto considerationyhich is at leastsuspicious.

Unfortunately, only a human can decide whether pre-
processorsymbolsare “semanticalneighbours”. Usually,
the namesof the preprocessosymbolsindicatetheir mean-
ing. This helpsto interpretthe lattice, but nevertheless
certain experienceis needed.

3.3 Data Reduction

Often one would like to obtain a quick overview of the
configurationstructureandexplorethefull detailslater. For
such purposesiwo simple datareductiontechniqueshave
beenimplemented.

First, the user may specify a maximal nesting depth
for nested“ifdef’s. All #ifdefs and #defineswhich are
more deeplynestedare ignored. This resultsin a concept
lattice which displaysonly the overall structureof possible
configurations,ignoring fine-graineddetails.

The secondtechniqueis basedon the observationthat
certaincode piecesare often governedby almostidentical
preprocessosettings. The correspondingows in the con-
text tablecanbe megedinto onerow if they“do not differ
too much”. The usermay specify a thresholdvalue ¢, and
if asetof rowscanbe identifiedwhereall rows do pairwise
differ in lessthant positions,theserows arereplacedby a
new row which hascrossesn a columnif all original rows
had. Sucha “multirow” thusdescribesa setof codepieces
suchthat all codepieceshaveat leastall attributeswhich
are marked (but some may have more). This gives us a
conservativeapproximation(we loose somedependencies,
but we neverintroducefalse ones). In the conceptlattice,
thetechniquehasthe effectthatseverakonceptsaremeged
into oneconcept:row meging inducesa lattice congruence
and henceis compatiblewith supremumand infimum.

3.4 Graphical Display

It is a non-trivial taskto displaythe conceptiattice in such
a way that interestingpropertiesshow up immediately. In
fact, a numberof sophisticatedilgorithmshasbeendevised
for that purpose[8,14]. Someof the techniquesusedare
to embedlattices into grids, or to presentthe lattice as
a (sub)directproductof smallerlattices. Suchtechniques
allow to detecte.g.the automorphism®f the lattice, or to
checkwhetherthe lattice is distributive.

Someof thesealgorithmshave beenimplemented,but
werenot availableto us. Thus,we usea simplerapproach,
basedon the Sugiyamaalgorithm [11]. This well-known
layoutalgorithmfor arbitrarydirectedgraphsusesthe topo-
logical orderingof nodesin orderto determinetheir vertical
position. As the resultsare not alwayscompletelysatisfac-
tory, theusermayfinally changethe graphlayout manually
(but the systemwill maintainintegrity of the conceptlat-
tice).

4 Experimental Results

We appliedour tool to severalUNIX programs.Thereader
should keep in mind that the graph displays below have
beenproducedby a programwhich hasbeendevelopedor
a differentpurpose hencethe layoutis not optimalfor con-
ceptanalysis. We plan to integratethe more sophisticated
displayalgorithmssketchedabovein the public—domairftp
version.

Our first exampleis a popular shell, the “tcshell” de-
velopedat Berkeley. We haveanalysedneof its modules,
namely“sh.exec.c”. This programis 959lineslonganduses
24 different preprocessosymbols. In the conceptlattice
(figure 4), singletonattributeor objectlabelsare displayed
in the diagram,the otherscan be looked up in a separate
window throughthe conceptname“Cnn”. It turnsout that
the corfiguration structureis perfectaccordingto the crite-
ria describedabove. It seemsthat thereis an interference
betweenthe path including C15 and the conceptsC15 —
C18, C20. But a look at the sourcecoderevealsthat both
VFORK andFASTHASH haveto do with the hashfunction
used,hencethereare no dependenciebetweenorthogonal
configurationconcepts.

Our secondexampleis the streameditor from the RCS
system“rcsedit.c” [12]. This 1656—line programuses21
preprocessasymbols. The conceptatticeis shownin figure
5, togetherwith 25 lines of sourcecode (beginningwith
line 179) and the labelling of the concepts. The concepts
below C6 (which concerndifferent file accessvariants)as
well as thosebelow C8 (C8 is labelled “large_memory”)
have a simple structure,and the conceptsbelow C9/C10
(concerningnetworking)form a grid-like cluster. But there
is aninterferencemanifestin C27, which is the infimum of

C38 and C15. C38is labelledhas_NFS, C15is labelled
has_rename, and C27 is labelled 1425 — 1427. Thus,
lines 1425 — 1427 are governedby both has_NFS and
has_rename. A similar interferenceshowsup in C37.

