
Weakest-Precondition of Unstructured Programs

Mike Barnett and K. Rustan M. Leino
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
�mbarnett,leino�@microsoft.com

Abstract

Program verification systems typically transform a pro-
gram into a logical expression which is then fed to a the-
orem prover. The logical expression represents the weak-
est precondition of the program relative to its specification;
when (and if!) the theorem prover is able to prove the ex-
pression, then the program is considered correct. Comput-
ing such a logical expression for an imperative, structured
program is straightforward, although there are issues hav-
ing to do with loops and the efficiency both of the compu-
tation and of the complexity of the formula with respect to
the theorem prover. This paper presents a novel approach
for computing the weakest precondition of an unstructured
program that is sound even in the presence of loops. The
computation is efficient and the resulting logical expression
provides more leeway for the theorem prover efficiently to
attack the proof.

0 Introduction

A technique for precisely checking that a computer pro-
gram meets specified correctness criteria is static program
verification. The typical architecture of a static program
verifier takes as input a program and its specification, gen-
erates from these a verification condition—a first-order log-
ical formula whose validity implies that the program meets
the specification—and then passes the verification condi-
tion to a theorem prover. The engineering of the verifica-
tion condition has a large impact on the proving task pre-
sented to the theorem prover [11]. The primary goal is to
prevent redundancy in the verification condition, which lets
the prover complete its task more efficiently. Although the
exact nature of what constitutes redundancy may depend on
the operation of the theorem prover, one general desider-
atum is that the formula not be dramatically larger than it
needs to be.

In this paper, we describe the verification condition gen-

eration in the Spec# [2] static program verifier. It produces
verification conditions that are decidedly smaller than those
produced by ESC/Java [11, 13], the leading automatic pro-
gram checker of its kind. Moreover, our verification condi-
tion generation is more general, because it applies to gen-
eral control-flow graphs, not just to structured programs.
Another little contribution of this paper is the data struc-
ture used when computing single-assignment incarnations,
which can reduce the number of incarnations produced.

Like the verification condition generation in
ESC/Java [10, 14, 11], we proceed in stages. Our
starting point is a general control-flow graph. For us, this
was a natural choice, because the Spec# static program
verifier uses as its input language the intermediate language
of the .NET virtual machine, whose branch instructions can
give rise to any control flow. Using standard compilation
techniques that duplicate instructions to eliminate multiple
entry points to loops [0], we transform the general control-
flow graph into a reducible one. (In fact, being a superset of
C#, Spec# inherits ���� statements that enable irreducible
control flow already at the source level.) We then eliminate
loops, producing an acyclic control-flow graph that is
correct only if the original program is correct. We apply
a single-assignment transformation to the acyclic program
and then turn it into a passive program by changing as-
signment statements into ������ statements. Finally, we
apply weakest preconditions to the unstructured, acyclic,
passive program to generate the verification condition.

In this paper, we describe the stages of this pipeline in
reverse order. But before we do, we present the unstruc-
tured language under consideration and describe its execu-
tions and correctness criteria.

1 Programs and Correctness

Throughout this paper, we think of a program as a chunk
of code that is to be verified. This may correspond to the
implementation of a method in the source program, for ex-
ample.

1

The language we consider in this paper follows this
grammar:

������� ��� ����	�

����	 ��� ����	
� � �
�
 � ���� ����	
��

�
�
 ��� ���
� �� ���� � ��	�
 ���
�
� ������ ���� � ������ ����

� �
�
 � �
�
 � ��
�

A program consists of a number of basic blocks. Each ba-
sic block has a label, a body, and a possibly empty set of
successors. We assume the program’s first block is labeled
“�
��
”.

A program gives rise to a set of execution traces. An
execution trace consists of a sequence of program states,
each a valuation of the program variables. A trace is either
infinite or it ends in termination, ends in error, or ends in
infeasibility. Intuitively, each trace of a program consists
of the execution of successive blocks starting from �
��
 ,
at the end of each block arbitrarily choosing one of the de-
clared successor blocks, if any; the trace ends in termination
if there are no successors to choose from, ends in error if an
������ statement evaluates to �����, and ends in infeasibil-
ity if an ������ statement evaluates to �����. In the next
two paragraphs, we make this definition more precise.

