Symbolic Model Checking: 10?° States and Beyond

J. R. Burch

E. M. Clarke

K. L. McMillan

School of Computer Science
Carnegie Mellon University

D. L. Dill

L. J. Hwang

Stanford University

Abstract

Many different methods have been devised for auto-
matically verifying finite state systems by examining
state-graph models of system behavior. These meth-
ods all depend on decision procedures that explic-
itly represent a state space, using a list or a table
that grows in proportion to the number of states.
We describe a general method that represents the
state space symbolically instead of explicitly. The
generality of our method comes from using a di-
alect of the Mu-Calculus as the primary specifica-
tion language. We describe a model checking algo-
rithm for Mu-Calculus formulas which uses Bryant’s
Binary Decision Diagrams [3] to represent relations
and formulas symbolically. We then show how our
new Mu-Calculus model checking algorithm can be
used to derive efficient decision procedures for CTL
model checking, satisfiability of linear-time tempo-
ral logic formulas, strong and weak observational
equivalence of finite transition systems, and language
containment for finite w-automata. This eliminates
the need to describe complicated graph-traversal or
nested fixed point computations for each decision pro-
cedure. We illustrate the practicality of our approach
to symbolic model checking by discussing how it can
be used to verify a simple synchronous pipeline.

1 Introduction

Over the last decade, it has become apparent that
finite-state systems can often be verified automati-
cally by examining state-graph models of system be-
havior. A number of different methods have been

This research was sponsored in part by the Defense Ad-
vanced Research Projects Agency (DOD), ARPA Order No.
4976. The National Science Foundation also sponsored this re-
search effort under contract numbers CCR-8722633 and MIP-
8858807. The third author is supported by an AT&T Bell
Laboratories Ph.D. Scholarship. The fourth and fifth authors
are supported by a CIS Seed Research Grant.

CH2897-7/90/0000/0428$01.00 © 1990 IEEE

428

proposed: temporal logic model checking, language
containment algorithms for automata, “conformation
checking” in trace theory, and testing for various
equivalences and preorders between finite CCS-like
models. Although each of these methods uses a dif-
ferent computational model and a different notion of
verification, they all rely on decision algorithms that
explicitly represent a state space, using a list or ta-
ble that grows in proportion to the number of states.
Because the number of states in the model may grow
exponentially with the number concurrently execut-
ing components, the size of the state table is usually
the limiting factor in applying these algorithms to
realistic systems.

A recent idea for combating this “state explosion
problem” is to represent the state space symbolically
instead of explicitly. In many cases, the intuitive
“complexity” of the state space is much less than the
number of states would indicate. Often systems with
a large number of components have a regular struc-
ture that would suggest a corresponding regularity in
the state graph. Consequently, it may be possible to
find more sophisticated representations of the state
space that exploit this regularity in a way that a sim-
ple table of states cannot. One good candidate for
such a symbolic representation is the binary decision
diagram (BDD) [3], which is widely-used in various
tools for the design and analysis of digital circuits.
BDD’s do not prevent a state explosion in all cases,
but they allow many practical systems with extremely
large state spaces to be verified — systems that would
be impossible to handle with explicit state enumer-
ation methods. Indeed, we present empirical results
in this paper that show that the method can be ap-
plied in practice to verify models with in excess of
1020 states. Explicit state enumeration methods are
limited to systems with at most 10% to 108 reachable
states.

Several groups have applied this idea to different
verification methods. Coudert, Berthet, and Madre

describe a BDD-based system for showing equivalence
between deterministic Moore machines [8]. Their sys-
tem performs a symbolic breadth-first ezecution of the
state space determined by of the product of the two
machines. This model is not generalized to models
other than deterministic Moore machines, or notions
of verification other than strict equivalence. Bose
and Fisher [1] have described a BDD-based algo-
rithm for CTL model checking that is applicable to
synchronous circuits. However, their method is un-
able to handle asynchronous concurrency, or prop-
erties of infinite computations, such as liveness and
fairness. Burch, Clarke, Dill, and McMillan [4] de-
scribe another BDD-based method for handling CTL
model checking with fairness constraints and show
this method can be applied to both synchronous and
asynchronous examples.

All of these methods are based on iterative com-
putation of fixed points. It seems clear that numer-
ous additional papers could be generated by applying
this technique to different verification methodologies.
Our goal is to provide a unified framework for these
results by showing that all can be seen as special cases
of symbolic evaluation of Mu-Calculus formulas.

We describe the syntax and semantics of a dialect
of the Mu-Calculus, and present a model checking al-
gorithm for Mu-Calculus formulas that uses BDD’s
to represent relations and formulas. We then show
how our new Mu-Calculus model checking algorithm
can be used to derive efficient decision procedures for
CTL model checking, satisfiability of linear-time tem-
poral logic formulas, strong and weak observational
equivalence of finite transition systems, and language
containment for finite w-automata. In each case, a
Mu-Calculus formula can be directly derived from an
instance of the problem. This formula can be evalu-
ated automatically, eliminating the need to describe
a complicated graph-traversal or nested fixed point
computations for each decision procedure. We il-
lustrate the practicality of our approach to symbolic
model checking by discussing how it can be used to
verify a simple synchronous pipeline.

