Finite Model Theory Unit 3

Dan Suciu

Spring 2018

599c: Finite Model Theory

Unit 3: Logic and Complexity

Resources

- Libkin, Finite Model Theory
- Immerman, Descriptive Complexity (Ch.3)
- Grädel, Kolaitis, Vardi, On the Decision Problem for Two-Variable First-Order Logic.
- Vardi, Why is Modal Logic so Robustly Decidable?
- Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu, On the Unusual Effectiveness of Logic in Computer Science

Logic and Complexity

Two problems:

• Satisfiability: given φ , does it have a (finite) model **A**?

• Model checking: given a finite **A** and φ , is **A** a model of φ ?

Trakhtenbrot's Theorem

A sentence φ is finitely satisfiable if there exists a finite model \boldsymbol{A} .

Theorem (Trakhtenbrot)

Suppose the vocabulary σ has at least one relation with arity ≥ 2 . Then the problem "given φ check if it is finitely satisfiable" is undecidable.

What about unary vocabularies? ⇒ Homework!

Before we prove it, let's see some consequences.

Trakthenbrot's Theorem: Consequence 1

Denote $\varphi \equiv_{\text{fin}} \psi$ if φ, ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then the following problem is undecidable: "given two sentences φ, ψ , check whether $\varphi \equiv_{fin} \psi$.".

Proof in class

Proof: Reduce it to UNSAT. Assuming we have an oracle for $\varphi \equiv_{\text{fin}} \psi$, we can check UNSAT by checking if $\varphi \equiv_{\text{fin}} \mathbf{F}$.

Trakthenbrot's Theorem: Consequence 2

Let $f: \mathbb{N} \to \mathbb{N}$ a function with the following property: every finitely satisfiable sentence φ has a model of size $\leq f(|\varphi|)$.

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then no computable function f exists with the property above.

Proof in class

Proof: If we had such an f, then we can check finite satisfiability as follows. Given φ , compute $n = f(|\varphi|)$, and try out all structures of size $\leq n$:

- If one of the structures is a model then answer YES.
- Otherwise answer NO.

Discussion

Simple fact:

Fact

The set of finitely satisfiable sentences φ is recursively enumerable.

Why?

Proof: for each n = 1, 2, 3, ... enumerate all structures \boldsymbol{A} of size $\leq n$, and all FO[n] sentences φ that are true in \boldsymbol{A} .

What is FO[n]? Is it finite?

It is FO restricted to quantifier rank n, and we know it is finite.

Trakthenbrot's Theorem: Consequence 3

"Finiteness is not axiomatizable."

We say that φ is finitely valid, $\models_{fin} \varphi$, if it holds in every finite model \boldsymbol{A} .

Corollary

There is no r.e. set of axioms Σ such that $\Sigma \vdash \varphi$ iff $\vDash_{fin} \varphi$.

Proof in class

Proof:

- ullet By the previous fact, the set of finitely satisfiable sentences φ is r.e.
- Hence, the set of finitely valid sentences is co-r.e. (since $\models_{\text{fin}} \varphi$ iff $\neg \varphi$ is not finitely satisfiable).
- Since Σ is r.e. the set $\{\varphi \mid \Sigma \vdash \varphi\}$ is r.e.
- If $\Sigma \vdash \varphi$ iff $\vDash_{fin} \varphi$ then this set is both r.e. and co-r.e., hence it is decidable. why?

Proof of Trakhtenbrot's Theorem

By reduction from the Halting Problem:

• Given a Turing Machine M, does M halt on the empty input?

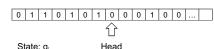
The proof consist of the following: given M we will construct a sentence φ_M s.t. M halts iff φ_M is finitely satisfiable.

State: q

Review: Turing Machines Basics

$$M = (Q, \Sigma, \Delta, q_0, Q_F)$$
 where:

- $Q = \{q_0, q_1, \dots, q_m\}$ are the states; q_0 is the initial state; $Q_F \subseteq Q$ are the final states.
- \bullet Σ is the tape alphabet; we take $\Sigma = \{0, 1\}$
- $\Delta \subseteq Q \times \Sigma \times \Sigma \times \{\text{Left}, \text{Right}\} \times Q$ are the transitions.



