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Abstract: We describe in this paper a method based on abstract interpretation
which, from a theoretical point of view, is similar to the splitting methods proposed
in [DGGY3, Dam96] but the weaker abstract transition relation we use, allows us to
construct automatically abstract state graphs paying a reasonable price.

We consider a particular set of abstract states: the set of the monomials on a set
of state predicates ¢y, ..., p,. The successor of an abstract state m for a transition 7
of the program is the least monomial satisfied by all successors via 7 of concrete states
satisfying m. This successor m' can be determined exactly if for each predicate ¢, it
can be determined if ¢; or —p; is a postcondition of m for 7. In order to do this, we
use the Pvs theorem prover [SOR93] and our Pvs-interface defined in [GS96]. If the
tactic used for the proof of the verification conditions is not powerful enough, only an
upper approximation of the abstract successor m is constructed.

This allows us to compute upper approximations of the set of reachable states
which is sufficient for the verification of invariants. Also, for almost the same price,
an abstract state graph can be constructed: the expensive part of the algorithm is the
computation of an abstract successor as it requires several validity checks. Therefore,
only relatively small state graphs can be constructed and the additional cost for the
storage of the transition relation is almost negligible. An abstract state graph can be
used for the verification of any property expressible as a temporal logic formula with-
out existential quantification over paths, due to the results on property preservation
[CGLY94, LGS195] using a model checker.

An abstract state graph represents also a relatively precise global control graph
of the system (the guards of the system are used for the construction of the abstract
state graph) which can be used for a backwards verification of invariants as described
in [GS96]. A global control graph allows us to generate much stronger structural in-
variants using the tool described in [?, BBCT96] than the initial presentation as a
parallel composition of processes. In the case that the control of the system is com-
pletely independent of the data part, a control graph is obtained much easier by partial
evaluation as proposed in [HGD95]; our method allows to mechanize the construction
of the global control graph also if some control variables depend on data, as for exam-
ple in the protocol studied in Section 4.

We have implemented a particular case of this method in our tool [GS96] where only
successors of complete monomials are constructed: if a successor is not a complete
monomial, it is split into its complete monomials. We have also interfaced our tool



with the state space analysis tools ALDEBARAN [FGK196].

We have verified a bounded retransmission protocol developed by Philips which
has been proven correct before using the Coq theorem prover [GvdP93, HSV94] and
on Pvs [HS96]. But for all these proofs powerful auxiliary invariants had to be given
by the user. Using our tool, the correctness of this protocol can be proved almost
without user intervention.

A Web page, concerning our experience with the verification of the Bounded Retrans-
mission Protocol, can be found at the address

http:://www.imag.fr/VERIMAG/PEOPLE/Hassen.Saidi/BRP



Construction of abstract state graphs of infinite
systems with PVS

Susanne Graf and Hassen Saidi
VERIMAG!

Abstract

In this paper, we propose a method for the automatic construction of an
abstract state graph of an infinite state system using the Pvs theorem prover.

Given a system and a partition of the state space induced by m predicates
©1, .-, Pn On the concrete program variables which defines an abstract state space,
we construct an abstract state graph, starting in the abstract initial state. The
possible successors of a state are computed using the Pvs theorem prover by
verifying for each index ¢ if ¢; or —¢; is a postcondition of it. This allows an
abstract state space exploration for arbitrary systems.

Using this method, we have automatically verified a bounded retransmis-
sion protocol which cannot be proved using backward analysis without providing
strong auxiliary invariants.

keywords: abstract interpretation, state graph exploration, theorem proving

1 Introduction

It is now widely accepted that abstraction techniques are useful, and even necessary
for a successful verification [Kur94, CGL94, GL93, LGS*95, Gra95, Dam96] [DF95].
However, in case that the system has an infinite state space, it is difficult to mechanize
the construction of an abstract system or state graph. In [GL93, KDG95] tools are
described which, given a system (with variables on finite domains), a set of abstract
(boolean) variables, and an abstraction relation relating the concrete and the abstract
variables, construct automatically a corresponding abstract system, which then may
be analyzed by any model-checker. For the analysis of real-time and particular hybrid
systems, there exist tools for the abstract analysis by means of abstract interpreta-
tion methods based on the use of polyhedra [HH95, DOTY96, HPR94] but they are
restricted to systems with linear assignments. In [Gra95, DF95], methods for the con-
struction of abstract state graphs of more general infinite state systems are proposed,
but they require an important amount of user intervention, as it is necessary to give
for any atomic operation of the system a corresponding abstract operation which must
be proven to be correct. The definition of abstract operations and the corresponding
correctness proofs are in general rather time consuming, and in case of modification of
the system or non satisfaction of the desired properties on the abstract system, some
of them need to be modified.

