
Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Finite Model Theory
Unit 3

Dan Suciu

Spring 2018

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 1 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

599c: Finite Model Theory

Unit 3: Logic and Complexity

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 2 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Resources

Libkin, Finite Model Theory

Immerman, Descriptive Complexity (Ch.3)

Grädel, Kolaitis, Vardi, On the Decision Problem for Two-Variable
First-Order Logic.

Vardi, Why is Modal Logic so Robustly Decidable?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu, On the Unusual
Effectiveness of Logic in Computer Science

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 3 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Logic and Complexity

Two problems:

Satisfiability: given ϕ, does it have a (finite) model A?

Model checking: given a finite A and ϕ, is A a model of ϕ?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 4 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakhtenbrot’s Theorem

A sentence ϕ is finitely satisfiable if there exists a finite model A.

Theorem (Trakhtenbrot)

Suppose the vocabulary σ has at least one relation with arity ≥ 2. Then
the problem “given ϕ check if it is finitely satisfiable” is undecidable.

What about unary vocabularies? ⇒ Homework!

Before we prove it, let’s see some consequences.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 5 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 1

Denote ϕ ≡fin ψ if ϕ,ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then the
following problem is undecidable: “given two sentences ϕ,ψ, check
whether ϕ ≡fin ψ.”.

Proof in class

Proof: Reduce it to UNSAT. Assuming we have an oracle for ϕ ≡fin ψ, we
can check UNSAT by checking if ϕ ≡fin F .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 6 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 1

Denote ϕ ≡fin ψ if ϕ,ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then the
following problem is undecidable: “given two sentences ϕ,ψ, check
whether ϕ ≡fin ψ.”.

Proof in class
Proof: Reduce it to UNSAT. Assuming we have an oracle for ϕ ≡fin ψ, we
can check UNSAT by checking if ϕ ≡fin F .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 6 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 2

Let f ∶ N→ N a function with the following property:
every finitely satisfiable sentence ϕ has a model of size ≤ f (∣ϕ∣).

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then no
computable function f exists with the property above.

Proof in class

Proof: If we had such an f , then we can check finite satisfiability as
follows. Given ϕ, compute n = f (∣ϕ∣), and try out all structures of size ≤ n:

If one of the structures is a model then answer YES.

Otherwise answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 7 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 2

Let f ∶ N→ N a function with the following property:
every finitely satisfiable sentence ϕ has a model of size ≤ f (∣ϕ∣).

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then no
computable function f exists with the property above.

Proof in class

Proof: If we had such an f , then we can check finite satisfiability as
follows. Given ϕ, compute n = f (∣ϕ∣), and try out all structures of size ≤ n:

If one of the structures is a model then answer YES.

Otherwise answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 7 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences ϕ is recursively enumerable.

Why?

Proof: for each n = 1,2,3, . . . enumerate all structures A of size ≤ n, and
all FO[n] sentences ϕ that are true in A.

What is FO[n]? Is it finite?
It is FO restricted to quantifier rank n, and we know it is finite.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 8 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences ϕ is recursively enumerable.

Why?

Proof: for each n = 1,2,3, . . . enumerate all structures A of size ≤ n, and
all FO[n] sentences ϕ that are true in A.

What is FO[n]? Is it finite?

It is FO restricted to quantifier rank n, and we know it is finite.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 8 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences ϕ is recursively enumerable.

Why?

Proof: for each n = 1,2,3, . . . enumerate all structures A of size ≤ n, and
all FO[n] sentences ϕ that are true in A.

What is FO[n]? Is it finite?
It is FO restricted to quantifier rank n, and we know it is finite.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 8 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 3

“Finiteness is not axiomatizable.”
We say that ϕ is finitely valid, ⊧fin ϕ, if it holds in every finite model A.

Corollary

There is no r.e. set of axioms Σ such that Σ ⊢ ϕ iff ⊧fin ϕ.

Proof in class

Proof:

By the previous fact, the set of finitely satisfiable sentences ϕ is r.e.

Hence, the set of finitely valid sentences is co-r.e. (since ⊧fin ϕ iff ¬ϕ
is not finitely satisfiable).

Since Σ is r.e. the set {ϕ ∣ Σ ⊢ ϕ} is r.e.

If Σ ⊢ ϕ iff ⊧fin ϕ then this set is both r.e. and co-r.e., hence it is
decidable. why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 9 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Trakthenbrot’s Theorem: Consequence 3

“Finiteness is not axiomatizable.”
We say that ϕ is finitely valid, ⊧fin ϕ, if it holds in every finite model A.

Corollary

There is no r.e. set of axioms Σ such that Σ ⊢ ϕ iff ⊧fin ϕ.

Proof in class

Proof:

By the previous fact, the set of finitely satisfiable sentences ϕ is r.e.

Hence, the set of finitely valid sentences is co-r.e. (since ⊧fin ϕ iff ¬ϕ
is not finitely satisfiable).

Since Σ is r.e. the set {ϕ ∣ Σ ⊢ ϕ} is r.e.

If Σ ⊢ ϕ iff ⊧fin ϕ then this set is both r.e. and co-r.e., hence it is
decidable. why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 9 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof of Trakhtenbrot’s Theorem

By reduction from the Halting Problem:

Given a Turing Machine M, does M halt on the empty input?

The proof consist of the following: given M we will construct a sentence
ϕM s.t. M halts iff ϕM is finitely satisfiable.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 10 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

M = (Q,Σ,∆,q0,QF ) where:

Q = {q0,q1, . . . ,qm} are the states;
q0 is the initial state;
QF ⊆ Q are the final states.

Σ is the tape alphabet; we take
Σ = {0,1}
∆ ⊆ Q ×Σ ×Σ × {Left,Right} ×Q
are the transitions.

0 1 1 0 1 0 1 0 0 0 1 0 0 …

State: qi Head

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 11 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:

w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

An accepting computation is a sequence C = c1, c2, . . . , cT where:

Each ci is a configuration.

c1 is the initial configuration what does that mean?

cT is a final configuration what does that mean?

Forall t, (ct , ct+1) is a valid transition what does that mean?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 12 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:

w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

An accepting computation is a sequence C = c1, c2, . . . , cT where:

Each ci is a configuration.

c1 is the initial configuration what does that mean?

cT is a final configuration what does that mean?

Forall t, (ct , ct+1) is a valid transition what does that mean?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 12 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:

w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

An accepting computation is a sequence C = c1, c2, . . . , cT where:

Each ci is a configuration.

c1 is the initial configuration what does that mean?

cT is a final configuration what does that mean?

Forall t, (ct , ct+1) is a valid transition what does that mean?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 12 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:

w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

An accepting computation is a sequence C = c1, c2, . . . , cT where:

Each ci is a configuration.

c1 is the initial configuration what does that mean?

cT is a final configuration what does that mean?

Forall t, (ct , ct+1) is a valid transition what does that mean?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 12 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:

w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

An accepting computation is a sequence C = c1, c2, . . . , cT where:

Each ci is a configuration.

c1 is the initial configuration what does that mean?

cT is a final configuration what does that mean?

Forall t, (ct , ct+1) is a valid transition what does that mean?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 12 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

ϕ is finitely satisfiable iff
∃A such that A ⊧ ϕ.

This suggests the proof plan:

Computation C ≡ structure A.

C is an accepting computation iff A is a model of ϕ.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 13 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

ϕ is finitely satisfiable iff
∃A such that A ⊧ ϕ.

This suggests the proof plan:

Computation C ≡ structure A.

C is an accepting computation iff A is a model of ϕ.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 13 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

ϕ is finitely satisfiable iff
∃A such that A ⊧ ϕ.

This suggests the proof plan:

Computation C ≡ structure A.

C is an accepting computation iff A is a model of ϕ.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 13 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details

Fix a Turing Machine M.

Describe a vocabulary σM and sentence ϕM whose models correspond
precisely to accepting computations of M.

Describe an FO encoding of σM and ϕM into a single binary relation.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 14 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 15 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

The sentence ϕM asserts the following:

General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

At time t = min, the TM is in the initial configuration.