2 Binary Decision Diagrams

Binary decision diagrams (BDD) are a canonical
form representation for a boolean formulas. Bryant
described algorithms for efficient manipulation of
BDD’s in [3]. BDD’s are often substantially more
compact than the traditional normal forms such as
CNF and DNF, and hence have found application in
symbolic verification of combinational logic, among
other uses. A BDD is similar to a binary decision

429

Figure 1: A Binary Decision Diagram

tree, except that its structure is a directed acyclic
graph rather than a tree, and there is a strict total
order placed on the occurrence of variables as one
traverses the graph from root to leaf. Consider for
example, the BDD of figure 1. It represents the for-
mula {a Ab) V (c A d), using the variable ordering
a < b < ¢ < d. Given an assignment of Boolean
values to the variables a, b, ¢ and d, one can de-
cide whether the assignment satisfies the formula by
traversing the graph beginning at the root, branch-
ing at each node based on the assigned value of the
variable which labels that node. For example, the
assignment (a «— 1,b — 0,¢ «— 1,d « 1) leads to
a leaf node labeled 1, hence this assignment satisfies
the formula.

In [3], Bryant shows that there is a unique minimal
BDD for a given formula with a given variable order-
ing. Since BDD’s (with some modifications) can be
viewed as deterministic finite automata, this result is
not surprising. The size of the minimal BDD depends
critically on the variable ordering. Bryant also gives
algorithms of low complexity for computing the BDD
representations of —f and fV g given the BDD’s for
formulas f and g. The only other operations which we
will require for the algorithms that follow are quan-
tification over Boolean variables (QBF, see [13]) and
substitution of variable names. Bryant gives an al-
gorithm for computing the BDD for a restricted for-
mula of the form fl,—0 or flo=1. Though Bryant
does not deal with QBF formulas, the restriction al-
gorithm allows us to compute the BDD for the QBF
formula 3v[f], where v is a Boolean variable and f is
a QBF formula, as fls=0V fla=1. The substitution of
a variable w for a variable v in a formula f, denoted

f{v « w) can be accomplished using quantification,
that is,

Flo—w) (v o w)A sl

More efficient algorithms are possible, however, for
the case of quantification over multiple variables, or
multiple renamings. In the latter case, efficiency de-
pends on the ordering of variables in the BDD’s being
the same on both sides of the substitution.

3 The Mu-Calculus

A number of different versions of the Mu-Calculus
have been proposed. In this paper we use Park’s
notation [16]. It can be shown that this version of
the Mu-Calculus can express any property express-
ible in the other versions of the Mu-Calculus found
in [7,9,11,16,17].

We assume we are given a finite signature S. Each
symbol in § is either an individual variable or a pred-
icate variable with some positive arity. There are two
syntactic categories: formulas and relational terms.
Formulas have following form:

1. True, False.

2. [z1 = 23], where 2z; and 2z, are individual vari-
ables in S.

3. =f, fVg, 3z[f], where f and g are formulas and
z is an individual variable in S.

4. P(zy,22,...,2n), where P is an n-ary relational
term and z1, 23, ..., 2z, are individual variables in
S not free in P.

The syntax for the n-ary relational termsis given be-
low:

1. Z, where Z is an n-ary predicate variable in S.

2. Az1,22,...,2n[f], where f is a formula and
21, 23,. .., 2, are distinct individual variables in
S.

3. uZ[P], where Z is an n-ary predicate variable
in S and P is an n-ary relational term that is
formally monotone in Z.

The n-ary relational term uZ[P] represents the
least fized point of an n-ary relational term P. A
relational term P is formally monotone in the pred-
icate variable Z if all free occurrences of Z in P fall
under an even number of negations. The formal defi-
nition of when a variable or predicate symbol is bound
or free in some formula or relational term is standard,

430

and will not be given here. Note, however, that indi-
vidual variables can be bound by both the existential
quantifier 3 and by the abstraction operator A, while
predicate variables can only be bound by the fixed
point operator u.

We will assume that V, A, =, and <= are treated
as abbreviations in the usual manner. If P and P’ are
n-ary relational terms we write ~P as an abbreviation
for Az1,...,2a[=P(z1,...,2a)], and we write PV P’
as an abbreviation for

Aziy.oy2a[P(21, - y20) V P/ (21,.. ., 2a)).
The term vZ[P] is introduced as an abbreviation for
~pZ[~P(Z — (-2))]

and denotes the greatest fized point of an n-ary rela-
tional term P, where P(Z — (—Z)) denotes relational
term formed from P by substituting =Z for Z.

The truth or falsity of a formula is determined with
respect to a structure M = (D, Ip,Ip) where D is a
non-empty set called the domain of the structure, Ip
is the relational variable interpretation and Ip is the
individual variable interpretation. More specifically,
for each individual variable y, Ip(y) is a value in D,
and for each n-ary relational symbol Z, Ip(Z) is an
n-ary relation on the set D. We let Zp be the set of
possible individual variable interpretations. Let Zp
be similarly defined.

The semantic function D maps formulas to ele-
ments of

(Zp — (Zp — {true, false}));
and n-ary relational terms to elements of
(Tp — (Tp — 2P7))

where 2(P") denotes the power set of the set D™.
The semantic function D is defined inductively on the
structure of formulas and relational terms. First, we
define D on formulas. The semantics of the formulas
True and False are defined in the obvious way. If 2;
and z; are individual variables, then

D([z1 = 22))(Ip)(Ip) = (In(21) = In(2))-
If f and g are formulas, then

def

D(~f){Ip)(In) = ~(D(£)(Ir)(Ip))

D(f v g)(Ip)(Ip) &

D(f)NIp)(Ip) v D(9)(Ir)(Ip)
def

D(2z[f])(1p)(ID) =
Je € D.[D(f)(Ip)(Ip{z — e))].

If P is an n-ary relational term, then

D(P(z1,...,22))Ip)(Ip) &
(In(z1),- -, In(zs)) € D(P)(Ip)(Ip).

Next, we define D on relational terms. A relational
variable Z has the expected meaning,

def

'D(Z)(Ip)(]p) = Ip(Z).

