
Calibration and its many applications



Recall calibration



Mean Multicalibration 
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]

“A sequence of predictions  is multicalibrated on a sequence of 
examples  with respect to a set of demographic groups  if for 

every  the predictions are calibrated on the subsequence: 
”

�̄�𝑡
(𝑥𝑡, 𝑦𝑡) 𝐺

𝑆 ∈ 𝐺
{(𝑥𝑡, 𝑦𝑡):𝑥𝑡 ∈ 𝑆}

multicalibration of a predictor  ȳ, ∀v ∈ {0,
1
n

,
2
n

, …,1}

𝔼[ȳ − y | (x, y) ∈ S, ȳ = v] ≈ 0



• Mean Consistency 
• Given a distribution  over  and a mean predictor 

 

• Given a set  write: 

• A predictor  is -mean consistent on a set  if: 

𝑃 𝑋 × [0,1]
�̄�:𝑋 → [0,1]

𝑆 ⊆ 𝑋
𝜇(𝑆) = 𝔼[𝑦  𝑥 ∈ 𝑆]       �̄�(S) = 𝔼[�̄�(𝑥) |  𝑥 ∈ 𝑆]

𝜇 𝜖 𝑆

𝜇(𝑆) − �̄�(𝑆) ≤
𝜖

Pr[𝑥 ∈ 𝑆]

Mean Consistency  
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]



Multicalibration (Rephrased)  
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]
• Calibration 

• Given a discretization parameter  and a grid   

• Write  if  

• Given  

 is -calibrated if for every 
  is -mean consistent on  

• Multi-calibration 
• Given: An arbitrary collection of overlapping sets  

 is -multi-calibrated w.r.t.  if for every 
  is -mean consistent on 

𝑚 {0,
1
𝑚

,
2
𝑚

…,
𝑚 − 1

𝑚
, 1} .

�̄�(𝑥) ∈ 𝐵(𝑖) �̄�(𝑥) −
𝑖
𝑚

≤
1

2𝑚
S ⊆ 𝑋:   𝑆(�̄�, 𝑖) =  {𝑥 ∈ 𝑆 : �̄�(𝑥) ∈ 𝐵(𝑖)}

�̄�:𝑋 → [0,1] 𝜖 𝑖 ∈ [𝑚]:
�̄� 𝜖 𝑋(�̄�, 𝑖)

𝐺 ⊆ 2𝑋

�̄�:𝑋 → [0,1] 𝜖 𝐺 𝑖 ∈ [𝑚],  S ∈ 𝐺:
�̄� 𝜖 S(�̄�, 𝑖)



Many variants… and many uses!
To endow sequential predictions with uncertainty estimates without 
making assumptions about the data. 

Both for mean and variance 

To guarantee some level of robustness against covariate shift 



A simple goal

To endow sequential predictions with uncertainty 
estimates without making assumptions about the 

data.



What do/should reported uncertainty 
estimates mean?

Given your features , our model predicts your 
expected disease severity in two days time is  

𝑥
𝑓(𝑥) .

How sure are you?

I have a 95% prediction interval that your 
severity will be in [ℓ(𝑥), 𝑢(𝑥)] .

Hmmm…



What do/should reported probability 
estimates mean?

Ideally 

Randomness is entirely over the unrealized/unmeasured randomness of the world, conditional on all 
of your observable attributes.

𝑓(𝑥) = 𝔼[𝑦  𝑥]
Pr
𝑦 [𝑦 ∈ [ℓ(𝑥), 𝑢(𝑥)] |  𝑥] = 0.95

More likely 

Calibration:  

Marginal Coverage:  

Randomness is averaging over people. 

𝑓(𝑥) = 𝔼(𝑥,𝑦)[𝑦  𝑓(𝑥)]

Pr
(𝑥,𝑦) [𝑦 ∈ [ℓ(𝑥), 𝑢(𝑥)]] = 0.95



• True conditional expectations and prediction intervals are too 
strong in rich feature spaces.  
• If we have never seen  before we have no information at all about . 

