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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Resources

Libkin, Finite Model Theory
Immerman, Descriptive Complexity (Ch.3)

Gradel, Kolaitis, Vardi, On the Decision Problem for Two-Variable
First-Order Logic.

Vardi, Why is Modal Logic so Robustly Decidable?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu, On the Unusual
Effectiveness of Logic in Computer Science
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Trakhtenbrot Finite Controllabilit Descriptive Complexit; Logic on Strings

Logic and Complexity

Two problems:

e Satisfiability: given ¢, does it have a (finite) model A?

o Model checking: given a finite A and ¢, is A a model of ¢?
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Trakhtenbrot's Theorem

A sentence ¢ is finitely satisfiable if there exists a finite model A.

Theorem (Trakhtenbrot)

Suppose the vocabulary o has at least one relation with arity > 2. Then
the problem ‘given ¢ check if it is finitely satisfiable” is undecidable.

What about unary vocabularies? = Homework!

Before we prove it, let's see some consequences.
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Trakhtenbrot Finite Controllability Descriptive Complexity ogic on Strings

Trakthenbrot's Theorem: Consequence 1

Denote ¢ =g, ¥ if (p, 2 are equivalent on all finite structures:

Corollary

If the vocabulary o has at least one relation with arity > 2, then the
following problem is undecidable: “given two sentences p,1), check

”

whether ¢ =g 1.".

Proof in class
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Trakthenbrot's Theorem: Consequence 1

Denote ¢ =g, ¥ if (p, 2 are equivalent on all finite structures:

Corollary

If the vocabulary o has at least one relation with arity > 2, then the
following problem is undecidable: “given two sentences p,1), check

”

whether ¢ =g 1.".

Proof in class
Proof: Reduce it to UNSAT. Assuming we have an oracle for ¢ =g, 9, we
can check UNSAT by checking if ¢ =g, F.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Trakthenbrot's Theorem: Consequence 2

Let f: N - N a function with the following property:
every finitely satisfiable sentence ¢ has a model of size < f(|¢]).
Corollary

If the vocabulary o has at least one relation with arity > 2, then no
computable function f exists with the property above.

Proof in class
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Trakthenbrot's Theorem: Consequence 2

Let f: N - N a function with the following property:
every finitely satisfiable sentence ¢ has a model of size < f(|¢]).

Corollary

If the vocabulary o has at least one relation with arity > 2, then no
computable function f exists with the property above.

Proof in class

Proof: If we had such an f, then we can check finite satisfiability as
follows. Given ¢, compute n = f(|¢|), and try out all structures of size < n:

@ If one of the structures is a model then answer YES.

@ Otherwise answer NO.
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Trakhtenbrot

Discussion

Simple fact:
Fact

The set of finitely satisfiable sentences ¢ is recursively enumerable. J

Why?
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Trakhtenbrot Finite Controllabilit Descriptive Complexity

Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences ¢ is recursively enumerable. J
Why?

Proof: for each n=1,2,3,... enumerate all structures A of size < n, and
all FO[n] sentences ¢ that are true in A.

What is FO[n]? Is it finite?
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Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings
Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences ¢ is recursively enumerable. J
Why?

Proof: for each n=1,2,3,... enumerate all structures A of size < n, and
all FO[n] sentences ¢ that are true in A.

What is FO[n]? Is it finite?
It is FO restricted to quantifier rank n, and we know it is finite.
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Trakhtenbrot Finite Controllabilit

Descriptive Complexit: Lo

Trakthenbrot's Theorem: Consequence 3

“Finiteness is not axiomatizable.”

We say that ¢ is finitely valid, &g, ¢, if it holds in every finite model A.

Corollary

There is no r.e. set of axioms ¥ such that X + @ iff Efp, . J

Proof in class
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Trakthenbrot's Theorem: Consequence 3

“Finiteness is not axiomatizable.”
We say that ¢ is finitely valid, &g, ¢, if it holds in every finite model A.

Corollary
There is no r.e. set of axioms ¥ such that ¥ + ¢ iff Eg, ©. J
Proof in class
Proof:
@ By the previous fact, the set of finitely satisfiable sentences ¢ is r.e.
@ Hence, the set of finitely valid sentences is co-r.e. (since kgin ¢ iff —¢
is not finitely satisfiable).
@ Since X is r.e. the set {p | X+ ¢} is r.e.
o If X + ¢ iff Eip o then this set is both r.e. and co-r.e., hence it is

decidable. why?
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Trakhtenbrot Finite Controllability

Descriptive Complexity ogic on Strings

Proof of Trakhtenbrot's Theorem

By reduction from the Halting Problem:

@ Given a Turing Machine M, does M halt on the empty input?

The proof consist of the following: given M we will construct a sentence
wm s.t. M halts iff g, is finitely satisfiable.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

M=(Q,x,A, qo, Q) where:

® Q={q0,91,-..,9m} are the states;
Qo is the initial state; lo|1]1]of1]o|1]o]olol1]o]o]..]
QF € Q are the final states.

@ Y is the tape alphabet; we take State: g Head

Y ={0,1}
o AcQxXxXx{Left,Right} x Q
are the transitions.
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Trakhtenbrot

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:

@ wC X" is a tape content.
@ heN is the head position.

@ g€ @ is a state.

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 12 /75



Trakhtenbrot Finite Controllabilit

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:

@ wC X" is a tape content.
@ heN is the head position.

@ ge @ is a state.

An accepting computation is a sequence C = ¢y, ¢,

e Each ¢ is a configuration.
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Trakhtenbrot Finite Controllabilit

Descriptive Complexity

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:
@ wC X" is a tape content.
@ heN is the head position.

@ ge @ is a state.

An accepting computation is a sequence C = c1, ¢, .. ., cT Where:

e Each ¢ is a configuration.

@ ci is the initial configuration what does that mean?
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Trakhtenbrot

Finite Controllability

Descriptive Complexity

ogic on Strings

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:
@ wC X" is a tape content.
@ heN is the head position.

@ ge @ is a state.

An accepting computation is a sequence C = c1, ¢, .. ., cT Where:

e Each ¢ is a configuration.
@ ci is the initial configuration what does that mean?

@ c7 is a final configuration what does that mean?
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:

@ wC X" is a tape content.
@ heN is the head position.

@ ge @ is a state.

An accepting computation is a sequence C = c1, ¢, .. ., cT Where:
@ Each c¢; is a configuration.
@ ci is the initial configuration what does that mean?
@ c7 is a final configuration what does that mean?
°

Forall t, (ct, ct+1) is a valid transition what does that mean?
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Proof Plan

M halts iff

3C, C is an accepting computation of M.
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Trakhtenbrot

Proof Plan

M halts iff

3C, C is an accepting computation of M.