A statement gives rise to a set of finite execution traces.
The assignment statement � �� � gives rise to the set of
terminating traces � � , where state � is like state � ex-
cept that it evaluates � to ��� �. The details of expres-
sions are not important here, but we assume an expression
always evaluates to some value in each state. The statement
��	�
 � sets � to an arbitrary value, thus giving rise to the
set of all terminating traces � � , where � and � agree on
their valuation of all variables except possibly � . The state-
ment ������ � gives rise to the terminating (single-state)
traces � where ��� �, and to the erroneous traces � where
���� �. The statement ������ � gives rise to the ter-
minating traces � where ��� �, and to the infeasible traces
� where ���� �. Sequential composition � �� gives rise
to the non-terminating traces of � , and to the terminating
traces of � continued (via a matching intermediate state)
by the traces of � . Finally, ��
� is just a shorthand for
������
���.

The set of traces of a block� is the smallest set of traces
that include (a) the set of non-terminating traces of the body
of �, (b) the set of terminating traces of the body of �, if
� has no successors, and (c) the set of terminating traces of
the body of � continued by the traces of the successors of
�, if � has successors. The set of traces of a program is the
set of traces of block �
��
 .

A program is correct if none of its traces ends in error.
Note that this definition of correctness does not say any-
thing about the final state of terminating executions, but one
can encode given postconditions by putting an appropriate

������ statement at the end of blocks with no successors.
Note also that correct programs can have traces that end in
infeasibility; such can be thought of as the execution mak-
ing “mistakes” in the “arbitrary” choices inherent in ��	�

and ���� statements and in the “arbitrary” choice of the
initial state. Any given preconditions of the chunk of code
to be checked can be encoded by putting an appropriate
������ statement at the beginning of block �
��
 . Finally,
note that a correct program can include neverending execu-
tions.

Our little language may seem impoverished at first, but it
suffices for verification purposes (cf. [14]). In fact, it closely
resembles the statements in BoogiePL [5], the intermediate
language used by the Spec# static program verifier. For ex-
ample, conditional control flow, as in a common if statement

� �� � � � � ���� � � �

can be encoded in our little language as:

�
��
 � ��
� � ���� ���������
����� ������ � � � � ���� ���
����� ������ �� � � � ���� ���
��� � � � �

Iteration is supported via the ���� statements. A proce-
dure call is replaced by an encoding of the callee’s pre/post
specification, which can be done using ������, ��	�
, and
������ [14]. Finally, exceptions are encoded using a cou-
ple of additional variables (cf. [14]) and conditional control
flow that threads through exception handlers.

We are now ready to describe the details of the verifica-
tion condition generation.

2 Weakest Preconditions

In this section, we define weakest preconditions of
unstructured programs. This is the last stage in our
verification-condition generation pipeline. We assume pro-
grams to be passive (there are no assignment statements).
It is this computation of weakest preconditions that is at
the heart of making the verification condition palatable to
the theorem prover. In fact, our technique produces a ver-
ification condition that is linear in the size of the passive
program.

For any statement � and predicate� on the post-state of
� , the weakest precondition of � with respect to � , written
���� ���, is a predicate that characterizes all pre-states of
� from which no execution will go wrong and from which
every terminating execution ends in a state satisfying� [8].
The weakest preconditions of the passive statements are de-
fined as follows, for any� :

��������� � � �� � � � �

��������� � � �� � � � �

���� �� � �� � ���� ����� ����

2

Note that �� is monotonic in its second argument.
In a structured program, the central problem to be over-

come in computing weakest preconditions is that of the
choice statement, � �� � , which arbitrarily chooses one of
� and � to execute. Its weakest precondition is defined by

���� �� � � �� � ���� ��� � ���� ���

The problem is that the duplication of � in the right-hand
side of this equation introduces redundancy. � represents
proof obligations downstream of the choice statement, and
this naive formulation suggests that the theorem prover
would need to process � twice. In general, � may need
to be processed twice, but in practice, large parts of � are
often independent of which choice is taken [11]. Luckily,
passive programs satisfy a property that lets this �� equa-
tion be formulated in a way that significantly reduces redun-
dancy [13]. The alternate form uses �� and so-called weak-
est liberal preconditions (���) and produces verification
conditions whose size is quadratic in the size of the passive
program [11]. This alternate form applies to structured pro-
grams only, so applying it to unstructured programs would
require some preprocessing step.