At time t = max, the TM is in an accepting configuration.

Every transition from t to t + 1 is correct

details in class (also next slides)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 16 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: General Consistency

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

< is a total order.

Exactly one tape symbol:
∀t,∀p(T0(t,p) ∨T1(t,p)) ∧ ¬(T0(t,p) ∧T1(t,p))
Exactly one head position at each time: . . .

Exactly one state at each time: . . .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 17 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: Initial Configuration

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

At time t = min, the TM is in the initial configuration:

∀pT0(min,p) ∧H(min,min) ∧ Sq0(min)

Note that we can name min by ∃x¬∃y(y < x); similarly max.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 18 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: Final Configuration

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

At time t = max, the TM is in the final configuration:

⋁
q∈QF

Sq(max)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 19 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: All Transitions are Correct

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Each transition from t to t + 1 corresponds to one valid δ ∈ ∆:

∀t(t < max→ ⋁
δ∈∆

CHECKδ(t))

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 20 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof Details: All Transitions are Correct (Detail)

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Example transition: δ = (q5,1,0,Left,q3)
(“If in state q5 and the tape is 1, then write 0, move Left, enter q3”)

CHECKδ(t) =Sq5(t) Check we are in q5

∧∀s(¬H(t, s) → (T0(t, s) ↔ T0(t + 1, s))) Leave non-head

symbols unchaged

∧∀s(H(t, s) → T1(t, s) ∧T0(t + 1, s)) the head was 1

set it to 0

∧H(t + 1, s − 1) move to the left

∧Sq3(t + 1) enter q3

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 21 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A?

The number of time steps
required by M.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A? The number of time steps
required by M.

Is A unique?

Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A? The number of time steps
required by M.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A? The number of time steps
required by M.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <?

succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A? The number of time steps
required by M.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

A structure s.t. A ⊧ ϕM is precisely a successful computation of the
Turing Machine M.

How large is ∣A∣, the domain of A? The number of time steps
required by M.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? succ is not finitely axiomatizable.

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E .

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 22 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ] → STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ] → {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each

qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 23 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ] → STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ] → {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each

qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 23 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ] → STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ] → {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each

qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 23 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ] → STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ] → {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each

qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 23 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ] → STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ] → {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each

qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 23 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO Reduction

Query STRUCT[σ] → STRUCT[τ]
(Problems on STRUCT[τ] ) → (Problems on STRUCT[σ])

Definition

A First Order Reduction is an FO query Q from σ to τ .

It “reduces” a problem P ′ on τ from the problem P
def= P ′ ○Q on σ.

Obviously, P ′ is at least as hard as P.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 24 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.

Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 25 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Summary of Trakhtenbrot’s Theorem

Assume an oracle: given ϕ, check if ϕ has a finite model A.
We reduce the halting problem for a Turning Machine M.

Construct the vocabulary σM and the sentence ϕM that says “the
model A represents an accepting computation of M.

Consider the FO reduction Q from a graph {E} to σM , and denote
ψM = ϕ ○Q. This is a sentence over the vocabulary {E}.

Claim: ψM is satisfiable iff M terminates. Proof:

▸ If M terminates, then there exists a model A ⊧ ϕM . From A, we
construct a graph encoding G s.t. Q(G) = A. This is a model of ψM .

▸ If ψM has a model G then: (a) if G is an invalid encoding, then Q(G)
returns the empty structure A, which is not a model of ϕM . (b)
otherwise, G is a valid encoding of some structure A, which, in turn,
represents an accepting computation.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 26 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Satisfiability in the finite or in general (finite or infinite) are quite different!

The problem “given ϕ, is ϕ finitely satisfiable?” is r.e. why?

The problem “given ϕ, is ϕ satisfiable?” is co-r.e. why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 27 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property

Let L ⊆ FO be a subset of FO.

Definition

We say that L has the finite model property, or it is finitely controllable if:
∀ϕ ∈ L, ϕ has a model iff ϕ has a finite model.

Definition

We say that L has the small model property if there exists a computable
function f ∶ N→ N s.t.
∀ϕ ∈ L, ϕ has a model iff ϕ has a finite model of size ≤ f (∣ϕ∣).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 28 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property

Let L ⊆ FO be a subset of FO.

Definition

We say that L has the finite model property, or it is finitely controllable if:
∀ϕ ∈ L, ϕ has a model iff ϕ has a finite model.

Definition

We say that L has the small model property if there exists a computable
function f ∶ N→ N s.t.
∀ϕ ∈ L, ϕ has a model iff ϕ has a finite model of size ≤ f (∣ϕ∣).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 28 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(ϕ) enumerate all structures up to size f (∣ϕ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(ϕ) enumerate all finite structures A AND all proofs ⊢ ψ:

If ϕ is SAT it is also finitely satisfiable, hence some model A will show
up in the first list; answer YES.

If ϕ is UNSAT then ¬ϕ will show up in the second list; answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 29 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(ϕ) enumerate all structures up to size f (∣ϕ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(ϕ) enumerate all finite structures A AND all proofs ⊢ ψ:

If ϕ is SAT it is also finitely satisfiable, hence some model A will show
up in the first list; answer YES.

If ϕ is UNSAT then ¬ϕ will show up in the second list; answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 29 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(ϕ) enumerate all structures up to size f (∣ϕ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(ϕ) enumerate all finite structures A AND all proofs ⊢ ψ:

If ϕ is SAT it is also finitely satisfiable, hence some model A will show
up in the first list; answer YES.

If ϕ is UNSAT then ¬ϕ will show up in the second list; answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 29 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(ϕ) enumerate all structures up to size f (∣ϕ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(ϕ) enumerate all finite structures A AND all proofs ⊢ ψ:

If ϕ is SAT it is also finitely satisfiable, hence some model A will show
up in the first list; answer YES.

If ϕ is UNSAT then ¬ϕ will show up in the second list; answer NO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 29 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix ∃∗∀∗.
L is called the Bernays-Schönfinkel class.

Theorem

The set of ∃∗∀∗ sentences has the small model property, hence it is
decidable.

Proof in class
ϕ = ∃x1⋯∃xm∀y1⋯∀ynψ.

Let A be a model of ϕ. Then there exists values a = (a1, . . . , am) s.t.
A ⊧ ∀y1⋯∀ynψ[a/x]

Let A0 be the structure restricted to the value a1, . . . , am. Then, obviously:
A0 ⊧ ∀y1⋯∀ynψ[a/x]

what is the “small model” function f (∣ϕ∣)?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 30 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix ∃∗∀∗.
L is called the Bernays-Schönfinkel class.

Theorem

The set of ∃∗∀∗ sentences has the small model property, hence it is
decidable.

Proof in class
ϕ = ∃x1⋯∃xm∀y1⋯∀ynψ.

Let A be a model of ϕ. Then there exists values a = (a1, . . . , am) s.t.
A ⊧ ∀y1⋯∀ynψ[a/x]

Let A0 be the structure restricted to the value a1, . . . , am. Then, obviously:
A0 ⊧ ∀y1⋯∀ynψ[a/x]

what is the “small model” function f (∣ϕ∣)?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 30 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix ∃∗∀∗.
L is called the Bernays-Schönfinkel class.

Theorem

The set of ∃∗∀∗ sentences has the small model property, hence it is
decidable.

Proof in class
ϕ = ∃x1⋯∃xm∀y1⋯∀ynψ.

Let A be a model of ϕ. Then there exists values a = (a1, . . . , am) s.t.
A ⊧ ∀y1⋯∀ynψ[a/x]

Let A0 be the structure restricted to the value a1, . . . , am. Then, obviously:
A0 ⊧ ∀y1⋯∀ynψ[a/x]

what is the “small model” function f (∣ϕ∣)?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 30 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix ∃∗∀∗.
L is called the Bernays-Schönfinkel class.

Theorem

The set of ∃∗∀∗ sentences has the small model property, hence it is
decidable.

