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INFORMED SEARCH
METHODS

In which we see how information about the state space can prevent algorithms from
blundering about in the dark.

Chapter 3 showed that uninformed search strategies can find solutions to problems by systemati-
cally generating new states and testing them against the goal. Unfortunately, these strategies are
incredibly inefficient in most cases. This chapter shows how an informed search strategy—one
that uses problem-specific knowledge—can find solutions more efficiently. It also shows how
optimization problems can be solved.

4.1 BEST-FIRST SEARCH

EVALUATION
FUNCTION

BESTFIRST SEARCH

In Chapter 3, we found several ways to apply knowledge to the process of formulating a problem
in terms of states and operators. Once we are given a well-defined problem, however, our options
are more limited. If we plan to use the GENERAL-SEARCH algorithm from Chapter 3, then
the only place where knowledge can be applied is in the queuing function, which determines
the node to expand next. Usually, the knowledge to make this determination is provided by an
evaluation function that returns a number purporting to describe the desirability (or lack thereof)
of expanding the node. When the nodes are ordered so that the one with the best evaluation is
expanded first, the resulting strategy is called best-first search. It can be implemented directly
with GENERAL-SEARCH, as shown in Figure 4.1.

The name “best-first search™ is a venerable but inaccurate one. After all, if we could really
expand the best node first, it would not be a search at all; it would be a straight march to the goal.
All we can do is choose the node that appears to be best according to the evaluation function.
If the evaluation function is omniscient, then this will indeed be the best node; in reality, the
evaluation function will sometimes be off, and can lead the search astray. Nevertheless, we will
stick with the name *‘best-first search,” because “seemingly-best-first search” is a little awkward.

Just as there is a whole family of GENERAL-SEARCH algorithms with different ordering
functions, there is also a whole family of BEST-FIRST-SEARCH algorithms with different evaluation
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function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
inputs: problem. a problem
Eval-Fn. an evaluation function

Queueing-Fn — a function that orders nodes by EvaL-FN
return GENERAL-SEARCH( problem. Queueing-Fn)

Figure 4.1  An implementation of best-first search using the general search algorithm.

functions. Because they aim to find low-cost solutions, these algorithms typically use some
estimated measure of the cost of the solution and try to minimize it. We have already seen one
such measure: the use of the path cost g to decide which path to extend. This measure, however,
does notdirect search toward the goal. In order to focus the search, the measure must incorporate
some estimate of the cost of the path from a stare to the closest goal stare. We look at two basic
approaches. The first tries to expand the node closest to the goal. The second tries to expand the
node on the least-cost solution path.

Minimize estimated cost to reach a goal: Greedy search

One of the simplest best-first search strategies is to minimize the estimated cost to reach the goal.
That is, the node whose state is judged to be closest to the goal state is always expanded first.
For most problems, the cost of reaching the goal from a particular state can be estimated but
cannot be determined exactly. A function that calculates such cost estimates is called a heuristic
function, and is usually denoted by the letter /:

h{n) = estimated cost of the cheapest path from the state at node # to a goal state.

A best-first search that uses / to select the next node to expand is called greedy search, for
reasons that will become clear. Given a heuristic function A, the code for greedy search is just
the following:

function GREEDY-SEARCH( problem) returns a solution or failure
return BEST-FIRST-SEARCH( problem. )

Formally speaking, /i can be any function at all. We will require only that ii(n) = 0 if n is a goal.
To get an idea of what a heuristic function looks like, we need to choose a particular
problem, because heuristic functions are problem-specific. Let us return to the route-finding
problem from Arad to Bucharest. The map for that problem is repeated in Figure 4.2.
A good heuristic function for route-tinding problems like this is the straight-line distance
to the goal. That is,

hgip(ny = straight-line distance between n and the goal location.
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HISTORY OF “HEURISTIC”

By now the space aliens had mastered my own language, but they still made
simple mistakes like using “hermeneutic” when they meant “heuristic.”
— a Louisiana factory worker in Woody Allen’s The UFO Menace

The word “heuristic” is derived from the Greek verb heuriskein, meaning “to find”
or “to discover” Archimedes is said to have run naked down the street shouting
“Heureka” (1 have found it) after discovering the principle of flotation in his bath.
Later generations converted this to Eureka.