Review: Turing Machines Basics

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

An accepting computation is a sequence $C = c_1, c_2, ..., c_T$ where:

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- c_T is a final configuration what does that mean?
- Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

Proof Plan

M halts iff

 $\exists C$, C is an accepting computation of M.

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \vDash \varphi.$

This suggests the proof plan:

- Computation **C** ≡ structure **A**.
- C is an accepting computation iff A is a model of φ .

Proof Details

Fix a Turing Machine M.

• Describe a vocabulary σ_M and sentence φ_M whose models correspond precisely to accepting computations of M.

• Describe an FO encoding of σ_M and φ_M into a single binary relation.

Proof Details

Trakhtenbrot

Fix
$$M = (Q, \{0,1\}, \Delta, q_0, Q_F)$$
.
Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

- < is a total order</p>
- $T_0(t,p)$, $T_1(t,p)$: the tape content at time t position p is 0 or 1.
- H(t,p): the head at time t is on position p.
- $S_q(t)$: the Turning Machine is is stated q at time t.

Proof Details

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

The sentence φ_M asserts the following:

- General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.
- At time $t = \min$, the TM is in the initial configuration.
- At time $t = \max$, the TM is in an accepting configuration.
- Every transition from t to t+1 is correct

details in class (also next slides)

Proof Details: General Consistency

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

- < is a total order.</p>
- Exactly one tape symbol: $\forall t, \forall p (T_0(t, p) \lor T_1(t, p)) \land \neg (T_0(t, p) \land T_1(t, p))$
- Exactly one head position at each time: ...
- Exactly one state at each time: ...

Proof Details: Initial Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time $t = \min$, the TM is in the initial configuration:

$$\forall p T_0(\min, p) \land H(\min, \min) \land S_{q_0}(\min)$$

Note that we can name min by $\exists x \neg \exists y (y < x)$; similarly max.

Dan Suciu

Proof Details: Final Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time t = max, the TM is in the final configuration:

$$\bigvee_{q \in Q_{\mathcal{F}}} S_q(\max)$$

Proof Details: All Transitions are Correct

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

Each transition from t to t+1 corresponds to one valid $\delta \in \Delta$:

$$\forall t(t < \max \rightarrow \bigvee_{\delta \in \Lambda} \mathsf{CHECK}_{\delta}(t))$$

Proof Details: All Transitions are Correct (Detail)

$$M = (Q, \{0,1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

Example transition: $\delta = (q_5, 1, 0, \text{Left}, q_3)$ ("If in state q_5 and the tape is 1, then write 0, move Left, enter q_3 ")

$$\mathsf{CHECK}_{\delta}(t) = S_{q_5}(t) \qquad \qquad \mathsf{Check} \text{ we are in } q_5$$

$$\wedge \forall s (\neg H(t,s) \rightarrow (T_0(t,s) \leftrightarrow T_0(t+1,s))) \qquad \mathsf{Leave} \text{ non-head}$$
 symbols unchaged
$$\wedge \forall s (H(t,s) \rightarrow T_1(t,s) \wedge T_0(t+1,s)) \qquad \mathsf{the} \text{ head was } 1$$
 set it to 0
$$\wedge H(t+1,s-1) \qquad \mathsf{move} \text{ to the left}$$

$$\wedge S_{q_3}(t+1) \qquad \mathsf{enter} \ q_3$$

Discussion

Trakhtenbrot

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of A? The number of time steps required by M.
- Is **A** unique? Not necessarily. But it is unique when **M** is deterministic.
- Is succ enough, or do we need <? succ is not finitely axiomatizable.
- We still need to reduce the vocabulary σ_M to a vocabulary with a single binary relation E.

FO Reduction

Let $\sigma = \{S_1, \dots, S_m\}, \tau = \{T_1, \dots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function $Q : STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

A Boolean query, or a problem, is a function $P : STRUCT[\sigma] \rightarrow \{0,1\}$.