Proof in class
ϕ = ∃x1⋯∃xm∀y1⋯∀ynψ.

Let A be a model of ϕ. Then there exists values a = (a1, . . . , am) s.t.
A ⊧ ∀y1⋯∀ynψ[a/x]

Let A0 be the structure restricted to the value a1, . . . , am. Then, obviously:
A0 ⊧ ∀y1⋯∀ynψ[a/x]

what is the “small model” function f (∣ϕ∣)?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 30 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Application 2: FO2

Theorem

FO2 has the small model property, with an exponential f . More precisely:
for any sentence in ϕ ∈ FO2, if ϕ is satisfiable then it has a model of size
2O(∣ϕ∣). In particular, FO2 is decidable.

We omit the proof. Please check Grädel, Kolaitis, Vardi.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 31 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Main topic: correspondence between logics and computational complexity
classes.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 32 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Fix a class C of finite structures.

Examples: (1) all strings w ∈ {0,1}∗; (2) all graphs (V ,E); (3) all
ordered graphs (V ,E ,<); (4) all strings representing FO2 sentences,
ϕ ∈ {x , y ,R, (, ),→,¬,∀}∗.

A problem is a function P ∶ C → {0,1}.

A computational complexity class is the set of problems that can be
answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.

A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, FO+Fixpoint,
∃SO, SO, etc.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 33 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Fix a class C of finite structures.

Examples: (1) all strings w ∈ {0,1}∗; (2) all graphs (V ,E); (3) all
ordered graphs (V ,E ,<); (4) all strings representing FO2 sentences,
ϕ ∈ {x , y ,R, (, ),→,¬,∀}∗.

A problem is a function P ∶ C → {0,1}.

A computational complexity class is the set of problems that can be
answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.

A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, FO+Fixpoint,
∃SO, SO, etc.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 33 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Fix a class C of finite structures.

Examples: (1) all strings w ∈ {0,1}∗; (2) all graphs (V ,E); (3) all
ordered graphs (V ,E ,<); (4) all strings representing FO2 sentences,
ϕ ∈ {x , y ,R, (, ),→,¬,∀}∗.

A problem is a function P ∶ C → {0,1}.

A computational complexity class is the set of problems that can be
answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.

A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, FO+Fixpoint,
∃SO, SO, etc.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 33 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity

Fix a class C of finite structures.

Examples: (1) all strings w ∈ {0,1}∗; (2) all graphs (V ,E); (3) all
ordered graphs (V ,E ,<); (4) all strings representing FO2 sentences,
ϕ ∈ {x , y ,R, (, ),→,¬,∀}∗.

A problem is a function P ∶ C → {0,1}.

A computational complexity class is the set of problems that can be
answered within some fixed computational resources. E.g.
LOGSPACE, PTIME, PSPACE, etc.

A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, FO+Fixpoint,
∃SO, SO, etc.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 33 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Computational Complexity

Very brief review of computational complexity classes:

AC 0

LOGSPACE

NLOGSPACE

PTIME

NP

PSPACE

(what about NPSACE?)

EXPTIME

NEXPTIME

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 34 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A ∈ C, ϕ ∈ L, check whether A ⊧ ϕ.

Vardi’s classification of complexity:

Data complexity: ϕ is fixed, study the complexity as a function of A.
Note: different complexity for every ϕ.
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ϕ.

Combined complexity: both A, ϕ are input.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 35 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A ∈ C, ϕ ∈ L, check whether A ⊧ ϕ.

Vardi’s classification of complexity:

Data complexity: ϕ is fixed, study the complexity as a function of A.
Note: different complexity for every ϕ.
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ϕ.

Combined complexity: both A, ϕ are input.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 35 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A ∈ C, ϕ ∈ L, check whether A ⊧ ϕ.

Vardi’s classification of complexity:

Data complexity: ϕ is fixed, study the complexity as a function of A.
Note: different complexity for every ϕ.
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ϕ.

Combined complexity: both A, ϕ are input.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 35 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Computational Complexity of Model Checking

The model checking problem is: given A ∈ C, ϕ ∈ L, check whether A ⊧ ϕ.

Vardi’s classification of complexity:

Data complexity: ϕ is fixed, study the complexity as a function of A.
Note: different complexity for every ϕ.
We focus on data complexity

Query complexity: (or expression complexity):
A is fixed, study the complexity as a function of ϕ.

Combined complexity: both A, ϕ are input.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 35 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;
will omit this

FO(LeastFixpoint,<) =FO(InflationaryFixpoint,<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO=NP

All these refer to data complexity. We will briefly discuss expression
complexity at the end.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 36 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encodings

A Turning Machine (or other computational device), accepts a
language L ⊆ {0,1}∗.

A sentence ϕ defines a set of models ⊆ STRUCT[σ].

To compare them, we need some encoding between them.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 37 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encoding STRUCT[σ] to {0,1}∗

Encode A = ([n],RA
1 ,R

A
2 , . . .) as follows:

Start with 01n.

Encode RA
i using “adjacency matrix”, of length narity(Ri)

Example:

0111
±
n=3

010001010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×3 matrix

Length of encoding: n1+arity(R1)+arity(R2)+⋯ = nO(1) = poly(n).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 38 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encoding STRUCT[σ] to {0,1}∗

Encode A = ([n],RA
1 ,R

A
2 , . . .) as follows:

Start with 01n.

Encode RA
i using “adjacency matrix”, of length narity(Ri)

Example:

1 2

3

0111
±
n=3

010001010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×3 matrix

Length of encoding: n1+arity(R1)+arity(R2)+⋯ = nO(1) = poly(n).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 38 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encoding STRUCT[σ] to {0,1}∗

Encode A = ([n],RA
1 ,R

A
2 , . . .) as follows:

Start with 01n.

Encode RA
i using “adjacency matrix”, of length narity(Ri)

Example:

1 2

3

0111
±
n=3

010001010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×3 matrix

Length of encoding: n1+arity(R1)+arity(R2)+⋯ = nO(1) = poly(n).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 38 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encoding STRUCT[σ] to {0,1}∗

Encode A = ([n],RA
1 ,R

A
2 , . . .) as follows:

Start with 01n.

Encode RA
i using “adjacency matrix”, of length narity(Ri)

Example:

1 2

3

0111
±
n=3

010001010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×3 matrix

Length of encoding: n1+arity(R1)+arity(R2)+⋯ = nO(1) = poly(n).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 38 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Encoding {0,1}∗ to STRUCT[σ]

Choose σ = {U(⋅)} and encode w ∈ {0,1}∗ as the structure ([n],U),
where U ⊆ [n].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 39 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;

FO(LeastFixpoint,<) =FO(InflationaryFixpoint,<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO=NP

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 40 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Non-uniform AC 0

Fix n > 0. A Boolean circuit C with n inputs is a DAG where:

Leaves are labeled with input variables X1, . . . ,Xn ∈ {0,1}.

Internal nodes are labeled with ∨,∧ (unbounded fan-in), and ¬.

There is one root node.

size(C) def= number of gates

depth(C) def= length of longest path

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 41 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Non-uniform AC 0

Definition

A language L ⊆ {0,1}∗ is in non-uniform AC 0 if forall n there exists a
circuit Cn s.t.

Cn computes L ∩ {0,1}n,

size(Cn) = nO(1) (polynomial in n),

depth(Cn) = O(1) (constant, indep. on n).

Example: given a graph G = ([n],E), check ∀x∀y∃z(E(x , z) ∧ E(z , y))
draw Cn (actually Cn2) in class.

Theorem

The data complexity of any ϕ ∈ FO is in non-uniform AC 0.
This still holds if we include in FO all interpreted predicate (+,<, . . .).
Thus FO(ALL) ⊆ AC 0, where ALL means all predicates on [n].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 42 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Non-uniform AC 0

Definition

A language L ⊆ {0,1}∗ is in non-uniform AC 0 if forall n there exists a
circuit Cn s.t.

