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Abstract

Unsolicited bulk e-mail, or SPAM, is a means to an end.
For virtually all such messages, the intent is to attract the
recipient into entering a commercial transaction — typi-
cally via a linked Web site. While the prodigious infras-
tructure used to pump out billions of such solicitations is
essential, the engine driving this process is ultimately the
“point-of-sale” — the various money-making “scams”
that extract value from Internet users. In the hopes of
better understanding the business pressures exerted on
spammers, this paper focuses squarely on the Internet in-
frastructure used to host and support such scams. We
describe an opportunistic measurement technique called
spamscatterthat mines emails in real-time, follows the
embedded link structure, and automatically clusters the
destination Web sites usingimage shinglingto capture
graphical similarity between rendered sites. We have
implemented this approach on a large real-time spam
feed (over 1M messages per week) and have identified
and analyzed over 2,000 distinct scams on 7,000 distinct
servers.

1 Introduction

Few Internet security issues have attained the universal
public recognition or contempt of unsolicited bulk email
— SPAM. In 2006, industry estimates suggest that such
messages comprise over 80% over all Internet email with
a total volume up to 85billion per day [15,17]. The scale
of these numbers underscores the prodigious delivery in-
frastructures developed by “spammers” and in turn mo-
tivates the more than $1B spent annually on anti-spam
technology. However, the engine that drives this arms
race is not spam itself — which is simply a means to an
end — but the various money-making “scams” (legal or
illegal) that extract value from Internet users.

In this paper, we focus on the Internet infrastructure
used to host and support such scams. In particular, we

analyze spam-advertised Web servers that offer merchan-
dise and services (e.g., pharmaceuticals, luxury watches,
mortgages) or use malicious means to defraud users (e.g.,
phishing, spyware, trojans). Unlike mail-relays or bots,
scam infrastructure is directly implicated in the spam
profit cycle and thus considerably rarer and more valu-
able. For example, a given spam campaign may use
thousands of mail relay agents to deliver its millions of
messages, but only use a single server to handle requests
from recipients who respond. Consequently, the avail-
ability of scam infrastructure is critical to spam prof-
itability — a single takedown of a scam server or a spam-
mer redirect can curtail the earning potential of an entire
spam campaign.

The goal of this paper is to characterize scam infras-
tructure and use this data to better understand the dy-
namics and business pressures exerted on spammers. To
identify scam infrastructure, we employ an opportunis-
tic technique calledspamscatter. The underlying prin-
ciple is that each scam is, by necessity, identified in the
link structure of associated spams. To this end, we have
built a system that mines email, identifies URLs in real
time and follows such links to their eventual destina-
tion server (including any redirection mechanisms put in
place). We further identify individual scams by cluster-
ing scam servers whose rendered Web pages are graph-
ically similar using a technique calledimage shingling.
Finally, we actively probe the scam servers on an ongo-
ing basis to characterize dynamic behaviors like avail-
ability and lifetime. Using the spamscatter technique on
a large real-time spam feed (roughly 150,000 per day) we
have identified over 2,000 distinct scams hosted across
more than 7,000 distinct servers. Further, we character-
ize the availability of infrastructure implicated in these
scams and the relationship with business-related factors
such as scam “type”, location and blacklist inclusion.

The remainder of this paper is structured as follows.
Section 2 reviews related measurement studies similar in
topic or technique. In Section 3 we outline the struc-



ture and lifecycle of Internet scams, and describe in de-
tail one of the more extensive scams from our trace as
a concrete example. Section 4 describes our measure-
ment methodology, including our probing system, image
shingling algorithm, and spam feed. In Section 5, we
analyze a wide range of characteristics of Internet scam
infrastructure based upon the scams we identify in our
spam feed. Finally, Section 6 summarizes our findings
and concludes.

2 Related work

Spamscatter is an opportunistic network measurement
technique [5], taking advantage of spurious traffic —
in this case spam — to gain insight into “hidden” as-
pects of the Internet — in this case scam hosting infras-
tructure. As with other opportunistic measurement tech-
niques, such as backscatter to measure Internet denial-
of-service activity [20], network telescopes and Internet
sinks [32] to measure Internet worm outbreaks [19, 21],
and spam to measure spam relays [27], spamscatter pro-
vides a mechanism for studying global Internet behavior
from a single or small number of vantage points.

We are certainly not the first to use spam for oppor-
tunistic measurement. Perhaps the work most closely
related to ours is Ramachandran and Feamster’s recent
study using spam to characterize the network behavior of
the spam relays that sent it [27]. Using extensive spam
feeds, they categorized the network and geographic loca-
tion, lifetime, platform, and network evasion techniques
of spam relay infrastructure. They also evaluated the ef-
fectiveness of using network-level properties of spam re-
lays, such as IP blacklists and suspect BGP announce-
ments, to filter spam. When appropriate in our analyses,
we compare and contrast characteristics of spam relays
and scam hosts; some scam hosts also serve as spam re-
lays, for example. In general, however, due to the differ-
ent requirements of the two underground services, they
exhibit different characteristics; scam hosts, for exam-
ple, have longer lifetimes and are more concentrated in
the U.S.

The Webb Spam Corpus effort harvests URLs from
spam to create a repository ofWeb spampages, Web
pages created to influence Web search engine results or
deceive users [31]. Although both their effort and our
own harvest URLs from spam, the two projects differ
in their use of the harvested URLs. The Webb Spam
Corpus downloads and stores HTML content to create
an offline data set for training classifiers of Web spam
pages. Spamscatter probes sites and downloads content
over time, renders browser screenshots to identify URLs
referencing the same scam, and analyzes various charac-
teristics of the infrastructure hosting scams.