@ is finitely satisfiable iff

JA such that AE .
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Logic on Strings

Proof Plan

M halts iff

3C, C is an accepting computation of M.

@ is finitely satisfiable iff

JA such that AE .

This suggests the proof plan:

@ Computation C = structure A.

@ C is an accepting computation iff A is a model of .
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Trakhtenbrot ini ollability es ive Complexity

Proof Details

Fix a Turing Machine M.

@ Describe a vocabulary oy and sentence ¢, whose models correspond
precisely to accepting computations of M.

@ Describe an FO encoding of oy and ¢y into a single binary relation.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Proof Details

Fix M = (Q, {07 1}7 A7 do, QF)
Define: om = (<, To(:,-), T1(++), H(-,), (Sq(+))ge@)

Intended meaning:
@ < is a total order

e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.
@ H(t,p): the head at time t is on position p.
@ Sq(t): the Turning Machine is is stated g at time t.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details

M = (Qa {Oa 1}7Aa qo, QF)
om = (<a TO('?')? Tl(" ')7 H(" ')7 (Sq(‘))qu)

The sentence ), asserts the following:

@ General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

@ At time t = min, the TM is in the initial configuration.

o At time t = max, the TM is in an accepting configuration.

o Every transition from t to t + 1 is correct

details in class (also next slides)
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Trakhtenbrot Finite Controllability Descriptive Complexity

Proof Details: General Consistency

M = (Qv {Oa 1}3Aa do, QF)
om = (<a TO('?')? Tl(" ')7 H(" ')7 (Sq(‘))qu)

< is a total order.

Exactly one tape symbol:
Vtv VP( TO(t7 p) \ Tl(t7 P)) A _'( TO(t7 p) A Tl(t7 P))
Exactly one head position at each time: ...

Exactly one state at each time: ...
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Trakhtenbrot Finite Controllability Descriptive Complexity

Proof Details: Initial Configuration

M = (Q7 {07 1}7A7 qo, QF)
oM = (<7 TO('?')? Tl('v ')7 H(7 ')7 (Sq('))qu)

At time t = min, the TM is in the initial configuration:

VpTo(min, p) A H(min, min) A Sg (min)

Note that we can name min by Ix-3y(y < x); similarly max.
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Trakhtenbrot Finite Controllabilit

Proof Details: Final Configuration

M = (Q7 {Oa 1}?Aa qo, QF)
om = (<a TO('?')? Tl(" ')7 H('a ')7 (Sq(‘))qu)

At time t = max, the TM is in the final configuration:

V' Sq(max)

qeQF
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Trakhtenbrot Finite Controllabilit Descriptive Complexity

Proof Details: All Transitions are Correct

M = (Qv {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S ), (5q(4))ge@)

Each transition from t to t + 1 corresponds to one valid § € A:

Ve(t <max — \/ CHECK;(t))
e
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: All Transitions are Correct (Detail)

M = (Q; {07 1}7Aa do, QF)
oM = (<a TO('?')a Tl('a ')7 H('a ')7 (SQ('))CIGQ)

Example transition: 0 = (gs, 1,0, Left, g3)
(“If in state g5 and the tape is 1, then write 0, move Left, enter g3")

CHECK;(t) =5¢5(t) Check we are in gs
AVs(=H(t,s) = (To(t,s) < To(t+1,s))) Leave non-head

symbols unchaged

AVYs(H(t,s) — Ti(t,s) A To(t+1,5s)) the head was 1

set it to 0
AH(t+1,5-1) move to the left
NSq (t+1) enter g3
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Trakhtenbrot

Discussion

@ A structure s.t. AE ) is precisely a successful computation of the
Turing Machine M.

e How large is |A|, the domain of A?
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Trakhtenbrot Finite Controllabilit

Discussion
@ A structure s.t. AE ) is precisely a successful computation of the
Turing Machine M.

@ How large is |A
required by M.

, the domain of A? The number of time steps

o Is A unique?

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 22 /75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic

gic on Strings

Discussion
@ A structure s.t. AE ) is precisely a successful computation of the
Turing Machine M.

@ How large is |A
required by M.

, the domain of A? The number of time steps

@ Is A unique? Not necessarily. But it is unique when M is
deterministic.
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Discussion
@ A structure s.t. AE ) is precisely a successful computation of the
Turing Machine M.

@ How large is |A
required by M.

, the domain of A? The number of time steps
@ Is A unique? Not necessarily. But it is unique when M is
deterministic.

@ |s succ enough, or do we need <7 succ is not finitely axiomatizable.
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Trakhtenbrot Finite Controllability escriptive Complexity Logic on Strings

Discussion

A structure s.t. A E ppy is precisely a successful computation of the
Turing Machine M.

How large is |A
required by M.

, the domain of A? The number of time steps

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <7 succ is not finitely axiomatizable.

We still need to reduce the vocabulary ops to a vocabulary with a
single binary relation E.
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FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tp} be two relational vocabularies.
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Trakhtenbrot

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tp} be two relational vocabularies.

A query from o to 7 is a function Q : STRUCT[o] - STRUCT[7].
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Trakhtenbrot Finite Controllabilit

FO Reduction

Descriptive Complexity

Let 0 ={S1,...,Sm},7={T1,..., Tp} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT[7].
A Boolean query, or a problem, is a function P: STRUCT[o] — {0,1}.
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Trakhtenbrot Finite Controllability

> Complexity

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tp} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT[7].
A Boolean query, or a problem, is a function P: STRUCT[o] — {0,1}.

A First Order Query Q consists of n formulas, Q = (q1,-..,qn), where each
gj has arity( T;) free variables; it defines the mapping Q(A) %" B where:

B %A

vj: TEEb| Ak (b))

same domain

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 23 /75



Trakhtenbrot Finite Controllability

FO Reduction

Descriptive Complexity Logic on Strings

Let 0 ={S1,...,Sm},7={T1,..., Tp} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT[7].
A Boolean query, or a problem, is a function P: STRUCT[o] — {0,1}.

A First Order Query Q consists of n formulas, Q = (q1,-..,qn), where each
gj has arity( T;) free variables; it defines the mapping Q(A) %" B where:

def .
B<='A same domain

vj: TEEb| Ak (b))

Q maps problems on STRUCT[7] to problems on STRUCT[c]
(“in reverse’): P PoQ, i.e. P(A) el P(Q(A)).
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Trakhtenbrot Finite Controllability

FO Reduction

Descriptive Complexity

Query STRUCT[o] — STRUCT|[ 7]
(Problems on STRUCT[7] ) — (Problems on STRUCT[c])

Definition
A First Order Reduction is an FO query Q from o to 7.
It “reduces” a problem P’ on 7 from the problem P PoQon .

ogic on Strings

Obviously, P’ is at least as hard as P.
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Trakhtenbrot Finite Controllabilit

Descriptive Complexity

Logic on Strings

Every Structure is FO-Reducible to a Graph
o ={E} a graph.
7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.

Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: R4 = Q;(G), S* = @(G)
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logi

ogic on Strings

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.
Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: RA = Q1(G), S” = Q»(G)

@)

R S

-

ac cC
@ cla

O

DETISYITST]
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Descriptive Complexity

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.
Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: RA = Q1(G), S” = Q»(G)

@)

R S

-

ac cC
@ cla

Use small gadgets for R and S

O

DETISYITST]
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Trakhtenbrot Finite Controllability

> Complexity

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.
Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: RA = Q1(G), S” = Q»(G)

@)

S
bc
@Z%
o  FR FeX

o oo

Use small gadgets for R and S

DETISYITST]
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Trakhtenbrot

Finite Controllability

Descriptive Complexity Logic on Strings
Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.

Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: R4 = Q;(G), S* = @(G)

R S
ab
alc c|c
c

KGR

Use small gadgets for R and S

DETISYITST]
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Finite Controllability

Descriptive Complexity Logic on Strings
Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.

Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: R4 = Q;(G), S* = @(G)

R S
ab
alc c|c
c

KGR

Use small gadgets for R and S
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Trakhtenbrot

Finite Controllability

> Complexity

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

7 = any vocabulary. For simplicity, assume 7 = {R(,-),S(:,-)}.
Question: Given a 7-structure A = (R#,5#), encode it as a graph G s.t.
you can decode it: RA = Q1(G), S” = Q»(G)

R S
ab
alc c|c
c

KGR

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

DETISYITST]
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Summary of Trakhtenbrot's Theorem

Assume an oracle: given ¢, check if ¢ has a finite model A.
We reduce the halting problem for a Turning Machine M.

@ Construct the vocabulary oy, and the sentence ), that says “the
model A represents an accepting computation of M.

o Consider the FO reduction Q from a graph {E} to oy, and denote
¥y =@ o Q. This is a sentence over the vocabulary {E}.

o Claim: vy, is satisfiable iff M terminates. Proof:

» If M terminates, then there exists a model A E pp. From A, we
construct a graph encoding G s.t. Q(G) = A. This is a model of 9.

» If ¥p has a model G then: (a) if G is an invalid encoding, then Q(G)
returns the empty structure A, which is not a model of . (b)
otherwise, G is a valid encoding of some structure A, which, in turn,
represents an accepting computation.
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Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings

Discussion

Satisfiability in the finite or in general (finite or infinite) are quite different!

@ The problem “given ¢, is ¢ finitely satisfiable?” is r.e. why?

@ The problem “given ¢, is ¢ satisfiable?”" is co-r.e. why?
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property

Let L € FO be a subset of FO.

Definition
We say that L has the finite model property, or it is finitely controllable if:
Ve L, ¢ has a model iff © has a finite model.
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Trakhtenbrot Finite Controllability Descriptive Complexity

The Finite Model Property

Let L € FO be a subset of FO.

Definition
We say that L has the finite model property, or it is finitely controllable if:
Ve L, ¢ has a model iff © has a finite model.

Definition
We say that L has the small model property if there exists a computable

function f : N - N s.t.
Ve L, p has a model iff ¢ has a finite model of size < f(|p]).
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The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.
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Trakhtenbrot Finite Controllability Descriptive Complexity

The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.

Theorem
If L has the finite model property then L is decidable. J
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Trakhtenbrot Finite Controllability esc > Complexity

The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.

Theorem
If L has the finite model property then L is decidable. J

To check SAT (¢) enumerate all finite structures A AND all proofs + ¢

o If ¢ is SAT it is also finitely satisfiable, hence some model A will show
up in the first list; answer YES.

o If ¢ is UNSAT then —¢ will show up in the second list; answer NO.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof in class
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic

on Strings

Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof in class
@ = 3x-Ixm Vy1--Vyn1p.

Let A be a model of . Then there exists values a = (a1,...,am) s.t.

AEVy--Vyphla/x]
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof in class
@ = 3x-Ixm Vy1--Vyn1p.

Let A be a model of . Then there exists values a = (a1,...,am) s.t.
AEVy--Vyphla/x]

Let Ag be the structure restricted to the value ai,...,a,. Then, obviously:
Ao = Vy1--Vyayla/x]

what is the “small model” function f(|p|)?
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Application 2: FO?

Theorem

FO? has the small model property, with an exponential f. More precisely:

for any sentence in @ € FO?, if o is satisfiable then it has a model of size
202D In particular, FO? is decidable.

We omit the proof. Please check Gradel, Kolaitis, Vardi.
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Descriptive Complexity

Main topic: correspondence between logics and computational complexity
classes.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Fix a class C of finite structures.

e Examples: (1) all strings w € {0,1}*; (2) all graphs (V, E); (3) all
ordered graphs (V, E, <); (4) all strings representing FO? sentences,
Y€ {X7y7 R:(?)a_)a_‘vv}*'
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Fix a class C of finite structures.

e Examples: (1) all strings w € {0,1}*; (2) all graphs (V, E); (3) all
ordered graphs (V, E, <); (4) all strings representing FO? sentences,
Y€ {X7y7 R:(?)a_)a_‘vv}*'

A problem is a function P:C — {0,1}.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Descriptive Complexity

Fix a class C of finite structures.

e Examples: (1) all strings w € {0,1}*; (2) all graphs (V, E); (3) all
ordered graphs (V, E, <); (4) all strings representing FO? sentences,
Y€ {Xay> R:(?)a_)a_‘vv}*'

A problem is a function P:C — {0,1}.
@ A computational complexity class is the set of problems that can be

answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Descriptive Complexity

Fix a class C of finite structures.

e Examples: (1) all strings w € {0,1}*; (2) all graphs (V, E); (3) all
ordered graphs (V, E, <); (4) all strings representing FO? sentences,
Y€ {Xay7R7(7)7_)7_‘7v}*'

A problem is a function P:C — {0,1}.

@ A computational complexity class is the set of problems that can be

answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.

@ A descriptive complexity class is the set of problems that can be

represented in some fixed logic language L. E.g. FO, FO+Fixpoint,
3S0, SO, etc.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Logic on Strings

Computational Complexity

Very brief review of computational complexity classes:

ACP

LOGSPACE
NLOGSPACE

PTIME

NP

PSPACE

(what about NPSACE?)
EXPTIME

NEXPTIME

Dan Suciu Finite Model Theory — Unit 3
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Trakhtenbrot Finite Controllabilit

Descriptive Complexity L

Computational Complexity of Model Checking

ogic on Strings

The model checking problem is: given A€ C, ¢ € L, check whether A E .

Vardi's classification of complexity:
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ogic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A€ C, ¢ € L, check whether A E .

