
CSE 599b: Cryptography (Winter 2006)

Lecture 6: Collections of One-way Functions; Candidates
20 January 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Collections of one-way functions
Definition 1.1. A collection of functions is a set {fi : Di → Ri}{i∈I} for I ⊆ {0, 1}∗ such that Di

and Ri are finite sets for each i ∈ I .

Definition 1.2. A collection of functions is one-way if and only if

(0) Sampling:

– There is a PPT CI that on input 1n produces an element of I ∩ {0, 1}n.

– There is a PPT CD that on input i ∈ I produces an element of Di.

Note that neither CI nor CD is required to be uniform (or even have support that is all of
I ∩ {0, 1}n or Di respectively) so all we need is that CI and CD choose elements from the
appropriate sets.

(1) Easy to Compute: There is a deterministic polynomial-time algorithm F that on input i ∈ I
and x ∈ Di computes fi(x).

(2) Hard to Invert: For all PPT A the function ε is negligible for

ε(n) = Pr[A(fi(x), i) ∈ f−1
i (fi(x)) | i← CI(1

n); x← CD(i)].

Some additional properties of I and Di that are not essential but are useful in certain circum-
stances are efficient algorithms that recognize whether i ∈ I and given (i, x) for i ∈ I recognize
whether x ∈ Di.

Theorem 1.3. Collections of one-way functions exist⇔ one-way functions exist.

Proof. Problem Set 1.

1

2 Candidates for Collections of One-way Functions

2.1 RSA
RSA stands for Rivest-Shamir-Adleman who designed this function which was one of the first
candidates suggested. As we will see it is also a trapdoor function which will be useful for public-
key cryptography.

The components associated with RSA are:

• I = {(N, e) | N = p · q, p, q prime, |p| = |q|, 2 < e < N − 1, gcd(e, (p− 1)(q− 1)) = 1}.

• D(N,e) = {0, . . . , N − 1} = ZN .

• RSA(N,e)(x) = xe mod N .

Sampling from I: Choose random n-bit strings with leading bit 1, representing n-bit integers,
and test these for primality until two primes p and q are found. The Prime Number Theorem
implies that a Θ(1/n) fraction of n-bit integers are prime. Thus only O(n) trials are needed. To
test primality a variant of the randomized Rabin-Miller test is typically used (see Sipser’s text for
example), although there is now a deterministic polynomial time test due to Agrawal, Kayal, and
Saxena. Once p and q have been found compute N = p · q and e is repeatedly chosen uniformly at
random from {1, . . . , N − 1} and Euclid’s algorithm is run until e is found such that gcd(e, (p −
1)(q − 1)) = 1.

Sampling from D: This is trivial.
Computing F : e is up to m = 2n bits long which is an exponentially large exponent. This is

done using repeated squaring and taking results modulo N after each squaring. The total number
of modular multiplications required by repeated squaring is m plus the number of 1’s in the binary
expansion of e.

RSA(N,e) has a number of additional properties that we will use. To discuss these properties
we review a little number theory.

Definition 2.1. Let Z∗
N = {x ∈ ZN | gcd(x, N) = 1} and define the Euler ϕ function ϕ(N) =

|Z∗
N |.

Observe that for RSA, ϕ(N) = (p−1)(q−1) and thus the condition on e is that gcd(e, ϕ(N)) =
1. The key property of ϕ(N) we need is:

Theorem 2.2 (Euler’s Theorem). For x ∈ Z∗
N , xϕ(N) ≡ 1 (mod N).

Now since gcd(e, ϕ(N)) = 1 using Euclid’s algorithm one can solve ez ≡ 1 (mod ϕ(N)) for
a z = d.

For x ∈ Z∗
N and y = RSA(N,e)(x) = xe mod N we have

yd mod N = (xe)d mod N

= xe·d mod N

= x1+kϕ(N) mod N for some integer k

= x1 mod N

= x

2

Thus we see that RSA(N,e) is a permutation on Z∗
N and can view d as a decryption key. It also

is reasonable to choose D(N,e) = R(N,e) = Z∗
N . Because of the choice of N , |Z∗

N | is roughly
N − 2

√
N so only an exponentially small fraction of elements of ZN are not in Z∗

N .
Note that the difficulty of inverting RSA depends on the difficulty of factoring N since knowing

p and q yields ϕ(N) and thus allows one to find d given e. (In general computing ϕ(N) is as hard
as factoring N .)