Both community and commercial services consume

URLs extracted from spam. Various community services
mine spam to specifically identify and track phishing
sites, either by examining spam from their own feeds or
collecting spam email and URLs submitted by the com-
munity [1, 6, 22, 25]. Commercial Web security and fil-
tering services, such as Websense and Brightcloud, track
and analyze Web sites to categorize and filter content,
and to identify phishing sites and sites hosting other po-
tentially malicious content such as spyware and keylog-
gers. Sites advertised in spam provide an important data
source for such services. While we use similar data in our
work, our goal is infrastructure characterization rather
than operational filtering.

Botnets can play a role in the scam host infrastructure,
either by hosting the spam relays generating the spam
we see or by hosting the scam servers. A number of
recent efforts have developed techniques for measuring
botnet structure, behavior, and prevalence. Cook et al. [9]
tested the feasibility of using honeypots to capture bots,
and proposed a combination of passive host and network
monitoring to detect botnets. Bächer et al. [23] used hon-
eynets to capture bots, infiltrate their command and con-
trol channel, and monitor botnet activity. Rajab et al. [26]
combined a number of measurement techniques, includ-
ing malware collection, IRC command and control track-
ing, and DNS cache probing. The last two approaches
have provided substantial insight into botnet activity by
tracking hundreds of botnets over periods of months. Ra-
machandran and Feamster [27] provided strong evidence
that botnets are commonly used as platforms for spam
relays; our results suggest botnets are not as common for
scam hosting.

We developed an image shingling algorithm to deter-
mine the equivalance of screenshots of rendered Web
pages. Previous efforts have developed techniques to de-
termine the equivalence of transformed images as well.
For instance, the SpoofGuard anti-phishing Web browser
plugin compares images on Web pages with a database of
corporate logos [7] to identify Web site spoofing. Spoof-
Guard compares images using robust image hashing, an
approach employing signal processing techniques to cre-
ate a compressed representation of an image [30]. Robust
image hashing works well against a number of different
image transformations, such as cropping, scaling, and fil-
tering. However, unlike image shingling, image hashing
is not intended to compare images where substantial re-
gions have completely different content; refinements to
image hashing improve robustness (e.g., [18,28]), but do
not fundamentally extend the original set of transforms.

3 The life and times of an Internet scam

In this section we outline the structure and life cycle
of Internet scams, and describe in detail one of the



Figure 1: Components of a typical Internet scam.

more extensive scams from our trace as a concrete ex-
ample. This particular scam advertises “Downloadable
Software,” such as office productivity tools (Microsoft,
Adobe, etc.) and popular games, although in general
the scams we observed were diverse in what they offered
(Section 5.1).

Figure 1 depicts the life of a spam-driven Internet
scam. First, a spam campaign launches a vast number
of unsolicited spam messages to email addresses around
the world; a large spam campaign can exceed 1 billion
emails [12]. In turn the content in these messages fre-
quently advertises ascam— unsolicited merchandise
and services available through the Web — by embed-
ding URLs to scam Web servers in the spam; in our data,
roughly 30% of spam contains such URLs (Section 5.1).
An example of spam that does not contain links would
be “pump-and-dump” stock spam intended to manipu-
late penny stock prices [3]; the recent growth of image-
based stock spam has substantially reduced the fraction
of spam using embedded URLs, shrinking from 85% in
2005 to 55% in 2006 [12]. These spam campaigns can
be comparatively brief, with more than half lasting less
than 12 hours in our data (Section 5.4). For our exam-
ple software scam, over 5,000 spam emails were used to
advertise it over a weeklong period.

Knowing or unsuspecting users click on URLs in
spam to access content from the Web servers hosting the
scams. While sometimes the embedded URL directly
specifies the scam server, more commonly it indicates
an intermediate Web server that subsequently redirects
traffic (using HTTP or Javascript) on towards the scam
server. Redirection serves multiple purposes. When
spammer and scammer are distinct, it provides a sim-
ple means for tagging requests with the spammer’s affil-
iate identifier (used by third-party merchants to compen-
sate independent “advertisers”) and laundering the spam-
based origin before the request reaches the merchant (this
laundering provides plausible deniability for the mer-

Figure 2: Screenshots, hostnames, and IP addresses of
different hosts for the “Downloadable Software” scam.
The highlighted regions show portions of the page that
change on each access due to product rotation. Image
shingling is resilient to such changes and identifies these
screenshots as equivalent pages.

chant and protects the spammer from potential conflicts
over the merchant’s advertising policy). If spammer and
scammer are the same, a layer of redirection is still use-
ful for avoiding URL-based blacklists and providing de-
ployment flexibility for scam servers. In our traces, most
scams use at least one level of redirection (Section 4).

On the back end, scams may use multiple servers to
host scams, both in terms of multiple virtual hosts (e.g.,
different domain names served by the same Web server)
and multiple physical hosts identified by IP address (Sec-
tion 5.2). However, for the scams in our spam feed, the
use of multiple virtual hosts is infrequent (16% of scams)
and multiple physical hosts is rare (6%); our example
software scam is one of the more extensive scams, using
at least 99 virtual hosts on three physical hosts.

Finally, different Web servers (physical or virtual), and
even different accesses to a scam using the same URL,
can result in slightly different downloaded content for the
same scam. Intentional randomness for evasion, rotating
advertisements, featured product rotation, etc., add an-
other form of aliasing. Figure 2 shows example screen-
shots among different hosts for the software scam. To
overcome these aliasing issues, we use screenshots of
Web pages as a basis for identifying all hosts participat-
ing in a given scam (Section 4.2).

A machine hosting one scam may be shared with other
scams, as when scammers run multiple scams at once or
the hosts are third-party infrastructure used by multiple
scammers. Sharing is common, with 38% of scams be-



ing hosted on a machine with at least one other scam
(Section 5.3). One of the machines hosting the soft-
ware scam, for example, also hosted a pharmaceutical
scam called “Toronto Pharmacy” (which happened to be
hosted on a server in Guangzhou, China).