• Standard Solutions: 

• Parametric assumptions. E.g. assume , form 

confidence regions around  which translate into prediction intervals  
• If we believe the model.. 

• From conditional to marginal guarantees. 
• Calibration, conformal prediction. 

𝑥 𝑦 |𝑥

𝔼[𝑦  𝑥] = ⟨𝜃,  𝑥⟩
𝜃

What do/should reported probability 
estimates mean?



Marginal Guarantees.

 is a 95% marginal prediction 
interval.

[ℓ(𝑥), 𝑢(𝑥)]

But I’m part of a 
demographic group 

representing less than 
5% of the population…



What does this mean 
for me? For people with egg allergies and no history of 

smoking, the 95% prediction interval is [e, f].

What about for people like me? 

For women with a family history of diabetes 
the 95% prediction interval is [c,d]

For African Americans under the age of 50 
the 95% prediction interval is [a,b] 

Marginal Guarantees.



Distributional Assumptions

• Standard Assumption for Conformal Prediction: 
• Exchangeability (e.g. iid data): The future must look like the past.  

• But this is often violated: 
• Covariate shift: e.g. as a disease moves through a population, the 

demographics of patients can change suddenly in unanticipated ways.  
• Label shift: e.g. as treatments improve, the distribution on  conditional on  

can change. 
• Strategic effects: In e.g. lending, hiring, college admissions, people may 

manipulate their features to optimize for a deployed classifier, which may 
frequently be retrained.  
• Time series data: Predictions about correlated data --- e.g. disease severity by 

time.

𝑦 𝑥



Our Goal

To mitigate both of these problems for sequential prediction: 
1. By making stronger than marginal guarantees, and 
2. Assuming nothing about the data 

For prediction intervals… and similar results for predicting 
means, variances, and higher moments of the label 
distribution



Calibration



Mean Multicalibration 
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]

“A sequence of predictions  is multicalibrated on a sequence of 
examples  with respect to a set of demographic groups  if for 

every  the predictions are calibrated on the subsequence: 
”

�̄�𝑡
(𝑥𝑡, 𝑦𝑡) 𝐺

𝑆 ∈ 𝐺
{(𝑥𝑡, 𝑦𝑡):𝑥𝑡 ∈ 𝑆}



• Mean Consistency 

• Given: a sequence of examples  

and a sequence of predictions  

• Given a set  write: 

A predictor  is  mean-consistent on a set  if: 

((𝑥1, 𝑦1), …(𝑥𝑇 , 𝑦𝑇)) ∈ (𝑋 × [0,1])
𝑇

(�̄�1, …�̄�𝑇) ∈ [0,1]𝑇

𝑆 ⊆ 𝑋
𝜇(𝑆 ) = ∑

𝑡:𝑥𝑡∈𝑆

𝑦𝑡       �̄�(S) = ∑
𝑡:𝑥𝑡∈𝑆

 �̄�𝑡

𝜇 𝛼 𝑆
𝜇(𝑆 ) − �̄�(𝑆 ) ≤ 𝛼𝑇

Mean Multicalibration 
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]



• Multi-Calibration 

• Given a discretization parameter  and a grid   

• Write  if  

• Given  

Given: An arbitrary collection of overlapping sets  
is -multicalibrated w.r.t.  if for every 

it is -mean consistent on 

𝑚 {0,
1
𝑚

,
2
𝑚

…,
𝑚 − 1

𝑚
, 1} .