Vardi's classification of complexity:

Data complexity: ¢ is fixed, study the complexity as a function of A.
Note: different complexity for every .
We focus on data complexity
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Computational Complexity of Model Checking

The model checking problem is: given A€ C, ¢ € L, check whether A E .

Vardi's classification of complexity:

Data complexity: ¢ is fixed, study the complexity as a function of A.
Note: different complexity for every .
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ¢.

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 35 /75



Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A€ C, ¢ € L, check whether A E .

Vardi's classification of complexity:

Data complexity: ¢ is fixed, study the complexity as a function of A.
Note: different complexity for every .
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ¢.

Combined complexity: both A,y are input.
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Trakhtenbrot Finite Controllability Descriptive Complexity ogic on Strings

Descriptive Complexity: Overview of Results

FO(+, ) = FO(<,BIT) = ACO

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
will omit this

e FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME

FO(PartialFixpoint, <) =PSPACE

3SO=NP

All these refer to data complexity. We will briefly discuss expression
complexity at the end.
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Trakhtenbrot ontrollz Descriptive Complexity

Encodings

@ A Turning Machine (or other computational device), accepts a
language L c {0,1}*.

@ A sentence ¢ defines a set of models € STRUCT[o].

@ To compare them, we need some encoding between them.
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Encoding STRUCT[c] to {0,1}*
Encode A= ([n], R}, RS\, ...) as follows:
e Start with 01".

@ Encode R,-A using “adjacency matrix", of length n?ty(Ri)
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Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 01".

@ Encode R,-A using “adjacency matrix", of length n?ty(Ri)

o Example:

0111 010001010

n=3  3x3 matrix
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Trakhtenbrot Finite Controllability Descriptive Complexity

Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 01".

@ Encode R,-A using “adjacency matrix", of length n?ty(Ri)

o Example:

0111 010001010

n=3  3x3 matrix

1+arity(Ry)+arity(R2)+ _ nO(l) _

@ Length of encoding: n poly(n).
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Encoding {0,1}* to STRUCT[0o]

Choose o = {U(-)} and encode w € {0,1}* as the structure ([n], U),
where U ¢ [n].
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Descriptive Complexity

Descriptive Complexity: Overview of Results

e FO(+,+) = FO(<,BIT) = AC®
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Trakhtenbrot Finite Controllability Descriptive Complexity ogic on Strings

Non-uniform ACO

Fix n>0. A Boolean circuit C with n inputs is a DAG where:
@ Leaves are labeled with input variables Xi, ..., X, € {0,1}.
@ Internal nodes are labeled with v, A (unbounded fan-in), and -.

@ There is one root node.

size(C) i humber of gates

depth(C) déeflength of longest path
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Trakhtenbrot

Finite Controllability

Descriptive Complexity Logic on Strings

Non-uniform AC?
Definition
A language L < {0,1}* is in non-uniform ACY if forall n there exists a
circuit C, s.t.

e C, computes Ln{0,1}",

e size(C,) = n°M (polynomial in n),

e depth(C,) = O(1) (constant, indep. on n).
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Trakhtenbrot Finite Controllability

Non-uniform ACO

Descriptive Complexity

Definition
A language L < {0,1}* is in non-uniform ACY if forall n there exists a
circuit C, s.t.

e C, computes Ln{0,1}",

e size(C,) = n°M (polynomial in n),

e depth(C,) = O(1) (constant, indep. on n).

Example: given a graph G = ([n], E), check VxVy3z(E(x,z) A E(z,y))

draw C, (actually C,2) in class.
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Trakhtenbrot Finite Controllability

Non-uniform ACO

Descriptive Complexity

Definition
A language L < {0,1}* is in non-uniform ACY if forall n there exists a
circuit C, s.t.

e C, computes Ln{0,1}",

e size(C,) = n°M (polynomial in n),

e depth(C,) = O(1) (constant, indep. on n).

Example: given a graph G = ([n], E), check VxVy3z(E(x,z) A E(z,y))
draw C, (actually C,2) in class.

Theorem

The data complexity of any o € FO is in non-uniform AC°.
This still holds if we include in FO all interpreted predicate (+,<,...).
Thus FO(ALL) € AC®, where ALL means all predicates on [n].
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Descriptive Complexity

Discussion

o ACP is supposed to be the lowest complexity class, but there's a
wrinkle:

e If L is in non-uniform AC?, is L computable?
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Discussion

o ACO is supposed to be the lowest complexity class, but there’s a
wrinkle:

o If L is in non-uniform AC?, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe C, in class

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 43 /75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

o ACO is supposed to be the lowest complexity class, but there’s a
wrinkle:

o If L is in non-uniform AC?, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe C, in class

@ Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN e FO[ALL] why?
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

e AC? is supposed to be the lowest complexity class, but there’s a
wrinkle:

o If L is in non-uniform AC?, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe C, in class

@ Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN e FO[ALL] why?

@ Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X; @ X & --- @ X,
is not in non-uniform AC? discuss in class

@ PARITY is the problem: given a structure with one unary relation,
([n], U c [n]), check whether |U| is even. Then PARITY ¢ FO[ALL].
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Trakhtenbrot

Descriptive Complexity

Uniform ACO

Informally: L is in “uniform” ACC if there exists an easily computable
function n— C, (usually LOGSPACE).
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Trakhtenbrot Finite Controllability

Uniform ACO

Descriptive Complexity

Informally: L is in “uniform” ACC if there exists an easily computable
function n— C, (usually LOGSPACE).
A better definition uses FO. For fixed n, define these relations on [n]:

+={(x,y,2) | x+y =2}
+={(x,y,2) | x*y =2z}
<={(x,y) [x<y}

BIT ={(x,y) | the y's bit of x is 1}

One can show FO(+, *) = FO(<,BIT) (we omit the proof).

Dan Suciu Finite Model Theory — Unit 3 Spring 2018

44 /75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Uniform ACO

Informally: L is in “uniform” ACC if there exists an easily computable
function n— C, (usually LOGSPACE).
A better definition uses FO. For fixed n, define these relations on [n]:

+={(x,y,2) | x+y =2}
+={(x,y,2) | x*y =2z}
<={(x,y) [x<y}

BIT ={(x,y) | the y's bit of x is 1}

One can show FO(+, *) = FO(<,BIT) (we omit the proof).

Definition

A language L € {0,1}* is in uniform ACC if it is definable in FO(+, *);
equivalently, it is definable in FO(<, BIT).
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

o Main take away: AC? is FO.

@ The reason is simple: v, A have bounded fan-in, 3,V have unbounded
fan-in, and the depth is constant.

