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A method for planning smooth robot paths is presented. The 
method relies on the use of Laplace’s Equation to constrain the 
generation of a potential function over regions of the configura- 
tion space of an effector. Once the function is computed, paths 
may be found very quickly. These functions do not exhibit the 
local minima which plague the potential field method. Unlike 
decompositional and algebraic techniques, Laplace’s Equation 
is very well suited to computation on massively parallel archi- 
tectures. 

1 Introduction 

The use of potential functions was introduced by Khatib [lo] 
for robot path planning. The potential field method of path 
planning (as proposed by Khatib) envisions every obstacle as 
exerting a repelling force on an effector, while the goal exerts an 
attractive force. Other authors [2,12,17,14,1,16,11] have used 
a variety of potential functions, all based on this underlying 
scheme. The speed and facility of this method make it a useful 
tool for constructing paths for robots. The usual formulation 
of potential fields for path construction does not preclude the 
spontaneous creation of local minima other than the goal. The 
robot may “fall” into these minima and achieve a stable config- 
uration short of the goal. Several authors have mentioned this 
problem ([2,10,1]). 

Using geometrical arguments, Koditschek [ll] showed that, 
at least in certain types of domains, there always exist potential 
functions which will guide an effector from almost any (i.e., all 
but a set of measure zero) starting point to a given goal point. 
Methods are given for constructing such functions, but only in 
spherical domains in which spherical obstacles are embedded. 

This paper describes a global method which generates 
smooth collision-free paths. The method computes solutions 
to Laplace’s Equation in arbitrary n-dimensional domains, and 
results in a weak form of what Rimon and Koditschek define as 
navigation finctions. 
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2 Harmonic functions 

A harmonic function on a domain R C R” is a function which 
satisfies Laplace’s equation: 

. In the case of robot path construction, the boundary of this 
region consists of the boundaries of all obstacles and goals in a 
configuration space representation. Harmonic functions satisfy 
the min-max principle (see [20,21]): Spontaneous creation of lo- 
cal mimima within the region is impossible if Laplace’s equation 
is imposed as a constraint on the functions used. 

The absence of local minima may be intuitively demon- 
strated by considering the two-dimensional version of Laplace’s 
Equation: 
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Consider the two curves which are the z and y cross-sections of 
q5 at some point PO. If the second derivatives of q5 are not zero 
at PO, the two curves in question must have second derivatives 
of opposite sign. Assuming that r$ E C2, this implies that one 
curve must be concave upward, and the other must be concave 
downward. Thus we have that either q5 is planar at p o ,  or that 
there is a direction outward from po in which q5 decreases, and 
another in which q5 increases. Therefore, in any open region 
where Laplace’s equation holds, local extrema of q5 cannot ex- 
ist. More formally, if a function r$ satisfies Laplace’s equation 
on some region R C R”, then q5 attains its rpinimum and max- 
imum values only on the boundary On of R. See, for example 
(20, chapter 12, exercise 41. For a rigorous mathematical treat- 
ment, the reader is referred to any text on Fourier Analysis or 
Complex Variables [6,7]. 

If a function satifies Laplace’s equation in some region, then 
any critical points of the function in the interior of that region 
must be saddle points, since local extrema of the function are 
not possible there. If the effector reaches a saddle point, and it 
is not near the goal, then there must be a way out. This exit 
from this critical point may be found by performing a search in 
the neighborhood of the critical point. In the context of 1181, 
the set from which no path can be generated from start to goal 
consists of these saddle points. Any perturbation from these 
points, however, results in a path (sometimes referred to as a 
streamline). 

Rimon and Koditschek ([lS]) define a navigation function 
as satisfying four properties. Every harmonic function q5 defined 
on a compact region 0 = a R  U R satisfies three of the four 
properties for navigation functions. This may be seen as follows: 
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Analyticity: Every harmonic function is analytic [3] 

Polar: Select a point (lrl to be the goal point, constrain 
#(qd) = 0 and set d obstacle boundary points p to some 
constant $(p)  = c .  Since d harmonic functions satisfy 
the min-max principle, 4 is polar. In other words, qd will 
be the point at which 4 attains its minimum value on n. 
Hence, d streamlines of 4 lead to qd. 

Admissibility: If we simply set the constant c = 1 above, 
then 4 will be admissible in the sense of [18]. This is a 
simple normalization of 4. 

The fourth property is that a navigation function be Morse (i.e., 
there are no degenerate critical points) [15]. Here we simply 
note that every critical point of in R must be an isolated 
saddle point, from which streamlines may easily be found. 

Harmonic functions can be combined using superposition 
to produce various flows. One such function, which represents 
a point source (whose potential is infinite at the point), is 
log(r(z, y)), where ~ ( z , y )  is the distance from the source point 
20, yo. The gradient for this function represents the vector field 
which would drive an effector away from the obstacle point: 

(3) 

Thus, the gradient for this function at a given point is always 
a unit vector in a direction away from the source point. Note 
also that the second partial derivatives with respect to x and 
y vanish everywhere, so Laplace’s equation is satisfied. Since 
harmonic functions describe a variety of physical phenomena, 
many examples of such functions can be found in physics texts 
181. 

