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Abstract nial of service has remained elusive. There are several
lausible reasons for this. Most of the proposed solu-
ons require software modification at either routers, or

Denial of service (DoS) attacks are a growing threat tcﬁ
nd hosts, or both. This means that the defense is not

the availability of Internet services. We present dFence,
novel network-based defense system for mitigating Do? . . )
attacks. The main thesis of dFencecismplete trans- ransparent to the Internet service providers and/or their
parencyto the existing Internet infrastructure with no customgrs. , ) )
software modifications at either routers, or the end hosts, S°lutions that are not directly compatible with the
dFence dynamically introduces special-purpose middleeX'St,'”g TCP/IP implementations and routing software
box devices into the data paths of the hosts under attacR'® likely to face unsurmountable deployment obstacles.
By intercepting both directions of IP traffic (to and from £VeN SYN cookies, which are backward-compatible and
attacked hosts) and applying stateful defense poIicie?,art of standard ngx z_and FreeBSD distributions, are not
dFence middleboxes effectively mitigate a broad rang&iS€d by the vast majority of users because they are turned
of spoofed and unspoofed attacks. We describe the aPff by default. Atthe same time, waiting until the Inter-
chitecture of the dFence middlebox, mechanisms for on2€t IS re-engineered to provide better resistance against
demand introduction and removal, and DoS mitigationd€nial of service is not a feasible option for users who
policies, including defenses against DoS attacks on thBeed immediate protection. _
middlebox itself. We evaluate our prototype implemen- Arguably, the main challenge in DoS research today is

tation based on Intel IXP network processors. not only coming up with new defense methods, but also
) finding an effective way to deploy both existing and new
1 Introduction defenses with no changes to the installed software base,

Denial of service (DoS) attacks pose a significant threa®nd without any performance cost when denial of service
to the reliability and availability of Internet services. activity is not happening.
Consequently, they are emerging as the weapon of choice This problem is not unique to denial of service. Many
for hackers, cyber-extortionists [24], and even terrornetwork attacks are relatively rare events: a given end
ists [26]. The widespread availability of attack tools [3] host may experience a denial of service attack once every
makes it relatively easy even for “script kiddies” to few months, or be exposed to a new worm once a year.
mount significant denial of service attacks. Therefore, there is little incentive for the end host opera-
Our goal is to design and build a transparent networktor to deploy an expensive protection system or to mod-
based defense system capable of mitigating a broad ranif# the existing software, especially if the change affects
of large-scale, distributed denial of service attacks dinormal network performance. Of courset deploying
rectly inside the network, without requiring software @ defense can have catastrophic consequences when the
modification at either routers, or end hosts. Such a sy@ttack does happen. We solve this conundrum by pro-
tem can be deployed by Internet service providers (ISPgjiding technological support for a “group insurance ser-
in today’s Internet, providing on-demand protection to Vice” that an ISP can offer its customers: an on-demand
customers, including those who operate legacy servergefense that turns on only when the customer is actually
only when they experience an actual attack. It can alséxperiencing an attack, and otherwise has no impact on
serve as a general platform on which new security seithe network operation.

vices and defense mechanisms can be deployed at a IQ¥(,; contributions. We presentdFence a novel DoS
cost, with a single installation protecting a large ”Umbermitigation system based on a small number of special-

of customers. _ o _ purpose “middlebox” devices located in the middle of the
The problem of detection and mitigation of denial of network. The main features of dFence are:

service attacks has received considerable attention. De-
spite a large body of research literature and availabilitye Transparency: dFence is fully transparent to the end
of commercial products, effective protection against de- hosts, requires no modifications of client or server soft-



Internet Service Providgr Internet Service Provid

ware, and enables protection of legacy systems. Pro-
tected hosts need not even be aware that the system i
in operation.

oY

e Compatibility with routing infrastructure: dFence ;

employs standard intra-domain routing and tunneling
. . . . . Routers Customer Netwotk Routers Customer Netwol
mechanisms for traffic interception. It requires no under protectiof under protectio
changes to the existing router software, and is thus in- (a) During Normal Operation

crementally deployable by Internet service providers.

(b) During DDoS Attack

e On-demand invocation: dFence middleboxes are dy- Figqre L dEence Architecture: (a) During n_ormal op-
namically introduced into the data path of network &ration, the ingress routers forward the traffic towards

connections whose destinations are experiencing d he correspondmg egress routers.' (0) Unqer a large-scale
nial of service, and removed when the attack subside 0S attack, traffic is re-directed via the middlebox. The

The small performance cost of filtering is paidly by middlebox applies mitigation policies and filters out ille-

the attacked hosts, and only for the duration of the atditimate traffic.

tack. mitigation techniques that were previously considered

e Scalability: The dynamic nature of dFence allows unsuitable for network-based defenses. The main techni-
ISPs to multiplex the same defense infrastructure teal novelty is the network-based implementation of de-
protect a large number of customers (who are not alfenses that previously required modifications to server
under attackat the same timje and thus more effi- or client software. For example, “outsourcing” SYN
ciently utilize their network and computing resources.cookie generation to dFence middleboxes enables us to

e Minimal impact on legitimate connections: Each Srotect legacy enSdle]\?Sts vlhose ECE/IP |m.pler.nentat|(r)]ns
dFence middlebox manages the state of active, legitiC Nt SuPport cookies. Other mitigation tech-
mate connections to the customers who are simultandr 143 include d(_efensgs against ;poofed and unsp'oofed

data floods, against clients opening and abandoning a

%uesrlry]/ oli;ietzrtr?(tat?:iﬁdll\gzlclgoﬁgg}lgrgoIggftiorr(]:gtvf )f/I c‘;]leS/Iarge number of connections, and against distributed bot-
' ' net attacks.

can be processed with very low latency cost. The cos
for the flows to the destinationsot experiencing an Key challenges. The combination of transparent on-
attack is zero. demand defense, two-way traffic interception, and state-
ful mitigation presents several interesting challengs: (

cally interceptboth directions of TCP connections to NOW to deal with middlebox transitionise., how to intro-
DoS-affected hosts, they can apply stateful mitigationd_uce and and remove middleboxes on selected data paths;

policies to defend against the entire spectrum of Dod!l) how to dynamically bootstrap, manage, and remove
attacks. connection state at the middleboxes; (iii) how to handle

o , L . network behavior such as route changes and failures of
e Economic incentive: We envision dFence middle- petwork elements; and (iv) how to handle overload con-
boxes being deployed within a single ISP. The ISP cafjitions and Do$S attacks on the middleboxes themselves.
then charge a premium to customers who subscribe for \ye present practical solutions to all of these chal-
a dFence-based “insurance service.” dFence middl§anges  Our main contribution is a careful integration
boxes are turned on only when one or more payingt several network mechanisms leading toampletely
customers are experiencing an attack. As more CUgansparent, scalable and effective DoS mitigation sys-
tomers subscribe to the service, the ISP can incremens ., \we evaluate our design using a prototype implemen-
tally scale up the deployment. tation based on Intel’s IXP2400 network processors, and
demonstrate that mitigation of a broad range of DoS at-

System architecture. Figure 1 depicts the overall sys- ; :
tem architecture. The two guiding design principles be—taCkS’ including spoofed SYN floods and unspoofed data

hind dFence arelynamic introductiorand stateful mit- floods, can be achieved with minimal performance degra-

igation. We implement dynamic introduction by using dation. We also note that the focus of this paper is on

intra-domain routing and tunneling mechanisms to transitigation, rather than detection of denial of service ac-

parently insert dFence middleboxes into the data path ot*wty.