Unstructured programs do not have the structured choice
statement. Instead, they have ���� statements, which at
first seem even more disastrous—certainly, we would not
like to explode the control-flow graph into a tree, which
would lose all the sharing that a control-flow graph rep-
resentation affords (not to mention that we don’t actually
assume acyclicity in this section of the paper, even though
in our application the passive programs are all acyclic).

Here is our solution. For every block

�� � � ���� � � �

we introduce an auxiliary variable ��� . Intuitively, ��� is

��� if the program is in a state from which all executions
beginning from block� are correct. Formally, we postulate
the following block equation:

��� � ���� �
�

���������

��� �

where ������� denotes the set of successors of � so that
the second argument to �� is the conjunction of ��� for
each block � in that set. For example, the block equation
for ���� in the previous section is:

������ � �� � ���� ������ ��

Each block contributes one block equation, call their con-
junction�, and the program’s verification condition is:

� � �
��
��

The verification condition and block equations are in
terms of the program’s variables and the auxiliary variables.

In the rest of this section, it will be convenient to include
the auxiliary variables in states and traces. When we do so,
we’ll refer to the states as augmented states.

Lemma 0. For any program state �, there is an augmented
state � that agrees with � on the values of the program vari-
ables and that satisfies all the program’s block equations.

Proof. The right-hand side of each block equation is a
monotonic function of auxiliary variables (since �� is
monotonic in its second argument). Thus, the conjunction
of block equations can be put into the form � � � �� �,
where� denotes the tuple of auxiliary variables and � �� �
is the tuple of block-equation right-hand sides. Since � is a
monotonic function on a complete lattice, � � � �� � has
a solution in � (by Tarski’s Theorem [17]).

Lemma 1. Let � be a passive program,� be a basic block
in � , and � an augmented state that satisfies all block equa-
tions of � . If ��� is
��� in �, then every execution from
� starting in � is either correct or has a correct prefix that
returns to block �.

Proof. By induction over the set of blocks not yet visited
in an execution prefix. If ��� holds at the beginning of the
execution from a block � , then the fact that � satisfies the
block equation for � means that the execution of � ’s body
is correct and that, for every successor � of � , ��� holds
upon termination of the body. For any successor block that
is already visited in the execution trace, we are done. Mor-
ever, since the program is passive, all block equations still
hold, so the antecedent for applying the induction hypothe-
sis on any successor ��� holds, and applying the induction
hypothesis leads to a well-founded induction because there
is one fewer blocks still to visit.

Lemma 2. Let � be a passive program,� be a basic block
in � , and � an augmented state that satisfies all block equa-
tions of � . If ��� is
��� in �, then every execution from �

starting in � is correct.

Proof. Take any execution trace and chop it up into the
longest possible segments that do not repeat any blocks.
Since this is a passive program, the first and last states of
any terminating segment are the same. Then each of these
segments is correct, by Lemma 1, which implies that the
whole execution is correct.

Theorem 3. For any passive program � , if the verification
condition for � is a valid formula, then � is correct.

Proof. By Lemma 0, we can augment the initial state with
values for the auxiliary variables to form an augmented state
� that satisfies the conjunction of block equations. From the
validity of the verification condition, we then conclude that
�
��
�� holds in �. By Lemma 2, every execution of the
program is correct.

3

3 Passification

We convert a loop-free program into a passive program
by first rewriting it in a single-assigment form and then re-
moving all of the assignment statements.

3.0 Single Assignment

Dynamic single-assignment (DSA) [9] is similar to the
standard static single-assignment (SSA) [4] where even
statically in the program text there is at most one definition
for each variable. In DSA form, there may be more than
one definition, but in any program execution, at most one of
them will be executed.