3 Superposition and Obstacle Avoidance 

The superposition of harmonic functions presents problems. 
One such problem is that there is no guarantee that the obsta- 
cles will be avoided in complex or dynamic environments. The 
potential in the neighborhood of a given obstacle is a function 
not only of that obstacle’s potential, but also of every other ob- 
stacles’ (or goals’) potentials. By changing the configurations or 
strengths (which can easily happen in dynamic environments) 
the path of the robot can be led arbitrarily close to the obstacle. 
In a sense, the only structure that can be safely modelled this 
way is a point itself since the potential goes to infinity at the 
point source, and thus superposition of fields associated with 
sources at a finite distance cannot affect this. 

Extending the models of the obstacle to an infinitely dense 
collection of points (in the hope of avoiding paths “between 
points”) also fails. For example, if the logarithmic expression 
for a point obstacle is integrated over a line, the potential along 
that line will be finite. This allows a sufficiently strong goal 
point to “wash over” the line obstacle, making it penetrable. 

The problem with using superposition to construct control 
surfaces is not restricted to the integration of these particular 
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Figure 1: Four mazes with differing wall and door configura- 
tions. P is the effector position and arrows are desired direc- 
tions of motion. 

point potentials, as can be seen by the following argument. 
The task of getting out of a maze from any point within it is 
modelled with potentials by placing some sink (goal) external 
to the maze and requiring that the walls of the maze be sources 
(obstacles). Consider the gradient of the potential a t  a point 
P in four different mazes (A, B ,  C ,  and D) with the following 
relationships (see also Figure 1). Mazes A and B (similarly for 
C and D) have the same walls (and wall source strength) but 
their “doors” (just pieces of wall with open or closed states) are 
in different positions: the right is open in A, while the left is 
open in B.  A and C (similarly B and D) have different walls 
but exactly the same door positions relative to the eflector’s 
position P. 

Clearly, from the figure, the desired direction of movement 
for the effector at P is rightward for A, leftward for B, leftward 
for C and rightward for D. Using a coordinate frame where 
( 1 , 2 )  means (one unit right, two units up) and, for simplicity, 
assuming unit-sized steps for the effector, the desired step taken 
in each maze would be (1,0), (-1,0), (-1,O) and (1,O) for A, B ,  
C and D respectively. This means that (so - S b ) .  (sc - Sd) < 0 
holds where si is the step in maze i. 

Using superposition, the gradient of the potentials for each 
maze is: 

Vda = Vdwollao t Vdleftclosed t V h i g h t o p e n  

vdb = v’$wollsb t vdlef topen f Vdrighteloaed 

vdc = Vdwollsc + v d l e f t d o s e d  t V4rightopen 

v d d  = Vdwollad t vdlef topen t Vdrightcloaed 

(4) 

(5) 
(6) 
(7) 

where V’$woiisi is the gradient of the potential for the walls of 
maze i and Vq$.jtopen is the gradient of the potential of the 
open left door (and so on). From the construction we know 
that Vdwallsa = Vdwoiisb and Vdwoiisc = Vdwoiisd, so that 

v d o  - Vdb = Vdllejtcloaed - Vdlcftopen + vdvightopen (8) 

- V4vighteloaed (9) 
V’$c - v d d  = Vdleftclosed - Vdleftopen t Vdvightopen( 10) 



But this means that (Vq5a - V+b)’(V+c - Vdd) > 0, no matter 
what underlying point potentials are used. Thus the potentials 
constructed by superposition cannot have the relationship that 
the desired potentials mrst have. The only way that superposi- 
tion might work in these examples is by carefully, dynamically 
adjusting the strengths of the walls and the goal so that the ef- 
fector moves in the correct direction at each point. This would 
require solving for the entire maze to determine this, subverting 
the purpose of superposition in the first place. 

4 Harmonic functions and arbitrary 
boundary conditions 

From the arguments posed in the previous section, it appears 
that superposition is not practical for solutions to Laplace’s 
equation where the obstacles are of nonzero extent and must 
remain impenetrable. However, numerical methods are well 
suited to the task of computing solutions with such arbitrary 
boundary conditions. 

Numerical solutions for Laplace’s equation are readily ob- 
tained from Finite Difference methods [?]. Let + ( z , y )  be a 
function which satisfies Laplace’s Equation, and let ~ ( z ; ,  yj) 
represent a discrete regular sampling of 4 on a grid. A central 
difference formula for the second derivatives of 4 can be derived 
using a Taylor series expansion: 

where h and & are the step sizes to be used in approximating the 
derivatives in each direction. The the fourth order error terms 
are usually negligible and can be discarded. If the step sizes are 
all equal, Laplace’s Equation may be written in discrete form: 

h24(zi ,yj)  u ( ~ ; + I > Y ~ )  + u(zi-l,Yj) + U(zi,Yjtl) (17) 

+u(zi,Yj-l) - 4 ~ ( z i ,  Yj) (18) 

This expression can be extended to higher dimensions in the ob- 
vious way. With the introduction of boundary conditions to fix 
those u(z; ,  yj) which fall on an (including obstacle boundaries), 
the linear system described by this equation can be solved to 
obtain values of 4 sampled at points on a grid. Since this system 
is usually quite large, techniques such as Gauss-Seidel iteration 
or Successive Overrelaxation may be used [4,21]. In the exam- 
ples provided here, Gauss-Seidel iteration is used. For Laplace’s 
Equation, this method simply consists of repeatedly replacing 
each grid element’s value with the average of its neighbors, us- 
ing a 2”-neighborliood for n dimensional regions. Those grid 
elements which represent boundary conditions (obstacles and 
goals) are held fixed. 