traffic destined to hosts experiencing a DoS attack. Thi®©rganization. The rest of the paper is organized as fol-
is doneonly when DoS activity is detected in the net- lows. In Section 2, we describe the mechanisms for dy-
work. Due to dynamic introduction, our solution hasnamically introducing dFence middleboxes in the data
zero impact on normal network operations, and can beath of attack traffic. Section 3 describes the architec-
deployed incrementally. ture of the dFence middleboxes and the mitigation poli-

The middleboxes intercept both directions of networkcies that defend against a broad range of spoofed and un-

traffic (to and from attacked hosts), which enables mangpoofed attacks. Our prototype implementation and its

e Versatility: Because dFence middleboxes dynami



performance evaluation are presented in Sections 4 and 5,tination IP addresses and port numbers in the TCP/IP
respectively. Section 6 outlines the related work. Sec- packet header. If the flow is intercepted byoaeign
tion 7 summarizes our contributions. middlebox, it is simply forwarded to the home mid-

. . dlebox, achieving reasonable load balancing of flows
2 Transparent Middlebox Invocation across the middleboxes. In the future, we planto inves-
A key design principle for dFence middleboxes is com- tigate more sophisticated flow pinning mechanisms.
plete transparency to the end hosts. This is achieved ) . _
throughdynamic invocatiorof middleboxes by standard ® Dynamic state managemeriynamic middlebox in-
intra-domain routing mechanisms and tunneling. A few VOocation also poses interesting challenges for state
dFence middleboxes are introduced into the network to Management. The first question is how to handle ex-
provide focused protection to the subset of the end hosts 'Sting connections when the middlebox is inserted into
that are currently experiencing a DoS attack. Protected th€ data path. For instance, our policy for defending
hosts do not need to modify their software, nor access 29@inst spoofed data flooding can drop a data packet if
the network through special overlay points, nor set up IP 1t IS not in the Bloom filter summary of ongoing con-

tunnels, nor even be aware that dFence middleboxes haven€ctions. But an existing legitimate connection may
been deployed inside their ISP. not be present in the Bloom filter if it had been es-

Dynamic middlebox invocation is critical for deploy-  t@plished before the middlebox was introduced. We
ability because it ensures that during peace tiire, ( would like to minimize the number of packets dropped
when there is no ongoing DDoS activity) customer traf- [0F SUch connections.

fic does not have to pay the penalty of triangular routing  gesides filtering, some of our advanced mitigation
through the middleboxes. Dynamic middlebox invoca- pglicies perform operations that change the content of
tion is also important for the defense system itself be- ihe traffic. For example, the “outsourced” SYN cookie
cause it focuses all defense resources only on the connec-policy requires the splicing of TCP connections and

tions whose destinations are under attack, leaving other sequence number translation to be performed at the
customers unaffected. The defense system can thus ben-pigdiebox. What happens to the spliced connections

efit from statistical multiplexing and potentially protect  \yhen the middlebox is removed from the data path?

many more customer networks with the same available

resources. e Middlebox failure recoveryA dFence middlebox may
Combining dynamic middlebox invocation with state-  fail due to software or hardware errors, or traffic over-

ful attack mitigation raises several technical challenges load. Protecting the overall defense system from mid-

e Bidirectional traffic interceptionMany of our mitiga- diebox failures is an important challenge.

tion policies require the defense system to capture both o, solution is based on standard BGP/IGP routing,
diref:tions of customer traffic. For example, to prOtECttunneling, and policy-based routing (PBR) [7], which is
against spoofed data floods from remote hosts to a cugyajlable in almost all existing routers. Therefore, our
tomer network under protection, we maintai€an-  go|ytion is easy to deploy in today’s Internet. In ad-
nection table to summarize on-going TCP connec-gition, we implement a simple hash-based mechanism
tions. Bidirectional traffic interception is difficult in ¢4, pinning each individual connection to the sahne
general because Internet routing is destination-basegijglebox. This ensures that both directions of the con-
by default; intercepting traffic from the customer net-pection traverses the same middlebox (even in the pres-
work, however, requires the ability to perfosource  gnce of route changes that may result in different ingress
based routing. points). Below we present our approach for bidirectional
¢ Flow pinning. In addition to intercepting both direc- traffic interception, dynamic state management, middle-
tions of protected traffic, stateful mitigation also re- box failure recovery and load balancing.
quires that both directions pass through shenemid- . . .
dlebox (where the state of the connection is main2-1 Dynamic Traffic Interception

tained), even after routing changes have caused the Ifgpjje there exist several academic and industrial solu-
tercgpted traffic to use dlfferenj[ ingress points. Th'aions for traffic interception [1, 8, 11], none of them,
Lequr:res a r?echaanmrTorc?|nn|ng each flciw, de(fjlgle o the best of our knowledge, can simultaneously (i) in-
by the ITCP IP pac elt ea e_r(,j to a particular middley,,4,,ce middleboxes dynamically, (ii) intercept both in-

ox. Flow pinning also provides security against an,, ;4 and outbound traffic, and (iii) ensure that both di-
attackgr who attempts to disrupt external routing Wh'lerections of a connection go through the same home mid-
launching an attack. dlebox. As a result, no single existing technique is suf-
We use a simple hash-based flow pinning methodficient for stateful attack mitigation. It is possible, how-
Each flow is associated withrmmemiddlebox, whose ever, to use existing techniques to substitute some of the
identity is determined by a hadl f) of the flow iden- individual components of our solutior.g, our mecha-
tifier f. The flow identifier consists of source and des-nism for inbound traffic interception).



oo o e S~ Sustomer identity of the home middlepqx is determined t_)y the

hash value of the flow identifier. The home middle-
box M3 then applies mitigation policies described in
section 3.2 to process the packet.

3. Go to the real egress routerAfter the middleboxes
& advertised routes t@, the intermediate routers’ for-

== warding tables point towards middleboxes for all pack-
Remote ets whose destination iS. To avoid routing loops,
CHeM C s e nneied watic we tunnel the packet from the home middleb to

the true egress routdt,,. WhenR,, receives the tun-

neled packet, it decapsulates the packet and, because
Customer it matchesACL-to-S forwards it to the customer net-

Network S
work S.

Observe that the traffic arriving on thexternalin-
terfaces ofR,, (other than the interface connecting it
to S) will be first re-routed to the middlebox for fil-
tering, because the middleboxes’ iBGP route advertise-
ments change the forwarding tablefat, too.

previous
S

(a) Inbound Traffic Interception

Internet Service Provider (ISP)

Remote
Client C

regular IP routing = T tunneled traffic

2.1.2 Outbound traffic interception

We use policy-based routing (PBR) [7] to intercept out-

) o ) ] _bound traffic originating from the customer netwdaiko
Figure 2: Traffic interception at middleboxes usinga remote host. PBR allows flexible specification of rout-
BGP/IGP, tunneling and policy-based routing ing policies for certain types of packets, including ACLs
(access control lists) that identify classes of traffic blase
on common packet header fields. In our context, we use
In our prototype implementation, we use iBGP and tunpBR to forward all traffic that matchesCL-from-Sto a
neling to intercept inbound traffic (alternatives includegrence middlebox through a preconfigured tunnel.
mechanisms such as MPLS tunneling). To intercept all The journey of an outbound packet consists of the fol-
traffic inbound to some customer netwatkthe dFence lowing three steps, as illustrated in Figure 2(b).

middleboxes send iBGP updates advertising a roul?é to%. Go to one of the middleboxedhen the egress router

R, receives a packet frond, the flow definition
matchesACL-from-Sand so the packet is forwarded
to middleboxM, through its preconfigured tunnel in-
terface.