@ But there is a fine print in the equality AC® = FO:

» Non-uniform ACP can express any predicate on [n], much beyond FO.
» We define Uniform AC® as FO(+, +) or as FO(<,BIT); the choice to

restrict to the predicates +, * (or <,BIT) is somewhat arbitrary, yet
leads to a natural definition of Uniform ACP.
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Descriptive Complexity

Descriptive Complexity: Overview of Results

e 3SO=NP
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Descriptive Complexity

350 and NP

450 consists of sentences 35;---35,,¢, where ¢ €FO over vocabulary
O’U{Sl,...,sm}.

Theorem (Fagin)

350 = NP, J
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450 consists of sentences 35;---35,,¢, where ¢ €FO over vocabulary
O’U{Sl,...,sm}.

Theorem (Fagin)

3S0 = NP. J
In words:

Spring 2018 47 / 75



Trakhtenbrot Finite Controllabilit

350 and NP

Descriptive Complexity Logic on Strings

450 consists of sentences 35;---35,,¢, where ¢ €FO over vocabulary
O’U{Sl,...,sm}.

Theorem (Fagin)
350 = NP. J

In words:

@ 150 c NP: the data complexity of 1) € SO is in NP proof in class
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Trakhtenbrot

350 and NP

Finite Controllability

Descriptive Complexity Logic on Strings

450 consists of sentences 35;---35,,¢, where ¢ €FO over vocabulary
O'U{Sl,...,sm}.

Theorem (Fagin)
350 = NP. J

In words:

@ 150 c NP: the data complexity of 1) € SO is in NP proof in class

@ NP c 350: for any problem in NP, there exists a sentence 3 € 35O
that expresses precisely that problem; will prove next.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logi

350 and NP
450 consists of sentences 35;---35,,¢, where ¢ €FO over vocabulary
O'U{Sl,...,sm}.
Theorem (Fagin)
350 = NP. J

In words:

@ 150 c NP: the data complexity of 1) € SO is in NP proof in class

@ NP c 350: for any problem in NP, there exists a sentence 3 € 35O
that expresses precisely that problem; will prove next.

In class Give an 350 formula to check if a graph has a Hamiltonean cycle.
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Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings

Proof of NP c 350

Let L< {0,1}* be a language in NP. This means:
3 Turing Machine M and d > 0 s.t. for any input w ¢ {0,1}" :
M has an accepting computation of length < n? iff w e L.
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Trakhtenbrot

Finite Controllability

Descriptive Complexity

Logic on Strings

Proof of NP c 350

Let L< {0,1}* be a language in NP. This means:
3 Turing Machine M and d > 0 s.t. for any input w ¢ {0,1}" :

M has an accepting computation of length < n? iff w e L.

Define 1y s.t. ([n], U) &by ifft Ue L, as in Trakhtenbrot’s theorem:

Ya =3 <3To(5)3T1(,)IH(,)3Sg ()3S4, () om

YU ¢ [n] denotes a string w € {0,1}" how?.
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Trakhtenbrot Finite Controllability

Proof of NP c 350

Descriptive Complexity

Let L< {0,1}* be a language in NP. This means:
3 Turing Machine M and d > 0 s.t. for any input w ¢ {0,1}" :
M has an accepting computation of length < n? iff w e L.

Define 1y s.t. ([n], U) &by ifft Ue L, as in Trakhtenbrot’s theorem:

Ya =3 <3To(5)3T1(,)IH(,)3Sg ()3S4, () om

where ¢y is as in Trakthenbrot's proof, with two changes:

@ Assert that the initial configuration is the string U (i.e. not 0's)

YU ¢ [n] denotes a string w € {0,1}" how?.
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Dan Suciu Finite Model Theory — Unit 3

Trakhtenbrot Finite Controllability

Descriptive Complexity

Proof of NP c 350

Let L< {0,1}* be a language in NP. This means:
3 Turing Machine M and d > 0 s.t. for any input w ¢ {0,1}" :
M has an accepting computation of length < n? iff w e L.

Define 1y s.t. ([n], U) &by ifft Ue L, as in Trakhtenbrot’s theorem:

Ya =3 <3To(5)3T1(,)IH(,)3Sg ()3S4, () om

where ¢y is as in Trakthenbrot's proof, with two changes:

@ Assert that the initial configuration is the string U (i.e. not 0's)

@ The time/space can now go up to n?: encode it using a d-tuple
instead of a single value in class;

To, T1, H now have arity 2d and Sg,, Sq;, - .. have arity d

YU ¢ [n] denotes a string w € {0,1}" how?.
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Trakhtenbrot ontrollz Descriptive Complexity

Discussion

350 = NP is a very elegant result!

@ Main lesson: 350 is very expressive.

This suggests a restriction to monadic existential SO. IMSO is also
called monadic NP.

Is there a very easy query that is not expressible in IMSO?
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Trakhtenbrot ini ollability Descriptive Complexity

Discussion

350 = NP is a very elegant result!

@ Main lesson: 350 is very expressive.

This suggests a restriction to monadic existential SO. IMSO is also
called monadic NP.

Is there a very easy query that is not expressible in IMSO?
Connectivity!
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Trakhtenbrot Finite Controllabilit

Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ¢ is the set of numbers n s.t. ¢ has a model
of size n.

Examples:

o Let o ={E} and let ¢ says “E is a matching of the domain”. What is
Spec(y)?
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The spectrum of a sentence ¢ is the set of numbers n s.t. ¢ has a model
of size n.

Examples:

o Let o ={E} and let ¢ says “E is a matching of the domain”. What is
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Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ¢ is the set of numbers n s.t. ¢ has a model
of size n.

Examples:

o Let o ={E} and let ¢ says “E is a matching of the domain”. What is
Spec(¢)? {2n| ne N},

o Let o =(+,%,0,1) and ¢ be the axioms of a field. What is Spec(y)?
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ¢ is the set of numbers n s.t. ¢ has a model
of size n.

Examples:

o Let o ={E} and let ¢ says “E is a matching of the domain”. What is
Spec(¢)? {2n| ne N},

o Let o =(+,%,0,1) and ¢ be the axioms of a field. What is Spec(y)?
{p | p prime,c > 1}.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ¢ is the set of numbers n s.t. ¢ has a model
of size n.

Examples:

o Let o ={E} and let ¢ says “E is a matching of the domain”. What is
Spec(¢)? {2n| ne N},

o Let o =(+,%,0,1) and ¢ be the axioms of a field. What is Spec(y)?
{p | p prime,c > 1}.

We study the decision problem: “given n, check if n e Spec(p)".
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Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

NETIME = problems solvable in time Jcsq 2"
(don't confuse with NEXPTIME = problems solvable in time Ucs2"")
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Detour: Spectra and Counting
NETIME = problems solvable in time Jcsq 2"
(don't confuse with NEXPTIME = problems solvable in time Ucs2"")

Theorem (Jones&Selman'1972)
If the input n is given in binary: {Spec(y¢) | p € FO} = NETIME J
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Descriptive Complexity

Detour: Spectra and Counting
NETIME = problems solvable in time Jcsq 2"

(don't confuse with NEXPTIME = problems solvable in time Ucs2"")

Theorem (Jones&Selman'1972)

If the input n is given in binary: {Spec(y¢) | p € FO} = NETIME

Theorem (Special case of Fagin's theorem, for o = @ why?)