The lifetimes of scams are much longer than spam
campaigns, with 50% of scams active for at least a week
(Section 5.4). Furthermore, scam hosts have high avail-
ability during their lifetime (most above 99%) and ap-
pear to have good network connectivity (Section 5.5); the
lifetime of our software scam ran for the entire measure-
ment period and was available 97% of the time. Finally,
scam hosts tend to be geographically concentrated in the
United States; over 57% of scam hosts from our data
mapped to the U.S. (Section 5.6.2). Such geographic
concentration contrasts sharply with the location of spam
relay hosts; for comparison, only 14% of spam relays
used to send the spam to our feed are located in the U.S.
Figure 3 shows the geographic locations of the spam re-
lays and scam hosts for the software scam. The three
scam hosts were located in China and Russia, whereas
the 85 spam relays were located around the world in 30
countries.

The lifetimes, high availability, and good network con-
nectivity, as well as the geographic diversity of spam
relays compared with scam hosts, all reflect the funda-
mentally different requirements and circumstances be-
tween the two underground services. Spam relays re-
quire no interaction with users, need only be available to
send mail, but must be great enough in number to mit-
igate the effects of per-host blacklists. Consequently,
spam relays are well suited to “commodity” botnet in-
frastructure [27]; one recent industry estimate suggests
that over 80% of spam is in fact relayed by bots [13]. By
contrast, scam hosts are naturally more centralized (due
to hosting a payment infrastructure), require interactive
response time to their target customers, and may — in
fact — be hosting legal commerce. Thus, scam hosts are
much more likely to have high-quality hosting infrastruc-
ture that is stable over long periods.

4 Methodology

This section describes our measurement methodology.
We first explain our data collection framework for prob-
ing scam hosts and spam relays, and then detail our im-
age shingling algorithm for identifying equivalent scams.
Finally, we describe the spam feed we use as our data
source and discuss the inherent limitations of using a sin-
gle viewpoint.

4.1 Data collection framework

We built a data collection tool, called thespamscatter
prober, that takes as input a feed of spam emails, ex-
tracts the sender and URLs from the spam messages, and
probes those hosts to collect various kinds of information
(Figure 1). For spam senders, the prober performs a ping,
traceroute, and DNS-based blacklist lookup (DNSBL)
once upon receipt of each spam email. The prober per-
forms more extensive operations for the scam hosts. As
with spam senders, it first performs a ping, traceroute,
and DNSBL lookup on scam hosts. In addition, it down-
loads and stores the full HTML source of the Web page
specified by valid URLs extracted from the spam (we do
not attempt to de-obfuscate URLs). It also renders an
image of the downloaded page in a canonical browser
configuration using the KHTML layout engine [14], and
stores a screenshot of the browser window. For scam
hosts, the prober repeats these operations periodically for
a fixed length of time. For the trace in this paper, we
probed each host and captured a screenshot while vis-
iting each URL every three hours. Starting from when
the first spam email introduces a new URL into the data
set, we probe the scam host serving that URL for a week
independently of whether the probes fail or succeed.

As we mentioned earlier, many spam URLs simply
point to sites that forward the request onto another server.
There are many possible reasons for the forwarding be-
havior, such as tracking users, redirecting users through
third-party affiliates or tracking systems, or consolidat-
ing the many URLs used in spam (ostensibly to avoid
spam filters) to just one. Occasionally, we also noticed
forwarding that does not end, either indicating a miscon-
figuration, programming error, or a deliberate attempt to
avoid spidering.

The prober accommodates a variety of link forwarding
practices. While some links direct the client immediately
to the appropriate Web server, others execute a series of
forwarding requests, including HTTP 302 server redi-
rects and JavaScript-based redirects. To follow these, the
prober processes received page content to extract simple
META refresh tags and JavaScript redirect statements.
It then tracks every intermediate page between the initial
link and the final content page, and marks whether a page
is the end of the line for each link. Properly handling for-
warding is necessary for accurate scam monitoring. Over
68% of scams used some kind of forwarding, with an av-
erage of 1.2 forwards per URL.

4.2 Image shingling

Many of our analyses compare content downloaded from
scam servers to determine if the scams are equivalent.
For example, scam hosts may serve multiple indepen-



Figure 3: Geographic locations of the spam relays and scam server hosts for the “Downloadable Software” scam. The
three scam servers are located in China and Russia and shown with dark grey points. The 85 spam relays are located
around the world in more than 30 different countries, and areshown in white.

dent scams simultaneously, and we cannot assume that
URLs that lead to the same host are part of the same
scam. Similarly, scams are hosted on multiple virtual
servers as well as distributed across multiple machines.
As a result, we need to be able to compare content from
scam servers on different hosts to determine whether
they are part of the same scam. Finally, even for con-
tent downloaded from the same URL over time, we need
to determine whether the content fundamentally changes
(e.g., the server has stopped hosting the scam but returns
valid HTTP responses to requests, or it has transitioned
to hosting a different scam altogether).

Various kinds of aliasing make determining scam
equivalence across multiple hosts, as well as over time, a
challenging problem. One possibility is to compare spam
messages within a window of time to identify emails
advertising the same scam. However, the randomness
and churn that spammers introduce to defeat spam fil-
ters makes it extremely difficult to use textual informa-
tion in the spam message to identify spam messages for
the same scam (e.g., spam filters continue to struggle
with spam message equivalence). Another possibility is
to compare the URLs themselves. Unfortunately, scam-
mers have many incentives not to use the same URL
across spams, and as a result each spam message for
a scam might use a distinct URL for accessing a scam
server. For instance, scammers may embed unique track-

ing identifiers in the query part of URLs, use URLs that
contain domain names to different virtual servers, or sim-
ply randomize URLs to defeat URL blacklisting.