We convert the loop-free program into DSA form by not-
ing that after each update to a variable, its value must be
understood relative to the newly updated state by identify-
ing each updated value as a new incarnation of the variable.
For instance, we replace the assignment statement:

� �� � � �

with the assignment statement:

���� �� �� � �

where ���� is a fresh incarnation. In general, all variables
read by the statement are replaced by their current incarna-
tions. After a variable update (assignment or ��	�
 state-
ment), a fresh incarnation becomes the new current incar-
nation for the updated variable. At the beginning of the pro-
gram, an initial incarnation is created for each program vari-
able. We call the last incarnation of a variable in a block the
block’s incarnation for that variable. The algorithm for per-
forming these replacements processes the graph in a topo-
logically sorted order.

For straight-line code, it is simple to iterate over the se-
quence of statements, replacing all of the variables with
their current incarnations. But at join points (nodes in the
control-flow graph with more than one predecessor), a node
may be “inheriting” conflicting current incarnations from its
predecessors. For instance, in the program in Section 1, let
�
��
’s incarnation for � be ��, ����’s incarnation be ��,
and ����’s incarnation be ��. Consider block ��� : which
incarnation should a reference to � (on the right-hand side
of an assignment statement) be taken to be, �� or ��? To
model the joining of the values, we introduce a fresh incar-
nation, ��, and introduce new assignment statements at the
end of blocks � and� : �� �� �� and �� �� ��, respectively.
We also update each block’s incarnation (for �) to be ��.
(This reflects a choice; we could leave their incarnations
to be �� and �� respectively, but we next discuss how ei-
ther choice leads to the excessive creation of incarnations.)
This has the effect that during any particular execution, each

incarnation is assigned to at most once. In the current ex-
ample, either block ���� or block ���� will execute and
�� will be equal to the corresponding incarnation from that
block.

This procedure for converting the program to DSA form
means that a new incarnation is potentially created for each
variable at every join point. However, this may lead to the
introduction of more incarnations than strictly necessary.
Consider the program in Fig. 0. The algorithm sketched

� � � � �� � � ���� � �� �

� � �� � �� � � ���� �

� � � � �� � � ���� � ��

 � � � �� � � ���� �

� � � � �� � � ����

� � � � �� � � ����

Figure 0. A program that does not need a new
incarnation at every join point.

above would create a fresh incarnation at the join points �
and � , resulting in the program in Fig. 1. But it is clear

� � � � �� �� � ���� � �� �

� �� �� � ���� � �� �� �� � ���� �

� � � � �� �� � �� �� �� � �� �� �� � ���� � ��

 � � � �� �� � �� �� �� � ���� �

� � � � �� �� � ����

� � � � �� �� � ����

Figure 1. The program from Fig. 0 in DSA
form. Assuming the processing order is: �,
� , � , � , , � , the incarnation �� replaces
�� as � ’s incarnation when processing � and
the incarnation �� is then generated when pro-
cessing � since ’s incarnation is ��.

that a minimal renaming would result in the DSA shown in
Fig. 2. We achieve this reduction by keeping a set of incar-
nations as each block’s incarnation. All of the incarnations
have the same value, so when a join point is reached, any
one of the incarnations in its predecessors’s incarnation set
can be used.

3.1 Passive Programs

Once the program has been converted to DSA form, we
replace all assignment statements by ������ statements.

4

� � � � �� �� � ���� � �� �

� �� �� � ���� � �� �� �� � ���� �

� � � � �� �� � �� �� �� � ���� � ��

 � � � �� �� � ���� �

� � � � �� �� � ����

� � � � �� �� � ����

Figure 2. The program from Fig. 0 with mini-
mal renaming. Note that there was no need
to create the incarnation �� when processing
� since � ’s incarnation is the set ���� ��� in-
stead of having to choose either one of them.

We replace the assignment statement:

�� �� �

with the statement:

������ �� � �

We are able to replace the assignment with an ������

statement since the value of �� is not used prior to its
definition—in effect, we thus assume that �� had the de-
sired value all along. Using an ������ statement in this
way expresses what some language use a let binding for:
giving a name to a particular value.