�̄� ∈ 𝐵(𝑖) �̄� −
𝑖
𝑚

≤
1

2𝑚
S ⊆ 𝑋:   𝑆(𝑖) =  {𝑥𝑡 ∈ 𝑆 : �̄�𝑡 ∈ 𝐵(𝑖)}

𝐺 ⊆ 2𝑋

(�̄�1, …�̄�𝑇)  (𝛼, 𝑚) 𝐺 𝑖 ∈ [𝑚],  S ∈ 𝐺:
𝛼 S(𝑖)

Mean Multicalibration 
[Hebert-Johnson, Kim, Reingold, Rothblum ’18]



The Online Problem

• For  
• An adversary selects  and  and shows  to 

the learner. 

• The learner makes a (possibly randomized) prediction   
(Of the mean, variance, a prediction interval, etc.) 

• The learner observes . 

• goal:  prediction player guarantees multicalibration/
multi-validity in the worst-case over adversaries. 

𝑡 = 1,…,  𝑇
𝑥𝑡 ∈ 𝑋 𝑦𝑡 ∈ [0,1] 𝑥𝑡

�̄�𝑡

𝑦𝑡



Mean Multicalibration

• For each time step , group  and prediction bucket 

(If  for all , we are -multicalibrated.)

𝑐 𝑆 ∈ 𝐺 𝑖 ∈ [𝑚]:

𝑉𝑆,𝑖
𝐶 =

𝐶

∑
𝑡=1

1[𝑥𝑡 ∈ 𝑆,  �̄�𝑡 ∈ 𝐵(𝑖)] ⋅ (𝑦𝑡 − �̄�𝑡)

1
𝑇

𝑉𝑆,𝑖
𝑇 ≤ 𝛼 S ∈ 𝐺, 𝑖 ∈ [𝑚] (𝛼, 𝑚)



The Basic Idea  
Taking inspiration from [Fudenberg and Levine 95]

• We want to bound . 

• This quantity depends on the whole history --- hard to 
grapple with. 

Instead, try to greedily bound its increase after we see :  

(If we can bound this for every history, we can bound  by 
telescoping…)

𝐿𝑇 = max
𝑖,𝑆

𝑉𝑆,𝑖
𝑇

𝑥𝑡

Δ𝑡(�̄�𝑡) = 𝔼[𝐿𝑡 − 𝐿𝑡−1 |𝑥𝑡, �̄�𝑡]
𝐸[𝐿𝑇]



An Interlude: Zero Sum Games

• A Zero Sum Game is defined by: 
1. A minimization player (the learner) with finite strategy space  
2. A maximization player (the adversary) with finite strategy space  
3. A utility function . 

Extended to distributions in the natural way. For : 

• Von Neumann’s Minimax Theorem: 

“Order of play doesn’t matter”

𝐴1
𝐴2

𝑢:𝐴1 × 𝐴2 → ℝ
𝑄1 ∈ Δ𝐴1, 𝑄2 ∈ Δ𝐴2

𝑢(𝑄1, 𝑄2) = 𝔼[𝑢(𝑎1, 𝑎2)]

min
𝑄1∈Δ𝐴1

max
𝑎2∈𝐴2

𝑢(𝑄1, 𝑎2) = max
𝑄2∈Δ𝐴2

min
𝑎1∈𝐴1

𝑢(𝑎1, 𝑄2)



The Basic Idea  
Taking inspiration from [Fudenberg and Levine 95]

• Define a game between the learner and adversary with: 

 
• Bound the value of the game by imagining the adversary goes first. 

• (Clear the learner can do well: if the adversary shows you his distribution, 
predict its mean) 

• Apply the minimax theorem to conclude the Learner can do just as 
well against a worst-case label.  

(Non-constructive argument)

𝑢(�̄�𝑡, 𝑦𝑡) = Δ𝑡(�̄�𝑡)



Upshot

Theorem: There exists an algorithm that for any set of groups , and 
against any adversary, guarantees -multicalibration for: 

  

With probability 

𝐺
(𝛼, 𝑚)

𝛼 ≤ (4 + 𝜖)
2ln( 2 𝐺 𝑚

𝛿 )
𝑇

1 − 𝛿



And the algorithm?  
Just compute the Minimax Equilibrium.