We describe a method based on abstract interpretation which, from a theoretical
point of view, is similar to the splitting method proposed in [DGG93, Dam96] but
the weaker abstract transition relation we use, allows us to construct automatically
abstract state graphs paying a reasonable price.
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We consider a particular set of abstract states: the set of valuations of a tuple
of boolean variables By, ..., B, representing a tuple of state predicates ¢, ...,,. As
abstraction introduces non-determinism a successor of an abstract state via an abstract
transition may not be a single abstract state, but a set of abstract states represented by
a boolean expression exp (B4, ..., B;). We consider only particular successors which are
representable by monomials on By, ..., By: the successor of a (set of) abstract state(s)
exp?(By, ..., By) for a transition 7 of the program is the least monomial representing
all successors via 7 of concrete states represented by exp” (i, ..., ;). This successor
can be determined exactly if for each predicate ¢, it can be determined if ¢; or —p; is
a postcondition of exp”(yy, ..., p,) for 7. In order to do this, we use the Pvs theorem
prover [SOR93] and our Pvs-interface defined in [GS96]. If the tactic used for the
proof of the verification conditions is not powerful enough, an upper approximation of
the abstract successor is constructed.

This allows us to compute upper approximations of the set of reachable states
which is sufficient for the verification of invariants. Also, for almost the same price,
an abstract state graph can be constructed: the expensive part of the algorithm is the
computation of an abstract successor as it requires several validity checks. Therefore,
only relatively small state graphs can be constructed and the additional cost for the
storage of the transition relation is almost negligible. An abstract state graph can be
used for the verification of any property expressible as a temporal logic formula with-
out existential quantification over paths, due to the results on property preservation
[CGLY4, LGS195] using a model checker.

An abstract state graph represents also a relatively precise global control graph of
the system (the guards of the system are used for the construction of the abstract state
graph) which can be used for a backwards verification of invariants as described e.g. in
[GS96, BLO98b]. A global control graph allows us to obtain much stronger structural
invariants using the tool described in [BBC*T96, BL98] than the initial presentation as
a parallel composition of processes.

We have implemented a particular case of this method in the tool described in [GS96]
where the successors of canonical monomials are constructed. We have also interfaced
the tool with the state space analysis tool ALDEBARAN [FGK196].

We have verified a bounded retransmission protocol developed by Philips which has
already been proven correct before using theorem provers [GvdP93] [HSV94, HS96].
But for all these proofs powerful auxiliary invariants had to be given by the user. Using
our tool, this protocol can be verified without user intervention.

2 Construction of abstract state graphs

2.1 Preliminary definitions

We consider systems which are parallel compositions of processes of the following form,
where we consider parallel composition by interleaving and synchronization by shared
variables as in Unity [CM88]:



Definition 2.1 (Processes)

Name : P
Declarations : 21T,y Ty i Ty
Transitions : Tiye Tp

Initial States : init

where P is a name, z; are variables of type 7; (which may be any type definable
in Pvs). The list of variables declared in one process indicates which variables are
(intended to be) used in this process, but in fact all variable declarations are global.
Each transition 7; is a guarded assignment of the form

9;(T) — T := ass;(T) (1)
where g;(Z) is a boolean Pvs-expression and ass;(Z) a tuple of Pvs-expressions ass;;
of type 1. In order the structural invariant generation to be effective, each process

has a finite domain control variable, which is always tested for and assigned with a
constant expression.

Semantics: As parallel composition is as in Unity, the state graph associated with
a parallel composition of processes is the state graph associated with a single process
having, as variables the union of the variables of all processes, as transitions the
union of the transitions of all processes, and as initial predicate the intersection of
the initial predicates of all processes. That means, parallel composition is only useful
for better readability and for the generation of structural invariants [BL98]. Therefore,
we consider here without loss of generality only systems with a single process P. P
defines a state graph Sp = (Qp, Rp, Ip), where

e Qp =T x..xT,

1 if g;(q) = false
e Rp = Ule Tis where Tz(q) = { assi(q) Oth%’fsw)lsef

denotes also the (partial) transition function associated with transition 7;.

o Ip = {q| init(q) = true} is the set of initial states.