A First Order Query Q consists of n formulas, $Q = (q_1, \ldots, q_n)$, where each q_j has arity(T_j) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

$$B \stackrel{\mathsf{def}}{=} A$$

same domain

$$\forall j: T_j^B \stackrel{\mathsf{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$$

Q maps problems on STRUCT[τ] to problems on STRUCT[σ] ("in reverse"): $P \mapsto P \circ Q$, i.e. $\hat{P}(\mathbf{A}) \stackrel{\text{def}}{=} P(Q(\mathbf{A}))$.

FO Reduction

```
Query \mathsf{STRUCT}[\sigma] \to \mathsf{STRUCT}[\tau] (Problems on \mathsf{STRUCT}[\tau] ) \to (Problems on \mathsf{STRUCT}[\sigma])
```

Definition

A First Order Reduction is an FO query Q from σ to τ . It "reduces" a problem P' on τ from the problem $P \stackrel{\text{def}}{=} P' \circ Q$ on σ .

Obviously, P' is at least as hard as P.

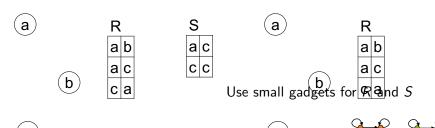
Every Structure is FO-Reducible to a Graph

 $\sigma = \{E\}$ a graph.

Trakhtenbrot

 τ = any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$.

Question: Given a τ -structure $\boldsymbol{A}=(R^A,S^A)$, encode it as a graph G s.t. you can decode it: $R^A=Q_1(\boldsymbol{G}),\ S^A=Q_2(\boldsymbol{G})$



The query (1) first checks that G is a correct encoding how?, then (2) decodes R and S how?

Summary of Trakhtenbrot's Theorem

Assume an oracle: given φ , check if φ has a finite model \boldsymbol{A} . We reduce the halting problem for a Turning Machine M.

- Construct the vocabulary σ_M and the sentence φ_M that says "the model ${\bf A}$ represents an accepting computation of M.
- Consider the FO reduction Q from a graph $\{E\}$ to σ_M , and denote $\psi_M = \varphi \circ Q$. This is a sentence over the vocabulary $\{E\}$.
- Claim: ψ_M is satisfiable iff M terminates. Proof:
 - If M terminates, then there exists a model $\mathbf{A} \models \varphi_M$. From \mathbf{A} , we construct a graph encoding \mathbf{G} s.t. $Q(\mathbf{G}) = \mathbf{A}$. This is a model of ψ_M .
 - If ψ_M has a model \boldsymbol{G} then: (a) if \boldsymbol{G} is an invalid encoding, then $Q(\boldsymbol{G})$ returns the empty structure \boldsymbol{A} , which is not a model of φ_M . (b) otherwise, \boldsymbol{G} is a valid encoding of some structure \boldsymbol{A} , which, in turn, represents an accepting computation.

Trakhtenbrot

Discussion

Satisfiability in the finite or in general (finite or infinite) are quite different!

- The problem "given φ , is φ finitely satisfiable?" is r.e. why?
- The problem "given φ , is φ satisfiable?" is co-r.e. why?

The Finite Model Property

Let $L \subseteq FO$ be a subset of FO.

Definition

We say that L has the finite model property, or it is *finitely controllable* if: $\forall \varphi \in L$, φ has a model iff φ has a finite model.

Definition

We say that L has the small model property if there exists a computable function $f: \mathbb{N} \to \mathbb{N}$ s.t.

 $\forall \varphi \in L, \varphi \text{ has a model iff } \varphi \text{ has a finite model of size } \leq f(|\varphi|).$

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check $SAT(\varphi)$ enumerate all finite structures **A** AND all proofs $\vdash \psi$:

- If φ is SAT it is also finitely satisfiable, hence some model \boldsymbol{A} will show up in the first list; answer YES.
- If φ is UNSAT then $\neg \varphi$ will show up in the second list; answer NO.