The numerical representation used for these experiments is 
important. The iteration technique is terminated when there is 

no change of any grid node from one iteration to the next. If 32 
or even 64-bit floating point representations are used, this is not 
sufficient to avoid flat areas in the resulting potential function. 
This problem is remedied as follows: 

Let 4 be the desired solution to Laplace’s Equation, U be a 
grid of values of 4, c be a small integer, and let k be the number 
of bits of precision to be used in solving for 4. 

1. Solve 0’4 using Gauss-Seidel iteration using & bit integer 
arithmetic and array U. 

2. Set n to be the number of flat regions in U. 

3. If R > 0 then shift all values of U left by c bits and go to 1. 

4. Terminate. The array U contains a sampling of 4 where 
every non-b.c. node has a neighbor with a smaller value. 

Once the array U has been computed to the necessary pre- 
cision, streamlines may be computed simply by following the 
gradient from the start point. These streamlines must end at 
goal sets. Note that there may be more than one goal point. 
These need not even be points, but can be sets. Multilinear 
interpolation may be used to interpolate between grid nodes, 
since functions generated thereby are harmonic. 

Solving for streamlines requires the generation of a solu- 
tion over the entire region. Therefore, in a static situation, 
where the goal point and obstacles are fixed, the solution may 
be computed and then reused as often as desired. It need not be 
recomputed unless the obstacles and/or goal point change po- 
sition. In this case, path generation can proceed very quickly, 
since it only involves evaluation of the gradient of a precom- 
puted potential function. In a dynamic situation, the solution 
must be recomputed whenever the configuration of the environ- 
ment changes. 

5 Experiments 

All experiments shown here were implemented in Lisp using 
Gauss-Seidel iteration on a Texas Instruments Explorer 11. The 
somewhat jagged nature of the paths is due to the fact that 
no interpolation was performed here. Solid circles denote start 
points, while solid squares denote goal points. The paths shown 
here were constructed by performing a steepest descent from 
each start point to the goal, using only the grid points. In- 
terpolation of the gradient would provide smoother paths. In 
every example presented, the actual computation of the paths 
required very little computation time (< 1 second). While the 
computation time of the entire path is proportional to the path 
length, interpolation of the gradient for control purposes can 
be performed in constant time. 

Figure 2 illustrates paths that were generated from a nu- 
merical solution of Laplace’s equation. One solution over the 
region interior to the maze was used to generate all paths. The 
maze represents an area of approximately 200x200 units. The 
solution was computed using a 55x44 grid. The solution for 
this maze was computed using 64-bit integer arithmetic, and 
required 639 iterations to converge to a zero error solution in 
74 seconds. The boxes denote the two goal points which were 
placed in the maze, and solid circles denote starting points. 
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Figure 2: Sample paths in a maze 

Figure 3 shows another example with three paths and one 
goal point. This example was computed in 303 iterations and 
23 seconds on a 30 by 41 grid. 

I 

I 

Figure 3: Sample paths in a region with obstacles 

Figure 4 shows a more complicated domain, whose poten- 
tial function was computed in 188 seconds with a 50x50 grid. 
Figure 5 shows another complicated domain with a large inte- 
rior obstacle. This example used a 70x70 grid and was com- 
puted in 176 seconds. Both computations required no more 
than 80 bits per grid node for the potential function. 

Figures 6 and 7 show two views of a three dimensional 
example with a toroidal freespace which is basically a cube with 
a hole through it. There are two starting points and one goal 
point. The goal point is denoted by a small box. 

It is estimated that the UMass CAAPP [19] would be ca- 
pable of solving Laplace’s equation on a 512x512 grid via a cen- 
tral difference scheme in 10-20 milliseconds. This makes path 
construction via harmonic functions in a dynamic environment 
more practical, at least for a robot with a simple configuration 
space [I]. 

6 Summary 

Harmonic functions offer a fast method of producing paths in a 
robot configuration space. The use of harmonic functions pre- 
vents the spontaneous creation of local minima at some cost 

I I 

Figure 4: 50 by 50 grid, 188 seconds 

U 
Figure 5: 70 by 70 grid, 176 seconds 

Figure 6: Sample paths in a three-dimensional domain 
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Figure s 7: Another view of the 3D domain 

in speed for truly general configurations. However, given that 
massively parallel processors are well-suited to quickly solving 
Laplace's equation using standard numerical methods, the au- 
thors feel that this is not a serious drawback. 

Thanks go to Gerald Pocock of the University of Lowell 
and T. V. Subramanian of JPL for encouraging and stimulating 
discussions. 
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