Predicate transformers: Let us first recall briefly the notion of predicate trans-
formers associated with relations and their well-known characterization for guarded
command programs. In the sequel, we always consider sets of states to be represented
by predicates ¢ (hence the name predicate transformer).

Definition 2.2 (predicate transformers) Let R be a binary relation on a set Q
and ¢ € P(Q) represent a subset of Q. Then,

e post[R](¢) =3¢' . R(¢',q) A ¢(q)
e pre[R](p) =Vq' . (R(q,q") = ¢(¢))

post[R](y) defines the set of successors of ¢ by R (strongest postcondition). pre[R](y)
represents the largest set of states such that all its successors satisfy ¢ (weakest pre-
condition). Preconditions for guarded commands 7; of the form (1) can be expressed
without quantifiers:



pre[ril(¢) = (9:(z) = plassi(z) /7)) (2.1)
whereas the quantifiers in the postconditions can in general not systematically be
eliminated. For this reason, symbolic forward analysis is more difficult than backward
analysis and it is difficult to compute effectively an abstract state graph by forward
analysis: the successor(s) of an abstract state (representing a predicate ¢ on concrete
states) represents an upper approximation of the postcondition of ¢ by the concrete
transition relation.
These predicate transformers have many interesting properties (see for example [Sif82]),
but here we need only the following;:

post[R]() = ¢ iff ¢ = pre[R)(¢) (2.2)

Abstract semantics of programs

All the results presented in this section are an application of abstract interpretation
[CCTT7]. However, we do not suppose the reader to be familiar with abstract interpre-
tation. Here, we limit ourselves to abstractions representing supersets of the concrete
system (in fact, its execution sequences) as we are interested in verifying properties
such that whenever a system satisfies property p, then also any system with a smaller
transition relation (and therefore set of reachable states).

Definition 2.3 (abstract state graphs) Let S = (Q,Rp = Ur;,I) be the state
graph of a program, Q# a lattice of abstract states and (o : P(Q) — Q4,7 : Q* —
P(Q)) a Galois connection®. S4 = (Q*,Ur,I*) is an abstraction of S iff

o I CH(I*)

e Vi VQ4 € Q* . post[r;](v(Q4)) C (77 (Q4))

The abstraction function o associates with any set of concrete states a corresponding
abstract state (the abstract state space is a lattice where larger abstract states repre-
sent larger sets of concrete states). The concretization function -y associates with every
abstract state the set of concrete state that it represents. The above definition simply
expresses that the abstract initial state represents (at least) all concrete initial states,
and the successor of any abstract state Q# by some abstract transition represents all
successors of the set of concrete states represented by Q4 by the corresponding con-
crete transition. Thus, every concrete execution sequence is represented by at least one
abstract one. Intuitively, the smaller the represented superset of execution paths is,
the more properties are satisfied on the abstract system. The reason why the abstract
lattice is not necessarily of the form 2¥ where E is a set of abstract states, is that
for efficiency reasons one does not want to consider any such set of abstract states,
but only some of them. For example, an often used rather coarse approximation is
to approximate every non singleton set of abstract states with the top element of the
lattice representing the set of all (abstract and therefore also concrete) states.

2a Galois connection is a pair of functions (a, ) satisfying a(v(Q4)) = @4 and ¢ = vy(a(yp)).
Given 7, « is implicitly defined by a(¢) =M{Q4 € Q4|p = v(q4)}.



2.2 A particular abstraction scheme

Choice of an abstract state lattice: We consider an abstract state lattice Q4
induced by a set of £ predicates {¢;, ..., o, } on the variables of the concrete program P3.
We choose as abstract state space the set of predicates on £ boolean variables By, ..., By,
where each variable B; represents all concrete states satisfying the predicate ¢;. That
means that the set of concrete states represented by any element of the abstract lattice
can easily be computed by substituting each occurrence of an abstract variable B; by
the concrete predicate ¢, which it represents:

7(eXpA(Bla ) Bf)) = epr[ﬁ/_]

whereas the implicitly defined abstraction function

a(p) = \{exp(Bi, ..., Be) | ¢ = exp?[p/Bl}

can in general not easily be computed. For this reason, we use an upper approximation
of the function which is less expensive to compute and which yields only particular

elements of the abstract lattice which are the monomials on By, ..., B;*:

4
o () = /\{Bi lo = ¢;}

=1

Notice that the set M of monomials on abstract boolean variables By, ..., By forms
a complete lattice and (o', ) is a Gaulois connection from the set of concrete predi-
cates to M. The set of atoms of the lattice is the set of the 2¢ canonical monomials
(representing abstract states).