4 Loops

In this section, we describe the transformation from a
reducible control-flow graph into an acyclic control-flow
graph. (We use the standard techniques for converting an
irreducible graph into an equivalent, although possibly far
larger, reducible graph. We are looking into ways to deal
with irreducible graphs that avoid this problem, but so far
it has not been an issue.) A reducible control-flow graph is
one where it is possible to identify a unique loop head for
each loop (throughout this section, we use standard termi-
nology from compilers [0]).

In order to identify the loops, we begin by finding all
of the back edges. It is the existence of a back edge that
uniquely identifies a loop. A back edge is an edge in the
control-flow graph whose tail (target of the edge) dominates
its head (source of the edge). One node dominates another
node when all paths to the latter pass through the former.
The loop header for a back edge,� , is the target of the edge.
A loop header, !, may have more than one loop associated
with it: each natural loop is identified by the pair �!���.

We remove all back edges to cut the loops, thus trans-
forming the graph into an acyclic one. But in order for the

loop body to represent an arbitrary loop iteration, we must
make sure that the values of any variables modified within
the loop have a value that they might hold on any iteration
of the loop.

For each natural loop �!���, we collect into a set
" �!��� the variables that are updated by any statement
in any block in the loop. These variables are called loop
targets. For each loop target # in " �!���, we introduce a
��	�
 statement and insert it at the beginning of !, before
any of the existing statements in that block.

Wiping out all knowledge of the value a variable might
hold may cause the theorem prover to be unable to prove
the verification condition. That is, it induces an over-
approximation of the original program and loses too much
precision. To this end, we allow for each loop to have an
invariant: a condition that must be met on each iteration
of the loop. A loop invariant may be written by a user or
it may be one inferred by another component of the Spec#
static program verifier. (Inferring invariants is important to
spare the programmer from an undue annotation burden.)

Loop invariants are encoded as a prefix of ������ state-
ments at the beginning of the loop header’s code block.
These assert statements cannot be validated if any of the
variables they mention are in " �!���. Instead, we intro-
duce a copy of this sequence of statements into each prede-
cessor node of ! (including the node that is the source of the
back edge). Since the assertions are now checked just be-
fore the jump to the loop header, we change the statements
into ������ statements in ! itself. We process loop invari-
ants in this way before adding the ��	�
 statements and
cutting the back edges. The resulting ��	�
 followed by
the ������ statements have the effect of retaining, about
the loop targets, the information in the loop invariant.

We claim that this transformation does not affect the cor-
rectness of the program. It may however increase the size
of the code since it introduces a copy of some code at the
source of each edge instead of having a single copy at its tar-
get. When a loop head’s predecessor has additional edges
to other nodes than the header, this adds an assertion to
control-flow paths that it had not been on previously. How-
ever this is a conservative approximation: if the transformed
program executes correctly, then so would the original pro-
gram.

Note that even after removing all back edges, the source
node of the back edge is still reached from the loop header
along forward edges.

5

5 Example

We illustrate our technique with a simple example. Con-
sider the following Spec# source program:

��$ �
�� � �
����
��� �		 �� � � // precondition
������� ������ �� 	� // postcondition

�
��
�� �	 � � �

�	��
��� 	 �� � � // loop invariant

�
� � � � ��

�
������ � �

�

The control-flow graph corresponding to this method is en-
coded as follows, where we have used a variable � to denote
the result value:

�
��
 � ������ �		 � � � // precondition
���� !���"��� �

!���"��� � ������ 	 � � � // loop invariant
���� ���% ���
�� �

���% � ������ 	 � � � // loop guard
� �� � � � �
���� !���"��� �

��
�� � ������ ��	 � � � � // negation of guard
� �� � � // ������ statement
������ � � 	 � // postcondition
���� �

After cutting back edges, the loop-free program is:

�
��
 � ������ �		 � � �
������ 	 � � � // check inv.
���� !���"��� �

!���"��� � ��	�
 � � // havoc loop targets
������ 	 � � � // assume inv.
���� ���% ���
�� �

���% � ������ 	 � � �
� �� � � � �
������ 	 � � � // check inv.
���� � // removed back edge

��
�� � ������ ��	 � � � �
� �� � �
������ � � 	 �
���� �

The passive form of the program is then:

�
��
 � ������ �		 � �� �
������ 	 � �� �
���� !���"��� �

!���"��� � ��
� �
������ 	 � �� �
���� ���% ���
�� �

���% � ������ 	 � �� �
������ �� � �� � � �
������ 	 � �� �
���� �

��
�� � ������ ��	 � ��� �
������ �� � �� �
������ �� � 	 �
���� �

After computing the ��, the set of block equations are then:

�
��
�	 �
��
�� � �		 � �� �
	 � �� �
!���"�����

!���"����	 !���"����� � 	 � �� �
���%�� � ��
����

���%�	 ���%�� � 	 � �� �
�� � �� � ��
	 � �� �
���

��
���	 ��
���� � ��	 � ��� �
�� � �� �
�� � 	 �
���

where we use� as a right-associative operator whose bind-
ing power lies between that of � and � . Finally, the veri-
fication condition is:

�
��
�	 � !���"����	 � ���%�	 � ��
���	 � �
��
��

6 Related Work

The use of single-assignment form for program analy-
sis has a long history; the canonical reference is Cytron et
al. [4]. Feautrier [9] introduced dynamic single-assignment,
using it in the analysis of nested-loop programs. Since then,
it has been used extensively in the context of nested-loop
programs, e.g., [1, 15, 16].

The ESC/Java checker [10] used DSA in its generation
of verification conditions [11]. ESC/Java also converts pro-
grams to be loop free in order to compute verification condi-
tions, either by unrolling the loop a certain number of times
(which misses some execution traces) or by a sound treat-
ment [14].

We have not seen descriptions of single-assignment that
map variables to sets of incarnations, like we do to reduce
the number of incarnations needed.

6

Despite their significant advantages, many other verifi-
cation tools, including LOOP [18] and JACK [3], do not
make use of redundancy-reducing techniques when generat-
ing verification conditions, thus producing voluminous ver-
ification conditions.

Weakest preconditions for unstructured programs have
been defined in a similar way before [12]. However, in that
work, the definitions were applied directly to programs that
were neither passive nor loop-free, so the block equations
used auxiliary functions instead of auxiliary variables, and
the program semantics (that is, the antecedent of the veri-
fication condition, �) was defined to be a fixpoint of these
functions. The rewriting of these formulas into formulas
without quantifiers, functions, and fixpoints can give rise to
a doubly exponential increase in size.

7 Conclusions

We have presented a detailed account of our proce-
dure for computing a verification condition from a program
(and its specification) in order to use an automatic theorem
prover for program verification. Our input does not need to
be a structured program; we deal efficiently with unstruc-
tured control-flow graphs. As a special case, our technique
can be applied to structured programs, which will yield for-
mulas with less redundancy than previously reported (for-
mulas linear in the size of the passive program compared to
the previous quadratic).

In the end, it is the time and space needed to generate
verification conditions and the resulting theorem prover per-
formance that matter. We had first implemented a transfor-
mation of the unstructured program into a structured one,
from which we could then use previous techniques. We
found that the transformation, which is exponential in the
general case, caused our machines to run out of memory for
some methods in the programs we applied our tool to. Good
heuristics could probably have improved the situation, but
since our new technique can be applied directly to unstruc-
tured programs, we abandoned the transformation in favor
of it.

The theorem prover we currently use, Simplify [6], was
developed along with redundancy-reduction techniques for
the ESC/Modula-3 checker [7, 11], similar to those of the
later ESC/Java checker. We were uncertain that Simplify
would perform well on our new verification conditions,
since their flat structure does not provide any guidance
about a good order in which to do case splits and Simplify
performs case splits only as a last resort. So far, we have
not detected any such problems, though. We are in the pro-
cess of switching to a theorem prover whose case splits are
performed by a SAT solver, and we are hopeful that our
verification conditions will be an especially good match for
such a theorem prover.

We are also investigating whether our use of sets of incar-
nations achieves minimality, because there may be blocks
considered even later in the algorithm that force new incar-
nations to be created.

