
Math Notes

John L. Manferdelli

These notes were written for my personal use, partly to learn tex.
They are clearly not written for third parties (second parties either)

and may be incomplete, inaccurate or even incoherent.
However, you are welcome to use them at your own risk.

I disclaim any and all liability for inaccuracy, infringement of any kind, or anything else.

Please send corrections to:
JohnManferdelli@hotmail.com, jlmUCB@yahoo.com,

jmanfer@microsoft.com, jlm@cs.washington.edu.

c©1997-2009, John L. Manferdelli

Last modified: 24 January 2009 14:43



Chapter 1

Math

1.1 Number Theory, Inequalities and Combinatorics

1.1.1 Basic Number Theory

π is irrational: Lemma: Define fn(x) = xn(1−x)n

n! then (i) fn(x) = 1
n!

∑2n
i=n cix

i, ci ∈ Z, (ii) For 0 < x < 1,
0 < f(x) < 1

n! , (iii) the derivatives f
(k)
n (0), f (k)

n (1) ∈ Z, k ≥ 0. Now, assume r = π2 = a
b is rational.

Let Fn(x) = bn(rnfn(x) − rn−1f
(2)
n (x) + . . . + (−1)nf

(2n+2)
n (x)). For 0 ≤ k ≤ n, bnrn−k = an−kbk so

Fn(0), Fn(1) ∈ Z. f
(2n+2)
n (x) = 0 so F ′′n (x) + rFn(x) = ranfn(x) and d

dx (F ′(x)sin(πx) − πF (x)cos(πx)) =
ranfn(x)sin(πx). Use this to show: πan

∫ 1

0
fn(x)sin(πx)dx = Fn(1) + Fn(0). Thus for all integers n ≥ 1,

0 < πan
∫ 1

0
fn(x)sin(πx)dx < πan

n! . Picking n large enough to πan

n! < 1, we get a contradiction.

Transcendence of e: If f(x) is a polynomial of degree r, set F (x) = f(x) + f ′(x) . . . + f (r)(x). Then
F (i)− eiF (0) = −iei(1−θi)f(iθi) = εi. Suppose e satisfies g(e) = cnen + . . . + c0 = 0. Then cnF (n) + . . . +
c0F (0) = c1ε1+c2ε2+. . .+cnεn. Put f(x) = 1

(p−1)!x
p−1(1−x)p(2−x)p . . . (n−x)p. p | F (i), i > 0 but p - F (0).

So, cnF (n)+ . . .+ c0F (0) is an integer not divisible by p but cnF (n)+ . . .+ c0F (0) = c1ε1 + c2ε2 + . . .+ cnεn.
Now, let p →∞.

Wilson: (p − 1)! = (−1) (mod p). Proof: There are only 2 solutions to x2 = 1 (mod p), namely,±1
all other multiplicative elements can be paired with their inverses and cancel.

x2 = −1 (mod p) iff p = 2 or p = 1 (mod 4). Proof: (p − 1)! = −1 = (−1)
p−1
2

∏
j∈{1,2,..., p−1

2 } j2

(mod p), if p = 1 (mod 4), first factor is 1 and thus (
∏

j∈{1,2,..., p−1
2 } j)2 = −1 (mod p).

If p = 1 (mod 4) : ∃a, b : a2 + b2 = p. Proof: ∃x : x2 + 1 = rp. Set k = b√pc, k <
√

p < k + 1.
Set f(u, v) = ux + v; consider S = {(u, v) : 0 ≤ u ≤ k, 0 ≤ v ≤ k}. |S| = (k + 1)2 > p, so
∃u1, u2, v1, v2 : f(u1, v1) = f(u2, v2) and a = u1 − u2, b = v1 − v2 then a + bx = 0 (mod p). Now
a2 + b2 = a2 + a2x2 = 0 (mod p). |a| < √

p and |b| < √
p so 0 < a2 + b2 < 2p and a2 + b2 = p.

If q | (a2 + b2) and q = 3 (mod 4) then q | a and q | b. Proof suppose (a, q) = 1, pick a : aa = 1
(mod q). a2 = −b2 (mod q) so −1 = (ba)2 (mod q).

If n = 2α
∏

p=1 (mod 4) pβ
∏

q=3 (mod 4) qγ then n = a2+b2 iff all γ are even. Proof: Use (a2+b2)(c2+d2) =
(ac− db)2 + (ad− bc)2.

Chinese Remainder Theorem: If (m1,m2) = 1, for any a, b, there is an n such that n = a (mod m1)
and n = b (mod m2). Further, if n′ is another such number, n = n′ (mod m1m2).

Solving Linear Equations over Z: ax = b (mod m) has a solution iff (a,m) | b. If so there are
m

(a,m) solutions. If (m1,m2) = 1 then φ(m1m2) = φ(m1)φ(m2). If Nf (m) is the number of solutions of
f(x) = 0 (mod m) and (m1,m2) = 1 then N(m1m2) = N(m1)N(m2).
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If R = R1 × R2 × . . . × Rn, U(R) = U(R1) × U(R2) × . . . × U(Rn); consequence: if (mi,mj) = 1 and
m = m1m2 . . . mn then Z/(m) = Z/(m1)×Z/(m2)× . . .×Z/(mn). Applying this to n = 2e0p1

e1p2
e2 . . . pn

en

we find n has a primitive root iff n = 2, 4, pe. p has φ(p − 1) primitive roots. Lucas: If (a,m) = 1 and
ap−1 = 1 (mod m) and p− 1 is the smallest such exponent then m is prime.