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix $\exists^* \forall^*$. L is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof in class

$$\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$$

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t.

$$\mathbf{A} \vDash \forall y_1 \cdots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then, obviously:

$$\mathbf{A}_0 \vDash \forall y_1 \cdots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$$

what is the "small model" function $f(|\varphi|)$?

Application 2: *FO*²

Theorem

 FO^2 has the small model property, with an exponential f. More precisely: for any sentence in $\varphi \in FO^2$, if φ is satisfiable then it has a model of size $2^{O(|\varphi|)}$. In particular, FO^2 is decidable.

We omit the proof. Please check Grädel, Kolaitis, Vardi.

Descriptive Complexity

Main topic: correspondence between logics and computational complexity classes.

Descriptive Complexity

Fix a class C of finite structures.

• Examples: (1) all strings $w \in \{0,1\}^*$; (2) all graphs (V,E); (3) all ordered graphs (V, E, <); (4) all strings representing FO² sentences. $\varphi \in \{x, y, R, (,), \rightarrow, \neg, \forall\}^*$.

A problem is a function $P: \mathcal{C} \to \{0, 1\}$.

- A computational complexity class is the set of problems that can be answered within some fixed computational resources. E.g. LOGSPACE, PTIME, PSPACE, etc.
- A descriptive complexity class is the set of problems that can be represented in some fixed logic language L. E.g. FO, FO+Fixpoint, ∃SO, SO, etc.

Computational Complexity

Very brief review of computational complexity classes:

- AC⁰
- LOGSPACE
- NLOGSPACE
- PTIME
- NP
- PSPACE
- (what about NPSACE?)
- EXPTIME
- NEXPTIME

Computational Complexity of Model Checking

The model checking problem is: given $\mathbf{A} \in \mathcal{C}, \varphi \in \mathcal{L}$, check whether $\mathbf{A} \models \varphi$.

Vardi's classification of complexity:

Data complexity: φ is fixed, study the complexity as a function of \boldsymbol{A} .

Note: different complexity for every φ .

We focus on data complexity

Query complexity: (or expression complexity):

A is fixed, study the complexity as a function of φ .

Combined complexity: both \mathbf{A}, φ are input.

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;
 will omit this
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- SO=NP

All these refer to data complexity. We will briefly discuss expression complexity at the end.

Encodings

• A Turning Machine (or other computational device), accepts a language $L \subseteq \{0,1\}^*$.

• A sentence φ defines a set of models \subseteq STRUCT[σ].

• To compare them, we need some encoding between them.

Encoding STRUCT[σ] to $\{0,1\}^*$

Encode $\mathbf{A} = ([n], R_1^A, R_2^A, \dots)$ as follows:

- Start with 01ⁿ.
- Encode R_i^A using "adjacency matrix", of length $n^{arity(R_i)}$
- Example:

 $\underbrace{0111}_{n=3} \underbrace{010001010}_{3\times 3 \text{ matrix}}$

• Length of encoding: $n^{1+\operatorname{arity}(R_1)+\operatorname{arity}(R_2)+\cdots}=n^{O(1)}=\operatorname{poly}(n)$.

Choose $\sigma = \{U(\cdot)\}$ and encode $w \in \{0,1\}^*$ as the structure ([n], U), where $U \subseteq [n]$.

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- BSO=NP

Non-uniform AC⁰

Fix n > 0. A Boolean circuit C with n inputs is a DAG where:

- Leaves are labeled with input variables $X_1, \ldots, X_n \in \{0, 1\}$.
- Internal nodes are labeled with ∨, ∧ (unbounded fan-in), and ¬.
- There is one root node.

$$size(C) \stackrel{\text{def}}{=} number of gates$$

 $depth(C) \stackrel{\text{def}}{=} length of longest path$

Definition

A language $L \subseteq \{0,1\}^*$ is in non-uniform AC^0 if forall n there exists a circuit C_n s.t.

- C_n computes $L \cap \{0,1\}^n$,
- size(C_n) = $n^{O(1)}$ (polynomial in n),
- $depth(C_n) = O(1)$ (constant, indep. on n).