If the input n is given in unary: {Spec(p) | ¢ € FO} = NPy
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Trakhtenbrot Finite Controllability Descriptive Complexity

Detour: Spectra and Counting
NETIME = problems solvable in time Jcsq 2"
(don't confuse with NEXPTIME = problems solvable in time Ucs2"")

Theorem (Jones&Selman'1972)
If the input n is given in binary: {Spec(y¢) | p € FO} = NETIME

Theorem (Special case of Fagin's theorem, for o = @ why?)

If the input n is given in unary: {Spec(p) | ¢ € FO} = NPy

The counting problem is: given n, count the number of models #,(¥)

Theorem

If the input n is given in unary: {nw— #,(¢) | @€ FO} = #P;
In particular, there exists a sentence ¢ s.t. #,(p) is #P1-complete.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Detour: Spectra and Counting

NETIME = problems solvable in time Jcsq 2"
(don't confuse with NEXPTIME = problems solvable in time Ucs2"")

Theorem (Jones&Selman'1972)
If the input n is given in binary: {Spec(y¢) | p € FO} = NETIME

Theorem (Special case of Fagin's theorem, for o = @ why?)

If the input n is given in unary: {Spec(p) | ¢ € FO} = NPy

The counting problem is: given n, count the number of models #,(¥)

Theorem

If the input n is given in unary: {nw— #,(¢) | @€ FO} = #P;
In particular, there exists a sentence ¢ s.t. #,(p) is #P1-complete.

This explains why it is hard to compute 1,(¢) exactly!
Notice: no “natural” hard problem is known for #P;.
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Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

e FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME

e FO(PartialFixpoint, <) =PSPACE
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Fixpoints
Let U be a finite set, and f:2Y - 2U.
e A fixpointis a set X c U s.t. f(X)=X.
o A least fixpoint is a fixpoint Xg s.t. for any fixpoint X, Xp ¢ X.

@ When it exists, the least fixpoint is unique why?; denote it 1fp(f).
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Fixpoints (cont'd)
Fix finite U, f:2V - 2U. Define fO %' g, f+1 € (), oo €Ty, fn.
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Trakhtenbrot Finite Controllabilit

Fixpoints (cont'd)
Fix finite U, f:2Y —» 2V, Define f°

Theorem (Tarski-Knaster)

def

Descriptive Complexity

o, FEEF(Fm), £ LTy, .

If f is monotone (X €Y — f(X) cf(Y)) then Lfp(f)=/F>.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Logic on Strings
Fixpoints (cont'd)

Fix finite U, f:2U > 2U. Define f0 %" g, 41 %h g(my oo %Fyy g,
Theorem (Tarski-Knaster)

If f is monotone (X ¢ Y — f(X) < f(Y)) then 1fp(f)=1r.

Definition (Partial Fixpoint)

If £7*1 = £7 for n >0, then pp(f) ' " is called the partial fixpoint of f.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Fixpoints (cont'd)

Fix finite U, f:2U > 2U. Define f0 %" g, 41 %h g(my oo %Fyy g,
Theorem (Tarski-Knaster)

If f is monotone (X ¢ Y — f(X) < f(Y)) then 1fp(f)=1r.

Definition (Partial Fixpoint)

If £7*1 = £7 for n >0, then pp(f) ' " is called the partial fixpoint of f.

v

f is inflationary if X c f(X); then f* is a fixpoint why?
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Fixpoints (cont'd)
Fix finite U, f:2U > 2U_ Define f0 %" g5, Fr+1 %% £(n) oo def(y gn

Theorem (Tarski-Knaster)
If f is monotone (X €Y — f(X) cf(Y)) then Lfp(f)=/F>.

Definition (Partial Fixpoint)

If £7*1 = £7 for n >0, then pp(f) ' " is called the partial fixpoint of f.

f is inflationary if X c f(X); then f* is a fixpoint why?
Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f) dgfg where g(X) € x U f(X). J
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont'd)
Fix finite U, f:2U > 2U_ Define f0 %" g5, Fr+1 %% £(n) oo def(y gn

Theorem (Tarski-Knaster)
If f is monotone (X €Y — f(X) cf(Y)) then Lfp(f)=/F>.

Definition (Partial Fixpoint)

If £7*1 = £7 for n > 0, then pfp(f) ' £ is called the partial fixpoint of f.

f is inflationary if X c f(X); then f* is a fixpoint why?

def

Definition (Inflationary Fixpoint)
The inflationary fixpoint of f is ifp(f) dgfg where g(X) = X uf(X). }

When f is monotone, 1fp(f) = ifp(f) = pfp(f) = f*.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Fixpoint Logics
Let R ¢ o be a new relational symbol. Define three new formulas:

[1fpr (R, x)][t]
[ifpr (R, x)][t]
[pfpg (R, x)][t]

where |x| = [t| = arity(R); x are free in ¢, and bound in [1fpg ,(-+-)].
Their meaning in a structure A is this. Define the function:

f(R) ={al (A, R) = ¢la/x]}

Then the formulas “mean” 1fp(f),ifp(f),pfp(f) respectively?.

Three new logics: FO(1fp), FO(ifp), FO(pfp).

2For 1fp we must ensure that ¢ is monotone. See homework.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Discussion

@ This is horrible syntax. Here is how we check if a, b are connected in
a graph G =(V,E):

[1fp7 ., (E(x,y) v 32(E(x,2) A T(2,y)))](a, b)

Now you really love datalog, were we write:

T(xy) <E(xy)
T(x,y) <E(x,2), T(z,y)
Answer() < T (a, b)

@ We made a few arbitrary choices: allow free variables? allow
simultaneous recursion? It turns out these don't add expressive
power, so use them if needed.

@ Gurevitch and Shelah proved FO(1£fp) = FO(ifp);
We will only discuss ifp and pfp.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Logic on Strings

Detour: The Win-Move Game

The game is played by two players on a graph G. A pebble is placed

initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can't move loses. Write a query to
compute the positions from which the first player has a winning strategy.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Detour: The Win-Move Game

The game is played by two players on a graph G. A pebble is placed

initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can't move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) < 3y(E(x,y) A=S(y))  or [pfps,Iy(E(x,y) A =S(y))](x)
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Detour: The Win-Move Game

The game is played by two players on a graph G. A pebble is placed

initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can't move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) < 3y(E(x,y) A=S(y))  or [pfps,Iy(E(x,y) A =S(y))](x)

This is not monotone, hence may not have a fixpoint!
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Detour: The Win-Move Game

The game is played by two players on a graph G. A pebble is placed

initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can't move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) < 3y(E(x,y) A=S(y))  or [pfps,Iy(E(x,y) A =S(y))](x)

This is not monotone, hence may not have a fixpoint!
When it has a fixpoint, then it can obtain as:

S(x) <3y (E(x,y) n (VZE(y,2) = 5(2)))

Or:
[1fps, Iy (E(x,y) A (VZE(y,2) » 5(2)))](x)
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Trakhtenbrot Finite Controllability

Descriptive Complexity

FO[ifp] captures PTIME
Theorem
(1) FO[4fp] € PTIME and (2) FO[ifp,<] = PTIME. J

Proof in class:

@ FO[ifp] c PTIME Show that the data complexity is PTIME.