Abstract transitions: For each concrete transition 7; of the program, we define an
abstract transition function 7* associating with any set of abstract states exp? a set of
abstract states representing all successors of the concrete states represented by exp.
The least such set is a(post[T;](7(exp?))), but as we have already seen this is expensive
to compute. Therefore we choose the weaker approximation o (post[r;](y(exp?)))
which is much easier to compute as it has the form of a monomial:

false if exp[@/B] = —~g; (3.0)

7 (exp?) = , B;  if post[n](exp[p/B]) = ¢;  (3.1) (3)
Nj—1q —B; if post[r;](expA[@/B]) = 0 (3.2) otherwise
true  otherwise (3.3

Notice that exp has no successor if and only if in all states satisfying v(exp?), 7; is
not enabled. The properties (2.1) and (2.2) allow to recognize easily that the involved
implications can be expressed without introducing existential quantifiers. E.g. (3.1)
is equivalent to

3predicates @1, ..., o, define a partition of Qp, even if they are not independent
4a monomial on By, ..., By is a conjunction of B;’s and —B;’s containing each B; at most once.
Furthermore, we consider the predicate false as a monomial.



exp[p/BI A g; = ;lassi(T)/7) (3.1)
That means that the successor of a given abstract state can be “computed” if it
is possible to check the validity of the implications in (3). In the case that these
implications are in a decidable theory this can be done by means of an appropriate
decision procedure. We choose to use an automatic theorem prover which implements
also many interesting decision procedures. In this case, we are sure to compute exactly
the transition relation defined by (3) if for all indices i either (3.0), (3.1) or (3.2) can
be proved. Otherwise, the impossibility to prove either of these implications may have
two different causes:

e It may be the case that post[r;](exp”[@/B]) has a non-empty intersection with
both ¢; and with —,. In this case, the non-determinism in the abstract transi-
tion relation, is due to the fact that

— either, the set of abstract starting states exp” has been chosen too big: it
could be cut into smaller pieces and their successors computed separately,

— we consider monomials as successors,

— or the abstract state space is not fine enough.

o It may simply be the case that the applied proof strategy is not powerful enough.

Abstract initial state: As abstract initial state we choose I+ = o'(init). Notice
that in most practical cases the initial state defines exactly one possible value for most
variables and can be computed easily by evaluating the predicates ¢, in the initial
state.

2.3 Abstract state space exploration methods

This allows us to do a state space exploration, starting in the abstract initial state. Us-
ing the above defined abstract transition functions 7;*, different upper approximations
of the set of reachable states (invariants) can be defined.

First approximation: 7, is obtained by imposing also on all computed approxi-
mations of the set of reachable abstract states the restriction to be a monomial, where
we denote by Ll the lub-operator of the lattice of monomials M:

Xjpn = U2, 7 (X))

All approximations X; are monomials. As the longest chains in M are of length £, 7;
can be computed in at most £ iterations.

e} — Ja
Il = |_| X] where { XO I
=0

Second approximation: The strongest invariant that can be obtained using 7;*, is
obtained by allowing approximations to be arbitrary elements of the abstract lattice
(boolean expressions on By, ..., By) and by applying 7;* only on canonical monomials
m¢(By, ..., By) representing a single state:

0o X _
Ty = \/ X; where o= N '
: j\:/o ! { Xjpr = V{r(m°) | m® = Xj, i = 1.p}



This corresponds to the invariant obtained by an enumerative state exploration where
the successor sets are computed individually for each already reached state. Notice
that this increases the precision as

TiA (fhcl) \Y TiA (ﬁlcz) = TiA (’l’/ﬁcl \Y ’I’?lcz)

but the inverse implication does not hold in general. However, if m¢; and m¢y differ
only on the values of abstract variables B; such that the set of successors does not
depend on the fact that ¢; holds or not, then the inverse implication holds also and
it is not useful to compute the successors of these two states separately.