The technical meaning of “heuristic™ has undergone several changes in the history
of Al In 1957, George Polya wrote an influential book called How ro Solve It that used
“heuristic” to refer to the study of methods for discovering and inventing problem-
solving techniques, particularly for the problem of coming up with mathematical
proofs. Such methods had often been deemed not amenable to explication.

Some people use heuristic as the opposite of algorithmic. For example, Newell,
Shaw, and Simon stated in 1963, “A process that may solve a given problem, but offers
no guarantees of doing so, is called a heuristic for that problem.” But note that there
is nothing random or nondeterministic about a heuristic search algorithm: it proceeds
by algorithmic steps toward its result. In some cases, there is no guarantee how long
the search will take, and in some cases, the quality of the solution is not guaranteed
either. Nonetheless. it is important to distinguish between “nonalgorithmic™ and “not
precisely characterizable.”

Heuristic techniques dominated early applications of artificial intelligence. The
first “expert systems” laboratory, started by Ed Feigenbaum, Bruce Buchanan, and
Joshua Lederberg at Stanford University, was called the Heuristic Programming
Project (HPP). Heuristics were viewed as “rules of thumb” that domain experts could
use to generate good solutions without exhaustive search. Heuristics were initially
incorporated directly into the structure of programs, but this proved too inflexible
when a large number of heuristics were needed. Gradually, systems were designed
that could accept heuristic information expressed as “rules,” and rule-based systems
were born.

Currently, heuristic is most often used as an adjective, referring to any technique
that improves the average-case performance on a problem-solving task, but does
not necessarily improve the worst-case performance. In the specific area of search
algorithms, it refers to a function that provides an estimate of solution cost.

A good article on heuristics (and one on hermeneutics!) appears in the Encyclo-
pedia of Al (Shapiro, 1992).
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Straight-line distance
w Bucharest
Arad 360
Bucharest 0
75 Craiova 160
Dobrefa 242
Arad [] Eforie 161
Fagaras 178
Giurgiu 77
b ] Vastui Hirsova 151
lasi 226
Lugoj 24
Mehadia 241
Neamt 234
Oradea 380
i Pitesti 98
[] [J Hirsova A E o

Urziceni Rimnicu Vilcea 193
o %6 Sibiu 253
b Bucharest Timisoara 329
Dobreta [] Urziceni 80
Etorie Vaslui 199
Zerind 374

Figured4.2  Map of Romania with road distances in km, and straight-line distances to Bucharest.

Notice that we can only calculate the values of hgyp if we know the map coordinates of the cities
in Romania. Furthermore, fig;p is only useful because a road from A to B usually tends to head
in more or less the right direction. This is the sort of extra information that allows heuristics to
help in reducing search cost.

Figure 4.3 shows the progress of a greedy search to find a path from Arad to Bucharest.
With the straight-line-distance heuristic, the first node to be expanded from Arad will be Sibiu,
because it is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded
will be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the goal.
For this particular problem, the heuristic leads to minimal search cost: it finds a solution without
ever expanding a node that is not on the solution path. However, it is not perfectly optimal: the
path it found via Sibiu and Fagaras to Bucharest is 32 kilometers longer than the path through
Rimnicu Vilcea and Pitesti. This path was not found because Fagaras is closer to Bucharest in
straight-line distance than Rimnicu Vilcea, so it was expanded first. The strategy prefers to take
the biggest bite possible out of the remaining cost to reach the goal. without worrying about
whether this will be best in the long run—hence the name “greedy search.” Although greed is
considered one of the seven deadly sins, it turns out that greedy algorithms often perform quite
well. They tend to find solutions quickly, although as shown in this example, they do not always
find the optimal solutions: that would take a more careful analysis of the long-term options, not
just the immediate best choice.