• For  to : 

•
Compute  for  

• If  for all  then predict  

• If  for all  then predict  

• Otherwise: 

•  find  s.t.  

• Let  be s.t.  

• Predict  with probability , otherwise predict  

t = 1 𝑇
𝐶𝑖

𝑡−1(𝑥𝑡) =   ∑
𝑆∈𝐺(𝑥𝑡)

exp(𝜂𝑉𝑆,𝑖
𝑡−1) − exp(−𝜂𝑉𝑆,𝑖

𝑡−1) 𝑖 ∈ [𝑚]

𝐶𝑖
𝑡−1(𝑥𝑡) > 0 𝑖 �̄�𝑡 = 1

𝐶𝑖
𝑡−1(𝑥𝑡) < 0 𝑖 �̄�𝑡 = 0

𝑖∗  𝐶𝑖∗

𝑡−1(𝑥𝑡) ⋅ 𝐶𝑖∗+1

𝑡−1 (𝑥𝑡) ≤ 0

𝑝𝑡 ∈ [0,1] 𝑝𝑡 ⋅ 𝐶𝑖∗

𝑡−1(𝑥𝑡) + (1 − 𝑝𝑡) ⋅ 𝐶𝑖∗+1

𝑡−1 (𝑥𝑡) = 0

�̄�𝑡 =
𝑖∗

𝑚
−

1
𝑟𝑚

𝑝𝑡 �̄�𝑡 =
𝑖∗

𝑚



Prediction Interval Multivalidity

“A sequence of 95%-prediction intervals  is multivalid on a 
sequence of examples  with respect to a set of demographic 

groups  if for every  and for every interval the prediction 
intervals cover 95% of the labels in the set: 

”

[ℓ𝑡, 𝑢𝑡]
(𝑥𝑡, 𝑦𝑡)

𝐺 𝑆 ∈ 𝐺 [ℓ, 𝑢],  

{(𝑥𝑡, 𝑦𝑡):𝑥𝑡 ∈ 𝑆, [ℓ𝑡, 𝑢𝑡] ≈ [ℓ, 𝑢]}



Similarly for Prediction Intervals

• We can invoke essentially the same arguments. 
• If the adversary is forced to announce their label 

distribution, we can read off a prediction interval 
from its CDF. 
• *Assuming continuity 

• A minimax argument gives the existence of an 
algorithm that does well. 



For  to : 

Compute  for  

Using these, solve  w Ellipsoid, separation oracle to obtain  

Sample  and predict  

t = 1 𝑇

𝐶𝑖,𝑗
𝑡−1(𝑥𝑡) =   ∑

𝑆∈𝐺(𝑥𝑡)

exp(𝜂𝑉𝑆,(𝑖,𝑗)
𝑡−1 ) − exp(−𝜂𝑉𝑆,(𝑖,𝑗)

𝑡−1 ) 𝑖, 𝑗 ∈ [𝑚]

𝐿𝑃 (𝑡) 𝑄𝑡
𝐿 ∈ Δ𝐴𝑟𝑚

1

(ℓ, 𝑢) ∼ 𝑄𝑡
𝐿 (ℓ𝑡, 𝑢𝑡) = (ℓ, 𝑢)

The Algorithm

LP : 
Find  to minimize  

Such that for every -smooth 
distribution : 

 

(𝑡)
𝑄𝐿 ∈ Δ𝐴𝑟𝑚

1 𝛾
(𝜌, 𝑟𝑚)

𝑄𝐴 ∈ 𝐴𝜌,𝑟𝑚
2

𝔼(ℓ,𝑢)∼𝑄𝐿[𝔼𝑦∼𝑄𝐴[(1[𝑦 ∈ [ℓ, 𝑢]] − (1 − 𝛿))𝐶𝑖,𝑗
𝑡−1(𝑥𝑡)] ≤ 𝛾



Moment Multicalibration
• Mean Calibration:  

“The average label amongst all points for which we predicted mean  should be .” 