Complexity issues: It is reasonable to express the complexity of the computation of
the above invariants by means of the number of necessary proofs. In order to compute
the successor of any set of abstract states exp”, at most K = 2 % p* £+ 1 proofs (1 for
the enabledness and 2 proofs for each predicate ¢; and each transition 7;) are needed.
The computation of the invariant 71 needs therefore maximally £ * K proofs, but it
is in general too weak. For the second invariant, in the worst case, the successors of
(almost) all 2¢ abstract states (canonical monomials) have to be computed, leading
to maximally 2¢ x K proofs. However, in practice, the number of necessary proofs is
much smaller as

1. some transitions 7; leave some predicates ¢; trivially unchanged or transform
; independently of all (or most) other predicates ¢, In this case it is better to
compute the successors of a set of abstract states (represented by a monomial)
instead of each (reachable) state contained in this set.

2. only a small subset of all abstract states is reachable (otherwise ¢y, ...,¢, has
probably not been well chosen)

3. we have not required the predicates ¢y, ..., ¢, to be independent. If they are not,
not all 2¢ canonical monomials represent a non-empty set of concrete states. In
this case, a dependency predicate allows us to consider only non-spurious abstract
states.

Improvement of the computed invariants: The invariants 7k can be improved
by using them as the starting point of a backward analysis as it has been suggested,
e.g., in [CCT7]:
+ _ A0 Yo =TIk

Th= Aoy where {2 23 e sretri) “
Improved versions of this backward analysis which use theorem proving to discharge
verification conditions are implemented in [BBC196, GS96, BLO98b]. Notice that the
approximations Y; are arbitrary predicates of the concrete property lattice and not
necessarily boolean combinations of ¢y, ...,¢,. In order to do an abstract backward
analysis (cf. [CCT77]) a lower approximation of pre[r;](Y;) is needed.

Construction of a state graph: As the computation of a successor requires
several proofs, only relatively small abstract state spaces (a few thousand successor
computations) can reasonably be explored. Under these circumstances, the additional
cost for storing not only the set of reachable states but also the transition relation is
almost negligible. This has at least two advantages:



e Any property representable as a temporal logic formula on atomic propositions
in {Bu, ..., B;} without existential quantification over executions can be verified
on the abstract state graph using a model checker.

e The obtained abstract state graph represents a relatively precise global control
graph, especially if all abstract states represent a set of concrete states enabling
exactly the same transitions (this is the case if the guards of the program are
boolean combinations of predicates in {p,...,,}). The method and tool de-
scribed in [BL98] generate stronger structural invariants for this control graph
than for the initial control structure. These invariants can be used to improve
the result of the backward analysis defined by (4).

Refinement of an abstract state graph: If the abstract state space exploration
by means of 7/ does not allow some property to be verified, one can try to construct
a more precise abstraction by adding more predicates to ¢y, ..., ¢,, that is, to consider
a finer partition of the concrete state space. E.g., for the computation of a successor
of expAAB ., by the refined transition relation, not all implications of Definition (3)
have to checked, but only the new ones and those which could not be proved valid
during the computation of the successors of expA. Notice that this information can
be deduced from the so far constructed transition relation and it is not necessary to
keep a list of valid assertions. That means the construction of a sufficiently precise
state graph can be obtained in an incremental manner. This does not mean however,
that it is a good idea to start with a single predicate ¢,, compute an abstract state
graph, and add incrementally more and more predicates. In general it is better to
start directly with a “reasonable” set of predicates, and to refine it only if it turns out
to be not sufficient.

3 An implementation

In the tool Invariant checker [GS96, Sai97] which implements the backward compu-
tation of inductive invariants (4) and also the methods described in [BBCT96, BL9S§]
for the generation of structural invariants, we have also implemented an abstract state
graph generation. We have achieved an integration with the Pvs theorem prover where
all the implications necessary to compute the successors of an already reached state
are submitted to the Pvs prover. A proof strategy combining decision procedures,
rewriting and boolean simplification using BDDs, is systematically applied. This proof
strategy is often sufficient to prove all valid implications that are generated.

As the tool can handle programs with explicit control locations, an abstract state
is a tuple (ctrl, m®) where ctrl is a concrete control configuration and i€ is a valuation
of a set of boolean variables By, ..., By as defined in the preceding section.