Example: given a graph G = ([n], E), check $\forall x \forall y \exists z (E(x, z) \land E(z, y))$ draw C_n (actually C_{n^2}) in class.

Theorem

The data complexity of any $\varphi \in FO$ is in non-uniform AC^0 . This still holds if we include in FO all interpreted predicate $(+, <, \ldots)$. Thus $FO(ALL) \subseteq AC^0$, where ALL means all predicates on [n].

Discussion

- AC⁰ is supposed to be the lowest complexity class, but there's a wrinkle:
- If L is in non-uniform AC^0 , is L computable? NO! E.g. L is the set of all words of length n, where n encodes a Turning Machine that halts on the empty input. Describe C_n in class
- Recall: EVEN is the problem "is the domain size n an even number?". Obviously EVEN ∈ FO[ALL] why?
- Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function $X_1 \oplus X_2 \oplus \cdots \oplus X_n$ is not in non-uniform AC^0 discuss in class
- PARITY is the problem: given a structure with one unary relation, $([n], U \subseteq [n])$, check whether |U| is even. Then PARITY $\notin FO[ALL]$.

Uniform AC⁰

Informally: L is in "uniform" AC^0 if there exists an easily computable function $n \mapsto C_n$ (usually LOGSPACE).

A better definition uses FO. For fixed n, define these relations on [n]:

+ =
$$\{(x, y, z) | x + y = z\}$$

* = $\{(x, y, z) | x * y = z\}$
<= $\{(x, y) | x < y\}$
BIT = $\{(x, y) | \text{the } y\text{'s bit of } x \text{ is } 1\}$

One can show FO(+,*) = FO(<,BIT) (we omit the proof).

Definition

A language $L \subseteq \{0,1\}^*$ is in uniform AC^0 if it is definable in FO(+,*); equivalently, it is definable in FO(<,BIT).

- Main take away: AC^0 is FO.
- The reason is simple: \vee, \wedge have bounded fan-in, \exists, \forall have unbounded fan-in, and the depth is constant.
- But there is a fine print in the equality $AC^0 = FO$:
 - Non-uniform AC^0 can express any predicate on [n], much beyond FO.
 - We define Uniform AC^0 as FO(+,*) or as FO(<,BIT); the choice to restrict to the predicates +,* (or <,BIT) is somewhat arbitrary, yet leads to a natural definition of Uniform AC^0 .

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- ∃SO=NP

$\exists SO$ and NP

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in FO$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin)

$$\exists SO = NP.$$

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- $NP \subseteq \exists SO$: for any problem in NP, there exists a sentence $\psi \in \exists SO$ that expresses precisely that problem; will prove next.

In class Give an $\exists SO$ formula to check if a graph has a Hamiltonean cycle.

Proof of $NP \subseteq \exists SO$

Let $L \subseteq \{0,1\}^*$ be a language in NP. This means:

 \exists Turing Machine M and d > 0 s.t. for any input $w \subseteq \{0,1\}^n$: M has an accepting computation of length $\leq n^d$ iff $w \in L$.

Define ψ_M s.t. $([n], U) \models \psi_M$ iff¹ $U \in L$, as in Trakhtenbrot's theorem:

$$\psi_{M} = \exists \langle \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M}$$

where φ_M is as in Trakthenbrot's proof, with two changes:

- ullet Assert that the initial configuration is the string U (i.e. not 0's)
- The time/space can now go up to n^d : encode it using a d-tuple instead of a single value in class; T_0, T_1, H now have arity 2d and S_{a_0}, S_{a_1}, \ldots have arity d

 $^{{}^{1}}U \subseteq [n]$ denotes a string $w \in \{0,1\}^{n}$ how?.

Discussion

- $\exists SO = NP$ is a very elegant result!
- Main lesson: $\exists SO$ is very expressive.
- This suggests a restriction to monadic existential SO. ∃MSO is also called monadic NP.
- Is there a very easy query that is not expressible in ∃MSO? Connectivity!

Detour: Spectra and Counting

The spectrum of a sentence φ is the set of numbers n s.t. φ has a model of size n.