A third option is to compare the HTML content down-
loaded from the URLs in the spam for equivalence. The
problem of comparing Web pages is a fundamental oper-
ation for any effort that identifies similar content across
sites, and comparing textual Web content has been stud-
ied extensively already. For instance, text shingling tech-
niques were developed to efficiently measure the simi-
larity of Web pages, and to scale page comparison to the
entire Web [4, 29]. In principle, a similar method could
be used to compare the HTML text between scam sites,
but in practice the downloaded HTML frequently pro-
vides insufficient textual information to reliably identify
a scam. Indeed, many scams contained little textual con-
tent at all, and instead used images entirely to display
content on the Web page. Also, many scams used frames,
iframes, and JavaScript to display content, making it dif-
ficult to capture the full page context using a text-based
Web crawler.

Finally, a fourth option is to render screenshots of
the content downloaded from scam sites, and to com-
pare the screenshots for equivalence. Screenshots are
an attractive basis for comparison because they sidestep
the aforementioned problems with comparing HTML
source. However, comparing screenshots is not without



its own difficulties. Even for the same scam accessed by
the same URL over time — much less across different
scam servers — scam sites may intentionally introduce
random perturbations of the page to prevent simple im-
age comparison, display rotating advertisements in vari-
ous parts of a page, or rotate images of featured products
across accesses. Figure 2 presents an example of screen-
shots from different sites for the same scam that show
variation between images due to product rotation.

Considering the options, we selected screenshots as
the basis for determining spam equivalence. To over-
come the problems described earlier, we developed
an image-clustering algorithm, called image shingling,
based on the notion of shingling from the text similar-
ity literature. Text shingling decomposes a document
into many segments, usually consisting of a small num-
ber of characters. Various techniques have been devel-
oped to increase the efficiency and reduce the space com-
plexity of this process [11]. Next, these hashed “shin-
gles” are sorted so that hashes for documents containing
similar shingles are close together. The ordering allows
all the documents that share an identical shingle to be
found quickly. Finally, documents are clustered accord-
ing to the percentage of shared shingles between them.
The power of the algorithm is that it essentially performs
O(N2) comparisons inO(N lg N) time.

Our image shingling algorithm applies a similar pro-
cess to the image domain. The algorithm first divides
each image into fixed size chunks in memory; in our ex-
periments, we found that an image chunk size of 40x40
pixels was an effective tradeoff between granularity and
shingling performance. We then hash each chunk to cre-
ate an image shingle, and store the shingle on a global list
together with a link to the image (we use the MD4 hash
to create shingles due to its relative speed compared with
other hashing algorithms). After sorting the list of shin-
gles, we create a hash table, indexed by shingle, to track
the number of times two images shared a similar shingle.
Scanning through the table, we create clusters of images
by finding image pairs that share at least a threshold of
similar images.

To determine an appropriate threshold value, we took
one day’s worth of screenshots and ran the image shin-
gling algorithm for all values of thresholds in increments
of 1%. Figure 4 shows the number of clusters created
per threshold value. The plateau in the figure starting
at 70% corresponds to a fair balance between being too
strict, which would reduce the possibility of clustering
nearly similar pages, and being too lenient, which would
cluster distinct scams together. Manually inspecting the
clusters generated at this threshold plateau and the cluster
membership changes that occur at neighboring threshold
values, we found that a threshold of 70% minimized false
negatives and false positives for determining scam page

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 C

lu
st

er
s

Comparison Threshold (%)

Figure 4: The choice of a threshold value for image shin-
gling determines the number of clusters.

equivalence.
We have developed a highly optimized version of this

basic algorithm that, in practice, completes an all-pairs
comparison in roughly linear time. In practice, image
shingling is highly effective at clustering similar scam
pages, while neatly side-stepping the adversarial obfus-
cations in spam messages, URLs, and page contents.
Clearly, a determined scammer could introduce steps to
reduce the effectiveness of image shingling as described
(e.g., by slightly changing the colors of the background
or embedded images on each access, changing the com-
pression ratio of embedded images, etc.). However, we
have not witnessed this behavior in our trace. If scam-
mers do take such steps, this methodology will likely
need to be refined.

4.3 Spam feed and limitations

The source of spam determines the scams we can mea-
sure using this methodology. For this study, we have
been able to take advantage of a substantial spam feed:
all messages sent to any email address at a well-known
four-letter top-level domain. This domain receives over
150,000 spam messages every day. We can assume that
any email sent to addresses in this domain is spam be-
cause no active users use addresses on the mail server
for the domain. Examining the “From” and “To” ad-
dresses of spam from this feed, we found that spam-
mers generated “To” email addresses using a variety of
methods, including harvested addresses found in text on
Web pages, universal typical addresses at sites, as well
as name-based dictionary address lists. Over 93% of
“From” addresses were used only once, suggesting the
use of random source addresses to defeat address-based
spam blacklists.



Characteristic Summary Result
Trace period 11/28/06 – 12/11/06

Spam messages1,087,711
Spam w/ URLs 319,700 (30% of all spam)

Unique URLs 36,390 (11% of all URLs)
Unique IP addresses7,029 (19% of unique URLs)

Unique scams 2,334 (6% of unique URLs)

Table 1: Summary of spamscatter trace.

We analyze Internet scam hosting infrastructure using
spam from only a single, albeit highly active, spam feed.
As with other techniques that use a single network view-
point to study global Internet behavior, undoubtedly this
single viewpoint introduces bias [2,8]. For example, the
domain that provides our spam feed has no actual users
who read the email. Any email address harvesting pro-
cess that evaluates the quality of email addresses, such
as correlating spam email targets with accesses on scam
sites, would be able to determine that sending spam to
these addresses yields no returns (that is, until we began
probing).

While measuring the true bias of our data is impos-
sible, we can anecdotally gauge the coverage of scams
from our spam feed by comparing them with scams iden-
tified from an entirely different spam source. As a com-
parison source, we used the spam posted to the Usenet
group news.admin.net-abuse.sightings, a forum for ad-
ministrators to contribute spam [22]. Over a single 3-day
period, January 26–28th, 2007, we collected spam from
both sources. We captured 6,977 spam emails from the
newsgroup and 113,216 spam emails from our feed. The
newsgroup relies on user contributions and is moderated,
and hence is a reliable source of spam. However, it is
also a much smaller source of spam than our feed.