Greedy search is susceptible to false starts. Consider the problem of getting from lasi to
Fagaras. The heuristic suggests that Neamt be expanded first, but it is a dead end. The solution 1s
to go first to Vaslui—a step that is actually farther from the goal according to the heuristic—and
then to continue to Urziceni, Bucharest, and Fagaras. Hence, in this case, the heuristic causes
unnecessary nodes to be expanded. Furthermore, it we are not careful to detect repeated states.
the solution will never be found—the search will oscillate between Neamt and lasi.
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Arad,
h=366

Arad

Sibiu Timisoara Zerind
h=253 h=329 h=374

Arad

Zerind
h=374

Timisoara
h=329

Arad

Zerind
h=374

Timisoara
h=329

h=253 h=0

Figure4.3  Stagesinagreedy search for Bucharest, using the straight-line distance to Bucharest
as the heuristic function fis. Nodes are labelled with their h-values.

Greedy search resembles depth-first search in the way it prefers to follow a single path all
the way to the goal, but will back up when it hits a dead end. It suffers from the same defects
as depth-first search—it is not optimal, and it is incomplete because it can start down an infinite
path and never return to try other possibilities. The worst-case time complexity for greedy search
is O(b™), where m is the maximum depth of the search space. Because greedy search retains
all nodes in memory, its space complexity is the same as its time complexity. With a good
heuristic function, the space and time complexity can be reduced substantially. The amount of
the reduction depends on the particular problem and quality of the A function.

Minimizing the total path cost: A* search

Greedy search minimizes the estimated cost to the goal, h(n), and thereby cuts the search cost
considerably. Unfortunately, it is neither optimal nor complete. Uniform-cost search, on the
other hand, minimizes the cost of the path so far, g(n); it is optimal and complete, but can be
very inefficient. It would be nice if we could combine these two strategies to get the advantages
of both. Fortunately, we can do exactly that, combining the two evaluation functions simply by
summing them:

fln) = g(n) + hin).
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Since g(n1) gives the path cost from the start node to node n, and h(n) is the estimated cost of the
cheapest path from n to the goal. we have

f(n) = estimated cost of the cheapest solution through »

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the node with
the lowest value of f. The pleasant thing about this strategy is that it is more than just reasonable.
We can actually prove that it is complete and optimal, given a simple restriction on the & function.

The restriction is to choose an jt function that never overestimates the cost to reach the
goal. Such an / is called an admissible heuristic. Admissible heuristics are by nature optimistic,
because they think the cost of solving the problem is less than it actually is. This optimism
transfers to the f function as well: If h is admissible, f(n) never overestimates the actual cost of
the best solution through n. Best-first search using f as the evaluation function and an admissible
h function is known as A* search

function A*-SEARCH( problem) returns a solution or failure
return BEST-FIRST-SEARCH( problem.g + )

Perhaps the most obvious example of an admissible heuristic is the straight-line distance
herp that we used in getting to Bucharest. Straight-linedistance is admissible because the shortest
path between any two points is a straight line. In Figure 4.4, we show the first few steps of an A*
search for Bucharest using the /iy > heuristic. Notice that the A* search prefers to expand from
Rimnicu Vilcea rather than from Fagaras. Even though Fagaras is closer to Bucharest, the path
taken to get to Fagaras is not as efficient in getting close to Bucharest as the path taken to get to
Rimnicu. The reader may wish to continue this example to see what happens next.

The behavior of A* search

Before we prove the completeness and optimality of A*, it will be useful to present an intuitive
picture of how it works. A picture is not a substitute for a proof. but it is often easier to remember
and can be used to generate the proof on demand. First, a preliminary observation: if you examine
the search trees in Figure 4.4, you will notice an interesting phenomenon. Along any path from
the root, the f-cost never decreases. This is no accident. It holds true for almost all admissible
heuristics. A heuristic for which it holds is said to exhibit monotonicity.'