Hence,althoughthe overall structureis quite good, we
suspectthat networkingissuesand file accessvariantsare
not clearly separatedn “rcsedit.c”. And indeed: a com-
mentin the sourcecodeexplainsthat dueto an NFS bug,
“rename()” canin rare casesdestroythe RCSfile! This
problemhasbeenre-discoveredby conceptanalysisjust by
analysingthe configurationstructure. The exampledemon-

stratesthat our tool canindeedtrack down bugs,evenbugs
whichthe programmersvould like to keepcovered:thelast
sentenceof the commentreads“Since this problemafflicts
scadsof Unix programs,but is so rare that nobodyseems
to be worried aboutit, we won’t worry either2,

Let us finally come back to our introductory example,
“x_load.c” (seefigure 1). This programis 724 lines long
and uses43 preprocessosymbolsfor corfiguration man-
agement. The resulting conceptlattice has 141 concepts

2 The problemis in fact a little bit more complicated;the interested

readershouldlook at the sourcecode himself

[&_Grann [*]FH ET
Fle Edit Yiew Oplions frronge Project Help
Feady .
== . il
// CZ. BITS_PER_BYTE
T e
Dt ==
o otonasH) [Cre e Ton - patn_asrel] [oa oy (g8 eray] [017 - apoin] (o1 - veoRk][C17 : FesTHASH] asfor comment]
-~ S — - . . ——
T T RN | e
e e e NN, [B74 - Bo0
I NN [eiee
< e
Figure4: Configurationstructureof tcshellmodule“sh.exec.t
[Graph [¢] EHET
File Edit View Options Amange Project Help
Ready

: fopen_update_truncate
483 - 4391

1 has_mermove
253 - 257

: copylines
607 — 653
EE0 — BEZ
692 — 694
714 — 716
728 — 730
750 — 752

D21z - 214

D205 - 207

214 - 236

: has_NFS
203 — 203

: bad_unlink
189 — 134
197 - 202

P194 - 197

: bad_fopen_wplus

#if has_NFS || bad_unlink
in
un_linkis)
char const *s;
f*
* Remove S, even 1f 1t is unwritable.
*/Ignore unlink() EMOENT failures: MFS generates bogus ones.
®
i
if bad_unlink
int e;
if funlink(s) = 0}
return 0;
B = errno;
if has_NFS
if (e = EMDENT)
return 0;
endif
if (chmod(s, S_TWUSR) !=0) {
errno = e;
return —1;

endiff

Figure5: Configurationstructureof the RCS streameditor

and is shownin figure 6. It looks pretty chaotic, and
we thereforeuseddata reductionto display only the top
4 #ifdef nestinglevels (figure 7). Even on the top level,
there are interferenceqC19/C24),and the central role of
C33 doesnot inspire confidence(C19 is the infimum of
C2andC11;C2is SVR4 || UTEK || alliant || hex || se-
quent || sgi || sun, C11is lapollo. C33is is a setof 9
code piecesgovernedby the sundriesSYSV386, ILOAD-
STUB and!KVM_ROUTINES). It seemghatthis program
suffers from configurationhacking.

5 Conclusion

We describeda tool for extractingconfigurationstructures
from existingsourcecode. Our point of departuravas“con-

figuration managemenby preprocessing”put the method
can easily be adaptedto more modernconfigurationman-
agementechniquege.g.shapg7]). It turnedoutthatmath-
ematicalconceptanalysisis a powerful tool for gainingin-

sightinto configurationstructuresjust as Fourier analysis
is for ordinary functions.