Examples:

- Let $\sigma = \{E\}$ and let φ says "E is a matching of the domain". What is $\operatorname{Spec}(\varphi)$? $\{2n \mid n \in \mathbb{N}\}$.
- Let $\sigma = (+, *, 0, 1)$ and φ be the axioms of a field. What is Spec (φ) ? $\{p^c \mid p \text{ prime}, c \geq 1\}.$

We study the decision problem: "given n, check if $n \in \text{Spec}(\varphi)$ ".

Detour: Spectra and Counting

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(\varphi) \mid \varphi \in FO\} = NETIME$

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?)

If the input n is given in unary: $\{Spec(\varphi) \mid \varphi \in FO\} = NP_1$

The counting problem is: given n, count the number of models $\#_n(\varphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

This explains why it is hard to compute $\mu_n(\varphi)$ exactly! Notice: no "natural" hard problem is known for $\#P_1$.

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) =PSPACE
- BSO=NP

Fixpoints

Let *U* be a finite set, and $f: 2^U \rightarrow 2^U$.

• A fixpoint is a set $X \subseteq U$ s.t. f(X) = X.

• A least fixpoint is a fixpoint X_0 s.t. for any fixpoint X, $X_0 \subseteq X$.

• When it exists, the least fixpoint is unique why?; denote it lfp(f).

Fixpoints (cont'd)

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \to f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is inflationary if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

When f is monotone, $lfp(f) = ifp(f) = pfp(f) = f^{\infty}$.

Fixpoint Logics

Let $R \notin \sigma$ be a new relational symbol. Define three new formulas:

$$\begin{aligned} & \left[\texttt{lfp}_{R, \mathbf{x}} \varphi(R, \mathbf{x}) \right] [\mathbf{t}] \\ & \left[\texttt{ifp}_{R, \mathbf{x}} \varphi(R, \mathbf{x}) \right] [\mathbf{t}] \\ & \left[\texttt{pfp}_{R, \mathbf{x}} \varphi(R, \mathbf{x}) \right] [\mathbf{t}] \end{aligned}$$

where $|\mathbf{x}| = |\mathbf{t}| = \operatorname{arity}(R)$; \mathbf{x} are free in φ , and bound in $[\operatorname{lfp}_{R,\mathbf{x}}(\cdots)]$. Their meaning in a structure \mathbf{A} is this. Define the function:

$$f(R) = \{ \boldsymbol{a} \mid (\boldsymbol{A}, R) \models \varphi[\boldsymbol{a}/\boldsymbol{x}] \}$$

Then the formulas "mean" lfp(f), ifp(f), pfp(f) respectively².

Three new logics: FO(1fp), FO(ifp), FO(pfp).

Dan Suciu

²For 1fp we must ensure that φ is monotone. See homework.

Discussion

• This is horrible syntax. Here is how we check if a, b are connected in a graph G = (V, E):

$$[\mathtt{lfp}_{T,x,y}(E(x,y) \vee \exists z (E(x,z) \wedge T(z,y)))](a,b)$$

Now you really love datalog, were we write:

$$T(x,y) \leftarrow E(x,y)$$

 $T(x,y) \leftarrow E(x,z), T(z,y)$
Answer() $\leftarrow T(a,b)$

- We made a few arbitrary choices: allow free variables? allow simultaneous recursion? It turns out these don't add expressive power, so use them if needed.
- Gurevitch and Shelah proved FO(lfp) = FO(ifp);
 We will only discuss ifp and pfp.

rakhtenbrot Finite Controllability **Descriptive Complexity** Logic on Strings

Detour: The Win-Move Game

The game is played by two players on a graph G. A pebble is placed initially on a node, then players take turn, and each player may move the pebble along an edge. The player who can't move loses. Write a query to compute the positions from which the *first* player has a winning strategy.

$$S(x) \leftarrow \exists y (E(x,y) \land \neg S(y))$$
 or $[pfp_{S,x} \exists y (E(x,y) \land \neg S(y))](x)$

This is not monotone, hence may not have a fixpoint! When it has a fixpoint, then it can obtain as:

$$S(x) \leftarrow \exists y (E(x,y) \land (\forall z E(y,z) \rightarrow S(z)))$$

Or:

$$[1fp_{S,x}\exists y(E(x,y) \land (\forall zE(y,z) \rightarrow S(z)))](x)$$

FO[ifp] captures PTIME

Theorem

(1) $FO[ifp] \subseteq PTIME$ and (2) FO[ifp, <] = PTIME.