Next we used image shingling to distill the spam from
both sources into distinct scams, 205 from the newsgroup
and 1,687 from our feed. Comparing the scams, we
found 25 that were in both sets, i.e., 12% of the news-
group scams were captured in our feed as well. Of the
30 most-prominent scams identified from both feeds (in
terms of the number of virtual hosts and IP addresses),
ten come from the newsgroup feed. These same ten, fur-
thermore, were also in our feed. Our goal was not to
achieve global coverage of all Internet scams, and, as ex-
pected, we have not. The key question is how representa-
tive our sample is; without knowing the full set of scams
(a very challenging measurement task), we cannot gauge
the representativeness of the scams we find. Character-
izing a large sample, however, still provides substantial
insight into the infrastructure used to host scams. And
it is further encouraging that many of the most exten-
sive scams in the newsgroup feed are also found in ours.
Moving forward, we plan to incorporate other sources of

Scam category % of scams
Uncategorized 29.57%
Information Technology 16.67%
Dynamic Content 11.52%
Business and Economy 6.23%
Shopping 4.30%
Financial Data and Services3.61%
Illegal or Questionable 2.15%
Adult 1.80%
Message Boards and Clubs 1.80%
Web Hosting 1.63%

Table 2: Top ten scam categories.

spam to expand our feed and further improve representa-
tiveness.

5 Analysis

We analyze Internet scam infrastructure using scams
identified from a large one-week trace of spam mes-
sages. We start by summarizing the characteristics of
our trace and the scams we identify. We then evaluate
to what extent scams use multiple hosts as distributed
infrastructure; using multiple hosts can help scams be
more resilient to defenses. Next we examine how hosts
are shared across scams as an indication of infrastructure
reuse. We then characterize the lifetime and availability
of scams. Scammers have an incentive to use host infras-
tructure that provides longer lifetimes and higher avail-
ability; at the same time, network and system administra-
tors may actively filter or take down scams, particularly
malicious ones. Lastly, we examine the network and geo-
graphic locations of scams; again, scammers can benefit
from using stable hosts that provide high availability and
good network connectivity.

Furthermore, since spam relay hosts are an integral as-
pect of Internet scams, where appropriate in our analyses
we compare and contrast characteristics of spam relays
and scam hosts.

5.1 Summary results

We collected the spam from our feed for a one-week pe-
riod from November 28, 2006 to December 4, 2006. For
every URL extracted from spam messages, we probed
the host specified by the URL for a full week (inde-
pendent of whether the host responded or not) starting
from the moment we received the spam. As a result, the
prober monitored some hosts for a week beyond the re-
ceipt of the last spam email, up until December 11. Ta-
ble 1 summarizes the resulting spamscatter trace. Start-
ing with over 1 million spam messages, we extracted
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36,390 unique URLs. Using image shingling, we iden-
tified 2,334 scams hosted on 7,029 machines. Spam is
very redundant in advertising scams: on average, 100
spam messages with embedded URLs lead to only seven
unique scams.

What kinds of scams do we observe in our trace? We
use a commercial Web content filtering product to de-
termine the prevalence of different kinds of scams. For
every URL in our trace, we use the Web content filter to
categorize the page downloaded from the URL. We then
assign that category to the scams referenced by the URL.

Table 2 shows the ten most-prevalent scam categories.
Note that we were not able to categorize all of the scams.
We did not obtain access to the Web content filter until a
few weeks after taking our traces, and 30% of the scams
had URLs that timed out in DNS by that time (“Uncate-
gorized” in the table). Further, 12% of the scams did not
categorize due to the presence of dynamic content. The
remaining 58% of scams fell into over 60 categories. Of
these the most prevalent scam category was “Information
Technology”, which, when examining the screenshots of
the scam sites, include click affiliates, survey and free
merchandise offers and some merchandise for sale (e.g.,
hair loss, software). Just over 2% of the scams were la-
beled as malicious sites (e.g., containing malware).

5.2 Distributed infrastructure

We start by evaluating to what extent scams use multi-
ple hosts as distributed infrastructure. Scams might use
multiple hosts for fault-tolerance, for resilience in antici-
pation of administrative takedown or blacklisting, for ge-
ographic distribution, or even for load balancing. Also,
reports of large-scale botnets are increasingly common,
and botnets could provide a large-scale infrastructure for
hosting scams; do we see evidence of botnets being used
as a scalable platform for scam hosting?

Scam category # of domains # of IPs
Watches 3029 3
Pharmacy 695 4
Watches 110 3
Pharmacy 106 1
Software 99 3
Male Enhancement 94 2
Phishing 91 14
Viagra 90 1
Watches 81 1
Software 80 45

Figure 6: The ten largest virtual-hosted scams and the
number of IP addresses hosting the scams.

We count multiple scam hosting from two perspec-
tives, the number of virtual hosts used by a scam and
the number of unique IP addresses used by those virtual
hosts. Overall, the scams from our trace are typically
hosted on a single IP address with one domain name.
Of the 2,334 scams, 2,195 (94%) were hosted on a sin-
gle IP address and 1,960 (84%) were hosted on a sin-
gle domain name. Only a small fraction of scams use
multiple hosting. Figure 5 shows the tails of the distri-
butions of the number of virtual hosts and IP addresses
used by the scams in our trace, and Table 6 lists the top
ten scams with the largest number of domains and IP ad-
dresses. Roughly 10% of the scams use three or more
virtual domains, and 1% use 15 or more. The top scams
use hundreds of virtual domains, with one scam using
over 3,000. Of the 6% of scams hosted on multiple IP
addresses, only a few used more than ten, with one scam
using 45. The relatively prevalent use of virtual hosts
suggests that scammers are likely concerned about URL
blacklisting and use distinct virtual hosts in URLs sent in
different spam messages to defeat such blacklists.