(b) Outbound Traffic Interception

2.1.1 Inbound traffic interception

local AS. As a result, the middleboxes become the pre-
ferred egress points for all traffic destined4o At each
ingress router, IGP selects the closest middlebox and up-
dates the forwarding tables appropriately.

To enable the packets to reaShafter they have been 2. Flow pinning: M, forwards packets to the home mid-
filtered by the middlebox, dFence configures a tunnel dlebox)3, determined by the flow pinning hash func-
from the middlebox to the real egress router associated tion. The hash function is selected in such a way that
with S. The tunnel can be set up using any available €exchanging source and destination fields does not af-
mechanism; in our prototype, we use IP-IP tunnels. The fect the hash value, for example:
egress router specifies two ACLs: @& L-to-Sis defined
on the router’s internal interface (connecting it to the res 71 (src-addr, src_port) @ ha(dst_addr, dst_port)
of the ISP) and intended for traffic going towarsis(b)
ACL-from-Sis defined on the external interface connect-
ing it to the customer network and intended for traffic
arriving from S.

The journey of an incoming packet typically consists ple)
of the following three steps, as illustrated in Figure 2(a)3. Go towards the egress routeRegular IP routing is
used to send the packet to its egress roiter

whereh; andhs are two independent hash functions.
This ensures that both directions of the same connec-
tion have the same home middleba{ in our exam-

1. Go to one of the middleboxek3P selects the middle-
box M, which is the closest middlebox to the ingress2.2  Dynamic State Management

point. If M is the home middlebox for this flow, the The main challenge in dynamic middlebox invocation is

next step Is s_klpped; otherW|sM1 needs to forward the need to gracefully handle existing connections upon

the packet to its home middiebox. the introduction or removal of a middlebox. Our basic
2. Flow pinning: The packet is tunneled from the for- solution is to addyrace periodsafter the introduction or

eign middleboxa/; to the home middleboX/;. The before the removal of the middlebox. During the grace
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seconds (see Figure 3). Hendg,can be setto 5 or 10
seconds. This means that, within a short bootstrap inter-
val, the state for the vast majority of existing connections
can be established, and only a handful of legitimate users
(those who were idle duringj,) will have to re-establish
connections.

It might appear that the bootstrap tirfig provides an
opportunity for an attacker to overload the middlebox
itself. This is not the case because connection state is
maintained at the middlebox only for unspoofed connec-
‘ ‘ ‘ _ tions which comply with traffic control measures.

01 1 10 100 1000 10000 The decision to introduce a middlebox can be made

Packet InterArrival Time (IAT) within Flows (in seconds) by the Customer netWOka Under protecti(mg( When
Figure 3: Packet inter-arrival time (IAT) within flows  they observe too much inbound traffic), or through some

. . . . network-based DoS detection system. Since our primary
period, the middiebox continues to serve all existing congq s in, this paper is on attack mitigation, we do not dis-
nections while it is preparing to establish or time out its., o5 attack detection here.

state. .
. . . The value of the removal interval}. can be pre-
After the middlebox has been introduced into the dat%pecified (it must be sufficiently long to allow for nor-

path, it spend), secondsgtate bootstrap interv@boot- 1 termination of all ongoing connections), or it can

strapping its state. After the decision has been made brye adaptive based on the number of connections going
the network operator to remove the middlebox, the mid"through the middlebox. Compared with, the choice of
dlebox stays in the data path for anotligsecondsstate . is jess critical because it primarily affects the amount
removal interva) before being completely removed. of additional work that the middlebox performs and has

1. State bootstrappingDuring interval T}, the middle- little impact on the safety of customer networks.
box establishes state for the existing connections be- The decision to remove a middlebox can only be made
tween clients and the server and/or customer networRy the middlebox itself (or by all middleboxes collec-
which is being protected. An existing connection istively). Unlike middlebox introduction, middlebox re-
considered legitimate if the middlebox sees both in-moval cannot be decided by the customer networks—if
bound and outbound traffic on it during the bootstrapthe defense system is effective, then the customers should
period. The list of connections is maintained using thenot be able to tell whether the DoS attack ceased, or the
Connection table data structure, described in detail inattack is still in progress. Therefore, the middleboxes
Section 3.1. need to continuously profile the (unfiltered) traffic and

decide whether the ongoing attack has subsided.
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2. State removal:After the removal decision has been
made, the middlebox can be removed right away if nd2.3  Failure Recovery and Load Balancing
currently active mitigation policy involves modifica-
tions to individual packet content. Some mitigation
policies, however, such as “outsourced” SYN cookie
generation cause the middlebox to actively modify
packet header®(g, by sequence number translation).
For these policies, the middlebox cannot be removed iqiehox fails, it is crucial that a different middle-

right away because the existing connections can beliox (or the same middlebox after rebooting) take over

oo st o st oot A managemen of ll connectons ose ot den
main in the da-ta path duri’ng interva). and continue f|e_rs have_ _been pinned to the fall_ed mlddlet_)ox. To make
to serve the ongoing connections. No policies are apt_hls transition as smopth as posgble, the middlebox must
plied on any new connections and.they are directly for—omof’jld Its state to a different middlebox as S00n as over:
warded to their destinations loading is detected. Therefor@raceful flow migrations
' the key component of both failure recovery and load bal-

The value of the state bootstrap interiglis impor-  ancing. We outline how it can be achieved in the dFence
tant. If T}, is too long, then the attacker can cause severmitigation system.
damage while the middlebox is being bootstrapped. If Recall that each flow identifief is pinned to its home
T, is too short, then many existing connections may eimiddlebox by a hash functioh(f). To avoid changing
ther get terminated, or suffer poor performance. Trac¢he hash function (which may be implemented in hard-
analysis based on several large datasets shows that tivare and difficult to modify), we introduce one level of
vast majority (99%) of all connections have packet in-indirection. All middleboxes in our system will agree

terval times that are quite small, on the order of a fewon a globalhome middlebox tablé/M [0..n — 1] (e.g,

A middlebox can fail for a variety of reasons, such as
power outage, hardware malfunction, software errors,
network outages, and so on. It can also fall victim to
a DoS attack itself, even though our middlebox architec-

re is explicitly hardened against this possibility. When



n = 1024). Each middlebox is responsible for a subsetsoftware modification at either routers, or the end hosts.
of entries in this table, or, more precisely, for all flows We focus on TCP-based attacks, but UDP, ICMP or DNS
whose identifiers hash to this subset. The gldtisll ta-  attacks could be handled in a similar fashion.

ble can be maintained either centrally, or through a dis
tributed agreement protocol among all the middleboxe
The hash functiorh can be chosen so that it maps flow
identifier f to {0,1,--- ,n — 1}. The home middlebox
for flow f is simply HM[A(f)]. This enables graceful
flow migration for failure recovery and load balancing.

STCP connection management.TCP connections man-
aged by a dFence middlebox include pre-existing con-
nections that had been established before the middlebox
was introduced into the data path (the middlebox ac-
quires these connections during the bootstrap period—
see section 2.2), and those established after the middle-
box became active. The latter connections spkced

to enable anti-spoofing defenses. Splicing performed by
the middlebox is very simple and limited to translation of
sequence numbers.