Proof in class:

- $FO[ifp] \subseteq PTIME$ Show that the data complexity is PTIME.
- ② $PTIME \subseteq FO[ifp,<]$. Given a PTIME language $L \subseteq \{0,1\}^*$, write an FO(ifp,<)-formula φ s.t. on any input structure ([n],U,<), φ is true iff $U \in L$. Note: we are given the order < for free.

rakhtenbrot Finite Controllability **Descriptive Complexity** Logic on Strings

FO[pfp] captures PSPACE

Theorem

(1) $FO[pfp] \subseteq PSPACE$ and (2) FO[pfp, <] = PSPACE.

Proof in class:

- FO[pfp] ⊆ PSPACE. The hard part is negation: Immerman proved that ¬pfp can be rewritten as some pfp, and this implied that PSPACE is closed under negation.
- ② $PSPACE \subseteq FO[pfp,<]$. Given a PSPACE language $L \subseteq \{0,1\}^*$, write an FO(pfp,<)-formula φ s.t. on any input structure ([n],U,<), φ is true iff $U \in L$. Note: we can't use the time any more.

Discussion

- Do we need order, e.g. could be the case that FO(1fp) = PTIME (without <)? Yes: $FO(1fp) \subseteq L^{\omega}_{\infty\omega}$ and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?
 - If FO(ifp) = FO(pfp) then they remain = after adding <, hence PTIME = PSPACE.
 - Abiteboul and Vianu proved the converse: if PTIME = PSPACE then FO(ifp) = FO(pfp). The proof uses the FO^k types in a very clever way discuss in class.
- If we could use some game to separate FO(ifp) # FO(pfp), then we have proven PTIME # PSPACE!
- Main open problem in FMT: find a logic for PTIME (no order)

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
 will omit this
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- SO=NP

Next: combined complexity.

Combined Complexity

We sill study both FO and the restriction to the quantifier prefix \exists^* . \exists^* is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer
$$\leftarrow E(x, y) \land E(y, z) \land E(z, y)$$

Answer $\leftarrow \neg E(x, y) \land \neg E(y, z) \land \neg E(z, y)$

what does it say?

In the \exists^* fragment:

$$\exists x \exists y \exists z (E(x,y) \land E(y,z) \land E(z,y) \lor \neg E(x,y) \land \neg E(y,z) \land \neg E(z,y))$$

Special case: Conjunctive Query (CQ) means no ∨ and no ¬.

Trakhtenbrot Finite Controllability **Descriptive Complexity** Logic on Strings

Combined Complexity

Theorem

The combined complexity of the \exists^* fragment of FO is in NP.

Theorem

The combined complexity of FO is in PSPACE.

In class: give a algorithm that runs in NP (PSPACE) and does this: given \mathbf{A}, φ , checks if $\mathbf{A} \models \varphi$.

Can we design better algorithms?

Frakhtenbrot Finite Controllability **Descriptive Complexity** Logic on Strings

Combined Complexity

No better algorithm is possible!

Then there exists a structure A such that:

Theorem

The expression complexity for CQ (a subset of \exists^* -FO) is NP-complete.

Theorem

The expression complexity for FO is PSPACE-complete.

The structure \mathbf{A} is the same in both. We will prove them together.

Review of SAT and QBF

The SAT problem is: given a Boolean formula $F(X_1,...,X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \dots F(X_1, \dots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

(1) SAT is NP-complete. (2) QBF is SPACE-complete. These hold even if F is a 3CNF.