]

\\
1

1 F:Z!W [

N

Figure 7: Top level configurationstructureof “x_load.c”

It might very well be that conceptanalysishas other
applicationsin reverseengineering;this shouldbe investi-
gated. Thereis anextensiorof the theorycalledconceptual
knowledgesystemd15] which allow to infer relationships
betweenuser-definedconcepts(in our tool, conceptsare
generatedautomatically). We will investigatethe useful-
nessof this extensionto our problem. Another possible
applicationis restructuringof configurations:by analysing
and decomposinghe conceptlattice, hints for improving
the corfiguration structuremay be obtained.

Our tool is part of the inference-basedoftwaredevel-
opmentenvironmentNORAZ, NORA aims at utilizing uni-
fication theory and inferencetechnologyin softwaretools;
conceptsand preliminaryresultscan be foundin [9,5,10].

The tool describedin this paper can be obtainedvia
anonymoustp: ft p. i ps. cs.tu-bs. de (134.169.32.1).

Acknowledgements. Andreas Zeller and Christian
Lindig havebeena greathelp with the graphdisplay pro-
gram. Martin Skorsky from the Darmstadtalgebragroup
contributed several helpful comments. Peter Burmeister
kindly made available his CONIMP programfor concept
analysis.

NORA is funded by the DeutscheForschungsgemein-
schaft,grantsSn11/1-2and Sn11/2-1.

6 References

(1]
(2]

Davey, B.A., Priestley,H.A.: Introductionto Latticesand
Order. CambridgeUniversity Press1990.

Feiler, P. (ed.): Proc.of the 3rd InternationalWorkshopon
SoftwareConfigurationManagementACM 1991.

8 NORA is a dramaby the Norwegian writer H. IBSEN. Hence,

NORA is no real acronym.

3]
[4]

Ganter,B.: Algorithmen zur formalen Begriffsanalyse. In

[4], pp.241 - 254.

Ganter,B., Wille, R., Wolff, K. (ed.): Beitrage zur Begriff-

sanalyse.B.l. Wissenschaftsverla$987.

Grosch, F.-J., Snelting, G.: Polymorphic Componentsfor

MonomorphicLanguagesProc. SecondnternationalMork-

shopon SoftwareReusability. IEEE 1993, pp. 47 — 55.

Krone,M.: ReverseEngineeringdf CorfigurationStructures.

Master’sthesis,TU Braunschweig|nstitut fur Programmier-

sprachen1993 (in German).

Mabhler, A. und Lampen,A.: An IntegratedToolsetfor En-

gineeringSoftwareConfigurations.Proc. ACM Symposium

on PracticalSoftwareDevelopmenEnvironmentsSIGSOFT

Notices13, 5 (November1988), pp. 191 — 200.

Skorsky,M.: Endliche Vertande— Diagrammeund Eigen-

schaften. PhD thesis, Technical University of Darmstadt,

Dept. of Mathematics,1992.

Snelting, G., Grosch,F.-J., SchroederU.: Inference-Based

Supportfor Programmingn the Large. Proc.3rd European

SoftwareEngineeringConferenceMilano 1991. LNCS 550,

pp. 396 — 408.

Snelting, G., Zeller, A.: InferenzbasierteWerkzeugein

NORA. Proc. Softwaretechnik93, pp. 25 — 32, GI 1993

(in German).

Sugiyama, K., Tagawa, S., Toda, M.: Methods for Vi-

sualUnderstandingf HierarchicalSystemStructures.|EEE

Transactioron SystemsMan and Cyberneticsl1, 2 (1981),

pp. 109 — 125.

[12] Tichy, W. F.: RCS- A Systenfor VersionControl. Software
Practiceand Experiencel5(7), pp. 637 — 654, Juli 1985.

[13] Wille, R.: Restructurind-attice Theory: An ApproachBased
on Hierarchiesof Concepts.In: I. Rival (ed.) OrderedSets.
Reidel 1982, pp. 445 — 470.

[14] Wille, R.: GeometricRepresentationf ConceptLattices. In:
O. Opitz (ed.): Conceptuahnd NumericalAnalysis of Data.
Springer1989, pp. 239 — 255.

[15] Wille, R.: ConceptLattices and ConceptualKnowledge

Systems. Computers& Mathematicswith Applications 23

(1992), pp. 493 — 515.

(6]

[7]

(8]

[10]

[11]