The scams in our trace do not use hosting infrastruc-
ture distributed across the network extensively. Most
scams are hosted on a single IP address, providing a po-
tentially convenient single point for network-based in-
terdiction either via IP blacklisting or network filtering.
Assuming that scammers adapt to defenses to remain ef-
fective, such filtering does not appear to be applied ex-
tensively. Scam serving workloads are apparently low
enough that a single host can satisfy offered load suffi-
ciently to reap the benefits of the scam. Finally, if scams
do use botnets as hosting infrastructure, then they are not
used to scale a single scam. A scammer could poten-
tially use a botnet to host multiple different scams, host-
ing each scam on a separate distinct bot, but our method-
ology would not identify this case.

Those few scams hosted on multiple IP addresses,
however, are highly distributed. Scams with multiple
IP addresses were most commonly distributed outside of
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Figure 7: The number of scams found on a server IP
address.

the same /24 prefix. Of the 139 distributed scams, all
the hosts in 86% of the scams were located entirely on
distinct /24 networks. Moreover, 64% of the distributed
scams had host IP addresses that were all in entirely
different ASes. As an example, one distributed scam
was a phishing attack targeting a bank. The phishing
Web pages were identical across 14 hosts, all in different
/24 networks. The attack employed 91 distinct domain
names. The domain names followed the same naming
convention using a handful of common keywords fol-
lowed by a set of numbers, suggesting the hosts were all
involved in the distributed attack. The fully distributed
nature of these scams suggests that scammers were con-
cerned about resilience to defenses such as blacklisting.

5.3 Shared infrastructure

While we found that most scams are hosted on a single
machine, a related question is whether these individual
machines in turn host multiple scams, thereby sharing
infrastructure across them. For each hosting IP address
in our trace, we counted the number of unique scams
hosted on that IP address at any time in the trace. Fig-
ure 7 shows these results as a logscale histogram. Shared
infrastructure is rather prevalent: although 1,450 scams
(62%) were hosted on their own machines, the remaining
38% of scams were hosted on machines hosting at least
one other scam. Ten servers hosted ten or more scams,
and the top three machines hosted 22, 18, and 15 differ-
ent scams. This sharing of infrastructure suggests that
scammers frequently either run multiple different scams
on hosts that they control, or that hosts are made avail-
able (sold, rented, bartered) to multiple scammers.
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Figure 8: Overlap time for scam pairs on a server.

Host type Classification % of hosts recognized
Spam relay Open proxy 72.3%

Spam host 5.86%
Scam host Open proxy 2.06%

Spam host 14.9%

Table 3: Blacklist classification of spam relays and scam
hosts.

5.3.1 Sharing over time

We further examined these shared servers to determine
if they host different scams sequentially or if, in fact,
servers are used concurrently for different scams. For
each pair of scams hosted on the same IP address, we
compared their active times and durations with each
other. When they overlapped, we calculated the duration
of overlap. We found that scams sharing hosts shared
them at the same time: 96% of all pairs of scams over-
lapped with each other when they remained active. Fig-
ure 8 shows the distribution of time for which scams
overlapped. Over 50% of pairs of scams overlapped
for at least 125 hours. Further calculating the ratio of
time that scams sharing hosts were active, we found that
overlapped scams did not necessarily start and end at the
same time: only 10% of scam pairs fully overlapped each
other.

5.3.2 Sharing between scam hosts and spam relays

More broadly, how often do the same machines serve as
both spam relays as well as scam hosting? Hosts used
for both spam and scams suggest, for instance, that ei-
ther the spammer and the scammer are the same party,
or that a third party controls the infrastructure and makes
it available for use by different clients. We can only es-
timate the extent to which hosts play both roles, but we



estimate it in two ways. First, we determine the IP ad-
dresses of all of the hosts that send spam into our feed.
We then compare those addresses with the IP addresses
of the scam hosts. Based upon this comparison, we find
only a small amount of overlap (9.7%) between the scam
hosts and spam relays in our trace.

Scam hosts could, of course, serve as spam relays that
do not happen to send spam to our feed. For a more
global perspective, we identify whether the spam and
scam hosts we observe in our trace are blacklisted on
well-known Internet blacklists. When the prober sees an
IP address for the first time (either from a host sending
spam or from a scam host), it performs a blacklist query
on that IP address using the DNSBLLookup Perl mod-
ule [16].

Table 3 shows the percentage of blacklisted spam re-
lays and scam hosts. This perspective identifies a larger
percentage (17%) of scam hosts as also sending spam
than we found by comparing scam hosts and open relays
within our spam feed, but the percentage is still small
overall. The blacklists are quite effective, though, at clas-
sifying the hosts that send spam to our feed: 78% of those
hosts are blacklisted. The query identifies most of the
spam hosts as open spam relays — servers that forward
mail and mask the identity of the true sender — whereas
most blacklisted scam hosts are identified as just send-
ing spam directly. These results suggest that when scam
hosts are also used to send spam, they are rarely used as
an open spam service.

5.4 Lifetime

Next we examine how long scams remain active and, in
the next section, how stable they are while active. The
lifetime of a scam is a balance of competing factors.
Scammers have an incentive to use hosting infrastructure
that provides longer lifetimes and higher availability to
increase their rate of return. On the other hand, for exam-
ple, numerous community and commercial services pro-
vide feeds and products to help network administrators
identify, filter or take down some scam sites, particularly
phishing scams [1,6,22,25].