The final two cases are given by

D(Az1, ..., za[f)IP)(ID) = {le1,. .. en) :

D(f)(IP)(ID(zl €1y Zn en))}

D(uz|P) ¥

Ifp AQ € 2P™) [D(P)(Ip(Z — Q))(Ip)]-

where Ifp denotes the least fixed point over the in-
clusion ordering. It is clear from elementary fixed
point theory that the requirement that P be formally
monotone in Z is sufficient to ensure the existence of
the fixed point in the final definition above.

If M is a structure and f is a formula, then we
will write M = f to indicate that f is true in M
according to the above semantics. In this paper the
domain of a structure will always be finite.

4 Model Checking Algorithm

Model checking means determining whether a given
formula f is valid in a given model M. In this sec-
tion, we present a model checking algorithm for the
Mu-Calculus which uses BDD’s as its internal repre-
sentation, in order to avoid enumerating the elements
of the relations in the model. The algorithm is lim-
ited to the domain D = {0,1}. In other words, all
individual variables are Boolean, and all relations are
Boolean relations. Later we will show that a model in
any finite domain can be encoded as a model in the
Boolean domain, hence our model checking algorithm
is fully general.

The algorithm is divided into two functions, BDD;
and BDDg, which recurse over the structure of the
formula. We assume here that the syntactic correct-
ness of the formula has been checked, in particular the
formal monotonicity requirement given in Section 3.
The function BpD; takes two arguments: a formula
f and a relational variable interpretation Ip, which
assigns values to the free relational variables in f.
It returns a BDD which has the following property:
BDD(f,Ip) is satisfied by a given interpretation Ip
for the individual variables if and only if f is satisfied
by the model M that has interpretations Ip and Ip.

431

The value of each relational variable in the inter-
pretation Ip is represented by a BDD, using a set of
place-holder (dummy) variables not in the signature
of the logic. We refer to these variables as d;,d, ...,
where d; is used to stand for the i** argument of a
relation. Thus, an n-ary relation represented by a
BDD is said to hold for some arguments y;,..., y, if
and only if the interpretation (dy — y1,...,dn «— ya)
satisfies the BDD. In many practical instances, this
representation of a relation is much more compact
than an enumeration of its elements.

The function BDDj is defined in Figure 2. The first
four cases in the definition derive directly from the
respective semantic definitions for BDD’s and Mu-
Calculus formulas and should require no explanation.
For the implementation of BbDATOM, BDDAND and
BDDNEGATE, see [3]. The last case, application
of a relational term R, uses the function BDDjy to
find a representation of the relational term R (un-
der the interpretation Ip), then substitutes the ar-
gument variables 4, ..., &, for the place-holder vari-
ables d;,...,d,, producing a BDD which is satisfied
if and only if R holds for {21,...,2,).

The function BDDg (see Figure 2) takes as argu-
ments a relational term R and a relational interpre-
tation Ip. It returns a BDD which represents the
the relational term in the manner described above.
Since the relational term may have free individual
variables, the BDD may contain both the place-holder
vanables and the individual variables of the logic.
Thus, given an interpretation Ip for the individual
variables, and an interpretation I, for the place-
holder variables, BDDg(R, Ip) is satisfied if and only
if the relation D(R)(Ip)(Ip) holds for the n-tuple
(I4(d1),...,14(dn)), where n is the arity of R.

The first case in the definition of BDDR, a rela-
tion variable, simply returns the BDD representation
of the variable in the interpretation Ip. The sec-
ond case, lambda abstraction, produces a BDD with
place-holder variables dy,...,d, substituted for the
variables 21, ..., 2,. This is the representation for an
n-ary relation which holds if and only if its arguments
satisfy the formula f when assigned to 21,...,z,.
The most interesting case is the last: the fixed point
operator g. To find the fixed point of a relational term
with respect to a free relational variable Z, we use the
standard technique for finding the least fixed point of
a monotonic functional in a finite domain. This com-
putes the fixed point by a series of approximations
To,Th, .. ., beginning with the empty relation (which
is represented by the BDD constant FALSEBDD). To
compute T;,;, we let the interpretation of Z be T},
while evaluating the relational term R using BDDpg.
Since the domain is finite and R is formally monotone

function BDD(f : formula, Ip : rel-interp) : BDD;

case
f an individual variable:
return BpDATOM(f);
f of the form f; A f2:

return BDDAND(BDD;(f1, Ip), BDDs(f2, Ip));

f of the form —f;:

return BDDNEGATE(BDD;(f1,1p));

f of the form 3z{fi]:

return BopExisTs(z, BDD(f, Ip));

f of the form Z(zy,...,2,):

return BDDR(Z,Ip){d1 «— #1) -+ {dn «— 2n);

end case;

function BDDg(R : rel-term, Ip : rel-interp) : BDD;

case
R a relational variable:
return Ip(R);

R of the form Azq,...,z,[f]:

return Bops(f, Ip)(21 — di) - -- (2n — dn);

R of the form pZ[R4]:

return FIXEDPOINT(Z, Ry, Ip, FALSEBDD);

end case;

function FIXEDPOINT(Z : rel-var, R : rel-term, Ip : rel-interp, 7; : BDD) : BDD;

let T,y = BDDR(R, Ip(Z — T3));
if ;11 = T; return T;

else return FIXEDPOINT(Z, R, Ip,T;11);

Figure 2: Mu-Calculus Model Checking Algorithm.

in Z, the series must converge to the least fixed point.
Convergence is detected when T;4; = T;. Note that
testing for convergence is easy, since testing BDD’s
for equivalence is a constant time operation.

A performance improvement can be realized in the
above fixed point algorithm by observing that any
subterms or subformulas of R which do not have Z
as a free variable will not change in their evaluation
from one iteration to the next. The evaluations of
these terms can therefore be cached and do not need
to be recomputed. For this reason, it is useful when
possible to rewrite formulas so that fixed point sub-
terms contain fewer free relational variables.