2.2 Rabin squaring
The associated components are:

• I = {N | N = p · q, p, q prime, |p| = |q|}.

• DN = {0, . . . , N − 1} = ZN (or Z∗
N).

• RabinN(x) = x2 mod N .

Sampling from I and DN is even simpler than for RSA. Given a RabinN(x) there are pre-
cisely 4 inverses (square roots) modulo N as follows: By the Chinese Remainder Theorem, ZN

is equivalent to Zp × Zq, that is given any a ∈ Zp and b ∈ Zq, there is a unique c ∈ ZN such
that c mod p = a and c mod q = b. Also, for a = z2 mod p, there are precisely two solutions
modulo p of x2 ≡ a (mod p), call them v and −v and for b = z2 mod q two solutions modulo q
of x2 ≡ b (mod q), call them w and −w. These two pairs of solutions can be combined in 4 ways
to get solutions in ZN . Note that we can pair the solutions to get two solutions x and −x in ZN

based on (v, w) and (−v,−w) and two solutions y and −y in ZN based on (v,−w) and (−v, w).
An algorithm that works well at inverting the Rabin squaring function for N can factor N .

Suppose one could get two square roots x and y of the same number as above, such that x 6= ±y
and x2 mod N = y2 mod N . Then (x2 − y2) ≡ 0 (mod N) and thus (x − y)(x + y) ≡ 0
(mod N). Since x 6= ±y, (x− y) 6≡ 0 (mod N) and (x + y) 6≡ 0 (mod N). Thus we can factor
N by computing gcd(x − y, N). (Note that this idea is also the key to one of the best practical
factoring algorithm, the Quadratic Sieve.) Because the inverting algorithm as no idea which square
root x of RabinN(X) one started with, it can be used to find such a pair x and y.

2.3 Blum Squaring
The associated components are:

• I = {N | N = p · q, p, q prime, |p| = |q|, p, q ≡ 3 (mod 4)}.

• DN = QRN = {x2 | x ∈ Z∗
N}. (QR stands for quadratic residues.)

• BlumN(x) = x2 mod N .

Elements of I are called Blum integers. They have the property that−1 = N−1 /∈ QRN which
implies that precisely one of the 4 square roots of an element of QRN is itself in QRN . Thus,
BlumN is a permutation of QRN . It has the same relationship to factoring as Rabin squaring.

3

2.4 Discrete Log/Exponentiation
The associated components are:

• I = {(p, g) | p is prime, g is a generator of Z∗
p} where we say that g is a generator if and

only if Z∗
p = {gx mod p | x ∈ Zp}. Since gp−1 mod p = 1 this is the same as saying that

Z∗
p = {1 = g0 = gp−1, g, g2, . . . , gp−2} where we drop the mod p and often assume that

this is implicit in the following.

• D(p,g) = {0, . . . , p− 2} = Zp−1 or D(p,g) = {1, . . . , p− 1} = Z∗
p.

• EXP(p,g)(x) = gx mod p (often this is expressed as DLP(p,g)(x) = gx mod p even
though the term “discrete log” is more appropriate for the inverse problem, namely find-
ing logarithms base g; that is, given y ∈ Z∗

p find an x such that gx mod p = y.

Observe that EXP(p,g) is 1-1 and can be viewed as a permutation of Z∗
p.

Sampling from I: We can find p as in the previous examples but it is not so obvious how to find
g. For primes of a certain form specific values of g are know to work however in general there is
work to be done. The general idea is to choose random elements h from Z∗

p and test to see if they
are generators. In order for this to work we will need lots of elements of Z∗

p to be generators.
Since h ∈ Z∗

p, h = gk for some unique k, if k and p − 1 have some common prime factor q

then h(p−1)/q) = (gk)(p−1)/q = (gk/q)(p−1) = 1 since gk/q ∈ Z∗
p. This will mean that h will only

produce at most (p− 1)/q different values and so can’t be a generator. Furthermore if k and p− 1
have no common prime factor then gcd(k, p − 1) = 1 and k has an inverse j modulo p− 1. Thus
hj = (gk)j = gkj mod (p−1) = g so h generates all of Z∗

p. Therefore

• h is a generator if and only if h(p−1)/q 6≡ 1 (mod p) for all prime factors q of p− 1, and

• there are ϕ(p− 1) generators of Z∗
p.

Since every prime in {1, . . . , p − 2} is relatively prime to p − 1, by the Prime Number Theorem,
ϕ(p−1) is at least an Ω(1/n) fraction of p−1 where n is the number of bits in p and thus randomly
choosing h from {1, . . . , p− 1} will produce a generator at least after O(n) trials.