We define the lifetime of a scam as the time between
the first and last successful timestamp for a probe opera-
tion during the two-week measurement period, indepen-
dent of whether any probes failed in between (we look
at the effect of failed probe attempts on availability be-
low). We use two types of probes to examine scam host
lifetime from different perspectives (Section 4). Periodic
ping probes measure host network lifetime, and periodic
HTTP requests measure scam server lifetime. Recall that
we probe all hosts for a week after they appear in our
spam feed — and no longer — to remove any bias to-
wards hosts that appear early in the measurement study.
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Figure 9: Lifetimes of individual scam hosts and Web
servers, as well overall lifetimes of scams across multiple
hosts.

For comparison, we also calculate the lifetimes of entire
scams. For scams that use multiple hosts, their lifetimes
start when the first host appears in our trace and end with
the lifetime of the last host to respond. As a result, scam
lifetimes can exceed a week.

How long are scams active? Figure 9 shows the dis-
tributions of scam lifetime based upon these probes for
the scams in our trace. For ping probes, we show the
distribution of just those scam hosts that responded to
pings (67% of all scam hosts). Scam hosts had long net-
work lifetimes. Over 50% of hosts responded to pings for
nearly the entire week that we probed them, and fewer
than 10% of hosts responded to pings for less than 80
hours. Given how close the distributions are, scam Web
servers had only slightly shorter lifetimes overall. These
results suggest that scam hosts are taken down soon after
scam servers.

Comparing the distribution of scam lifetimes to the
others, we see that scams benefit from using multiple
hosts. The 50% of scams whose lifetimes exceed a week
indicate that the lifetimes of the individual scam hosts
do not entirely overlap each other. Indeed, individual
hosts for some scams appeared throughout the week of
our measurement study, and the overall scam lifetime ap-
proached the two weeks.

5.4.1 Lifetime by category

A substantial amount of community and commercial ef-
fort goes into identifying malicious sites, such as phish-
ing scams, and placing those sites on URL or DNS/IP
blacklists. Thus, we would expect that the hosting in-
frastructure for clearly malicious scams would be more
transient than for other scams. To test this hypothesis,
we used the categorization of scams to create a group
of malicious scams that include the “Illegal or Question-
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Figure 10: Scam lifetime distributions for malicious and
shopping scams.

able” and “Phishing” categories labeled by the Web con-
tent filter (32 scams). For comparison, we also broke out
another group of more innocuous shopping scams that
include the “Shopping”, “Information Technology”, and
“Auction” categories (701 scams).

We examined the lifetimes and prevalence on black-
lists of these scams. Figure 10 shows the lifetime distri-
butions of the malicious and shopping groups of scams,
and includes the distribution of all scams from Figure 9
for reference. The malicious scams have a noticeably
shorter lifetime than the entire population, and the shop-
ping scams have a slightly longer lifetime. Over 40%
of the malicious scams persist for less than 120 hours,
whereas the lifetime for the same percentage of shopping
scams was 180 hours and the median for all scams was
155 hours. These results are consistent with malicious
scam sites being identified and taken down faster than
other scam sites, although we cannot verify the causality.

As further evidence, we also examined the prevalence
of malicious scams on the DNS blacklists we use in Sec-
tion 5.3.2, and compare it to the blacklisting prevalence
of all scams and the shopping scams. Over 28% of the
malicious scams were blacklisted, roughly twice as often
as the shopping scams (12% blacklisted) and all scams
(15%). Again, these results are consistent with the life-
times of malicious scams — being blacklisted twice as
frequently could directly result in shorter scam lifetimes.

5.4.2 Spam campaign lifetime

A related aspect to scam lifetime are the “spam cam-
paigns” used to advertise scams and attract clients. We
captured 319,700 spam emails with links in our trace,
resulting in 2,334 scams; on average, then, each scam
was advertised by 137 spam emails. We use these re-
peated spam emails to determine the lifetime of spam
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Figure 11: The duration of a spam campaign.

campaigns for a scam by measuring the time between
the first and last spam email messages advertising that
scam. Figure 11 shows the distribution of the spam cam-
paign lifetimes. Compared to the lifetime of scam sites,
most spam campaigns are relatively short. Over 50%
of the campaigns last less than 12 hours, over 90% last
less than 48 hours, and 99% last less than three days.
Roughly speaking, the lifecycle of a typical scam starts
with a short spam campaign lasting half of a day while
the scam site remains up for at least a week.

The relative lifetimes of spam campaigns and scam
hosts again reflect the different needs of the two ser-
vices. Compared with scam hosts, spam relays need to
be active for much shorter periods of time to accomplish
their goals. Spammers need only a window of time to
distribute spam globally; once sent, spam relays are no
longer needed for that particular scam. Scam hosts, in
contrast, need to be responsive and available for longer
periods of time to net potential clients. Put another way,
spam is blanket advertising that requires no interaction
with users to deliver, whereas scam hosting is a service
that fundamentally depends upon user interaction to be
successful. In contrast, scam hosts benefit more from
stable infrastructure that remains useful and available for
much longer periods of time.

5.5 Stability

A profitable scam requires stable infrastructure to serve
potential customers at any time, and for as long as the
scam is active. To gauge the stability of scam hosting
infrastructure, we probed each scam host periodically for
a week to measure its availability. When downloading
pages from the hosts, we also used p0f to fingerprint host
operating systems and link connectivity.

We computed scam availability as the number of suc-
cessful Web page downloads divided by the total number
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Figure 12: IP addresses, binned by /24 prefix, for spam
sending relays and scam host servers.

of download attempts within the overall lifetime of the
scam; if a scam lasted for only three days, we computed
availability only during those days. Scams had excellent
availability: over 90% of scams had an availability of
99% or higher. Of the remaining, most had availabilities
of 98% or higher. As fingerprinted by p0f, more scams
ran on Unix or server appliances (43%) than Windows
systems (30%), and all of them had reported good link
connectivity. These results indicate that scam hosting is
quite reliable within the lifetime of a scam.

5.6 Scam location

We next examine both the network and geographic loca-
tions of scam hosts. For comparison, we also examine
the locations of the spam relays that sent the spam in our
trace. Comparing them highlights the extent to which the
different requirements of the two services reflect where
around the world and in the network they are found.