In order to do model checking over a non-Boolean
(but finite) domain D, we use an encoding function
¢ : {0,1}™ — D which maps a each Boolean vector
of length m onto an element of D. This function
may be many-to-one, but must be onto. Note that
the minimum value of m is [log, |D|], but encodings
with a larger number of bits are also possible. Using

432

this encoding, we construct a corresponding model
M' over the Boolean domain. If R is an n-ary relation
symbol in the model M, then R’ is a relation of arity
mn in M', constructed by the following rule:

R'(Z1,...,2,) © R(¢(21),...,90(2.))

where &; is a shorthand for m boolean variables en-
coding #;. In order to check the validity of a given
formula f, we then replace each individual variable in
the formula with a vector of m boolean valued vari-
ables, and check the resulting formula f’ in the model
M'. The homomorphism between M and M’ guar-
antees that M = f if and only if M’ | f'.

The choice of an encoding function ¢, and of the
ordering of the variables in the BDD’s has a substan-
tial impact on the efficiency of the model checking.
In a later section, we describe a of digital circuit de-
sign who’s specification can be checked in time poly-
nomial in the number of circuit components, for the
right choice of variable ordering. In the area of digital

circuits, the choice of encodings is generally trivial,
since all components of the state are Boolean valued
to begin with.

5 Iterative Squaring

It is often possible to rewrite a Mu-Calculus formula
in order to obtain an equivalent formula that can be
analyzed more efficiently by the model checking al-
gorithm. In this section we describe a systematic
method for rewriting formulas, called the iterative
squaring transformation, that can result in an expo-
nential reduction in the number of iterations neces-
sary to compute fixed points in the Mu-Calculus. We
begin by showing how the iterative squaring transfor-
mation can be applied to a particular formula. Later
we describe more general conditions under which the
transformation can be applied.

5.1 Transitive Closure

Let (V, E) be a directed graph, and let Vp be some
subset of V. The set V, of vertices reachable from
Vo is expressed by the Mu-Calculus relational term R
given by

nQy[Vo(y) v 32[Q(z) A E(z,y)]]1.

When the model checking algorithm is applied to R,
it requires n iterations to compute the set V3 of ver-
tices reachable in n transitions. Thus, the number of
iterations is linear in the diameter of the subgraph
(Vi, E). However, the iterative squaring transforma-
tion can be used rewrite R so that the model checking
algorithm converges faster. The first step is to com-
pute the transitive closure E, of E,

uZ e, ylE(e,y) vV Iw[Z(z, w) A Z(w,y)]]].

Let E, be the binary relation computed by the model
checker after n iterations in the computation of E,.

Theorem 1 For all vertices y and non-negative in-
tegers n,

Fz[Vo(z) A Ensa(2,9)] <= Van(y).

Thus, the number of iterations necessary to compute
E, is logarithmic in the diameter of (V, E). If the
diameters of (V, E) and (V,, E) are roughly the same
(the usual case in practice), this leads to a significant
reduction in the number of iterations needed to com-
pute V,. However, iterative squaring can be impracti-
cal if the BDD’s needed to represent the intermediate
computations become too large.

5.2 General Transformation

We consider 7-ary relational terms of the form pQ[R]
or vQ[R], where R is some r-ary relational term. We
further restrict R to be of the form (using ¥ as a
shorthand for y,..., %),

AgIS(3) v 32[Q(&) A N (&, 3)]) 1)
where § and N are relational terms that do not have
Q as a free variable. It may seem overly restrictive
to require that terms be of the form (1). However,
nearly all the Mu-Calculus terms that we have used
as specifications in practice can be written in this
form. Define the relational term T such that

T = pZ[Az, g[N(2,9) v 3w[Z(z, ©) A Z(w,7)]]],

which is the transitive closure of N. The general form
of the iterative squaring transformation is given by
the following theorem.

Theorem 2 Let T be as defined above, and let R be
a relational term of the form (1). Then uQ[R] can be
transformed tnto the equivalent term

Ag[S(g) v 32[S(2) AT (2, 9)]].

Also, vQ[R] can be transformed into the equivalent
term

Ag[S(g) v 32[(S(2) v T(2,2)) A T(2, 9)]]-

The iterative squaring transformation can often be
applied more than once to terms that have several
fixed point operators. For example, consider the re-
lational term

vL[B AuQ[Xz[3yl(L(y) vV Q(¥)) A N (=, 9)]]]],

where B, L and N are relational variables. This re-
lational term is used in CTL model checking with
fairness constraints [4). Using Theorem 2, the reader
can check that the above relational term is equivalent
to

Az[B(z) A Sy[B(y) A T(y,y) A T(2,)],

for T as defined above. The reduction from two lev-
els of fixed point operators to one level is possible
because the transitive closure of T is just 7'

Unless otherwise noted, all the Mu-Calculus rela-
tional terms used in the remainder of this paper can
be computed using the iterative squaring transforma-
tion.

6 CTL

CTL or Computation Tree Logic [6] is a propositional,
branching-time, temporal logic. Each of the usual
forward-time operators of linear temporal logic (G
globally or invariantly, F sometime in the future, X
nezttime and U until) must be directly preceded by
a path quantifier. The path quantifier can either be
an A (for all computation paths) or an E (for some
computation path). Thus, some typical CTL oper-
ators are AGf, which will hold in a state provided
that f holds at all points (globally) along all possi-
ble computation paths starting from that state, and
EFf, which will hold in a state provided that there is
a computation path such that f holds at some point
in the future on the path.

In our description of the syntax and semantics of
CTL, we specify the existential path quantifiers di-
rectly and treat the universal path quantifiers as syn-
tactic abbreviations. Let P be the set of atomic
propositions, then:

1. Every atomic proposition pin P is a formula in

CTL.