Cn computes L ∩ {0,1}n,

size(Cn) = nO(1) (polynomial in n),

depth(Cn) = O(1) (constant, indep. on n).

Example: given a graph G = ([n],E), check ∀x∀y∃z(E(x , z) ∧ E(z , y))
draw Cn (actually Cn2) in class.

Theorem

The data complexity of any ϕ ∈ FO is in non-uniform AC 0.
This still holds if we include in FO all interpreted predicate (+,<, . . .).
Thus FO(ALL) ⊆ AC 0, where ALL means all predicates on [n].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 42 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Non-uniform AC 0

Definition

A language L ⊆ {0,1}∗ is in non-uniform AC 0 if forall n there exists a
circuit Cn s.t.

Cn computes L ∩ {0,1}n,

size(Cn) = nO(1) (polynomial in n),

depth(Cn) = O(1) (constant, indep. on n).

Example: given a graph G = ([n],E), check ∀x∀y∃z(E(x , z) ∧ E(z , y))
draw Cn (actually Cn2) in class.

Theorem

The data complexity of any ϕ ∈ FO is in non-uniform AC 0.
This still holds if we include in FO all interpreted predicate (+,<, . . .).
Thus FO(ALL) ⊆ AC 0, where ALL means all predicates on [n].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 42 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

AC 0 is supposed to be the lowest complexity class, but there’s a
wrinkle:

If L is in non-uniform AC 0, is L computable?

NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe Cn in class

Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN ∈ FO[ALL] why?

Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X1 ⊕X2 ⊕⋯⊕Xn

is not in non-uniform AC 0 discuss in class

PARITY is the problem: given a structure with one unary relation,
([n],U ⊆ [n]), check whether ∣U ∣ is even. Then PARITY /∈ FO[ALL].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 43 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

AC 0 is supposed to be the lowest complexity class, but there’s a
wrinkle:

If L is in non-uniform AC 0, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe Cn in class

Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN ∈ FO[ALL] why?

Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X1 ⊕X2 ⊕⋯⊕Xn

is not in non-uniform AC 0 discuss in class

PARITY is the problem: given a structure with one unary relation,
([n],U ⊆ [n]), check whether ∣U ∣ is even. Then PARITY /∈ FO[ALL].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 43 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

AC 0 is supposed to be the lowest complexity class, but there’s a
wrinkle:

If L is in non-uniform AC 0, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe Cn in class

Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN ∈ FO[ALL] why?

Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X1 ⊕X2 ⊕⋯⊕Xn

is not in non-uniform AC 0 discuss in class

PARITY is the problem: given a structure with one unary relation,
([n],U ⊆ [n]), check whether ∣U ∣ is even. Then PARITY /∈ FO[ALL].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 43 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

AC 0 is supposed to be the lowest complexity class, but there’s a
wrinkle:

If L is in non-uniform AC 0, is L computable? NO! E.g. L is the set of
all words of length n, where n encodes a Turning Machine that halts
on the empty input. Describe Cn in class

Recall: EVEN is the problem “is the domain size n an even
number?”. Obviously EVEN ∈ FO[ALL] why?

Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X1 ⊕X2 ⊕⋯⊕Xn

is not in non-uniform AC 0 discuss in class

PARITY is the problem: given a structure with one unary relation,
([n],U ⊆ [n]), check whether ∣U ∣ is even. Then PARITY /∈ FO[ALL].

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 43 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Uniform AC 0

Informally: L is in “uniform” AC 0 if there exists an easily computable
function n ↦ Cn (usually LOGSPACE).
A better definition uses FO. For fixed n, define these relations on [n]:

+ ={(x , y , z) ∣ x + y = z}
∗ ={(x , y , z) ∣ x ∗ y = z}
<={(x , y) ∣ x < y}

BIT ={(x , y) ∣ the y ’s bit of x is 1}

One can show FO(+,∗) = FO(<,BIT) (we omit the proof).

Definition

A language L ⊆ {0,1}∗ is in uniform AC 0 if it is definable in FO(+,∗);
equivalently, it is definable in FO(<,BIT).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 44 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Uniform AC 0

Informally: L is in “uniform” AC 0 if there exists an easily computable
function n ↦ Cn (usually LOGSPACE).
A better definition uses FO. For fixed n, define these relations on [n]:

+ ={(x , y , z) ∣ x + y = z}
∗ ={(x , y , z) ∣ x ∗ y = z}
<={(x , y) ∣ x < y}

BIT ={(x , y) ∣ the y ’s bit of x is 1}

One can show FO(+,∗) = FO(<,BIT) (we omit the proof).

Definition

A language L ⊆ {0,1}∗ is in uniform AC 0 if it is definable in FO(+,∗);
equivalently, it is definable in FO(<,BIT).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 44 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Uniform AC 0

Informally: L is in “uniform” AC 0 if there exists an easily computable
function n ↦ Cn (usually LOGSPACE).
A better definition uses FO. For fixed n, define these relations on [n]:

+ ={(x , y , z) ∣ x + y = z}
∗ ={(x , y , z) ∣ x ∗ y = z}
<={(x , y) ∣ x < y}

BIT ={(x , y) ∣ the y ’s bit of x is 1}

One can show FO(+,∗) = FO(<,BIT) (we omit the proof).

Definition

A language L ⊆ {0,1}∗ is in uniform AC 0 if it is definable in FO(+,∗);
equivalently, it is definable in FO(<,BIT).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 44 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Main take away: AC 0 is FO.

The reason is simple: ∨,∧ have bounded fan-in, ∃,∀ have unbounded
fan-in, and the depth is constant.

But there is a fine print in the equality AC 0 = FO:

▸ Non-uniform AC 0 can express any predicate on [n], much beyond FO.

▸ We define Uniform AC 0 as FO(+,∗) or as FO(<,BIT); the choice to
restrict to the predicates +,∗ (or <,BIT) is somewhat arbitrary, yet
leads to a natural definition of Uniform AC 0.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 45 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;

FO(LeastFixpoint,<) =FO(InflationaryFixpoint,<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO=NP

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 46 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smϕ, where ϕ ∈FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

In words:

∃SO ⊆ NP: the data complexity of ψ ∈ ∃SO is in NP proof in class

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem; will prove next.

In class Give an ∃SO formula to check if a graph has a Hamiltonean cycle.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 47 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smϕ, where ϕ ∈FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

In words:

∃SO ⊆ NP: the data complexity of ψ ∈ ∃SO is in NP proof in class

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem; will prove next.

In class Give an ∃SO formula to check if a graph has a Hamiltonean cycle.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 47 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smϕ, where ϕ ∈FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

In words:

∃SO ⊆ NP: the data complexity of ψ ∈ ∃SO is in NP proof in class

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem; will prove next.

In class Give an ∃SO formula to check if a graph has a Hamiltonean cycle.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 47 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smϕ, where ϕ ∈FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

In words:

∃SO ⊆ NP: the data complexity of ψ ∈ ∃SO is in NP proof in class

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem; will prove next.

In class Give an ∃SO formula to check if a graph has a Hamiltonean cycle.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 47 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smϕ, where ϕ ∈FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

In words:

∃SO ⊆ NP: the data complexity of ψ ∈ ∃SO is in NP proof in class

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem; will prove next.

In class Give an ∃SO formula to check if a graph has a Hamiltonean cycle.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 47 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof of NP ⊆ ∃SO

Let L ⊆ {0,1}∗ be a language in NP. This means:
∃ Turing Machine M and d > 0 s.t. for any input w ⊆ {0,1}n :

M has an accepting computation of length ≤ nd iff w ∈ L.