Acknowledgments

We’d like to thank the Spec# team for various discus-
sions about this design. Manuel Fähndrich contributed to
the design of a previous scheme to generate verification
conditions by first transforming unstructured programs into
structured ones and to the design of where to place declared
loop invariants in BoogiePL programs. Bart Jacobs imple-
mented loop invariants in Spec#, taking measures to make
sure these end up in the right place in the BoogiePL pro-
grams. Simon Ou coded up the block equations. We also
thank Dave Naumann and the referees for their careful read-
ings of this paper.

References

[0] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1987.

[1] Zena M. Ariola, Barton C. Massey, M. Sami, and Evan
Tick. A common intermediate language and its use
in partitioning concurrent declarative programs. New
Generation Computing, 14(3):281–315, 1996.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The Spec# programming system: An
overview. In Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and Traian Muntean, edi-
tors, CASSIS 2004, Construction and Analysis of Safe,
Secure and Interoperable Smart devices, volume 3362
of LNCS, pages 49–69. Springer, 2005.

[3] L. Burdy, A. Requet, and J.-L. Lanet. Java applet
correctness: a developer-oriented approach. In Kei-
jiro Araki, Stefania Gnesi, and Dino Mandrioli, edi-
tors, FME 2003: Formal Methods, International Sym-
posium of Formal Methods Europe, volume 2805 of
LNCS, pages 422–439. Springer, September 2003.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the con-
trol dependence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451–490,
October 1991.

[5] Robert DeLine and K. Rustan M. Leino. BoogiePL:
A typed procedural language for checking object-

7

oriented programs. Technical Report 2005-70, Mi-
crosoft Research, May 2005.

[6] David Detlefs, Greg Nelson, and James B. Saxe. Sim-
plify: A theorem prover for program checking. Tech-
nical Report HPL-2003-148, HP Labs, July 2003.

[7] David L. Detlefs, K. Rustan M. Leino, Greg Nelson,
and James B. Saxe. Extended static checking. Re-
search Report 159, Compaq Systems Research Center,
December 1998.

[8] Edsger W. Dijkstra. A Discipline of Programming.
Prentice Hall, Englewood Cliffs, NJ, 1976.

[9] Paul Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel Program-
ming, 20(1):23–53, 1991.

[10] Cormac Flanagan, K. Rustan M. Leino, Mark Lil-
libridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In Pro-
ceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), volume 37, number 5 in SIGPLAN Notices,
pages 234–245. ACM, May 2002.

[11] Cormac Flanagan and James B. Saxe. Avoiding ex-
ponential explosion: Generating compact verification
conditions. In Conference Record of the 28th Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 193–205. ACM, January 2001.

[12] K. Rustan M. Leino. A SAT characterization of
boolean-program correctness. In Thomas Ball and Sri-
ram K. Rajamani, editors, Model Checking Software:
SPIN 2003, volume 2648 of LNCS, pages 104–120.
Springer, May 2003.

[13] K. Rustan M. Leino. Efficient weakest precondi-
tions. Information Processing Letters, 93(6):281–288,
March 2005.

[14] K. Rustan M. Leino, James B. Saxe, and Raymie
Stata. Checking Java programs via guarded com-
mands. In Bart Jacobs, Gary T. Leavens, Peter
Müller, and Arnd Poetzsch-Heffter, editors, Formal
Techniques for Java Programs, Technical Report 251.
Fernuniversität Hagen, May 1999. Also available as
Technical Note 1999-002, Compaq Systems Research
Center.

[15] Carl Offner and Kathleen Knobe. Weak dynamic sin-
gle assignment form. Technical Report HPL-2003-
169, HP Laboratories, 2003.

[16] K. C. Shashidhar, Maurice Bruynooghe, Francky
Catthoor, and Gerda Janssens. Geometric model
checking: An automatic verification technique for
loop and data reuse transformations. Electronic Notes
Theoretical Computer Science, 65(2), 2002.

[17] Alfred Tarski. A lattice-theoretical fixpoint theorem
and its applications. Pacific Journal of Mathematics,
5:285–309, 1955.

[18] Joachim van den Berg and Bart Jacobs. The LOOP
compiler for Java and JML. In Tiziana Margaria and
Wang Yi, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 7th International
Conference, TACAS 2001, volume 2031 of LNCS,
pages 299–312. Springer, April 2001.

8