2. If f and g are CTL formulas, then so are —f,
fAg, EXf, E[fUg) and EGS.

The semantics of a CTL formula is defined with re-
spect to a labeled state transition graph or Kripke
structure M = (P,S,L,N,S,) where P is a set
of atomic propositions, S is a finite set of states,
L:S — 2% is a function labeling each state with a
set of atomic propositions, N C S x S is a total tran-
sition relation, and Sp is the set of initial states. A
pathis an infinite sequence of states so, 51, 52, ... such
that N(s;,s;41) is true for every i.

The propositional connectives — and A have their
usual meanings of negation and conjunction. The
other propositional operators can be defined in terms
of these. X is the neztfime operator. EXf will be
true in a state s of M if and only if s has a successor
t such that f is true at t. U is the until operator.
E[fUg] will be true in a state s of M if and only
if there exists a computation path starting in s and
an initial prefix of the path such that g holds at the
last state of the prefix and f holds at all other states
along the prefix. The operator G is used to express
the invariance of some property over time. EG f will
be true at a state s if there is a path starting at s
such that f holds at each state on the path.

6.1 Representing Kripke Structures

Using the Mu-Calculus algorithm for CTL model
checking is quite straightforward. In fact, given an

434

appropriate domain and interpretation, the CTL op-
erators EX f, EG f and E[fUg] can be viewed as syn-
tactic abbreviations for Mu-Calculus relational terms.
If the CTL formula f is an abbreviation for the Mu-
Calculus relational term R, then f is true at state s
if and only if R(s) is true. Let the domain D be the
set of states S of the Kripke structure, and the inter-
pretation Ip consist of the transition relation N and
one unary relation for each atomic proposition p € P,
such that Ip(p)(s) is true if and only if p € L(s). We
assume that no two distinct states have the same la-
beling. There is no loss of generality in this assump-
tion, since extra atomic propositions can be added to
P without affecting the truth of CTL formulas.

The CTL formula EXf is true of a state s if and
only if there exists a state ¢ such that f is true of ¢
and N(s,t) is true. We therefore define EXf to be a
syntactic abbreviation for the Mu-Calculus relational
term

Mu[3v[f(v) A N(u,v)]].
The Mu-Calculus expansions for EG and EU are

based on a characterization of the CTL operators
as fixed points of predicate transformers. The fixed
points can be computed using either direct iteration
or iterative squaring.

The fixed point characterization for EG is given by

EGf = vQ[f AEXQ)]

v@[Au[f(w) A 3u[Q(v) A N(u,v)]]]

The intuition should be clear: For every state s, there
is a path starting at s along which f holds globally if
and only if f holds at s and s has a successor t such
that there is a path starting at ¢ along which f holds
globally.

The operator EU has a fixed point characteriza-
tion that is similar to the one for EG. However, this
time the characterization is the least fized point of the
corresponding predicate transformer rather than the
greatest.

E[fUg] = pQlg v (f A EXQ)]

which is equivalent to

#Q[ulg(u) v (f(u) A F[Q(v) AN (u, v)])]]-

Starting at some state s, there will be a path such
that fUg holds if and only if g holds at s or f holds
at s and s has a successor ¢ such that there is a path
starting at t along which fUg holds.

In [4] we show how this method can also be applied
to CTL with fairness constraints, and that iterative
squaring can also be used in this case.

7 PTL

The tableau method for testing the satisfiability of
propositional linear temporal logic (PTL) formu-
las [12] can be implemented by translating a PTL
formula into a Mu-Calculus formula which is true if
and only if the PTL formula is satisfiable. This gives a
symbolic procedure with the advantage that, in some
cases, a large tableau can be represented by a rela-
tively small BDD.

Fujita and Fujisawa [10] describe a verification pro-
cedure based on linear temporal logic that uses binary
decision diagrams to represent the transition condi-
tions in automata derived from temporal logic for-
mulas. However, their technique still suffers from a
form of the state explosion problem. This is a result
of their representing states explicitly in automata de-
rived from temporal formulas.

There are many dialects of PTL depending on the
modal connectives that are defined. We choose a
small, generic dialect.

1. atomic propositions AP (written p, g, etc.),

2. =f, fVvyg, Xf,and fUg when f and g are PTL
formulas.

Our technique can easily extended to additional or
alternative modal connectives.

As in CTL, Xf means that f holds in the next
state and fUg means that f is true in every state
until g holds. To define this formally, let ¢ € [AP —
{0,1}]* be a sequence of truth assignments to the
atomic propositions, and let o; be the ¢th suffix of &
(0i(§) = o(j + i) forall j € w).

ckEp iff o(0)(p)=1 whenpec AP,
cle-f it off,

cEfvg ff oEforoiy,

cEXf iff o1 Ef,

o= fUg iff Fi:(eifgandVj<i:o; | f).

The tableau procedure for PTL transforms a PTL
formula f into a Kripke structure that encodes a set
of paths. Every state is labeled with a set of sub-
formulas of f. The tableau is constructed by iterat-
ing a two-step process: The first step takes a set of
PTL formulas and breaks them down into a set of
states. The states are labeled with elementary for-
mulas: propositional formulas characterizing what is
true “now”, and X-formulas that determine the pos-
sible successor states. The second step removes the X
from each X-formula in the state; this gives a set of
formulas to which the first step can be applied, yield-
ing the successors to the state. An explicit tableau

435

construction unwinds the tableau from the initial for-
mula until all reachable states have been found.

The tableau construction here is somewhat differ-
ent from the usual one, so as to reduce the number of
different kinds of state labels (which become propo-
sitional variables).