1. Given a set of concrete predicates {¢y,...,,}, an upper approximation of a
dependency predicate is computed and used in order to generate only consistent
successors. The exact dependency predicate can be computed if {¢, ..., ¢, } can
be divided using syntactical independency into a set of small sets of potentially
dependent predicates.



2. Auxiliary invariants are generated using the initial control structure where all
control configurations of a system consisting of several parallel components are
considered reachable.

3. An abstract state graph is generated. The invariant Z, which is a conjunction of
already known invariants of the system relevant for the transition under study
is used to construct smaller successors for each abstract state by replacing the
implications of (3) by weaker ones. For example the implication (3.1) becomes:

IAy(exp?) A g; = ¢;lassi(T)/T] (3.1)

Also, not all the implications of (3) are generated, but only those compatible with
the generated dependency predicate and those which cannot be directly obtained from
the already computed abstract transition relation. (3.1’) considers only successors of
states in Z. We could also take care to add only abstract successors representing a
non-empty set of concrete states in Z, but experimentation showed that this represents
a lot of effort for a small number of states that could be eliminated.

An algorithm: We present here a version of the algorithm for systems without
explicit control locations. It is based on the representation of abstract state and tran-
sition sets by means of boolean expressions on By, ..., B,® respectively BDDs. However,
we had problems to interface Pvs with an external BDD package and in the actual
implementation sets are represented explicitly by lists.

Preliminary definitions:

o We construct an abstract invariant Iﬁ obtained by analysis of the dependencies
between the predicates ¢, ..., ¢,. Furthermore, we generate a concrete invariant
7 using the facilities in our tool. At each successor computation we will only use
its useful conjuncts.

e We try to find by static analysis some constraint Ctau[i](B, ..., B¢, By, ..., B})
for each transition 7;. For example, we examine which are the predicates ¢; not
touched by it which allows intersect Ctau[i] with the constraint B; = B’.

e We define an abstract predicate Aguard[i] = &/(g;) for each transition 7;,. In
general the predicates ¢, ..., ¢, are chosen in such a way that Aguard[i] represents
exactly the guard g; of the transition 7;.

e AReach represents at each stage of the algorithm the so far computed set of
reachable states. At termination it represents an invariant of the program.

e Atauli] represents at each stage of the algorithm an upper approximation of the
abstract transition relation 771

e To_explore is an auxiliary variable representing the set of states for which we have
still to compute the successors.

5a transition relation is represented by a predicate of the form trans(Bi, ..., B¢, BY, ..., Bj) where
Bz, ..., By represents the start and Bj,..., B} the target state of each represented transition



Initializations:

Alnit := o/ (init);

for all i : Atau[i] := T/ A A ACtauld] ;
AReach := Alnit ;

To_explore := Alnit ;

Iteration:
While To_explore # false

Choose m in To_explore ;
To_explore := To_explore A —m ;

% compute the set of successors succ of m and update %
% the abstract transition relation and set of reachable states %
If m=Aguard[i] then % this is a boolean decision %

B; if  Atauli] Am= B, %idem%
-B; if  Ataufli] A m = B %idem%
B; if  Z Apost[ri](v(m)) = ¢}

-B; if I Apost[ri](y(m)) = =g}
true  else

succ := /\5:1

Atau[i] := Atauli] A (m = succ[B/B']) ;
To_explore := To_explore A( succ A— AReach) ;
AReach := AReach V succ ;

This algorithms allows us to generate a state graph in a totally automatic manner
as we never try to prove interactively a generated implication: if the proof of a valid
implication fails, a weaker successor is obtained. The user guides the verification
by (re)defining the predicates ¢, ...,p, for the definition of the abstract state graph
and by defining the automatic proof strategy. The constructed abstract state graph
is transformed into the format of the ALDEBARAN tool [FGK196], and can then be
analyzed by all the techniques available in ALDEBARAN, such as minimization, model-
checking and graphical display of graphs. In a near future, it is foreseen to represent
abstract state sets and transition relation by BDDs, which is convenient for an incre-
mental construction of the abstract state graph and for the efficient representation of
global constraints on Atauli].