If the heuristic is one of those odd ones that is not monotonic, it turns out we can make a
minor correction that restores monotonicity. Let us consider two nodes n and n’, where n is the
parent of n’. Now suppose, for example, that g(n) = 3 and h(n) = 4. Then f(n) = g(n)+h(n) =7—
that is, we know that the true cost of a solution path through # is at least 7. Suppose also that
¢(n’)y =4 and h(n'y = 2, so that f(’) = 6. Clearly, this is an example of a nonmonotonic heuristic.
Fortunately, from the fact that any path through n' is also a path through n, we can see that the
vilue of 6 is meaningless, because we already know the true cost is at least 7. Thus, we should

1t can be proved (Pearl, 1984) that a heuristic is monotonic if and only if it obeys the triangle inequality. The triangle
inequality says that two sides of a triangle cannot add up to less than the third side (see Exercise 4.7). Of course.
straight-line distance obeys the triangle inequality and is therefore monotonic.

Bl o
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PATHMAX

CONTOURS

Arad

I=0+366
=366

Arad

Sibiu Timisoara

t= 1404253 f=118+329 f=75+4374
=193 =H7 =349

Zerind

1=75+374
=119

Timisoara

f=118+329
=7

Sibiu

Arad Oradea
1=280+366 t=239+178 f=t46+380 {=220+193
=ty =417 =526 =H3

Arad

Zerind

f=75+374
=449

Timisoara

f=118+329
=447

F=280+ 366 F=239+178 f=146+380
=646 =417 =526
Cralova Pitesti Sibiu

=366+160 {=317+98 f=300+253
=526 =415 =533

Figure 4.4  Stages in an A* search for Bucharest. Nodes are labelled with f = g + h. The h
values are the straight-line distances to Bucharest taken from Figure 4.1.

check, each time we generate a new node, to see if its f-cost is less than its parent’s f-cost; if it
is, we use the parent’s f-cost instead:

f'y = max(f(n), g(n'y + h(n")).

In this way, we ignore the misleading values that may occur with a nonmonotonic heuristic. This
equation is called the pathmax equation. If we use it, then f will always be nondecreasing along
any path from the root, provided / is admissible.

The purpose of making this observation is to legitimize a certain picture of what A* does.
If f never decreases along any path out from the root, we can conceptually draw contours in the
state space. Figure 4.5 shows an example. Inside the contour labelled 400, all nodes have f(n)
less than or equal to 400, and so on. Then, because A* expands the leaf node of lowest f, we can
see that an A* search fans out from the start node, adding nodes in concentric bands of increasing
f-cost.

With uniform-cost search (A* search using # = 0), the bands will be “circular” around the
start state. With more accurate heuristics, the bands will stretch toward the goal state and become
more narrowly focused around the optimal path. If we define f* to be the cost of the optimal
solution path, then we can say the following:

e A* expahds all nodes with f(n) < f~.

¢ A* may then expand some of the nodes right on the “goal contour.” for which f(n) = f~,
before selecting a goal node.

Intuitively. it is obvious that the first solution found must be the optimal one, because nodes in
all subsequent contours will have higher f-cost, and thus higher g-cost (because all goal states
have /i(n) = 0). Intuitively, it is also obvious that A* search is complete. As we add bands of
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Figure 4.5  Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as
the start state. Nodes inside a given contour have f-costs lower than the contour value.

increasing f. we must eventually reach a band where f is equal to the cost of the path to a goal
state. We will turn these intuitions into proofs in the next subsection.
One final observation is that among optimal algorithms of this type—algorithms thatextend
s search paths from the root—A* is optimally efficient for any given heuristic function. That is,
no other optimal algorithm is guaranteed to expand fewer nodes than A*. We can explain this
as follows: any algorithm that does nor expand all nodes in the contours between the root and
the goal contour runs the risk of missing the optimal solution. A long and detailed proof of this
result appears in Dechter and Pearl (1985).

Proof of the optimality of A*

Let G be an optimal goal state, with path cost f*. Let G, be a suboptimal goal state, that is, a
goal state with path cost g(G2) > f*. The situation we imagine is that A* has selected G, from
the queue. Because G is a goal state, this would terminate the search with a suboptimal solution
(Figure 4.6). We will show that this is not possible.