The set of elementary formulas associated with a
PTL formula can be defined recursively (f and g are
any PTL formulas):

ellp) = {p} whenpe 4P,
el(~f) = el(f),
el(fvg) = el(f)uel(g),
el(Xf) = {Xf}uel(f),
el(fUg) = {X(fUg)}uUel(f)U el(g).

The set of states of the tableau generated from the
formula f is 2¢/(f). Intuitively, each state corresponds
to the set of formulas that may hold at a some time in
some model. If a formula does not appear in a state,
the negation of the formula holds.

We use 2°/() as the domain D over which Mu-
Calculus formulas are to be interpreted. The domain
D is encoded as all the bit vectors of length |el(f)].
For every formula g in el(f), there is a unary relation
P(g). Read P(g)(z) as “g appears in state 2”. The
interpretation of P(g) is simply the set of bit-vectors
that have a 1 bit in the position associated with g.

The first step of the iterative tableau construction,
breaking a formula into a set of states, is captured in
a recursive transformation o that maps a PTL for-
mula f and the name of an individual variable z to a
formula representing a set of states.

a(p)(z) = P(p)(z) p€ AP,
a(=f)(z) = -P(f)(=),
a(fvg)(z) = a(f)(z)Va(g)(z),
a(Xf)(=z) = P(Xf)(=),
a(fUg)(z) = al(g)(z)V

[a(f)(=) A P(X(fUg))(2)]-

To find the set of successors of a particular state, we
remove the X operators from in front of the next-time
formulas in the state and then apply a. The resulting
formula holds for a state if and only if the state is
an immediate successor of the original state. The
next state relation can be written as a propositional
formula over two sets of variables:

A P(Xg)(u) & a(g)(v).
Xg € €l(f)

N(u,v) =

In the special case where f contains no next-time for-
mulas, N(u,v) is identically true.

The tableau has a distinguished set of initial states
which give the temporal conditions that must be sat-
isfied by a model 0. We define a formula representing
this set: So(u) = o(f)(w).

An infinite sequence p of states of the tableau is
called a path if Sp[p(0)] and N [p(i), p(¢ + 1)] for all
i € w and

A formula f 1s satisfiable if and only if there exists a
path satisfying the additional property that whenever
p(%) contains a formula of the form X(gUh), there is
some j > 1 such that p; satisfies h.

By the definition of N, when X(gUh) appears in
p(i), it either appears also in p(i+1) or p(i+1) satis-
fies a(h). So this condition is a fairness constraint on
consecutive pairs of states in p: infinitely often, p(i)
is not labeled with X(gUh) or p(i + 1) satisfies a(h).

For states u and v to satisfy such fairness con-
straint, they must satisfy

[P(X(gUh))(u) = a(h)(v)] A N(u,v),

which we abbreviate F(X(gUh))(u,v). Let N,(v,w)
express “there is a finite path from v to w”. Thus N,
is the transitive closure of N. Expressing transitive
closure in the Mu-Calculus was discussed in Section
5. The set of states belonging to a fair cycle is given
by the relational term Fair defined as

Au[Fug, v, ..., Uk, Vk
[F(X(g1Uh1))(u1,v1) A Nu(v,uz) AL A
F(X(gxUh))(uk, vr) A No(vie, w) A No(,u1)]],

assuming there are k formulas X(g;Uh;) in el(f).
Therefore, the formula is satisfiable only if

Ju, v[So(u) A Ny(u,v) A Fair(v))

is true in the appropriate model.

8 Observational Equivalences

In this section, we describe BDD based algorithms for
deciding strong and weak equivalence of finite tran-
sition systems (FTS’s). In [15,14], a finite transition
system is defined as a 4-tuple (K, po, &, A) where K is
a finite set of states, po is the initial state, X is a finite
set of actions, and A C K x ¥ x K is the transition
relation. We use p; = py to denote (p;, ,ps) € A.

8.1 Strong Equivalence

Let P and Q be two finite transition systems on the
same actions £. That is, let P = (Kp,po, £, A,) and

436

Q = (Kg,90, %, Ag). Strong equivalence is a relation
~ C K, x K,. The two finite transitions systems P
and Q are said to be strongly equivalent if and only
if po ~ go- In [14], it is shown that ~ is the greatest
fixed point of the function F : 2%s*HKs 2K, x Ko
where F(R) is the set of all pairs (p, ¢) such that

o Vo,p :if p5 p then 3¢’ : ¢ 5 ¢' and R(p',q'),
o Vo, q :if g5 ¢ then 3p' : p 5 p' and R(P', ¢).

In order to compute this equivalence using the
BDD-based Mu-Calculus checking algorithm, it re-
mains only to assemble the appropriate domain and
interpretations, and to express the above condition in
the Mu-Calculus. It is useful in this case to think of
the domain D as having three sorts: K,, K, and X.
The relational interpretation Ip consists of the rela-
tions A, and Ay, and the individual interpretation
Ip consists of pg and gg, symbols for the two initial
states. The function F is given by the Mu-Calculus
relational term

Ap,qVo,p'[A,(p, o, p') =
3¢'[Ag(g,0,9') A R(p',q')]]

A vaa ql[Aq(% G', ql) =
3p'[Ap(p, 0, 0') A R(P, 4')]])

The two FTS’s P and Q are thus strongly equivalent
if and only if vR{F](po, go) holds. This can be evalu-
ated using the BDD-based model checking algorithm,
though the iterative squaring transformation can not
be applied.

8.2 Weak Equivalence

Let 7 be a distinguished action in the set X, and let
the relation AT* be the reflexive transitive closure of
Az, y[A(z,7,y)] . Thatis, A7*(p,) is true if and only
if there is a path from p to g labeled by a sequence of
zero or more T actions. Further, for every o € I, let
AT*? be the relational composition of A™* and A,

AT = Xz, z[FY[AT (2,) A Ay, 0, 2)]].

