RATIONAL DECISIONS

Chapter 16

Rational preferences

Idea: preferences of a rational agent must obey constraints. Rational preferences \Rightarrow behavior describable as maximization of expected utility Constraints: Orderability $\overline{(A \succ B)} \lor (B \succ A) \lor (A \sim B)$ Transitivity $\overline{(A \succ B)} \land (B \succ C) \Rightarrow (A \succ C)$

Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

Outline

- ♦ Rational preferences
- \diamond Utilities
- ♦ Money
- ♦ Multiattribute utilities
- \Diamond Decision networks
- Value of information \diamond

Rational preferences contd.

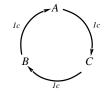
Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has Cwould pay (say) 1 cent to get B

If $A \succ B$, then an agent who has Bwould pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C



Chapter 16 5

Chapter 16 4

Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes

Lottery L = [p, A; (1 - p), B]

Notation:

 $A \succ B$ \boldsymbol{A} preferred to \boldsymbol{B} $\begin{array}{c} A \sim B \\ A \succsim B \end{array}$ indifference between A and B

B not preferred to A

Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function U such that

$$U(A) \ge U(B) \quad \Leftrightarrow \quad A \succeq B$$

$$U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$$

MEU principle:

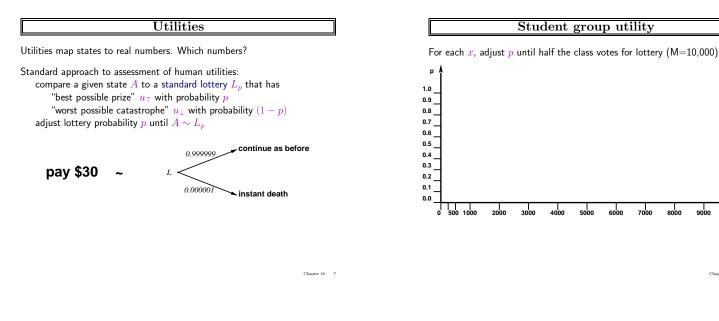
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Chapter 16 1

Chapter 16 2



Utility scales

Normalized utilities: $u_{\top} = 1.0$, $u_{\perp} = 0.0$

Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is **invariant** w.r.t. +ve linear transformation

 $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making

Algorithm:

For each value of action node

compute expected value of utility node given action, evidence Return $\ensuremath{\mathsf{MEU}}$ action

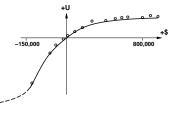
Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p,\$M;\ (1-p),\$0]$ for large M?

Typical empirical data, extrapolated with risk-prone behavior:



Multiattribute utility

How can we handle utility functions of many variables $X_1 \dots X_n$? E.g., what is U(Deaths, Noise, Cost)?

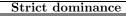
How can complex utility functions be assessed from preference behaviour?

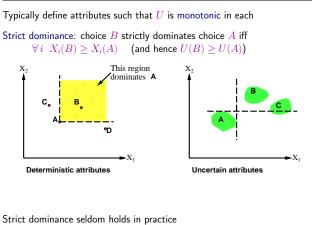
ldea 1: identify conditions under which decisions can be made without complete identification of $U(x_1,\ldots,x_n)$

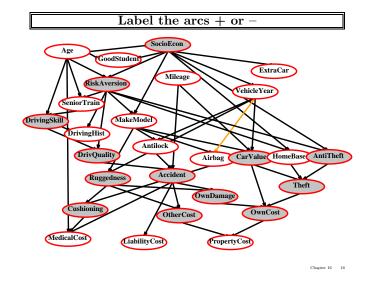
Idea 2: identify various types of **independence** in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$

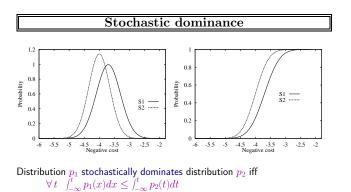
Chapter 16 8

oter 16 11

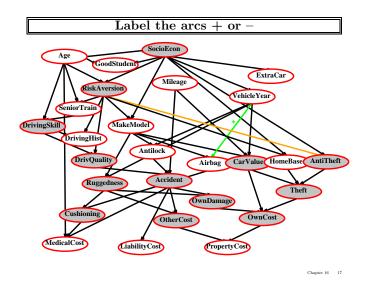








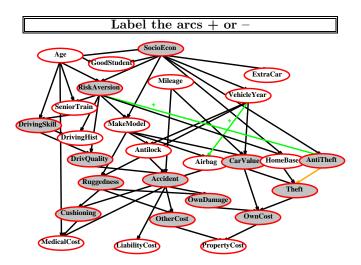
If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 : $\int_{-\infty}^{\infty} p_1(x) U(x) dx \geq \int_{-\infty}^{\infty} p_2(x) U(x) dx$ Multiattribute case: stochastic dominance on all attributes \Rightarrow optimal



Stochastic dominance contd.