The main data structure maintained by the middlebox
is theConnection hash table, which tracks the state of all
M, = R.next(M7) then becomes the neW M[e] and  established connections (both directions). Entries in the
starts the bootstrap intervdl,, during which it boot- table are identified by the hashfeliowld, which consists
straps (as described in section 2.2) the state of all oref the source IP address, destination IP address, source
going connections whose flows are hashed.toThe port, and destination port. Each entry includes the fol-
same procedure can be repeated to handle multiple failewing:

Failure recovery. All middleboxes are pre-arranged to
form a logical ringR. For each middlebo2/;, its clock-
wise next-hop neighbor iR (denoted byR.next(M;)) is
the designated backup fd¢; and will take over the flows
managed byV/; shouldM; fail. Suppose for some en-
try e the original home middleboX/; = H M]|e] failed.

ures. For example, if bottd/; and M failed, then
M; = R.next(Ms) becomes the newd M[e]. Note
that unreachable middleboxes due to network partition
can be handled in the same way as failures. The only
additional processing required for coping with networke
partition is to resolve the inconsistency in tH¥ tables
maintained by different partitions after the network be-
comes connected again.

Load balancing. Load balancing can be handled in a
similar manner. Supposg/; is overloaded and wants
to offload all flows that are hashed to entrjto a less
loaded middlebox\/,. All it needs to do is to update the
global home middlebox table so thAW [¢] = M,. M,
then spends th&;, period to bootstrap its state for flows
that are mapped ta Note that during the state bootstrap
interval, instead of blindly letting through every flow that
M- has no state for)l, has the option of forwarding
such flows toM;. This can make flow migration more
graceful, especially when/; has been applying traffic-
modifying mitigation policies such as SYN cookies and

Flow definition source IP, destination IP, source port,
destination port. [4 bytes per IP, 2 bytes per port; 12
bytes total]

Offset The difference between sequence numbers

on the middlebox-source connection (generated as
SYN cookies by the middlebox) and the destination-
middlebox connection (chosen by the destination
when a connection is established by the middlebox on
behalf of a verified source). This offset is used to trans-
late sequence numbers when the two connections are
“spliced” at the middlebox. [4 bytes]

e Timestamp Last time a packet was seen on this con-

nection. Used to time out passive connections. [4
bytes]

Service bits (i) pre-existing is this a pre-existing or
spliced connection? (iiyplice is sequence number
translation required? (iigonformancehas the source
complied with traffic management measuregy( re-

. i ?
sequence number translation. sponded properly to congestion control messages)?

3 Middlebox Design
3.1 Overview

InboundPacketRateArray of size%, containing the
number of inbound packets seen for each interval of
lengtht; (T is the monitoring period). Used to mitigate
unspoofed data flood attacks.

dFence is based on diverting traffic to special-purpose

middleboxesas soon as denial of service activity is de-Preventing resource exhaustion and resolving colli-
tected. Each middlebox is responsible for protectingsions. To prevent the attacker from filling théonnec-
TCP connections to some or all of the attacked destition table with a large number of connection entries that
nations. To effectively distinguish between benign anchave the same (unspoofed) source and destination IP ad-
malicious traffic, the middlebox maintains partial TCP dresses, but different port numbers, the middlebox main-
state for both directions of the intercepted connectiongains a separat8rc-Dest table. This is a hash table in-
but does not buffer any packets. Because mitigation islexed by the hash of the source IP - destination IP pair.
performed entirely within the middlebox and traffic redi- For each pair, it keeps the count of currently open con-
rection is achieved using standard intra-domain routingnections. Once the threshold is exceeded, no new con-
and tunneling mechanisms, dFence does not require amgctions are established. The value of the threshold is



a system parameter, and can be changed adaptively dexe s Data o1
. . . SYNMCK (c:at1) ACK (a+16+1) ATAMCK (c+l:a+2)
pending on how full th&€onnection table is. SYN Cookie

No state Create State StatdComplete  Sequencg# Trangfations

To resolve hash collisions between different flows inwiadeo /_\ .0 svsACK (baD) DATASACK (D142
the Connection table, we use a Bloom filter-like tech- ~ sm@/ wnay=o /0 =PNREY Livay/ vas e

nigue and apply several hash functions until a vacant enggs Relu Cookie

try is found. If no vacancy can be found, the decision

whether to drop the new flow or evict the old flow de- Figure 4: Outsourced SYN cookies with sequence num-
pends on the status of the latter and specific policy (se@er translation

section 3.2).

The middlebox also maintains a seckety which is  Network-based SYN cookie generationOur policy for
used as input to a hash function for generating unforgemitigating spoofed SYN floods is shown in fig. 4. It is
able sequence numbers. This key is the same for all cofpased on the well-known idea &YN cookieg4, 20],
nections. It is re-generated at periodic intervals. except that, unlike the traditional approach, we do not
Handling connections originated from a protected requireanymodificatipns to the server TCP softwgre.
network. In addition to keeping information about con- . After a d_Fence middlebod/ has been dynam|ca_lly
nections whose destination is the protected server, th@troduced into all routes to some hastthat is experi-

middlebox also needs to keep information about the congheing a denial of service attack, all traffic fopasses

: o ; : through M. On receipt of a SYN packet whose desti-
nections originatingrom the server in order to filter out I . .
packets with spoofed server address. This is done ygation isS, the middiebox computes the SYN cookie as
ing a sliding-windowcounting Bloom filter [5]. (In our a cryptographic hash of connection parameters and the

current implementation, we use filters with 3 hash func_(frequent_ly re-generated) local secret, adds the value of
tions.) During each time slica, when a connection re- the cookie to the sequence number in the SYN packet,

guest from the server is observed, the middlebox add@nd uses it as the sequence number in its SYN-ACK re-
connection parameters to the current Bloom filker If Sponse. No state is established at the middlebox at this

. . o tage.
connection is terminated, it is removed frasy. s . .

o o Note that in the SYN-ACK responsthe middlebox\/
3.2 Mitigation Policies sets the receiver window size to zepon receiving the

A large number of techniques for mitigating various S YN-ACK with zero window size(” sends back an ACK

types of DoS attacks have been proposed in the researPRCKet and then enters the TCP Persist Mode. While in
literature. Virtually none have been deployed widely, dug 'S StateC"is not allowed to send any data packets with
mainly to the lack ofransparencyandscalability. net- ~ Non-zero payload. Sa/ effectively “chokes™C'. M
working software must be modified at millions of end €0 “unchoke’C’ later by sending it any packet with a
hosts, and performance penalty must be paid even whdlpn-zero window size. I/ receives data pgckets from
the hosts areot being attacked. Moreover, different at- C Pefore the handshake withis complete, it marke”
tack types require different defenses, and supporting affS non-conforming and simply drops all further packets
of them (SYN cookies, capabilities, client puzzles, and™™M C- N _
S0 on) in a general-purpose TCP implementation is nei- N(_)te that, for a_Iegmmate _chent that does not have cor-
ther feasible, nor desirable. rect implementation of persist mode, the middlebox will
Our main technical contribution in this part of the pa- ¢lassify it as non-conforming and drop its packets.
per is to show how many anti-DoS defenses can be ef- ItiSimportant to prevent’ from generating data pack-
fectively and transparently implemented in the middle ofets beforell completes its handshake with(which may

the network at a minimal performance cost. be far away fromM). Otherwise,M has to buffer all
L these packets, which can be expensive. Dropping these
3.2.1 Mitigating spoofed attacks data packets is not a good option because when the first