That is, A™*7(p, q) is true if and only if there is a path
from p to q labeled by a sequence of zero or more 7
actions followed by a single action o. Weak observa-
tional equivalence (=) is the greatest fixed point of
the function G : 2%+*Ke — 2K»xKs where G(R) is
the set of all pairs (p,q) such that

o Vp' :if A™(p,p') then 3¢’ : A™*(¢,¢') and
R(p'q'),

e Vg :if A™*(q,q') then 3p' : A7*(p,p') and
R(p'.q'),

o Vp',o:if A™(p,p') then 3¢’ : A7*(q,ql) and
R(p'.q"),

o Vg',0:if A™*9(q,q') then 3p' : A™*?(p, p') and
R(p',q').

From here, it is a straightforward exercise (which
we omit) to translate the definition of G into the Mu-
Calculus. The two FTS’s P and @Q are weakly equiv-
alent if and only if ¥ R[G](po, g0). This can be evalu-
ated using the BDD-based model checking algorithm,
though the iterative squaring transformation can not
be applied.

9 w-Automata

Finally, we discuss symbolic Mu-Calculus based al-
gorithms for deciding language containment between
finite w-automata. Although there are many types of
w-automata, we will consider here only the simplest
case, that of deterministic finite Buchi automata. Al-
gorithms for other types of automata can be derived
in a similar fashion from results in [5].

A finite Buchi automaton is an ordered 5-tuple
(K,po,Z,A,A), where K is a finite set of states,
po € K is the initial state, ¥ is a finite alphabet,
A C K x £ x K is the transition relation, and A C K
is the acceptance set. The automaton is deterministic
if for all p € K and o € X, there exists at most one
distinct ¢ € K such that A(p, 0, g) holds. An infinite
sequence of states po,p1,p2,... € K is a path of a
Buchi automaton if there exists an infinite sequence
ag,ay, az,... € & such that

Vi>0: (s;,ai,8:41) € A

A sequence ag,ai,as,... is accepted by a Buchi au-
tomaton if the corresponding path po, p1,p2,... goes
through a one or more members of A infinitely often.
The set of sequences accepted by an automaton M is
called the language of M and denoted L(M).

Let M and M’ be two Buchi automata over the
same alphabet . Let K (M, M') be a Kripke struc-
ture (AP, K x K',(po,Pp), L, R), where

o AP ={a,a'} is the set of atomic propositions
o (s,sYEaiffse A
o (s,sY o iffs' € A
o (5,5 YR(r,7") i{ff 3a € T:(s,a,7) € A and
(s'ya,7) € A
Recall that in Section 6 we showed how to encode

Kripke structures symbolically.
that, if M is deterministic,

In [5], it is shown

L(M) C L(M') & K(M,M') = A(GFa = GFa)

437

Note that the above is not a CTL formula. How-
ever, it belongs to a class of formulas which can be
evaluated in polynomial time using fixed point algo-
rithms. In fact, A(GFa = GFa') is equivalent to
AGAFo under the fairness constraint “infinitely of-
ten a”. Checking the above formula with the given
fairness constraint can be reduced to checking the
truth of a particular Mu-Calculus formula, using the
techniques described in Section 4 and [4].

10 Empirical Results

The BDD method for testing boolean satisfiability is
only efficient in a heuristic sense. The problem is, of
course, NP-complete in general; the only claim that
is made for BDD’s is that they perform well for cer-
tain useful classes of boolean functions. Likewise, the
BDD method for representing state sets in the CTL
model checking problem is only of heuristic value, and
does not improve the asymptotic complexity of model
checking. Therefore, in order to evaluate the method,
we need empirical results showing the performance of
the method for some problems of practical interest.
Here we present briefly some performance results for
CTL model checking on a class of simple synchronous
pipelines, which include data path as well as control
circuitry. The number of states in these systems is
far too large to apply traditional model checking tech-
niques, but we have obtained very encouraging results
using the BDD method.

The circuits we have used as examples of this cat-
egory are very simple pipelines that perform three-
address logical and arithmetic operations on a regis-
ter file. The complete state of the register file and
pipe registers are modeled. The pipelines have three
stages. In the first stage, the operands are read from
the register file, in the second stage an ALU opera-
tion is performed, and in the third stage the result is
written back to the register file. The ALU has a reg-
ister bypass path, which allows the result of an ALU
operation to be used immediately as an operand on
the next clock cycle, as is typical in RISC instruc-
tion pipelines. The inputs to the circuits are an in-
struction code, containing the register addresses of
the source and destination operands, and a STALL
signal, which indicates that the instruction stream is
stalled. When this occurs, a “no-operation” is prop-
agated through the pipe.

A discussion of the CTL specification of the syn-
chronous pipelines can be found in [4]. Here we dis-
cuss only the performance results. Table 1 summa-
rizes the results we obtained in verifying a variety of
pipelines of this type. We varied the number of bits

per register, and the type of operation(s) performed
by the ALU, to see how these affected the size of
the BDD used to represent the tranmsition relation,
the total execution time required to check the speci-
fication, and the total storage used. The most com-
plex pipeline we verified had approximately 5 x 1020,
states, which puts it far outside the range of model
checkers like the one reported in [2]. It required a
BDD with 42000 nodes to represent the transition
relation, and approximately 22 minutes on a Sun 3
workstation to verify. The most interesting result
is that the number of nodes in the transition rela-
tion BDD increases linearly in the number of bits
per register, while the running time increases roughly
quadratically. This is somewhat surprising on it’s
face, since the number of states increases exponen-
tially in the number of bits, as does the complexity of
boolean satisfiability (as far as we know). On consid-
eration, however, this is perhaps not very surprising.
Intuitively, the complexity of the BDD is a function
of how much information must be remembered as one
passes from one level of the BDD to the next (i.e.,
from one variable to the next). In the pipeline exam-
ples, the information stored from one “bit slice” of
the data path to the next is rather small; it amounts
to the state of the control bits plus at most the value
of the ALU “carry” bit. In particular, this amount
of information does not increase as one increases the
number of bits, so the BDD becomes deeper, but no
“wider”. This result lends some support to the notion
that the complexity of model checking and other state
enumeration based verification techniques can in fact
be reduced in practice by using an efficient represen-
tation of the state space rather than enumerating it
explicitly.