• Moment Calibration: 

“The variance on the set of points for which we predicted variance  should be ”? 

• No! Problem: this isn’t feasible/desirable.  

• We know mean multicalibration is attainable because  obtains it for every . 

• But  does not satisfy this moment condition. 

• Consider … 

𝑖
𝑚

𝑖
𝑚

𝑖
𝑚

𝑖
𝑚

�̄�(𝑥) = 𝔼[𝑦  𝑥] 𝐺

�̄�𝑘(𝑥) = 𝔼[(𝑦  − 𝔼[𝑦 𝑥])
𝑘

𝑥]
𝑃 = {(𝑥1, 0),  (𝑥2, 1)}



Moment Multicalibration
The problem: higher moments don’t combine linearly 
under mixtures



Mean Conditioned Moment Multicalibration

• Fix a moment predictor . 

• A predictor is -moment consistent on a set  if: 

�̄�𝑘:𝑋 → [0,1]

𝑚𝑘(𝑆) = 𝔼[(𝑦  − 𝜇(𝑆))𝑘 |  𝑥 ∈ 𝑆]      �̄�𝑘(𝑆) = 𝔼[�̄�𝑘(𝑥) 𝑥 ∈ 𝑆]

𝜖 𝑆

𝑚𝑘(𝑆) − �̄�𝑘(𝑆) ≤
𝜖

Pr[𝑥 ∈ 𝑆]



Mean Conditioned Moment Multicalibration

• Let  

Definition: A pair of predictors  are -mean-conditioned moment-
multicalibrated on a collection of sets  if for every  and for every 

: 

1.  is -mean consistent on  

2.  is -moment consistent on . 

Observe this is feasible: satisfied by the true distributional quantities.

𝑆(�̄�, 𝑖, �̄�𝑘, 𝑗) = {𝑥 ∈ 𝑆 : �̄�(𝑥) ∈ 𝐵(𝑖),  �̄�𝑘(𝑥) ∈ 𝐵(𝑗)}
(�̄�, �̄�𝑘) 𝜖

𝐺 𝑆 ∈ 𝐺
𝑖, 𝑗 ∈ [𝑚]

�̄� 𝜖 𝑆(�̄�, 𝑖, �̄�𝑘, 𝑗)
�̄�𝑘 𝜖 𝑆(�̄�, 𝑖, �̄�𝑘, 𝑗)



Mean Conditioned Moment Multicalibration

• What does it mean? 

Amongst all people who received 
the same prediction, their true 

(average) dosage was  indeed , 
and the variance was   

And I can interpret this at my 
option as an average over any 

demographic group in  of which I 
am a member. 

�̂�
�̂�

𝐺 Your mean ideal dosage is  and the 
variance is . 

�̂�
�̂�



Mean Conditioned Moment Multicalibration

• If you had real distributional moments, you’d get conditional prediction intervals 
for all : 

  

• Mean conditioned moment multicalibrated estimates give you marginal prediction 
intervals simultaneously over all , : 

 

𝑥

Pr
𝑦

𝑦 ∈ 𝜇(𝑥) − ( 𝑚𝑘(𝑥)
𝛿 )

1
𝑘

,  𝜇(𝑥) + ( 𝑚𝑘(𝑥)
𝛿 )

1
𝑘

  │𝑥 ≥ 1 − 𝛿

𝑆 ∈ 𝐺 𝑖, 𝑗 ∈ [𝑚]

Pr
(𝑥,𝑦)

𝑦 ∈ �̄�(𝑥) − ( �̄�𝑘(𝑥)
𝛿 )

1
𝑘

,  �̄�(𝑥) + ( �̄�𝑘(𝑥)
𝛿 )

1
𝑘

  │𝑥 ∈ 𝑆(�̄�, 𝑖, �̄�𝑘, 𝑗) ≥ 1 − 𝛿



Given a bunch of training data from one distribution , 
how to design something which one can easily 
transform to work well on a different distribution  
over X?