The distinguishing characteristic of spoofing attacks iew data packets at the beginning of a TCP connection
that the source addresses of attack packets are fake. Fane dropped;’ can recover only through the TCP timeout
example, SYN flood is a classic denial of service attackmechanism. The default TCP timeout value is often set
in which the attacker sends a large number of SYN reto 3 seconds, which can seriously degrade network per-
guests to a TCP server. The server creates a half-opdéarmance as perceived by end users. We have confirmed
connection in response to each request. Once the servettys experimentally by turning off the choking mecha-
queue fills up, all connection attempts are denied. In aism, and observed &second timeout each time. For
spoofed data flood, the attacker simply floods last-mileserver-side SYN cookies, choking is not needed because
bandwidth with spurious traffic. In Smurf-type and re- S will only receive packets from\/ after A/ has com-
flector attacks, the attacker sends packets with the vigleted the handshake with a legitimate client, and thus all
tim's address in the source field to a large number obf S’s packets can be safely forwarded to that client.
hosts, who then all respond to the victim, overwhelming On receipt of an ACK packet from some clie@t,

him with traffic. the middlebox\/ recomputes the cookie-based sequence



number and verifies that it is correct. If so, the connection.) If at the end of the monitoring period the client’s
tion is not spoofed, and/ creates new entries for it in packet rate dichot show a decreasing trend, thenfor-
the Connection and Src-Dest tables (see section 3.2). mancebit is set to0. All data packets on connections
The entries are indexed by the hash of connection pawhere the measurement period ended andciafor-
rameters. If a collision occurs, it is resolved as describedhancebitis 0 are dropped. Note that this defense is feasi-
in section 3.2. ble because a dFence middlebox contbmthdirections

At this point, M needs to establish a connection with of TCP connections. The threshadidcan be adaptively
the protected serves on behalf of the (verified) clie@.  set based on the middlebox load.
This is done by performing the standard TCP handsha
with S. M uses the same sequence number ¢hased
in its SYN packet, by subtracting from the sequence
number in the ACK packet.

When M receives SYN-ACK fromS, M forwards it

k“Ia‘oo many unspoofed connectionsMany denial of ser-
vice attacks involve the attacker opening a large num-
ber of connections from a legitimate IP address that be-
longs to a compromised, remotely controlled “zombie”

to C' and re-opens the window. There is a technical chalmaChine‘ The zombie completes the TCP handshake,

lenge here, however: the sequence numbers chosén byconforms to congestion control measures, and then over-

for the M — S connection are not the same as the cookiewhelms the server with a large number of requests. The

based sequence numbers generatetli/tipr the C' — M Slrc-Dest taple (fsee Sﬁctlon 3) defends aglfams_t multl-h
connection. As described in section 3.2, for every conP'® connectl_ons_ rom t e same address by limiting eac
nection)M maintains the offset between the two sequenc<§0ur.ce'des“n"’Itlon pair to a reasonable number of con-
numbers. On receiving SYN-ACK,' assumes that its nections.
previous ACK packet was lost and thus retransmits it?hNAPTHA attacks. In the NAPTHA attack, the at-
ACK. C also exits the persistent mode as the SYN-ACKtacker opens a legitimate connection, immediately closes
packet now has a non-zero receiver window siefor- it without sending FIN/RST, and opens another connec-
wards ACK with proper sequence and acknowledgemerton from a different zombie machine. This fills up the
numbers, thereby completing the handshake With server’s state, causing denial of service to legitimate con
All subsequent data packets undergo sequence/agiections.

number translation ad/. When a packet arrives from 14 defend against NAPTHA attacks, the dFence mid-
S, M adds the offset to the sequence number. Whegjepox maintains a timestamp for each connection, indi-
a packet arrives fron’, M subtracts the offset from cating the last time a packet was observed. If the idle
the acknowledgement number. Thplicebit is set in  time of a connection (the time since the last packet was
the Connection table to indicate that sequence numberghserved) exceeds a threshold value (which is a tunable
translation is required. system parameter), the middlebox “times out” the con-
Spoofed data floods and reflector attacks. As de- nection by sending RST to the server. This is also done
scribed in section 3, the middlebox maintains informa-when theConnection table fills up, leading to a large
tion about client-originated connections (in tBennec-  number of collisions. The thresholds can also be deter-
tion table) as well as the connections originating frommined empirically by analyzing attack traces.

the server that is being protected (in the Bloom filter).
Any data packet whose flow identification is not found

in either of these two da_\ta structures is dropped. Th e sketch how they can be used to defend against botnet
same defense works against reflector attacks, because acks. Our goal in this section is to demonstrate the

m|ddleb9x filters out data packets from re_flectors Whos%xpressiveness of dFence policies rather than describe a
connection parameters do not belong to either the Bloo@omprehensive solution to the botnet problem

filter or Connection table.
S In botnet attacks, the attacker commands a large num-
3.2.2 Mitigating unspoofed attacks ber of compromised computers to bombard the victim

Unspoofed data floods.The attacker can launch a data With HTTP or other requests. From the victim’'s view-
flood from a legitimate address by completing the TCRPoiInt, this situation is similar to a flash crowd, since it is
handshake and then flooding the bandwidth with dat4lifficult to tell whether an individual connection is mali-
traffic. Our defense is based on enforcing complianc€ious or benign.
with congestion control measures. Our dFence-based botnet mitigation policy is based on
When traffic rate on a connection exceeds some threslsource-prefix whitelisting. This policy is invoked only
old valueh (h is a tunable system parameter), the middle-after the client has complied with all other measures, in-
box modifies ACK packets arriving from the server to re-cluding congestion control. It gives preference to traffic
duce the receiver advertisement window, and starts meé&om hosts in the white list oV most common /24 pre-
suring the rate of packets arriving from the client. (Recallfixes for a given server or network. This list can be cre-
from section 3 that th€onnection table includes arrays ated from traffic statistics, or else ISP customers can pay
for measuring packet rates on each unspoofed connets be added to it.

Botnet attacks. dFence middleboxes can also support
more sophisticated filtering policies. As an illustration,



The reason this approach is effective against botnetsimply forwarded without seg/ack number translation or
is that zombie machines tend to be sparsely distributedyook-keeping.
i.e, the attacker is likely to control only a handful of The policy decision tree is depicted in fig. 5. “Is
zombies within each /24 prefix. This observation is con-Cookie Correct?” represents re-computing the SYN
firmed by our analysis of botnet traces collected by [9].cookie and comparing it with the acknowledgement num-
In both traces, fewer thatD machines from any single ber in the client's ACK packet. “To Apply Penalty?”
124 prefix are used during the attack. In trac@9% of  represents checking that the client and its prefix are not
prefixes have no more than 2 zombies, and in trace ligenerating too much traffic. “Can Replace Current En-
99% of prefixes have no more than 7. In trace |, only 3try?” represents resolving collisions in the hash table.
out of 22203 observed prefixes have more than 20 zom# the current entry is known to be compliarite(, its
bies, and in trace Il, 48 out of 64667. (Note that theconformancebit is set), then the new entry is dropped.
middlebox eliminates all spoofed connections using thef conformance is still being measured, the new entry is
anti-spoofing defenses described above, and that each lyopped, too. Otherwise, the old entry is evicted and the
is restricted to a modest amount of traffic by congestiomew entry is inserted in its place.
control and compliance checking measures.) In all cases, processing is limited to a few hash ta-

This approach can be easily combined with an adapble lookups, and access to the packet is limited to the
tive form of CAPTCHA-based Kill-bots [16]. The mid- information in the header (IP addresses, port numbers,
dlebox can adaptively redirect HTTP traffic from outsidesequence numbers, packet type). Detailed performance
the preferred prefixes to a CAPTCHA server. This carevaluation can be found in section 5.

be viewed asationing: some fraction of the flows in the . .
Connection table are allocated to the tal privileged 3.4 Evasions and Attacks on the Middlebox

flows, with the remaining (or un-privileged) flows com- |, this section, we focus on the denial of service attacks
peting for the rest of the table entries. against the middlebox itself, and on techniques that an
3.3 Policy Decision Logic attacker may use to evade our defenses.