5.6.1 Network location

The network locations of spam relays and scam hosts are
more consistent. Figure 12 shows the cumulative distri-
bution of IP addresses for spam relays and scam hosts
in our trace. Consistent with a similar analysis of spam
relays in [27], the distributions are highly non-uniform.
The IP addresses of most spam relays and scam hosts fall
into the two same ranges, 58.* to 91.* and 200.* to 222.*.
However, within those two address ranges hosts for the
two services have different concentrations. The majority
of spam relays (over 60%) fall into the first address range
and are distributed somewhat evenly except for a gap be-
tween 70.* and 80.*. Roughly half of the scam hosts
also fall into the first address range, but most of those

Scam host country % of all servers
United States 57.40%
China 7.23%
Canada 3.70%
Great Britain 3.07%
France 3.06%
Germany 2.52%
Russia 1.80%
South Korea 1.77%
Japan 1.60%
Taiwan 1.53%
Other 16.32%

Table 4: Countries of scam hosts.

Spam relay country % of all relays
United States 14.50%
France 7.06%
Spain 6.75%
China 6.65%
Poland 5.68%
India 5.42%
Germany 5.00%
South Korea 4.67%
Italy 4.44%
Brazil 3.86%
Other 30.97%

Table 5: Countries of spam relays.

fall into the 64.* to 72.* subrange and relatively few in
the second half of the range. Similarly, scams are more
uniformly distributed within the second address range as
well.

5.6.2 Geographic location

How do these variations in network address concentra-
tions map into geographic locations? The effectiveness
of scams could relate to (at least perceived) geographic
location. As one anecdote, online pharmaceutical ven-
dors utilized hosting servers inside the United States to
imply to their customers that they were providing a law-
ful service [24].

Using Digital Element’s NetAcuity tool [10], we
mapped the IP addresses of scam hosts to latitude and
longitude coordinates. Using these coordinates, we then
identified the country in which the host was geographi-
cally located. Table 4 shows the top ten countries con-
taining scam hosts in our trace. Interestingly, the Ne-
tAcuity service reported that nearly 60% of the scam
hosts are located in the United States. Overall, 14% were
located in Western Europe and 13% in Asia. For compar-



ison, Table 5 shows the top ten countries containing spam
relays. The geographic distributions for spam relays are
quite different than scam hosts. Only 14% of spam relays
are located in the United States, whereas 28% are located
in Western Europe and 16% in Asia. We also found the
top ASes for scam hosts and senders, but found no dis-
cernible pattern and omit the results for brevity.

The strong bias of locating scam hosts in the United
States suggests that geographic location is more impor-
tant to scammers than spammers. There are a number
of possible reasons for this bias. One is the issue of
perceived enhanced credibility by scammers mentioned
above. Another relates to the difference in requirements
for the two types of services. As discussed in Sec-
tion 5.4.2, spam relays can take advantage of hosts with
much shorter lifetimes than scam hosts. As a result, spam
relays are perhaps more naturally suited to being hosted
on compromised machines such as botnets; the compro-
mised machine need only be under control of the spam-
mer long enough to launch the spam campaign. Scam
hosts benefit more from stability, and hosts and networks
within the United States can provide this stability.

6 Conclusion

This paper does not study spam itself, nor the infrastruc-
ture used to deliver spam, but rather focuses on the scam
infrastructure that is nourished by spam. We demonstrate
the spamscattertechnique for identifying scam infras-
tructure and how to use approximate image comparison
to cluster servers according to individual scams — side-
stepping the extensive content and networking camou-
flaging used by spammers.

From a week-long trace of a large real-time spam feed
(roughly 150,000 per day), we used the spamscatter tech-
nique to identify and analyze over 2,000 distinct scams
hosted across more than 7,000 distinct servers. We found
that, although large numbers of hosts are used to ad-
vertise Internet scams using spam campaigns, individual
scams themselves are typically hosted on only one ma-
chine. Further, individual machines are commonly used
to host multiple scams, and occasionally serve as spam
relays as well. This practice provides a potentially con-
venient single point for network-based interdiction either
via IP blacklisting or network filtering.

The lifecycle of a typical scam starts with a short spam
campaign lasting half of a day while the scam site re-
mains up for at least a week. The relative lifetimes of
spam campaigns and scam hosts reflect the different re-
quirements of the two underground services. Spam is
blanket advertising that requires no interaction with users
to deliver, whereas scam hosting is a service that funda-
mentally depends upon user interaction to be successful.
Finally, mapping the geographic locations of scam hosts,

we found that they have a strong bias to being located
in the United States. The strong bias suggests that ge-
ographic location is more important to scammers than
spammers, perhaps due to the stability of hosts and net-
works within the U.S.

Acknowledgments

We would like to thank a number of people who made
contributions to this project. We are particularly grateful
to Weidong Cui and Christian Kreibich, who maintained
the spam feed we used for our analyses, the anonymous
party who gave us access to the spam feed itself, and Vern
Paxson for discussions and feedback. Kirill Levchenko
suggested image-based comparison of Web pages as an
equivalence test, and Colleen Shannon assisted us with
Digital Element’s NetAcuity tool. Finally, we would
like to also thank the the anonymous reviewers for their
comments, the CCIED group for useful feedback on the
project, and Chris X. Edwards for system support. Sup-
port for this work was provided in part by NSF under
CyberTrust Grant No. CNS-0433668 and AFOSR MURI
Contract F49620-02-1-0233.

References

[1] A NTI -PHISHING WORKING GROUP. Report Phishing.http:
//www.antiphishing.org/ .

[2] BARFORD, P., BESTAVROS, A., BYERS, J., AND CROVELLA ,
M. On the marginal utility of network topology measurements. In
In Proceedings of ACM SIGCOMM Internet Measurement Work-
shop(Oct. 2001).
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