11 Conclusions

We have shown, that by choosing a suitable encoding
of the model domain, and using a compact represen-
tation for relations, the complexity of various graph-
based verification algorithms can be greatly reduced
in practice (if not in the worst case). Along the way,
we have shown how several of these algorithms can be
concisely expressed in a form of the Mu-Calculus, and
how these expressions can be used to derive efficient
BDD-based verification algorithms. In the circuit ex-
amples we studied, the regular structure of the data
path logic was captured by the BDD representation,
resulting in a space complexity which was linear in
the number of circuit components rather than expo-
nential.

The current state of this research, however, leaves

438

ALU | width | register | BDD | Verification
ops | (bits) | file size | nodes | time (secs)
D 1 4 2737 9
D 2 4 8430 46
o] 3 4 14123 145
3] 4 4 19816 306
(45} 8 4 41000 1349
- 1 1 2737 9
n 2 1 10734 15
n 3 1 22276 179
T 1 1 33818 192
+ 8 4 79986 3709
e | 2 4 18429 188
Yo | 3 1| 36239 690
+,& 4 4 | 53924 1706

Table 1: Performance of BDD model checking algo-
rithm on simple pipelines.

open several important and interesting questions.
First, more work is needed in order to characterize
the models for which the BDD Mu-Calculus checker
is efficient. It is known, for example, that combina-
tional multiplier circuits do not have efficient BDD
representations [3]. On the other hand, the model
checking algorithm is easily adapted to use other rep-
resentations, if such are found to be compact for a
useful class of relations. The problem of finding more
efficient structures for representing Boolean formulas
has attracted much attention of late; any results ob-
tained in this area would be immediately applicable
to Mu-Calculus model checking, and hence to the var-
ious verification methodologies treated in this paper.

The second open question is whether the techniques
described here could be profitably extended to other
common graph algorithms whose results can be ex-
pressed as relations, such as minimum spanning trees,
graph isomorphism, etc. For example, if E(u, v) is the
edge relation of a directed graph, then the equivalence
relation

Au, v[E'(, v) A E'(v,u)]

is true of two vertices if and only if they are in the
same strongly connected component, where E' is a
relational term representing the reflexive transitive
closure of E. Practical algorithms that could han-
dle very large graphs (compared to current computer
storage limitations) would certainly be of interest.

References

(1]

(10]

S. Bose and A. Fisher. Automatic verification of syn-
chronous circuits using symbolic logic simulation and
temporal logic. In IMEC-IFIP International Work-
shop on Applied Formal Methods For Correct VLSI
Design, 1989.

M. C. Browne, E. M. Clarke, D. L. Dill,
B. Mishra. Automatic verification of sequential cir-
cuits using temporal logic. IEEE Trans. Comput.,
C-35(12):1035-1044, 1986.

and

R. E. Bryant. Graph-based algorithms for boolean
IEEE Trans. Comput., C-

function manipulation.
35(8), 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, and
D. L. Dill. Sequential circuit verification using sym-
bolic model checking. In ACM/IEEE Design Au-
tornation Conference, June 1990. To Appear.

E. M. Clarke, I. A. Draghicescu, and R. P. Kur-
shan. A unified approach for showing language con-
tainment and equivalence between various types of
w-automata. In Proceedings of the Fifteenth Collo-
quiun on Trees in Algebra and Programming, 1990.
To Appear.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans.
Prog. Lang. Syst., 8(2):244-263, 1986.

R. Cleaveland. Tableau-Based Model Checking in the
Propositional Mu-Calculus. Technical Report 2/89,
University of Sussex, March 1989.

O. Coudert, C. Berthet, and J. C. Madre. Verifi-
cation of synchronous sequential machines based on
symbolic execution. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, In-
ternational Workshop, Grenoble, France, Springer-
Verlag, June 1989.

E. A. Emerson and C. Lei. Efficient model checking
In
Proceedings of the First Annual Symposium on Logic
in Computer Science, 1986.

in fragments of the propositional mu-calculus.

M. Fujita and H. Fujisawa. Specification, verifica-
tion, and synthesis on control circuits with proposi-
tional temporal logic. In Ninth International Sympo-
sium on Computer Hardware Description Languages
and their Applications, North-Holland, June 1989.

D. Kozen. Results on the propositional mu-calculus.
Theoretical Comput. Sci., 333-354, Dec. 1983.

7. Manna and P. Wolper. Synthesis of communicat-
ing processes from temporal logic specifications. In
Proceedings of the Workshop on Logic of Programs,
1981.

439

[13] A. R. Meyer and L. J. Stockmeyer. Word problems

(14]

(15]

(16]

{17]

requiring exponential time. In Proceedings of the
Fifth Annual ACM Symposium on Theory of Com-
puting, 1973.

R. Milner. Calculi for synchrony and asynchrony.
Theoretical Comput. Sci., 25:267-310, 1983.

R. Milner. A Calculus of Communicating Systems.
Volume 92 of Lecture Notes in Computer Science,
Springer-Verlag, 1980.

D. Park. Finitenessis Mu-Ineffable. Theory of Com-
putation Report No. 3, The University of Warwick,
1974.

C. Stirling and D. J. Walker. Local model checking
in the modal mu-calculus. In TAPSOFT, 1989.