Proof

In a 3CNF there are 4 kinds of 3-clauses:

$$X \vee Y \vee Z$$

$$\neg X \lor Y \lor Z$$

$$\neg X \lor \neg Y \lor Z$$

$$X \lor Y \lor Z$$
 $\neg X \lor Y \lor Z$ $\neg X \lor \neg Y \lor Z$ $\neg X \lor \neg Y \lor \neg Z$

Consider the structure \bf{A} with domain $\{0,1\}$ and with four relations:

$$R_0 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathsf{R}_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$R_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

SAT to CQ by example:

$$(X_1 \vee X_2 \vee X_3) \wedge (X_1 \vee \neg X_3 \vee X_4) \wedge (X_2 \vee X_3 \vee X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \wedge R_1(x_3, x_1, x_4) \wedge R_0(x_2, x_3, x_4)$$

QBE to FO by example:

$$\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land (X_1 \lor \neg X_3 \lor X_4) \lor (X_1 \lor \neg X_3 \lor X_4) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_1 \lor \neg X_3 \lor X_4)$$

In both cases: F is SAT iff $\mathbf{A} \models \varphi$ why?

Finite Controllability Descriptive Complexity Logic on Strings

Discussion

- Data complexity of FO is AC⁰ very low!
- For database fans: the expression and combined complexity of CQ (and hence select-from-where SQL queries) is NP-complete.
- Expression complexity and combined complexity of FO are PSPACE-complete very high!
- We omit the expression complexity of extensions of *FO* (hint: they get even higher).

Representing Strings

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$. A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle, P_a(\cdot), P_b(\cdot), P_c(\cdot))$. In class represent aabaca.

A sentence φ defines a language $\{w \mid w \models \varphi\}$. E.g. $\forall x \forall y (x < y \land P_a(x) \land P_a(y) \rightarrow \exists z (x < y < z \land P_b(z)))$ Assuming alphabet $\{a,b\}$ it says "between any two a's there is a b": $b^*.(a.b^+)^*.(a|\varepsilon)$

- What languages can be define in FO?
- What languages can be define in MSO?

Logic on Strings

Regular Expressions

Fix an alphabet Σ . Regular expressions are:

 $E := \emptyset | \varepsilon | a \in \Sigma$

$$E \cup E | E.E$$
 $C(E)$ complement
 E^*

E is called *star-free* if it is equivalent to an expression without *. In class assuming $\Sigma = \{a, b\}$, which expressions are star-free?

$$C(\emptyset)$$
 $b^*.(a.b^*)^*$ $(a.b)^*$ $(a.a)^*$

Trakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

FO on Strings

Theorem

A language L is star-free iff it is defined in FO.

rakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

MSO on Strings

Theorem

A language L is regular iff it is defined in MSO.

Proof

TBD (or, better, in class)

khtenbrot Finite Controllability Descriptive Complexity **Logic on Strings**

Applications

- There exists a regular language which is not star-free. which one?
- SAT for MSO on strings is decidable. what is the complexity?
- The data complexity for MSO on strings is linear time! what is the data complexity of MSO?
- On strings: $\exists MSO = \forall MSO = MSO \text{ why?}$

Frakhtenbrot Finite Controllability Descriptive Complexity Logic on Strings

Courcelle's Theorem

Let C be a class of structures with bounded tree-width. discuss tw in class; we will return to it.

Theorem (Courcelle)

Every formula in $\varphi \in MSO$ can be evaluated in linear time over structures of bounded tree-width.

This is an amazing result! Caveats:

- The expression complexity is horrible (non-elementary).
- We need a tree decomposition of the structure (i.e. database) **A**: this is NP-complete in general.
- If we have a promise that the treewidth is $\leq k$, then we can compute a TD in time $O(n^k)$; but "real" databases rarely have bounded tw.

rakhtenbrot Finite Controllability Descriptive Complexity **Logic on Strings**

Discussion

- MSO is very powerful in general: Monadic NP.
- But over strings it can only express regular languages: linear time.
- Even over trees, or "tree-like" structures MSO is still in linear time.
- Problem: data in real life is not "tree-like"!