Because the dFence middlebox is in the data path of affxhausting the connection state. To prevent the at-
connections to and from the servers that are being prd@cker from filling up theConnection table, we use the
tected, it is critical to ensure that per-packet processing'¢-Dest table to limit the number of connections from
complexity is low and can scale to high link speeds. In@nY Single host. For protection from botnets, we use
particular, we want to avoid blindly applying different source-prefix whitelisting as described in section 3.2.2.

mitigation policies one after another regardless of thén.general, resource exhaustion is prevented because the
packet type. middlebox keepg state _onIy for unspoofeq sources that
On receipt of a packet, the middlebox first classi-ave complied with traffic control measuré( whose
fies it using TCP flag types. Depending on which ﬂagnetwork-level behavior is similar to legitimate sources).
is set (SYN, SYN+ACK, FIN, RSTetc), it is sent to  Adaptive traffic variation. The attacker may employ
the respective processing function. For a SYN packean ON/OFF attack pattern. On attack detection, the mid-
from client during the bootstrap or active phases, a SYMilebox is introduced on the data path. As soon as mid-
cookie is generated and SYN-ACK sent back to thedlebox is introduced, the attacker stops sending attack
client. For SYNs from server, the Bloom filter is updated.traffic. All legitimate traffic goes via the middlebox and
For SYN-ACKs from the server during the bootstrap orsuffers minor degradation due to triangular routing. After
active phases, th@onnection table is updated with the some time interval (the attacker assumes that the middle-
right offset value (difference between the seg/ack numhbox is now removed from data path), he starts sending
bers on the middlebox-source and middlebox-server corattack traffic again, and so on. To provide a partial de-
nections). During the removal phase, SYNs and SYNfense against this attack, we avoid rapid introduction and
ACKs are simply forwarded without updating the dataremoval of middleboxes. Once the middlebox is intro-
structures at the middlebox. duced, it remains in the data path for some period even
For a data packet, its 4-tuple flow ID (IP addresses andfter the attack subsided. The duration of this interval is
port numbers) is looked up and checked againsCihie-  randomized.
nection table and the Bloom filter to verify that it be-
longs to an established connection. If in the Bloom filter,
the packets are forwarded. If in ti@@onnection table,
the pre-existingbit is checked and splicing performed,
if needed. During the bootstrap phase, packets who
flow ID doesnot belong to both the Bloom filter and the
Connection table are forwarded and middlebox state up-
dated. During the active phase, they are assumed to dultiple attacks. The attacker can try to overwhelm the
spoofed and dropped. During the removal phase, they adence infrastructure by launching multiple attacks on

Werewolf attack. The attacker starts by behaving legiti-
mately, gets established in ti@nnection table, com-
plies with congestion control requests, and then starts
Stt%ombarding the server with attack traffic. We deal with

is attack by periodically re-measuring traffic sending
rates and source-prefix whitelisting.
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Figure 5: Policy decision tree

several destinations. We employ an adaptive provisionmake one of the middleboxes their next hop on the routes
ing strategy that scales up the number of middleboxet the attacked hosts. Note that iBGP advertisements are
in the network with the number of attacked destinationssent only for the network prefix(es) under attack. To set
(among those who have subscribed for dFence protecp tunnels and ACL rules, the middlebox remotely con-

tion). figures the egress router. This is needed to prevent fil-
. tered packets from looping back to the middlebox—see
4 Implementation Section 2.1.

Our prototype implementation consists of two compo-

nents: (i) control-plane traffic interception, and (ii) dat . . .
M b P (i) cies are implemented on IXP network processors using

plane attack mitigation. We prototyped the contro ; . ;
plane functionality on a general-purpose processor uj—he Shangri-La framework [19]. Shangri-La provides a

ing the extensible open-source router platform calle lexible high—level programming environment' that facjl-
XORP [13]. The anti-DoS data plane functionality is ltates rapid development of.pack.et-pr_ocessmg appl!ca-
implemented on a special-purpose platform consistingons' We chose IXP over Click primarily for pragmatic

of a Radisys ENP-2611 board, with a 600 MHz Ifitel easons: the IXP multi-processor architecture supports
IXP2400 network processor ' multiple threads and hence provides higher throughput.

The IXP2400 network processor contains one 32-bit Ve implemented our mitigation policies as an appli-
XScale controller running Montavista Linux and eight ¢&tion graph of packet processing functions (PPFs), op-
32-bit RISC cores called micro-engines (MEs). Each MESrating on different packet types (SYN, data, and so on).
has a private 4K instruction store, onto which code for! "® PPFS, as shown in Figure 6(b) are mapped to the IXP
different packet processing functions (PPFs) is loadedMCcro-engines using the Shangri-La run-time system.

The micro-engines share a 16KB on-chip scratch-padControl-data planes interaction. The fast forwarding
off-chip SRAM (128MB), and DRAM (1GB). path on the data plane uses forwarding table entries es-
The complete setup is depicted in Figure 6(a). Theaablished by the control plane to put the packets on ap-
control plane uses BGP and IGP to make routing decipropriate output interfaces. We implemented the commu-
sions and update the forwarding table. The data packetsication interface between the control plane (on XORP)
are handled on the fast path by IXP. and data plane (on IXP) using sockets and ioctl() system
Control plane interception. The middlebox starts its calls. Communication between a XORP process and a
operation after it receives the signal that a DoS attack hagrocess running on the XScale processor occurs via stan-
been detected. (Our focus in this paper is solely on mitdard C sockets, and communication between XScale and
igation rather than detection; dFence is compatible withimicro-engines occurs via ioctl() (see Figure 6(a)).
any existing DoS detection mechanism—see section 6.) The XORP process sets up the MAC/IP addresses of
As discussed in Section 2.1, the middlebox interceptshe interfaces on the IXP data plane, and establishes the
traffic to the hosts experiencing the attack by sendingnapping between next-hop IP and port numbers. To set
iBGP advertisements to all routers within the same ASup the forwarding table, XORP runs BGP/IGP on control
Using BGP policy configuration in XORP, the local pref- interfaces (on the host processor) and communicates the
erence in the advertisements is set higher than the oth&rwarding table entries to the IXP so that the data plane
routers. As a result, all border and intermediate routerapplications can use the table to forward data packets.