Remember propensity weights?

Pr[X = x | ] versus Pr[X = x | ] ?

Ds

Dt

Ds Dt

What about covariate shift?



Let data be triples (x,y,z)

Suppose we are interested in the average value of y for our target, and we have 

The above will work well when given unlabeled data from both source and target, if there’s enough 
data to estimate e. 

est(x) := ℙ[Z = s |x]

μ*t = 𝔼x,y∼Ds [ 1 − est(x)
est(x)

y]

What about covariate shift?

But, this is assuming we have enough data to compute relative weight for both 
source and target.

“standard” fixes: assume a 
parametric model of e, or that 
it belongs to some class Σ

Error will come from how 
inaccurate our propensity 
weights are (both representation 
+ generalization error)



Suppose we had a predictor p of y which was multiaccurate w.r.t.

  

for some distribution D:

.

Then, 
 is a good estimate of y on D_t

C(Σ) = {
1 − σ(x)

σ(x)
|σ ∈ Σ}

𝔼[c(x)[p(x) − y] | (x, y) ∼ D] ≤ α

𝔼(x,y)∼Dt
[p(x)]

Propensity scores + calibration
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Taking a step back



Standard ML perspective

 Fixed Dataset 
(or distribution)

 Fixed 
Objective

Primary question: 
how to optimize 
objective subject 

to some 
constraints?



Standard ML perspective

 Fixed Dataset 
(or distribution)

• What set of measurements are you gathering? 
• Are there differences in error for measuring/

operationalizing the constructs these measurements 
capture? 

• Does the distribution match your test distribution in 
demographics?

Equitable questions and checklist

Set of measurements X

Labels Y

Issues of sampling/discretization/
preprocessing 
• Optimal sampling for minimizing 

global loss s.t. some statement 
about population loss isn’t iid. 

• data processing will have different 
impact on different populations

• What is it you are trying to predict? 
• Do you actually observe Y all of the time? 
• Is your target a proxy for what you actually 

observe? 
• Does your dataset have the “right” amount 

of data from each population for each 
label? 

• Is there strong enough correlation between 
X and Y for every population you care 
about?



Standard ML perspective

 Fixed Dataset 
(or distribution)

• As a result of our predictions? 
• Critical to take into account both 

•  whether our predictions affect what we observe 
• and whether they actually change the ground truth 

• If so, how? 

Equitable questions and checklist

What happens if this distribution shifts?



Standard ML perspective

 Fixed 
Objective

• How did we choose this objective? 
• Is it giving similar importance to performance on 

different demographic groups? 
• This choice may have come from computational 

necessity, possibly at the expense of an. objective 
which more accurately aligns with our real goals and 
values 

• How are we handling uncertainty? Do we allow our 
models to present their level of uncertainty when they 
provide predictions?

Equitable questions and checklist



Primary question: 
how to optimize 
objective subject 

to some 
constraints?

Standard ML perspective
Equitable questions and checklist

Primary question: 
how do all of these 
choices impact the 
distribution of our 

predictions and 
errors across 

demographics?

• How do we audit/test for discriminatory models? 
• Do we have observational or interventional power? 
• Perhaps the correct intervention is not on 

demographics, but on discrimination due to 
demographics. 

• Who was involved in making all of these choices? 

• What are intended and possible unintended impacts of  
• this model and its predictions? 

• How should we intervene when we see models behaving 
in a possibly discriminatory manner? 

• What variables do we consider resolving? 



The broader ecosystem

Standard ML perspective
Equitable questions and checklist

How will this model be used?

 Model M

Features x

Features x
Prediction 

(and uncertainty?)

Decision/action

Human interpreter
Are decisions contestable? Are datasets and models 

available to be scrutinized?

Are there simple non-ML specific interventions that can  
improve equity of distributions?