However, in order to run this test for h we need to know the prime factorization of p − 1. Of
course factoring p− 1 is probably hard so we don’t want to do that. One solution would to be use
an algorithm (originally due to Eric Bach or a vastly simpler very slick one due to Adam Kalai)
that produce a random integer m together with its factorization and then check that m+1 is prime.
An alternative solution that would be choose p such that p − 1 = 2q for some prime q. To do this
one would choose random numbers q and check for primality and then check to see if 2q + 1 is
prime. Enough of such primes exist for this to work. Note that it is generally believed that the
complexity of taking discrete logarithms (inverting this function) is as hard as largest prime factors
of p− 1 so the latter method seems to generate particularly hard problems.

To compute gx mod p efficiently one uses repeated squaring as before.

4

3 Homomorphic Properties
All of the above candidate functions have special properties, namely they are homomorphisms as
we define below. Functions of this form will have a number of useful properties. To define this we
need the notion of a group.

Definition 3.1. Set G together with an associate binary operation • defined on G together form a
group (G, •) if and only if

1. There is an element 1 ∈ G, called an identity element, such that for any x ∈ G, x • 1 =
1 • x = x.

2. For any x ∈ G there is a unique y ∈ G, called an inverse of x and denoted x−1, such that
x • y = y • x = 1.

Definition 3.2. Given groups (G, •) and (H, ◦), a function f : G → H is a homomorphism from
(G, •) to (H, ◦) if and only if for all x, y ∈ G, f(x • y) = f(x) ◦ f(y).

Let’s see how each of RSA(N,e), RabinN , BlumN , and EXP(p,g) is a homomorphism.
RSA(N,e) is a homomorphism from the group (Z∗

N , ·N) to itself where ·N is integer multiplica-
tion modulo N . (In usual notation Z∗

N actually refers the group itself not just the underlying set as
we have used it here so formally the definition of • is implicit in the notation.) Clearly (x ·N y)e

mod N = (xe mod N) ·N (ye mod n) as required.
RabinN is also a homomorphism from (Z∗

N , ·N) to itself for a similar reason.
BlumN is a homomorphism from (QRN , ·N) to itself for the same reason. (It is not hard to

check that QRN forms a group under multiplication modulo N . It is subgroup of Z∗
N .)

EXP(p,g) is a homomorphism from (Zp−1, +p−1) to (Z∗
p, ·p) where +p−1 is integer addition

modulo p−1 and ·p is integer multiplication modulo p. This follows since gx+y mod (p−1) mod p =
((gx mod p)(gy mod p)) mod p. Note that there is a close correspondence between Zp−1 and
Z∗

p: The sets are the same size and the only difference is that 0 in the former set is replaced by p−1
in the latter set.

Thus all four of these candidates are homomorphisms. Being homomorphisms implies the
following property

Theorem 3.3. If a collection of functions that satisfies the sampling and easy-to-compute proper-
ties of the definition of one-way functions such that

• each fi is a homomorphism from Di to Ri,

• the group operations and inverses on Di and Ri are polynomial-time computable,

• the sampling algorithm CD samples (nearly) uniformly from Di

• the fi are weakly hard to invert, i.e. there is a constant c such that for any PPT A and any
n, ε(n) = Pr[A(fi(x)) ∈ f−1

i (fi(x)) | i← CI ; x← CD(i)] ≤ 1− 1/nc,

then it is a collection of (strong) one-way functions.

5

Sketch. The basic idea is called random self-reduction. It uses the ability to uniformly sample from
Di and the homomorphic property to convert an fi(x) ∈ Ri into an image of a random element of
Di whose relationship to x is known. Using this an algorithm that inverts only a small fraction of
the time can be converted to one that inverts almost all the time. This argument is often called a
worst case to average case reduction.

Thus the homomorphic property on groups whose operations are easy to compute and whose
elements are easy to sample (nearly) uniformly is enough to say that weak one-wayness already
implies strong one-wayness at no cost at all. This is much more efficient than the expensive conver-
sion we described in the previous class for arbitrary one-way functions. Having such a worst-case
to average case reduction is one of the hallmarks of good candidates for use in cryptography theory.

6

	Collections of one-way functions
	Candidates for Collections of One-way Functions
	RSA
	Rabin squaring
	Blum Squaring
	Discrete Log/Exponentiation

	Homomorphic Properties