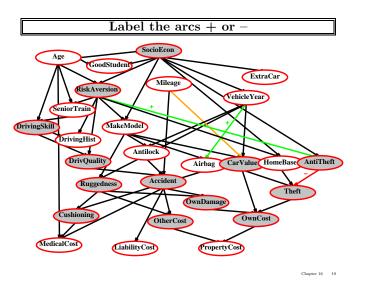
Stochastic dominance can often be determined without exact distributions using $\ensuremath{\mathbf{qualitative}}$ reasoning

- E.g., construction cost increases with distance from city S_1 is closer to the city than S_2
 - \Rightarrow S_1 stochastically dominates S_2 on cost
- E.g., injury increases with collision speed
- Can annotate belief networks with stochastic dominance information: $X \xrightarrow{+} Y$ (X positively influences Y) means that For every value ${\bf z}$ of Y 's other parents ${\bf Z}$ $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$



Chapter 16 13

Chapter 16 14



Preference structure: Deterministic

 X_1 and X_2 preferentially independent of X_3 iff preference between $\langle x_1, x_2, x_3\rangle$ and $\langle x_1', x_2', x_3\rangle$ does not depend on x_3

E.g., $\langle Noise, Cost, Safety \rangle$: $\langle 20,000 \text{ suffer}, \$4.6 \text{ billion}, 0.06 \text{ deaths/mpm} \rangle$ vs. $\langle 70,000 \text{ suffer}, \$4.2 \text{ billion}, 0.06 \text{ deaths/mpm} \rangle$

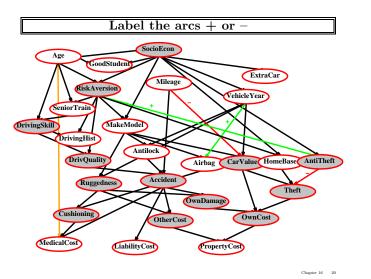
Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I. $\Rightarrow \exists$ additive value function:

 $V(S) = \sum_{i} V_i(X_i(S))$

Hence assess \boldsymbol{n} single-attribute functions; often a good approximation

Chapter 16 2



Preference structure: Stochastic

Need to consider preferences over lotteries: ${\bf X}$ is utility-independent of ${\bf Y}$ iff

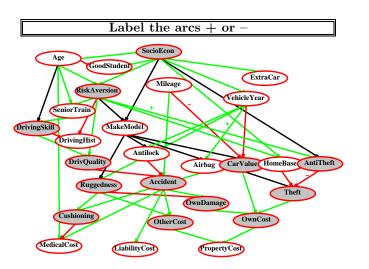
preferences over lotteries in ${f X}$ do not depend on ${f y}$

Mutual U.I.: each subset is U.I of its complement

 $\begin{array}{l} \Rightarrow \ \exists \ {\rm multiplicative \ utility \ function:} \\ U = k_1 U_1 + k_2 U_2 + k_3 U_3 \\ + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 \\ + k_1 k_2 k_3 U_1 U_2 U_3 \end{array}$

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Chapter 16 23



	Value of information
	a: compute value of acquiring each possible piece of evidence n be done directly from decision network
Exa	ample: buying oil drilling rights
	Two blocks A and B , exactly one has oil, worth k
	Prior probabilities 0.5 each, mutually exclusive
	Current price of each block is $k/2$
	"Consultant" offers accurate survey of A . Fair price?
Sol	ution: compute expected value of information
	= expected value of best action given the information
	minus expected value of best action without information
Sui	rvey may say "oil in A" or "no oil in A", prob. 0.5 each (given!)
	= $[0.5 \times$ value of "buy A" given "oil in A"
	+ $0.5 imes$ value of "buy B" given "no oil in A"]
	- 0
	$= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$

General formula

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

 $EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a)$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

 $EU(\alpha_{e_{ik}}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$

 E_j is a random variable whose value is currently unknown $\Rightarrow~$ must compute expected gain over all possible values:

 $VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$

(VPI = value of perfect information)

Chapter 16 25

Properties of VPI

Nonnegative—in expectation, not post hoc

 $\forall j, E \ VPI_E(E_j) \ge 0$

Nonadditive—consider, e.g., obtaining E_j twice

 $VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$

 ${\it Order-independent}$

 $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E, E_j}(E_k) = VPI_E(E_k) + VPI_{E, E_k}(E_j)$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal \Rightarrow evidence-gathering becomes a sequential decision problem

Chapter 16 26

Qualitative behaviors

- a) Choice is obvious, information worth little
- b) Choice is nonobvious, information worth a lot
- c) Choice is nonobvious, information worth little