Data plane mitigation. The attack mitigation poli-



Host Processor Network Processor Packet Type| Packet Processing anfi Min Max | Avg
Control Plane yorp Data Plane Forwarding
PPF SYN SYN Cookie and[] 393 | 60.4 | 421
SYN-ACK  Genera-
i tion
Bloom filter update 25.28 | 27.06 | 25.86
Routing Processes | | [ No processing 15.66 | 17.02 | 15.94
® Inbound Data Presentin Bloom filter|| 23.24 | 24.8 | 23.56
; i i microzengings) i Present in Connection| 37.06 | 40.84 | 38.61
@ 1 fsoeg d Table - splice
Communication Interfaclf) """"" [ ? XScale Processor Absent in both - for- 31.8 34.06 | 32.54
ward (removal phase)
Outbound Presentin Bloom filter|| 23.24 | 25.3 | 23.56
Data Plane Managment @ Data Present in Connectiod] 37.66 | 41.64 | 39.1
i Table
Data Structures Syn_cookie Absent in both - for-[| 29.52 | 44.92 | 30.15
) —d ward (removal phase)
Absent in both - up-|| 31.5 | 33.6 | 32.1
o et update_state date (bootstrap phase
pkt_cls A -1 Table 1: Latency benchmarks (in micro-seconds).
.- ¢ synack_chn . i . i
RX - splice_conn > Synthetic traffic generated by IXIA consists of 100-
= J@ma_cn byte packets. The maximum input traffic rate attainable
R in this case is 1041 Kilo packets per second. SYN pack-
close_conn ets are generated with arbitrary sequence numbers. Since
our mitigation policies at the IXP drop packets with in-
valid sequence/ack numbers, we configure IXIA to auto-

matically insert appropriate numbers into data and FIN
. ) . packets. To enable testing over longer periods, we dis-
Flglurle 6. dFence System Ilmpleme(rj\tatl_on. (@) CoNgpie the interval-based key for generating SYN cookies.
trol p anel Interception Is imp erBente | using XOkRP_(_)nlnstead, we use a single key that persists over the entire
a general-purpose processor. Data plane attack mitigay, ration of testing using IXIA. This ensures that the data
tion is implemented on Intel IXP network processors. (b)y,ckets with appropriate seq/ack numbers (correspond-
PPFs for attack mitigation policies. ing to those generated by the middlebox as part of SYN
; cookie generation) have their flow identifiers in then-
5 Evaluation nection table and are spliced properly by the IXP.

In this section, we present an experimental evaluation qatency. Table 1 shows the latency (in micro-seconds)

our prototype system. The.IXP-baged prototype impleTntroduced by the middlebox when dealing with different
mentation of the middlebox is described in section 4. At-

tack traffic comprising spoofed SYN packets, data packpaCket types and for different types of processing. La-

: . tency includes both processing and packet forwarding.
ets, and spoofed ACK/RST/FIN is generated using IXIAg) o, fijter update is performed only for SYN packets

packet tra}fﬁc generator [15]_' IXIA has 20 copper POMStrom the hosts that are being protected (all such connec-
and two fiber ports. Each fiber port can generate up tg,q are assumed to be legitimate). “Present in Bloom
1490 Kilo packets per second, where packet size is 6 Iter” checks the existence of flow ID (IP addresses and
bytes. ports) in the Bloom filter, and forwards if preseng(, the

; packet belongs to an existing server-originated connec-
5.1 Micro benchmarks tion). “Present in Connection Table” checks whether the
To measure throughput and latency of our attack mitigaflow ID is present theConnection and, if so, forwards
tion policies, we directly connect the IXIA fibers ports according to the status bits (splicing - seg/ack number
to two optical ports on the IXP. Traffic generated usingtranslation; pre-existing - connection was classified as le
IXIA is processed by PPFs on the micro-engines. IXPgitimate during the bootstrap phase). “Absent in both -
2400 has eight micro-engines, two of which are used foforward” applies during the removal phase, when all data
receive/transmit modules. We compose the applicatiopackets are simply forwarded. “Absent in both - update”
using four PPFs, each handling a particular packet typeapplies during the bootstrap phase: middlebox state is
SYN, SYN-ACK, data and FIN/RST. The four PPFs areupdated for packets received from the protected server
mapped onto one micro-engine each. The PPF for packel setting there-existingstatus bit tarue.
classification is mapped to the same micro-engine as the The latency of updating the Bloom filter (done only
PPF for FIN/RST. PPFs can be also be mapped to moruring bootstrap phase) is higher than checking the filter.
than one micro-engine, where the code for the PPF ifor data packets, checking in tR®nnection table and
replicated on all the engines. splicing (seg/ack number translation + incremental TCP

(b)



Packet Type| Packet F_’rocessmg anl 1ME | 2ME | 3ME 100000F No Middlebo’;!(% %}ggﬁgl%e(r}t%%%?%g{%%)t ]
Forwarding [T With Midd t\)/\/lthll\élddlebox (ltconnecttlpn)xj
SYN SYN Cookie and|| 205 | 401 | 467 1S T 1000 ith Middlebox (10 concurrent connectionsy,
SYN-ACK  Genera- o 5
tion c 9 g |
Bloom filter update 530 | 1041 | 1041 S g g
Forward 1041 | 1041 | 1041 QL e o e
Inbound Datd Presentin Bloom filter]] 507 | 1011 [ 1041 E E 100 b
Present in Connectio 264 525 781 Qo c IV
Table - splice O 1w E
Absent in both - for-|| 326 652 974
ward (removal phase) 1 | !
Outbound | Presentin Bloom filter]] 507 | 1011 | 1041 ! Attack Rate (in Kpps)
Data Present in Connectio 259 515 766 (a)
Table !
Absent in both - for-|| 318 | 637 | 1029 Middlebox Introdumete BOOtSAt\rt?;fkegmpped Middlebox Remover
ward (removal phase) Attack Starte
Absent in both - up-[[ 326 653 951
date (bootstrap phase 1000 T . ; T
| i+ Maximum TCP Throughput (Mbps)—+—
. ) b Attack Traffic Rate (Mbps) *"
Table 2: Throughput benchmarks in Kilo Packets Per ! D JoTemee
Second (Kpps). Maximum input rate from IXIA (one | i X X
fiber port) is 1041 Kpps with packet size = 100 bytes. | I i
checksum computation) is more expensive than checking |
the Bloom filter, updating, or simple forwarding. i
Throughput. Table 2 presents our throughput bench- D o b
marks.  Throughput scales linearly as more micro- I w0 a0 1000 !
engines are allocated to the PPFs for all packet types and Experimental Time (in seconds)
processing functionalities, except for SYN cookie gener- (b)
ation. For the latter, maximum throughput supported byFigure 7: (a) End-to-end latency for one and ten con-
a single IXP is 467 Kpps. current HTTP connections to a Web server. Attack traf-
fic rate is increased up to 490 Kpps (100-byte packets);
5.2 End-to-end benchmarks (b) End-to-end maximum TCP throughput. Attack traffic

For end-to-end measurements, our server is a 1 GHz Iriate, and TCP throughput are in Mbps.

tel P-Ill processor with 256 MB RAM, 256 KB cache,

running an Apache Web Server on Linux 2.4.20 kernel. As seen from Figure 7(a), connection time with no
Legitimate traffic is generated using the httperf [23] too|midd|ebOX on the data path increases as attack traffic rate
which issues HTTP requests to the Web server. Both th@rows. After around 14 Kpps, the Web server can no
client and the server are connected to a Gigabit Etherné@nger handle the traffic and httperf client times out. The
switch. Spoofed attack traffic is generated using |X|A,time0ut interval is set to be 10 seconds. At this moment,
which is connected to the fiber optical port of the switch.the server dies. With the middlebox on the data path, con-
All traffic goes via a routing element running XORP. For nection time for legitimate clients remains constant even
our prototype, we do not include attack detection and usas attack rate increases all the way to 450 Kpps.

a trigger to install the middlebox on the data path. Throughput. Fig. 7(b) shows end-to-end performance

Our evaluation metrics aonnection timemeasured  (measured using iperf) over time as the server is attacked,
using hitperf, andnax TCP throughpuattainable be- migglebox enters dynamically into the data path, boot-
tween a legitimate client and the server, measured usingaps filters out attack traffic, and, after the attack sub-
iperf [14]. sides, is removed from the data path.