@ PTIME c FO[ifp,<]. Given a PTIME language L € {0,1}*, write an
FO(ifp,<)-formula ¢ s.t. on any input structure ([n], U,<), ¢ is
true iff U e L. Note: we are given the order < for free.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO[pfp] captures PSPACE

Theorem
(1) FO[pfp] < PSPACE and (2) FO[pfp,<] = PSPACE. J

Proof in class:

@ FO[pfp] € PSPACE. The hard part is negation: Immerman proved
that —pfp can be rewritten as some pfp, and this implied that
PSPACE is closed under negation.

@ PSPACE c FO[pfp,<]. Given a PSPACE language L c {0,1}*, write
an FO(pfp,<)-formula ¢ s.t. on any input structure ([n], U,<), ¢ is
true iff U e L. Note: we can’t use the time any more.
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Descriptive Complexity

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)?

Dan Suciu Finite Model Theory — Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllabilit Descriptive Complexity Logic on Strings

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.

o Clearly FO(ifp) ¢ FO(pfp). Could they be equal?
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.

o Clearly FO(ifp) ¢ FO(pfp). Could they be equal?

» If FO(ifp) = FO(p£fp) then they remain = after adding <, hence
PTIME = PSPACE.
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.

o Clearly FO(ifp) ¢ FO(pfp). Could they be equal?

» If FO(ifp) = FO(p£fp) then they remain = after adding <, hence
PTIME = PSPACE.

» Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOX types in a very clever
way discuss in class.
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Trakhtenbrot Finite Controllability Descriptive Complexity

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.

o Clearly FO(ifp) ¢ FO(pfp). Could they be equal?

» If FO(ifp) = FO(p£fp) then they remain = after adding <, hence
PTIME = PSPACE.

» Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOX types in a very clever
way discuss in class.

o If we could use some game to separate FO(ifp) # FO(pfp), then we
have proven PTIME + PSPACE!
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Trakhtenbrot Finite Controllability Descriptive Complexity

Discussion

@ Do we need order, e.g. could be the case that FO(1fp) = PTIME
(without <)? Yes: FO(1fp) ¢ L%, and cannot express EVEN.

o Clearly FO(ifp) ¢ FO(pfp). Could they be equal?

» If FO(ifp) = FO(p£fp) then they remain = after adding <, hence
PTIME = PSPACE.

» Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOX types in a very clever
way discuss in class.

o If we could use some game to separate FO(ifp) # FO(pfp), then we
have proven PTIME + PSPACE!

@ Main open problem in FMT: find a logic for PTIME (no order)
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,%) = FO(<,BIT) = ACO

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
will omit this

e FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME

FO(PartialFixpoint, <) =PSPACE

e 1SO=NP
Next: combined complexity.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Logic on Strings

Combined Complexity

We sill study both FO and the restriction to the quantifier prefix 3.
3% is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer < E(x,y) A E(y,z) NE(z,y)
Answer «—E(x,y) A=E(y,z) n=E(z,y)

what does it say?
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Combined Complexity
We sill study both FO and the restriction to the quantifier prefix 3.
3% is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer < E(x,y) A E(y,z) NE(z,y)
Answer «—E(x,y) A=E(y,z) n=E(z,y)

what does it say?
In the 3* fragment:

IxJy3z(E(x,y) NE(y,z) NE(z,y) V-E(x,y) A=E(y,z) A=E(z,y))

Special case: Conjunctive Query (CQ) means no v and no -.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Combined Complexity

Theorem
The combined complexity of the 3* fragment of FO is in NP. J
Theorem
The combined complexity of FO is in PSPACE. J

In class: give a algorithm that runs in NP (PSPACE) and does this: given
A, p, checks if AE .
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Combined Complexity

Theorem
The combined complexity of the 3* fragment of FO is in NP. J
Theorem
The combined complexity of FO is in PSPACE. J

In class: give a algorithm that runs in NP (PSPACE) and does this: given
A, p, checks if AE .

Can we design better algorithms?
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity
No better algorithm is possible!

Then there exists a structure A such that:

Theorem

The expression complexity for CQ (a subset of 3*-FO) is NP-complete.

Theorem
The expression complexity for FO is PSPACE-complete.

The structure A is the same in both. We will prove them together.

Dan Suciu Finite Model Theory — Unit 3 Spring 2018
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Review of SAT and QBF

The SAT problem is: given a Boolean formula F(X,...,X,) check if it
has a satisfying assignment.
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Trakhtenbrot Finite Controllability

Descriptive Complexity Logic on Strings

Review of SAT and QBF
The SAT problem is: given a Boolean formula F(Xi,...,X,) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1 X1, @Xo,... F(X1,...,Xy), check if it is true.
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Review of SAT and QBF

The SAT problem is: given a Boolean formula F(Xi,...,X,) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1 X1, @Xo,... F(X1,...,Xy), check if it is true.
E.g. VX15|X2VX3(X1 \Y —|X2) N (—|X1 \% X2 \% X3).
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Review of SAT and QBF

The SAT problem is: given a Boolean formula F(Xi,...,X,) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1 X1, @Xo,... F(X1,...,Xy), check if it is true.
E.g. VX15|X2VX3(X1 \% —|X2) N (—|X1 \% X2 \% X3).

SAT is the special case 3Xi--IX,F(X1,...,X,).
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F(Xi,...,X,) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1 X1, @Xo,... F(X1,...,Xy), check if it is true.
E.g. VX15|X2VX3(X1 \% —|X2) N (—|X1 \% X2 \% X3).