Define ψM s.t. ([n],U) ⊧ ψM iff1 U ∈ L, as in Trakhtenbrot’s theorem:

ψM =∃ < ∃T0(⋅, ⋅)∃T1(⋅, ⋅)∃H(⋅, ⋅)∃Sq0(⋅)∃Sq1(⋅)⋯ϕM

where ϕM is as in Trakthenbrot’s proof, with two changes:

Assert that the initial configuration is the string U (i.e. not 0’s)

The time/space can now go up to nd : encode it using a d-tuple
instead of a single value in class;
T0,T1,H now have arity 2d and Sq0 ,Sq1 , . . . have arity d

1U ⊆ [n] denotes a string w ∈ {0,1}n how?.
Dan Suciu Finite Model Theory – Unit 3 Spring 2018 48 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof of NP ⊆ ∃SO

Let L ⊆ {0,1}∗ be a language in NP. This means:
∃ Turing Machine M and d > 0 s.t. for any input w ⊆ {0,1}n :

M has an accepting computation of length ≤ nd iff w ∈ L.

Define ψM s.t. ([n],U) ⊧ ψM iff1 U ∈ L, as in Trakhtenbrot’s theorem:

ψM =∃ < ∃T0(⋅, ⋅)∃T1(⋅, ⋅)∃H(⋅, ⋅)∃Sq0(⋅)∃Sq1(⋅)⋯ϕM

where ϕM is as in Trakthenbrot’s proof, with two changes:

Assert that the initial configuration is the string U (i.e. not 0’s)

The time/space can now go up to nd : encode it using a d-tuple
instead of a single value in class;
T0,T1,H now have arity 2d and Sq0 ,Sq1 , . . . have arity d

1U ⊆ [n] denotes a string w ∈ {0,1}n how?.
Dan Suciu Finite Model Theory – Unit 3 Spring 2018 48 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof of NP ⊆ ∃SO

Let L ⊆ {0,1}∗ be a language in NP. This means:
∃ Turing Machine M and d > 0 s.t. for any input w ⊆ {0,1}n :

M has an accepting computation of length ≤ nd iff w ∈ L.

Define ψM s.t. ([n],U) ⊧ ψM iff1 U ∈ L, as in Trakhtenbrot’s theorem:

ψM =∃ < ∃T0(⋅, ⋅)∃T1(⋅, ⋅)∃H(⋅, ⋅)∃Sq0(⋅)∃Sq1(⋅)⋯ϕM

where ϕM is as in Trakthenbrot’s proof, with two changes:

Assert that the initial configuration is the string U (i.e. not 0’s)

The time/space can now go up to nd : encode it using a d-tuple
instead of a single value in class;
T0,T1,H now have arity 2d and Sq0 ,Sq1 , . . . have arity d

1U ⊆ [n] denotes a string w ∈ {0,1}n how?.
Dan Suciu Finite Model Theory – Unit 3 Spring 2018 48 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof of NP ⊆ ∃SO

Let L ⊆ {0,1}∗ be a language in NP. This means:
∃ Turing Machine M and d > 0 s.t. for any input w ⊆ {0,1}n :

M has an accepting computation of length ≤ nd iff w ∈ L.

Define ψM s.t. ([n],U) ⊧ ψM iff1 U ∈ L, as in Trakhtenbrot’s theorem:

ψM =∃ < ∃T0(⋅, ⋅)∃T1(⋅, ⋅)∃H(⋅, ⋅)∃Sq0(⋅)∃Sq1(⋅)⋯ϕM

where ϕM is as in Trakthenbrot’s proof, with two changes:

Assert that the initial configuration is the string U (i.e. not 0’s)

The time/space can now go up to nd : encode it using a d-tuple
instead of a single value in class;
T0,T1,H now have arity 2d and Sq0 ,Sq1 , . . . have arity d

1U ⊆ [n] denotes a string w ∈ {0,1}n how?.
Dan Suciu Finite Model Theory – Unit 3 Spring 2018 48 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

∃SO = NP is a very elegant result!

Main lesson: ∃SO is very expressive.

This suggests a restriction to monadic existential SO. ∃MSO is also
called monadic NP.

Is there a very easy query that is not expressible in ∃MSO?

Connectivity!

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 49 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

∃SO = NP is a very elegant result!

Main lesson: ∃SO is very expressive.

This suggests a restriction to monadic existential SO. ∃MSO is also
called monadic NP.

Is there a very easy query that is not expressible in ∃MSO?
Connectivity!

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 49 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ϕ is the set of numbers n s.t. ϕ has a model
of size n.

Examples:

Let σ = {E} and let ϕ says “E is a matching of the domain”. What is
Spec(ϕ)?

{2n ∣ n ∈ N}.

Let σ = (+,∗,0,1) and ϕ be the axioms of a field. What is Spec(ϕ)?
{pc ∣ p prime, c ≥ 1}.

We study the decision problem: “given n, check if n ∈ Spec(ϕ)”.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 50 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ϕ is the set of numbers n s.t. ϕ has a model
of size n.

Examples:

Let σ = {E} and let ϕ says “E is a matching of the domain”. What is
Spec(ϕ)? {2n ∣ n ∈ N}.

Let σ = (+,∗,0,1) and ϕ be the axioms of a field. What is Spec(ϕ)?
{pc ∣ p prime, c ≥ 1}.

We study the decision problem: “given n, check if n ∈ Spec(ϕ)”.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 50 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ϕ is the set of numbers n s.t. ϕ has a model
of size n.

Examples:

Let σ = {E} and let ϕ says “E is a matching of the domain”. What is
Spec(ϕ)? {2n ∣ n ∈ N}.

Let σ = (+,∗,0,1) and ϕ be the axioms of a field. What is Spec(ϕ)?

{pc ∣ p prime, c ≥ 1}.

We study the decision problem: “given n, check if n ∈ Spec(ϕ)”.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 50 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ϕ is the set of numbers n s.t. ϕ has a model
of size n.

Examples:

Let σ = {E} and let ϕ says “E is a matching of the domain”. What is
Spec(ϕ)? {2n ∣ n ∈ N}.

Let σ = (+,∗,0,1) and ϕ be the axioms of a field. What is Spec(ϕ)?
{pc ∣ p prime, c ≥ 1}.

We study the decision problem: “given n, check if n ∈ Spec(ϕ)”.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 50 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting

The spectrum of a sentence ϕ is the set of numbers n s.t. ϕ has a model
of size n.

Examples:

Let σ = {E} and let ϕ says “E is a matching of the domain”. What is
Spec(ϕ)? {2n ∣ n ∈ N}.

Let σ = (+,∗,0,1) and ϕ be the axioms of a field. What is Spec(ϕ)?
{pc ∣ p prime, c ≥ 1}.

We study the decision problem: “given n, check if n ∈ Spec(ϕ)”.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 50 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting
NETIME = problems solvable in time ⋃c≥0 2cn

(don’t confuse with NEXPTIME = problems solvable in time ⋃c≥0 2n
c
)

Theorem (Jones&Selman’1972)

If the input n is given in binary: {Spec(ϕ) ∣ ϕ ∈ FO} = NETIME

Theorem (Special case of Fagin’s theorem, for σ = ∅ why?)

If the input n is given in unary: {Spec(ϕ) ∣ ϕ ∈ FO} = NP1

The counting problem is: given n, count the number of models #n(ϕ)

Theorem

If the input n is given in unary: {n ↦#n(ϕ) ∣ ϕ ∈ FO} = #P1

In particular, there exists a sentence ϕ s.t. #n(ϕ) is #P1-complete.

This explains why it is hard to compute µn(ϕ) exactly!
Notice: no “natural” hard problem is known for #P1.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 51 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting
NETIME = problems solvable in time ⋃c≥0 2cn

(don’t confuse with NEXPTIME = problems solvable in time ⋃c≥0 2n
c
)

Theorem (Jones&Selman’1972)

If the input n is given in binary: {Spec(ϕ) ∣ ϕ ∈ FO} = NETIME

Theorem (Special case of Fagin’s theorem, for σ = ∅ why?)

If the input n is given in unary: {Spec(ϕ) ∣ ϕ ∈ FO} = NP1

The counting problem is: given n, count the number of models #n(ϕ)

Theorem

If the input n is given in unary: {n ↦#n(ϕ) ∣ ϕ ∈ FO} = #P1

In particular, there exists a sentence ϕ s.t. #n(ϕ) is #P1-complete.