Consider a node n that is currently a leaf node on an optimal path to G (there must be some
such node, unless the path has been completely expanded—in which case the algorithm would
have returned G). Because 4 is admissible, we must have

fo = flm.

Furthermore, if n is not chosen for expansion over G2, we must have

fn) = f(G).
Combining these two together, we get
=16,
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Figure 4.6  Situation at the point where a suboptimal goal state Gz is about to be expanded.
Node n is a leaf node on an optimal path from the start node to the optimal goal state G.

But because G, is a goal state, we have /(G2) = 0; hence f(G;) = g(G1). Thus, we have proved, .
from our assumptions, that

172 g(Gy).

This contradicts the assumption that G, is suboptimal, so it must be the case that A* never selects
a suboptimal goal for expansion. Hence, because it only returns a solution after selecting it for
expansion, A* is an optimal algorithm.

Proof of the completeness of A*

We said before that because A* expands nodes in order of increasing f, it must eventually expand
to reach a goal state. This is true, of course, unless there are infinitely many nodes with f(s) < f*..
The only way there could be an infinite number of nodes is either (a) there is a node with an
infinite branching factor, or (b) there is a path with a finite path cost but an infinite number of
nodes along it.? :
LA LAl Thus, the correct statement is that A* is complete on locally finite graphs (graphs witha =

finite branching factor) provided there is some positive constant & such that every operator costs =
at least &.
Complexity of A*

That A* search is complete, optimal, and optimally efficient among all such algorithms is rathes
satisfying. Unfortunately, it does not mean that A* is the answer to all our searching needs. The
catch is that, for most problems, the number of nodes within the goal contour search space is still 3
exponential in the length of the solution. Although the proof of the result is beyond the scope of
this book, it has been shown that exponential growth will occur unless the error in the heuristi¢

2 Zeno’s paradox. which purports to show that a rock thrown at a tree will never reach it, provides an example that

violates condition (b). The paradox is created by imagining that the trajectory is divided into a series of phases. each ol
which covers halif the remaining distance to the tree; this yields an infinite sequence of steps with a finite total cost.
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function grows no faster than the logarithm of the actual path cost. In mathematical notation. the
condition for subexponential growth is that

htny — ™ ()] < Otdog ™ (m).

where /I*(n) is the rrue cost of getting from # to the goal. For almost all heuristics in practical use.
the error is at least proportional to the path cost. and the resulting exponential growth eventually
overtakes any computer. Of course, the use of a good heuristic still provides enormous savings
compared to an uninformed search. In the next section, we will look at the question of designing
goud heuristics,

Computation time is not. however, A*"s main drawback. Because it keeps all generated
nodes in memory. A* usually runs out of space long before it runs out of time. Recently developed
algorithms have overcome the space problem without sacrificing optimality or completeness.
These are discussed in Section 4.3.

1.2 HEURISTIC FUNCTIONS

So fur we have seen just vne example of @ heuristic: straight-line distance for route-finding
problems. In this section, we will look at heuristics for the 8-puzzle. This will shed light on the
nature of heuristics in general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Section 3.3,
the object of the puzzle is to slide the tiles horizontally or vertically into the empty spuce until
the configuration matches the goal configuration (Figure 4.7).

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5
Start State Goal State
Figure4.7 A lyplt“lljljl;ke of the 8-puzzle.

The 8-puzzle is just the right level of difficulty to be interesting. A typical solution is about
20 steps, although this of course varies depending on the initial state. The branching factor is
about 3 (when the empty tile is in the middle. there are four possible moves: when it is in a corner
there are two: and when it is along an edge there are three). This means that an exhaustive search
to depth 20 would look at about 3-Y = 3.5 « 107 states. By keeping track of repeated states, we
could cut this down drasticully, because there are only 9! = 362880 different arrangements of
Y squares. This is still a large number of states. so the next order of business is to find a good
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