SAT is the special case 3Xi--IX,F(X1,...,X,).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.
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Proof

In a 3CNF there are 4 kinds of 3-clauses:

XvYvZ -XvYvZ Xv=-YvZ Xv-Yv-Z
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Descriptive Complexity

Proof

In a 3CNF there are 4 kinds of 3-clauses:

XvYvZ -XvYvZ Xv=-YvZ Xv-Yv-Z

Consider the structure A with domain {0,1} and with four relations:

Ro= Ry = Ry = R3 =

H === O O O
= OO R O
HORKHROR
[SE=R=-WEE
HHOOR RO
HORKHREOR
[SE-R-R-WTN
corrOOKR
HORKHREOR
[SE-R=-W
corrOoOKR
o+ o oo~ o
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Finite Controllability Descriptive Complexity

Proof

In a 3CNF there are 4 kinds of 3-clauses:

XvYvZ -XvYvZ Xv=-YvZ Xv-Yv-Z

Consider the structure A with domain {0,1} and with four relations:

Ro= Ry = Ry = R3 =

H === O O O
= OO R O
HOKRRREOR
[SE=R=-WEE
HHOOKRR O
HOKKFKHO R
[SE-R-R-WTN
corrOOKR
HORRROHR
[SE-R=-W
corrOoOKR
O OOORO

SAT to CQ by example:

(X1 Vv Xo Vv X3) A(X1V=X3V X)) A(XpV X3V Xs) o 3x13x3x33x4 Ry (x1, %2, X3) A Ri(x3,x1,%8) A Ro(x2, %3, %a)
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Trakhtenbro inite Controllability Descriptive Complexity

Proof

In a 3CNF there are 4 kinds of 3-clauses:
X\/YVZ —\XVYVZ —|XV—|YVZ —\XV—\Y\/—|Z

Consider the structure A with domain {0,1} and with four relations:

Ro= Ry = Ry = R3 =

H === O O O
= OO R O
HOKRRREOR
[SE=R=-WEE
== OO KF O
HOKFKFMFEOM
[SE-R-R-WTN
corrOOKR
HOFRFFOF
[SE-R=-W
corrOoOKR
O OOORO

SAT to CQ by example:

(X1 Vv Xo Vv X3) A(X1V=X3V X)) A(XpV X3V Xs) o 3x13x3x33x4 Ry (x1, %2, X3) A Ri(x3,x1,%8) A Ro(x2, %3, %a)

QBE to FO by example:

VX13XV X3 (X1 VXo VX3) A (X1 V=X3VXe) A (X2 VX3V Xy) = Vx13x¥x33x4 Ro (x1, %2, x3) AR1(X3, X1, x4) ARo (X2, X3, x4)
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Trakhtenbrot ini ontrollability Descriptive Complexity

Proof

In a 3CNF there are 4 kinds of 3-clauses:
X\/YVZ —\XVYVZ —|XV—|YVZ —\XV—\Y\/—|Z

Consider the structure A with domain {0,1} and with four relations:

Ro= Ry = Ry = R3 =

H === O O O
= OO R O
HOKRRREOR
[SE=R=-WEE
== OO KF O
HOKFKFMFEOM
[SE-R-R-WTN
corrOOKR
HOFRFFOF
[SE-R=-W
corrOoOKR
O OOORO

SAT to CQ by example:

(X1 Vv Xo Vv X3) A(X1V=X3V X)) A(XpV X3V Xs) o 3x13x3x33x4 Ry (x1, %2, X3) A Ri(x3,x1,%8) A Ro(x2, %3, %a)

QBE to FO by example:

VX13XV X3 (X1 VXo VX3) A (X1 V=X3VXe) A (X2 VX3V Xy) = Vx13x¥x33x4 Ro (x1, %2, x3) AR1(X3, X1, x4) ARo (X2, X3, x4)

In both cases: F is SAT iff A= ¢ why?
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

e Data complexity of FO is AC? very low!

@ For database fans: the expression and combined complexity of CQ
(and hence select-from-where SQL queries) is NP-complete.

@ Expression complexity and combined complexity of FO are
PSPACE-complete very high!

@ We omit the expression complexity of extensions of FO (hint: they
get even higher).
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Logic on Strings

Representing Strings

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.

A word w € ¥ can be encoded as a structure over the alphabet
o= (<, Pa(-), Po(), Pe())-

In class represent aabaca.

A sentence ¢ defines a language {w | w E ¢}.
Eg. VxVy(x<yAPy(x)APy(y) — 3Jz(x<y<zAPp(z)))
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Representing Strings

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.

A word w € ¥ can be encoded as a structure over the alphabet
o= (<, Pa(-), Po(), Pe())-

In class represent aabaca.

A sentence ¢ defines a language {w | w E ¢}.

Eg. VxVy(x<yAPy(x)APy(y) — 3Jz(x<y<zAPp(z)))
Assuming alphabet {a, b} it says “between any two a's there is a b":
b*.(a.b*)*.(ale)
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Trakhtenbrot Finite Controllability Descriptive Complexity

Logic on Strings
Representing Strings
Fix an alphabet ¥, e.g. ¥ ={a,b,c}.

A word w € ¥ can be encoded as a structure over the alphabet

o= (<, Pa(-), Po(), Pe())-
In class represent aabaca.

A sentence ¢ defines a language {w | w E ¢}.
Eg. VxVy(x<yAPy(x)APy(y) — 3Jz(x<y<zAPp(z)))
Assuming alphabet {a, b} it says “between any two a's there is a b":
b*.(a.b*)*.(ale)

o What languages can be define in FO?

o What languages can be define in MSO?
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Trakhtenbrot Finite Controllability

Descriptive Complexity

Regular Expressions
Fix an alphabet ¥. Regular expressions are:

E:=glelacX
EUE|E.E

C(E) complement
E>(-

E is called star-free if it is equivalent to an expression without *.
In class assuming X = {a, b}, which expressions are star-free?

C(2) b*.(a.b*)* (a.b)* (a.a)”

Dan Suciu Finite Model Theory — Unit 3
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FO on Strings

Theorem
A language L is star-free iff it is defined in FO. J
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MSO on Strings

Theorem
A language L is regular iff it is defined in MSO. J
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TBD (or, better, in class)
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Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Applications

@ There exists a regular language which is not star-free. which one?
@ SAT for MSO on strings is decidable. what is the complexity?

@ The data complexity for MSO on strings is linear time! what is the
data complexity of MSO?

@ On strings: 3IMSO = VMSO = MSO why?
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Logic on Strings

Courcelle’'s Theorem

Let C be a class of structures with bounded tree-width. discuss tw in class;
we will return to it.

Theorem (Courcelle)

Every formula in ¢ € MSO can be evaluated in linear time over structures
of bounded tree-width.

This is an amazing result! Caveats:

@ The expression complexity is horrible (non-elementary).

@ We need a tree decomposition of the structure (i.e. database) A: this
is NP-complete in general.

o If we have a promise that the treewidth is < k, then we can compute
a TD in time O(nk); but “real” databases rarely have bounded tw.
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Discussion

MSQO is very powerful in general: Monadic NP.

@ But over strings it can only express regular languages: linear time.

@ Even over trees, or “tree-like” structures MSO is still in linear time.

@ Problem: data in real life is not “tree-like”!
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