This explains why it is hard to compute µn(ϕ) exactly!
Notice: no “natural” hard problem is known for #P1.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 51 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting
NETIME = problems solvable in time ⋃c≥0 2cn

(don’t confuse with NEXPTIME = problems solvable in time ⋃c≥0 2n
c
)

Theorem (Jones&Selman’1972)

If the input n is given in binary: {Spec(ϕ) ∣ ϕ ∈ FO} = NETIME

Theorem (Special case of Fagin’s theorem, for σ = ∅ why?)

If the input n is given in unary: {Spec(ϕ) ∣ ϕ ∈ FO} = NP1

The counting problem is: given n, count the number of models #n(ϕ)

Theorem

If the input n is given in unary: {n ↦#n(ϕ) ∣ ϕ ∈ FO} = #P1

In particular, there exists a sentence ϕ s.t. #n(ϕ) is #P1-complete.

This explains why it is hard to compute µn(ϕ) exactly!
Notice: no “natural” hard problem is known for #P1.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 51 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting
NETIME = problems solvable in time ⋃c≥0 2cn

(don’t confuse with NEXPTIME = problems solvable in time ⋃c≥0 2n
c
)

Theorem (Jones&Selman’1972)

If the input n is given in binary: {Spec(ϕ) ∣ ϕ ∈ FO} = NETIME

Theorem (Special case of Fagin’s theorem, for σ = ∅ why?)

If the input n is given in unary: {Spec(ϕ) ∣ ϕ ∈ FO} = NP1

The counting problem is: given n, count the number of models #n(ϕ)

Theorem

If the input n is given in unary: {n ↦#n(ϕ) ∣ ϕ ∈ FO} = #P1

In particular, there exists a sentence ϕ s.t. #n(ϕ) is #P1-complete.

This explains why it is hard to compute µn(ϕ) exactly!
Notice: no “natural” hard problem is known for #P1.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 51 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: Spectra and Counting
NETIME = problems solvable in time ⋃c≥0 2cn

(don’t confuse with NEXPTIME = problems solvable in time ⋃c≥0 2n
c
)

Theorem (Jones&Selman’1972)

If the input n is given in binary: {Spec(ϕ) ∣ ϕ ∈ FO} = NETIME

Theorem (Special case of Fagin’s theorem, for σ = ∅ why?)

If the input n is given in unary: {Spec(ϕ) ∣ ϕ ∈ FO} = NP1

The counting problem is: given n, count the number of models #n(ϕ)

Theorem

If the input n is given in unary: {n ↦#n(ϕ) ∣ ϕ ∈ FO} = #P1

In particular, there exists a sentence ϕ s.t. #n(ϕ) is #P1-complete.

This explains why it is hard to compute µn(ϕ) exactly!
Notice: no “natural” hard problem is known for #P1.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 51 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;

FO(LeastFixpoint,<) =FO(InflationaryFixpoint,<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO=NP

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 52 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints

Let U be a finite set, and f ∶ 2U → 2U .

A fixpoint is a set X ⊆ U s.t. f (X ) = X .

A least fixpoint is a fixpoint X0 s.t. for any fixpoint X , X0 ⊆ X .

When it exists, the least fixpoint is unique why?; denote it lfp(f ).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 53 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoints (cont’d)

Fix finite U, f ∶ 2U → 2U . Define f 0 def= ∅, f n+1 def= f (f n), f∞ def= ⋃n f
n.

Theorem (Tarski-Knaster)

If f is monotone (X ⊆ Y → f (X ) ⊆ f (Y )) then lfp(f ) = f∞.

Definition (Partial Fixpoint)

If f n+1 = f n for n ≥ 0, then pfp(f ) def= f n is called the partial fixpoint of f .

f is inflationary if X ⊆ f (X ); then f∞ is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is ifp(f ) def= g∞, where g(X ) def= X ∪ f (X ).

When f is monotone, lfp(f ) = ifp(f ) = pfp(f ) = f∞.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 54 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Fixpoint Logics

Let R /∈ σ be a new relational symbol. Define three new formulas:

[lfpR,xϕ(R,x)][t]
[ifpR,xϕ(R,x)][t]
[pfpR,xϕ(R,x)][t]

where ∣x ∣ = ∣t ∣ = arity(R); x are free in ϕ, and bound in [lfpR,x(⋯)].
Their meaning in a structure A is this. Define the function:

f (R) = {a ∣ (A,R) ⊧ ϕ[a/x]}

Then the formulas “mean” lfp(f ),ifp(f ),pfp(f ) respectively2.

Three new logics: FO(lfp),FO(ifp),FO(pfp).

2For lfp we must ensure that ϕ is monotone. See homework.
Dan Suciu Finite Model Theory – Unit 3 Spring 2018 55 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

This is horrible syntax. Here is how we check if a,b are connected in
a graph G = (V ,E):

[lfpT ,x ,y(E(x , y) ∨ ∃z(E(x , z) ∧T (z , y)))](a,b)

Now you really love datalog, were we write:

T (x , y) ←E(x , y)
T (x , y) ←E(x , z),T (z , y)

Answer() ←T (a,b)

We made a few arbitrary choices: allow free variables? allow
simultaneous recursion? It turns out these don’t add expressive
power, so use them if needed.

Gurevitch and Shelah proved FO(lfp) = FO(ifp);
We will only discuss ifp and pfp.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 56 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: The Win-Move Game
The game is played by two players on a graph G . A pebble is placed
initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can’t move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) ←∃y(E(x , y) ∧ ¬S(y)) or [pfpS,x∃y(E(x , y) ∧ ¬S(y))](x)

This is not monotone, hence may not have a fixpoint!
When it has a fixpoint, then it can obtain as:

S(x) ←∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))

Or:

[lfpS ,x∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))](x)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 57 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: The Win-Move Game
The game is played by two players on a graph G . A pebble is placed
initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can’t move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) ←∃y(E(x , y) ∧ ¬S(y)) or [pfpS,x∃y(E(x , y) ∧ ¬S(y))](x)

This is not monotone, hence may not have a fixpoint!
When it has a fixpoint, then it can obtain as:

S(x) ←∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))

Or:

[lfpS ,x∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))](x)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 57 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: The Win-Move Game
The game is played by two players on a graph G . A pebble is placed
initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can’t move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) ←∃y(E(x , y) ∧ ¬S(y)) or [pfpS,x∃y(E(x , y) ∧ ¬S(y))](x)

This is not monotone, hence may not have a fixpoint!

When it has a fixpoint, then it can obtain as:

S(x) ←∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))

Or:

[lfpS ,x∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))](x)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 57 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Detour: The Win-Move Game
The game is played by two players on a graph G . A pebble is placed
initially on a node, then players take turn, and each player may move the
pebble along an edge. The player who can’t move loses. Write a query to
compute the positions from which the first player has a winning strategy.

S(x) ←∃y(E(x , y) ∧ ¬S(y)) or [pfpS,x∃y(E(x , y) ∧ ¬S(y))](x)

This is not monotone, hence may not have a fixpoint!
When it has a fixpoint, then it can obtain as:

S(x) ←∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))

Or:

[lfpS ,x∃y(E(x , y) ∧ (∀zE(y , z) → S(z)))](x)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 57 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO[ifp] captures PTIME

Theorem

(1) FO[ifp] ⊆ PTIME and (2) FO[ifp,<] = PTIME.

Proof in class:

1 FO[ifp] ⊆ PTIME Show that the data complexity is PTIME.

2 PTIME ⊆ FO[ifp,<]. Given a PTIME language L ⊆ {0,1}∗, write an
FO(ifp,<)-formula ϕ s.t. on any input structure ([n],U,<), ϕ is
true iff U ∈ L. Note: we are given the order < for free.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 58 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO[pfp] captures PSPACE

Theorem

(1) FO[pfp] ⊆ PSPACE and (2) FO[pfp,<] = PSPACE.

Proof in class:

1 FO[pfp] ⊆ PSPACE . The hard part is negation: Immerman proved
that ¬pfp can be rewritten as some pfp, and this implied that
PSPACE is closed under negation.