Choice of the predicates ¢;: In order to obtain good results, it is often essential to
use the guards appearing in the transitions of the system. This allows us to construct
successors only via transitions enabled in all represented concrete states and replaces
the enabledness check (3.0) by a boolean test. In order to prove that ¢ is an invariant
of the system (or any other property involving 1), we can also try to use 9 for the
definition of the abstract state space. Furthermore, each predicate is split into its set of
literals. E.g., for the verification of the invariant (6) below we take 1 = (OUT = IN)
and ¢y = (OUT = tail(IN)) instead of the disjunction ¢ V ¢3; otherwise, in most

10



cases, too much information is lost. Sometimes, it may be helpful to use ¢, o and
p1 V.

Example: We have applied this method for the verification of a simple alternating
bit protocol. The protocol is correct if the list of already received messages OUT is a
prefix of the list of so far sent messages I N such that OQUT has at most one element
less than IN. This can be expressed by

O(OUT = IN Vv OUT = tail(IN)) (6)

Using the already implemented backward verification method to prove (6), the com-
putation of the appropriate inductive invariant® does not terminate and no interesting
structural invariants are generated.

Using the two predicates appearing in the guards of the program (they express
for both processes that the received bit is the expected one), a deterministic abstract
state graph is obtained by the algorithm implemented in our tool. 34 (decidable)
implications are submitted to the prover, 5 abstract states are found reachable, and
the construction takes 68 seconds.

Using the literals ¢; and o2 of (6) for the construction of the abstract state graph,
leads to a state graph with more states and more non-determinism, but not to a more
precise one. We have used two methods to obtain a more precise approximation:

1. We have refined the so far obtained abstract state graph by using also the internal
predicate message(message_channel) = head(IN) — expressing that the last
sent message is the head of IN. This refinement does not allow to eliminate any
state nor transition and the resulting abstract state graph is exactly the initial
one, but all its states satisfy either “IN = OUT” or“ OUT = tail(IN)”.

2. We have used the computed abstract state graph as a control graph on which
the tool generates much stronger structural invariants than on the original sys-
tem. Then, we apply the suggested backward analysis to strengthen the already
obtained invariant. The Property (6) can be proved with a single iteration.

In this simple example, the control depends only on finite domain variables, and it
would be much easier to construct the control graph using partial evaluation as pro-
posed e.g. in [HGD95]. In the example of the next section however, the control depends
on non instantiated parameters and partial evaluation is not possible.

4 Case Study : Bounded Retransmission Protocol

We have used this method to verify a Bounded Retransmission Protocol (BRP) de-
veloped by Philips [GvdP93]. The BRP protocol is an extension of the alternating
bit protocol, where not single messages, but message packets are transmitted and the
number of possible retransmissions per message is bounded by some number max. We
consider a fully parameterized version of the protocol where the packets can be of any
size, and max any positive number. The protocol has already been proved before using
a theorem prover [GvdP93, HSV94, HS96], where a large amount of user interaction
has been necessary to provide powerful enough auxiliary invariants.

6The weakest inductive invariant implying IN = OUT VvV OUT = tail(IN)
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Figure 1: The architecture of the BRP protocol

Description of the protocol: The sender receives from a sending client a message
packet to transmit. The sender delivers a confirmation to its client: 0K, if all messages
have been transmitted and acknowledged, NOT_OK, if the transmission has been aborted
as more than max retransmissions would have been necessary to deliver a message,
DONT_KNOW, if the last message has not been acknowledged (in this case, it is not
possible to know if this message or its acknowledgment has been lost).

The receiver acknowledges each received message, and delivers an indication to the
receiving client. The indication is FIRST for the first received message of a packet,
INCOMPLETE for any intermediate message, and OK for the last message. If the sender
abandons the transmission of a packet after sending successfully at least one message,
the receiver delivers a not NOT_OK indication.

There are two timers T1 and T2. Timeout of T1 indicates to the sender that a
message (or its acknowledgment) has been lost. Timeout of T2 indicates to the receiver
that the sender has definitively abandoned the transmission of the packet.

Correctness criterion: One must prove that the sequences of received messages
and of sent messages are consistent, that is, Property (6) of Section 3. It has also
to be proved that for each packet, the indication and the confirmation delivered to
the clients are consistent. That means, if the sender delivers a 0K confirmation, the
receiver delivers an OK indication. If the receiver delivers a NOT_OK indication, the
sender delivers the DONT_KNOW or NOT_OK confirmation. These properties can easily be
expressed by temporal logic formulas.