Latency. In Figure 7(a), X axis represents the attack Before the attack starts, maximum TCP throughput be-
rate in Kilo packets per second (100-byte packets), Yiween client and server is 94.3 Mbps. As the attack be-
axis represents connection time in milliseconds. Fogins, it drops to 3.88 Mbps. After = 10 seconds, the
server content, we usedwv. amazon. comhomepage middlebox is dynamically introduced on the data path.
(copied on April 17, 2006). Its size is 166 KB. During the 6-second bootstrap phase, the middlebox es-
For one legitimate connection, no attack traffic and ndablishes state for ongoing connections, and throughput
middlebox on the data path, connection time is 16.4 msslowly increases to 21.7 Mbps (the increase is due to
With the middlebox on the data path, but still no attack,dropping of spoofed SYN requests - these packets do not
connection time increases to 16.5 ms. For ten concurremget to the server, because the TCP handshake between the
connections, total connection time increases from 121.a&ttacker and the middlebox is not completed). All data
ms to 121.5 ms. packets, whether spoofed or legitimate, are forwarded to-



wards the server during the bootstrap phase (note, hoveause high collateral damage). In contrast, our scheme
ever, that the attack traffic rate stays below 14 Kpps). Aintercepts both directions of traffic and supports both
t = 16, the middlebox enters its active mode, and startstateless and stateful policies to enable better differen-
aggressively profiling and filtering traffic. All spoofed tiation between benign and malicious traffic.

traffic is dropped in this phase. Throughput now in- Several designs for re-engineering the Internet in-
creased to 87.3 Mbps. At = 1500, the attack stops, frastructure have resistance to denial of service attacks
and the middlebox remains on the data path for the nexdmong their objectives [30, 31]. With indirection as the
300 seconds. This interval (pre-determined) is used tdirst-class principle of packet routing, these networks can
time out the state for connections that were establishedasily reroute attack traffic to filtering devices by chang-
via the middlebox during the active phase.tAt 1800, ing the mappings between identifiers and hosts. The
throughput returns to the normal (no attack, no middlescheme proposed in this paper is incomparable, because

box) 94.3 Mbps level. our goal is a solution that is fully compatible with and
transparent to the existing Internet infrastructure.
6 Related Work Other network-based defenses, all requiring router

Defenses against denial of service have been a subje@dification, include route-based packet filtering [25],

of very active research, and the survey in this sectioftatistical analysis of incoming packets [18] and router
is necessarily incomplete. Unlike previously proposedhrotties [38]. An evaluation of router-based defense sys-
network-based defenses, dFence is completely transpdfms can be found in [34].

ent to the existing Internet infrastructure. Unlike proxy-victim- and source-based mitigation. These defenses
based solutions, dFence uses novel dynamic introductiofye deployed either at the servers, or at the ingress
mechanisms to providen-demandgrotection only when  routers, and thus necessarily require substantial modifi-
needed. dFence middleboxes can be quickly re-deployeghtions to the existing software base. Server-based solu-
to protect a different subset of end hosts without anyions also tend to be ineffective against last-mile band-
modifications. width flooding attacks.

Network-based mitigation. Defenses based on secure Kill-Bots [16] uses client legitimacy tests such as re-
overlays [2, 17] assume that all packets enter the nelerse Turing tests to differentiate between benign and
work through the overlay’s access points. The overlaynalicious requests. In [32], victim servers encourage le-
checks each packet's legitimacy and filters out attack trafditimate clients to “crowd out” malicious flows by send-
fic. This method requires that the destinations’ true IFNG higher volumes of traffic. In Pi [35], routers insert
addresses remain secret, and is thus difficult to combin@ath identifiers into unused spaces within IP packet head-
with the existing Internet infrastructure. Similarly, &r ~ €rs; servers then drop packets arriving on known attack
break [11] assumes that the attacker does not know tHaths. This requires modifications to both routers and
targets’ IP addresses, and that packets are tunnelled to tR@rvers, and may cause collateral damage if a legitimate
destinations by proxies deployed at edge routers. This r&ource shares the route with an attacker. D-WARD [22]
quires software modification at legacy routers. uses anomaly detection and compliance with traffic man-
Defenses based on capabilities such as SIFF [36] arffgement measures to differentiate benign and_m_ahmous
TVA [37] require that (i) destinations issue unforgeableﬂows' Malicious flows are then blocked or rate-limited at

tokens to legitimate sources, and (i) routers filter outSOUTCe routers. Deployment requires wide-scale modifi-

packets that do not carry these tokens. Both router ant@tion of router software. Ingress filtering [10] is limited

server software must be modified to support capabilitiest,o spoofing attacks, and also requires router modification.
and servers must be able to differentiate benign and ma- Many methods have been proposed detectingde-
licious traffic. Flow Cookies [6] use the timestamp field nial of service activity [12, 33, 28] and tracing back the
in packets to insert cookies, and require server modificasources of the attack [27, 29]. Our focus in this paper
tions to differentiate benign and malicious flows. is on transparent, scalabieitigation rather than detec-
Pushback [21] rate-limits flows responsible for traf-tion, and our solution is compatible with most proposed
fic congestion, and pushes filters upstream towards th#etection and traceback mechanisms.
sources of these flows. Router software must be mod- .
ified. Rate-limiting is a coarse technique that does no Conclusions and Future Work
differentiate between benign and malicious traffic, andye described the design and prototype implementation
may thus cause high collateral damage. of dFence, a novel network-based system for transpar-
Cisco Guard [8] is a commercial product that dynam-ently mitigating denial of service attacks. The main ad-
ically redirects traffic to “cleaning centers” within the vantages of the dFence middleboxes are their compati-
network. Traffic interception is not bi-directional; only bility with the existing Internet infrastructure—they are
traffic from client to server is intercepted. Cisco Guardintroduced into the network using standard routing mech-
applies several stateless filtering policies, and uses ratanisms, and their operation is completely transparent to
limiting to reduce traffic volume (which may potentially the protected end hosts—and their ability to support a



broad range of effective anti-DoS techniques. Controf12] T. Giland M. Poletto. MULTOPS: A data-structure for lnfawidth
over both directions of TCP connections and efficient
data structures for managing partial connection state effit3]
able several new defenses against denial of service, and
make possible on-demand deployment of defenses in tHeA
middle of the network. Our experimental evaluation
demonstrates that dFence provides effective protectioHS]
against distributed DoS attacks at a minimal performancge]
cost. Moreover, there is no impact whatsoever on traffic
to servers that are not experiencing DoS attacks.
Future work includes investigation of mechanisms for
configuration and management of dFence middleboxegis]
as well as design and implementation of an extensible
scripting language for rapid development of new anti-

DoS policies. Another research objective is a better untto

derstanding obdaptiveattacker behavior and designing
defenses against attackers who are aware of the anti-D §)]
middleboxes and deliberately craft their attack pattesns t
evade mitigation policies. This includes game-theoretigzy)
modeling of adversarial interaction between the middle-
boxes and the attackers. Finally, we would like to extend
dFence to environments with multiple ISPs.
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