2 PSPACE ⊆ FO[pfp,<]. Given a PSPACE language L ⊆ {0,1}∗, write
an FO(pfp,<)-formula ϕ s.t. on any input structure ([n],U,<), ϕ is
true iff U ∈ L. Note: we can’t use the time any more.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 59 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)?

Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Do we need order, e.g. could be the case that FO(lfp) = PTIME
(without <)? Yes: FO(lfp) ⊆ Lω∞ω and cannot express EVEN.

Clearly FO(ifp) ⊆ FO(pfp). Could they be equal?

▸ If FO(ifp) = FO(pfp) then they remain = after adding <, hence
PTIME = PSPACE .

▸ Abiteboul and Vianu proved the converse: if PTIME = PSPACE then
FO(ifp) = FO(pfp). The proof uses the FOk types in a very clever
way discuss in class.

If we could use some game to separate FO(ifp) ≠ FO(pfp), then we
have proven PTIME ≠ PSPACE !

Main open problem in FMT: find a logic for PTIME (no order)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 60 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;
will omit this

FO(LeastFixpoint,<) =FO(InflationaryFixpoint,<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO=NP

Next: combined complexity.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 61 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity

We sill study both FO and the restriction to the quantifier prefix ∃∗.
∃∗ is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer←E(x , y) ∧ E(y , z) ∧ E(z , y)
Answer←¬E(x , y) ∧ ¬E(y , z) ∧ ¬E(z , y)

what does it say?

In the ∃∗ fragment:

∃x∃y∃z(E(x , y) ∧ E(y , z) ∧ E(z , y) ∨ ¬E(x , y) ∧ ¬E(y , z) ∧ ¬E(z , y))

Special case: Conjunctive Query (CQ) means no ∨ and no ¬.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 62 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity

We sill study both FO and the restriction to the quantifier prefix ∃∗.
∃∗ is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer←E(x , y) ∧ E(y , z) ∧ E(z , y)
Answer←¬E(x , y) ∧ ¬E(y , z) ∧ ¬E(z , y)

what does it say?
In the ∃∗ fragment:

∃x∃y∃z(E(x , y) ∧ E(y , z) ∧ E(z , y) ∨ ¬E(x , y) ∧ ¬E(y , z) ∧ ¬E(z , y))

Special case: Conjunctive Query (CQ) means no ∨ and no ¬.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 62 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity

Theorem

The combined complexity of the ∃∗ fragment of FO is in NP.

Theorem

The combined complexity of FO is in PSPACE.

In class: give a algorithm that runs in NP (PSPACE) and does this: given
A, ϕ, checks if A ⊧ ϕ.

Can we design better algorithms?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 63 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity

Theorem

The combined complexity of the ∃∗ fragment of FO is in NP.

Theorem

The combined complexity of FO is in PSPACE.

In class: give a algorithm that runs in NP (PSPACE) and does this: given
A, ϕ, checks if A ⊧ ϕ.

Can we design better algorithms?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 63 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Combined Complexity

No better algorithm is possible!

Then there exists a structure A such that:

Theorem

The expression complexity for CQ (a subset of ∃∗-FO) is NP-complete.

Theorem

The expression complexity for FO is PSPACE-complete.

The structure A is the same in both. We will prove them together.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 64 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F (X1, . . . ,Xn) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1X1,Q2X2, . . .F (X1, . . . ,Xn), check if it is true.
E.g. ∀X1∃X2∀X3(X1 ∨ ¬X2) ∧ (¬X1 ∨X2 ∨X3).

SAT is the special case ∃X1⋯∃XnF (X1, . . . ,Xn).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 65 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F (X1, . . . ,Xn) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1X1,Q2X2, . . .F (X1, . . . ,Xn), check if it is true.
E.g. ∀X1∃X2∀X3(X1 ∨ ¬X2) ∧ (¬X1 ∨X2 ∨X3).

SAT is the special case ∃X1⋯∃XnF (X1, . . . ,Xn).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 65 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F (X1, . . . ,Xn) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1X1,Q2X2, . . .F (X1, . . . ,Xn), check if it is true.
E.g. ∀X1∃X2∀X3(X1 ∨ ¬X2) ∧ (¬X1 ∨X2 ∨X3).

SAT is the special case ∃X1⋯∃XnF (X1, . . . ,Xn).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 65 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F (X1, . . . ,Xn) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1X1,Q2X2, . . .F (X1, . . . ,Xn), check if it is true.
E.g. ∀X1∃X2∀X3(X1 ∨ ¬X2) ∧ (¬X1 ∨X2 ∨X3).

SAT is the special case ∃X1⋯∃XnF (X1, . . . ,Xn).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 65 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Review of SAT and QBF

The SAT problem is: given a Boolean formula F (X1, . . . ,Xn) check if it
has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula
Q1X1,Q2X2, . . .F (X1, . . . ,Xn), check if it is true.
E.g. ∀X1∃X2∀X3(X1 ∨ ¬X2) ∧ (¬X1 ∨X2 ∨X3).

SAT is the special case ∃X1⋯∃XnF (X1, . . . ,Xn).

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if
F is a 3CNF.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 65 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

In a 3CNF there are 4 kinds of 3-clauses:

X ∨Y ∨ Z ¬X ∨Y ∨ Z ¬X ∨ ¬Y ∨ Z ¬X ∨ ¬Y ∨ ¬Z

Consider the structure A with domain {0,1} and with four relations:

R0=

0 0 1
0 1 0
0 1 1
1 0 1
1 0 1
1 1 0
1 1 1

R1 =

1 0 1
1 1 0
1 1 1
0 0 1
0 0 1
0 1 0
0 1 1

R2 =

1 1 1
1 0 0
1 0 1
0 1 1
0 1 1
0 0 0
0 0 1

R3 =

1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

SAT to CQ by example:
(X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X3 ∨ X4) ∧ (X2 ∨ X3 ∨ X4) ↦ ∃x1∃x2∃x3∃x4R0(x1, x2, x3) ∧ R1(x3, x1, x4) ∧ R0(x2, x3, x4)

QBE to FO by example:
∀X1∃X2∀X3(X1∨X2∨X3)∧(X1∨¬X3∨X4)∧(X2∨X3∨X4) ↦ ∀x1∃x2∀x3∃x4R0(x1, x2, x3)∧R1(x3, x1, x4)∧R0(x2, x3, x4)

In both cases: F is SAT iff A ⊧ ϕ why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 66 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

In a 3CNF there are 4 kinds of 3-clauses:

X ∨Y ∨ Z ¬X ∨Y ∨ Z ¬X ∨ ¬Y ∨ Z ¬X ∨ ¬Y ∨ ¬Z

Consider the structure A with domain {0,1} and with four relations:

R0=

0 0 1
0 1 0
0 1 1
1 0 1
1 0 1
1 1 0
1 1 1

R1 =

1 0 1
1 1 0
1 1 1
0 0 1
0 0 1
0 1 0
0 1 1

R2 =

1 1 1
1 0 0
1 0 1
0 1 1
0 1 1
0 0 0
0 0 1

R3 =

1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

SAT to CQ by example:
(X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X3 ∨ X4) ∧ (X2 ∨ X3 ∨ X4) ↦ ∃x1∃x2∃x3∃x4R0(x1, x2, x3) ∧ R1(x3, x1, x4) ∧ R0(x2, x3, x4)

QBE to FO by example:
∀X1∃X2∀X3(X1∨X2∨X3)∧(X1∨¬X3∨X4)∧(X2∨X3∨X4) ↦ ∀x1∃x2∀x3∃x4R0(x1, x2, x3)∧R1(x3, x1, x4)∧R0(x2, x3, x4)

In both cases: F is SAT iff A ⊧ ϕ why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 66 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

In a 3CNF there are 4 kinds of 3-clauses:

X ∨Y ∨ Z ¬X ∨Y ∨ Z ¬X ∨ ¬Y ∨ Z ¬X ∨ ¬Y ∨ ¬Z

Consider the structure A with domain {0,1} and with four relations:

R0=

0 0 1
0 1 0
0 1 1
1 0 1
1 0 1
1 1 0
1 1 1

R1 =

1 0 1
1 1 0
1 1 1
0 0 1
0 0 1
0 1 0
0 1 1

R2 =

1 1 1
1 0 0
1 0 1
0 1 1
0 1 1
0 0 0
0 0 1

R3 =

1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

SAT to CQ by example:
(X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X3 ∨ X4) ∧ (X2 ∨ X3 ∨ X4) ↦ ∃x1∃x2∃x3∃x4R0(x1, x2, x3) ∧ R1(x3, x1, x4) ∧ R0(x2, x3, x4)

QBE to FO by example:
∀X1∃X2∀X3(X1∨X2∨X3)∧(X1∨¬X3∨X4)∧(X2∨X3∨X4) ↦ ∀x1∃x2∀x3∃x4R0(x1, x2, x3)∧R1(x3, x1, x4)∧R0(x2, x3, x4)

In both cases: F is SAT iff A ⊧ ϕ why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 66 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

In a 3CNF there are 4 kinds of 3-clauses:

X ∨Y ∨ Z ¬X ∨Y ∨ Z ¬X ∨ ¬Y ∨ Z ¬X ∨ ¬Y ∨ ¬Z

Consider the structure A with domain {0,1} and with four relations:

R0=

0 0 1
0 1 0
0 1 1
1 0 1
1 0 1
1 1 0
1 1 1

R1 =

1 0 1
1 1 0
1 1 1
0 0 1
0 0 1
0 1 0
0 1 1

R2 =

1 1 1
1 0 0
1 0 1
0 1 1
0 1 1
0 0 0
0 0 1

R3 =

1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

SAT to CQ by example:
(X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X3 ∨ X4) ∧ (X2 ∨ X3 ∨ X4) ↦ ∃x1∃x2∃x3∃x4R0(x1, x2, x3) ∧ R1(x3, x1, x4) ∧ R0(x2, x3, x4)

QBE to FO by example:
∀X1∃X2∀X3(X1∨X2∨X3)∧(X1∨¬X3∨X4)∧(X2∨X3∨X4) ↦ ∀x1∃x2∀x3∃x4R0(x1, x2, x3)∧R1(x3, x1, x4)∧R0(x2, x3, x4)

In both cases: F is SAT iff A ⊧ ϕ why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 66 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

In a 3CNF there are 4 kinds of 3-clauses:

X ∨Y ∨ Z ¬X ∨Y ∨ Z ¬X ∨ ¬Y ∨ Z ¬X ∨ ¬Y ∨ ¬Z

Consider the structure A with domain {0,1} and with four relations:

R0=

0 0 1
0 1 0
0 1 1
1 0 1
1 0 1
1 1 0
1 1 1

R1 =

1 0 1
1 1 0
1 1 1
0 0 1
0 0 1
0 1 0
0 1 1

R2 =

1 1 1
1 0 0
1 0 1
0 1 1
0 1 1
0 0 0
0 0 1

R3 =

1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

SAT to CQ by example:
(X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X3 ∨ X4) ∧ (X2 ∨ X3 ∨ X4) ↦ ∃x1∃x2∃x3∃x4R0(x1, x2, x3) ∧ R1(x3, x1, x4) ∧ R0(x2, x3, x4)

QBE to FO by example:
∀X1∃X2∀X3(X1∨X2∨X3)∧(X1∨¬X3∨X4)∧(X2∨X3∨X4) ↦ ∀x1∃x2∀x3∃x4R0(x1, x2, x3)∧R1(x3, x1, x4)∧R0(x2, x3, x4)

In both cases: F is SAT iff A ⊧ ϕ why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 66 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

Data complexity of FO is AC 0 very low!

For database fans: the expression and combined complexity of CQ
(and hence select-from-where SQL queries) is NP-complete.

Expression complexity and combined complexity of FO are
PSPACE -complete very high!

We omit the expression complexity of extensions of FO (hint: they
get even higher).

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 67 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Representing Strings

Fix an alphabet Σ, e.g. Σ = {a,b, c}.
A word w ∈ Σ∗ can be encoded as a structure over the alphabet
σ = (<,Pa(⋅),Pb(⋅),Pc(⋅)).
In class represent aabaca.

A sentence ϕ defines a language {w ∣ w ⊧ ϕ}.
E.g. ∀x∀y(x < y ∧ Pa(x) ∧ Pa(y) → ∃z(x < y < z ∧ Pb(z)))
Assuming alphabet {a,b} it says “between any two a’s there is a b”:
b∗.(a.b+)∗.(a∣ε)

What languages can be define in FO?

What languages can be define in MSO?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 68 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Representing Strings

Fix an alphabet Σ, e.g. Σ = {a,b, c}.
A word w ∈ Σ∗ can be encoded as a structure over the alphabet
σ = (<,Pa(⋅),Pb(⋅),Pc(⋅)).
In class represent aabaca.

A sentence ϕ defines a language {w ∣ w ⊧ ϕ}.
E.g. ∀x∀y(x < y ∧ Pa(x) ∧ Pa(y) → ∃z(x < y < z ∧ Pb(z)))
Assuming alphabet {a,b} it says “between any two a’s there is a b”:
b∗.(a.b+)∗.(a∣ε)

What languages can be define in FO?

What languages can be define in MSO?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 68 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Representing Strings

Fix an alphabet Σ, e.g. Σ = {a,b, c}.
A word w ∈ Σ∗ can be encoded as a structure over the alphabet
σ = (<,Pa(⋅),Pb(⋅),Pc(⋅)).
In class represent aabaca.

A sentence ϕ defines a language {w ∣ w ⊧ ϕ}.
E.g. ∀x∀y(x < y ∧ Pa(x) ∧ Pa(y) → ∃z(x < y < z ∧ Pb(z)))
Assuming alphabet {a,b} it says “between any two a’s there is a b”:
b∗.(a.b+)∗.(a∣ε)

What languages can be define in FO?

What languages can be define in MSO?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 68 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Regular Expressions

Fix an alphabet Σ. Regular expressions are:

E ∶∶=∅∣ε∣a ∈ Σ

E ∪ E ∣E .E
C(E) complement

E∗

E is called star-free if it is equivalent to an expression without ∗.
In class assuming Σ = {a,b}, which expressions are star-free?

C(∅) b∗.(a.b∗)∗ (a.b)∗ (a.a)∗

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 69 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO on Strings

Theorem

A language L is star-free iff it is defined in FO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 70 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

MSO on Strings

Theorem

A language L is regular iff it is defined in MSO.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 71 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Proof

TBD (or, better, in class)

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 72 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Applications

There exists a regular language which is not star-free. which one?

SAT for MSO on strings is decidable. what is the complexity?

The data complexity for MSO on strings is linear time! what is the
data complexity of MSO?

On strings: ∃MSO = ∀MSO =MSO why?

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 73 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Courcelle’s Theorem

Let C be a class of structures with bounded tree-width. discuss tw in class;
we will return to it.

Theorem (Courcelle)

Every formula in ϕ ∈MSO can be evaluated in linear time over structures
of bounded tree-width.

This is an amazing result! Caveats:

The expression complexity is horrible (non-elementary).

We need a tree decomposition of the structure (i.e. database) A: this
is NP-complete in general.

If we have a promise that the treewidth is ≤ k , then we can compute
a TD in time O(nk); but “real” databases rarely have bounded tw.

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 74 / 75



Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Discussion

MSO is very powerful in general: Monadic NP.

But over strings it can only express regular languages: linear time.

Even over trees, or “tree-like” structures MSO is still in linear time.

Problem: data in real life is not “tree-like”!

Dan Suciu Finite Model Theory – Unit 3 Spring 2018 75 / 75


	Trakhtenbrot
	Finite Controllability
	Descriptive Complexity
	Logic on Strings