Verification of the protocol: To construct the abstract state graph for the BRP,
we have used 19 predicates appearing in the guards of the system. The constructed
abstract graph has 475 states and 685 transitions and has been obtained in three
hours on a Sparc 10. Of the 24 possible global control configurations, only 9 are
found reachable. On this graph, the control properties concerning confirmations and
indications could be verified using ALDEBARAN. Property (6) has been verified on
a weaker abstraction where only predicates concerning the transmission of a single
message are considered (it can be obtained by ALDEBARAN from the above mentioned
more complex abstraction). The obtained abstract state graph is very similar to the one
obtained for the alternating bit protocol, except that at any moment the transmission
can be abandoned because the maximal number of retransmissions may have been
reached.
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5 Conclusions

We have presented and implemented a method allowing to construct abstract state
graphs of arbitrary infinite state systems, where abstract states are valuations of a
set of predicates ¢, ..., ¢, on concrete variables. At a first sight, the method may
look rather expensive as the construction of a successor requires several proofs, and
the construction of an abstract state graph for the BRP with 500 states takes several
hours. However, the actual implementation is extremely inefficient as the independence
between transitions and predicates is not really exploited. Furthermore, all proofs are
done without user interaction using a single tactic, and if this tactic fails to prove
some valid statements, a weaker abstraction is obtained. Once the user has provided
the predicates ¢, ..., ¢, (the tool proposes a set consisting of the literals occurring in
the guards and properties to be proved), the construction is completely automatic. In
this case, execution time is less critical. It is always possible to apply this method to
get a first approximation of a system which — from the point of view of human effort
— is for free. The constructed state graph is always of a reasonable size and can be
explored by a model-checker. It can also be used as a finite global control graph which
can be used for further invariant generation and backward analysis.

If the initial set of predicates, defining the abstract state space, does not give a
satisfactory abstraction, one can try to add new predicates to obtain a more precise
abstraction. To provide a new predicate is similar to providing an auxiliary invariant,
which is usually necessary to prove program properties. However, it is easier to provide
some predicates leading to a sufficiently refined state graph than the corresponding
auxiliary invariant (expressing when these predicates hold and when not). Sometimes,
the refining predicates can be obtained from the so far constructed abstract state graph
by examining the nondeterminism occurring in sequences leading to states violating
the required invariant.

This construction of an abstract state graph is in some sense complementary to the
tableau construction implemented in STeP [BBC*96] where the tableau of the property
to be proved (or disproved) is taken as the starting point for an abstract state graph
construction by expanding it until it fits with the program. We take the control of the
program of the program as a starting point and refine it until it satisfies the property
to be verified. The particularity of our method is that it integrates a reachability
analysis in order to avoid the (costly) computation of successors of unreachable states.

It has also some other interesting characteristics:

e it is incremental: a refinement generates new implications which are weakenings
of those generated for the previous partition. Hence, all implications valid for a
given partition, are also valid for a finer partition. Furthermore, in order to use
this fact, it is not necessary to store the already proved implications, but only
the corresponding abstract transition relation.

e The abstract state graphs constructed by our method are interesting for debug-
ging. It can be used to guide the search of a concrete execution sequence violating
a required property, especially as any transition enabled in some abstract state
is enabled in all concrete states it represents.
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Since the first version of this paper new results in this direction have been obtained.
In [BLO98a], Bensalem et al. present a similar abstraction framework which improves
the one presented here essentially in two points:

e Successors of sets of abstract states (abstract predicates) and not only of sin-
gle abstract states are constructed. Also, not only successors of the form of a
monomial are constructed. In fact, if the transitions 7 of a system,

— let many predicates trivially unchanged,

— ¢q,..., ¢ can be cut into subsets which are transformed by 7 independently
of each other, and all these subsets are small

then, one may well consider arbitrary successor sets.

e The computation of the abstract transition relation is not combined with the
state space exploration. On one hand, this may lead to many computations of
successors of unreachable states. On the other hand, if there are many indepen-
dencies as described above, the number of unnecessary successor computations
may in fact be quite small. And it is an advantage to construct a abstract
transition relation for each transition of the concrete system; the obtained set
of transition relations can be used directly by an appropriate model-checker for
either state graph generation or “on-the-fly” model-checking or compositional
verification ...

With this improved method, together with the use of data abstractions of message
queues (similar to those proposed in [Gra95]), they obtain a finite abstraction of
the Bounded Retransmission protocol on which also data properties can be model-
checked.
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