Note that solutions of f(x) = 0 (mod p) are solutions of (f(x), xp − x). Chevalley: Suppose f, g ∈
Zp[x1, . . . , xn] of degree r, r < n then (1) if f(x) = 0 (mod p) has a solution, it has at least two; and (2) if
g is homogeneous, it has at least one non-trivial solution.

Hensel: Suppose f(x) ∈ Z[x]. If f(a) = 0 (mod pj) and f ′(a) 6= 0 (mod pj) there is a unique
t : f(a + tpj) = 0 (mod pj+1). If deg(f(x)) = n with leading coefficient 1 then f(x) has n solutions
iff f(x) | (xp − x). If d | (p− 1) then xd = 1 (mod p) has d solutions.

∑
d|n φ(d) = n. φ(n) = n

∏
p|n(1 − 1

p ). φ(n) =
∑

d|n µ(d)n
d . 0 =

∑
d|n µ(d). Moebius: F (n) =∑

d|n f(d) → f(n) =
∑

d|n µ(d)F (n
d ). Proof:

∑
d|n µ(d)F (n

d )
∑

d|n µ(d)
∑

δ|n
d

f(δ) =
∑

δ|n
∑

d|n
δ

µ(d)f(δ) =∑
δ|n f(δ)

∑
d|n

δ
µ(δ) = f(n). If (x, n) = 1 then xφ(n) = 1 (mod n). Counterexample to converse: (First

Carmichael Number): 561.

(a
p ) = a

p−1
2 . Quadratic Reciprocity: If p, q are odd primes, (p

q )( q
p ) = (−1)

p−1
2

q−1
2 , ( 2

p ) = (−1)
p2−1

8 .

Gauss’s first proof of the law of quadratic reciprocity: (p
q )( q

p ) = (−1)
(p−1)(q−1)

4 . Proof: Let Dx = gxp + rx.
Set ρx = rx, if rx < p

2 , ρx = p − rx, if rx > p
2 . Let n be the number of ρx that are less than 0. Multiply

D, 2D, 3D . . . p−1
2 D together, this yields: D

p−1
2

p−1
2 ! = (−1)n p−1

2 ! or D
p−1
2 = (D

p ) = (−1)n. Let D = q 6= p

then either x = ρx + gx (mod 2) or x = ρx + gx + 1 (mod 2).
∑ p−1

2
x x = n +

∑ p−1
2

x ρx +
∑ p−1

2
x gx

(mod 2). So n =
∑ p−1

2
x gx (mod 2). But gx = b qx

p c. So ( q
p ) = (−1)

P
gx = (−1)

Pb qx
p c and (p

q )( q
p ) =

(−1)
Pb qx

p c+
Pb px

q c. Now use the fact that
∑ p−1

2
i=1 b iq

p c +
∑ q−1

2
i=1 b ip

q c = (p−1)(q−1)
2 . This can be derived by

looking at the number of lattice points in a p−1
2 × q−1

2 rectangle with vertex at (0, 0).

Another Proof of QR using Gauss Sums: ga(ζ) =
∑p−1

t=0 ζ(t)ςat. Set g(x) = g1(x). Number of solutions to
x2 = t (mod p) is 1 + ( t

p ). ga(ζ) = ζ(a−1)g(ζ) if a 6= 0 (mod p) otherwise it’s 0.
∑

( t
p )ςat = (a

p )
∑

( t
p )ςt.

If ζ is the principal character, g(ζ) =
√

p. If ζ is real and gk(ζ) = (g(ζ))k then g2(ζ) = (−1)
p−1
2 p.

Look at |g(ζ)|2 = T =
∑

a ga(ζ)ga(ζ). On one hand, it’s
∑

t(
t
p )(−t

p )g2 = (−1
p )(p − 1)g2. On the other, it’s∑

x

∑
y

∑
a ga(ζ(x))g−a(ζ(y)) =

∑
a

∑
x

∑
y(ζ(xy))ς(x−y)a = (p− 1)p.

Proof or QR: Set p∗ = (−1)
p−1
2 p. gq−1 = (g2)

q−1
2 = (p∗

q ). So gq = (p∗

q )g. On the other hand,

gq = (
∑

t(
t
p )ςt)q (mod q) = (

∑
t(

t
p )qςqt) (mod q) = ( q

p )g. So (p∗

q ) = ( q
p ).

bn + 1 is prime only if n is a power of 2. If Mp = 2p − 1 is prime, ∆M = 1
2M(M + 1) is perfect. Beatty: If

1
α + 1

β = 1 and A = {bmαc}, B = {bmβc} then A ∪B = Z and A ∩B = ∅.

There are no solutions to x2 + y2 = n if n = 3 (mod 4). There are solutions to x2 + y2 = n if n = 1
(mod 4). If a has A divisors a1, . . . , aA with ai = 1 (mod 4) and B divisors b1, . . . , bB with bi = 3
(mod 4) then x2 + y2 = n has 4(A−B) solutions in the integers.

Pell’s Equation: x2 − dy2 = 1 is solvable (if d is not a perfect square) using continued fractions. Let
p
q < r

s be two rationals such that ps−rq = −1 then ∀λ, µ, p
q ≤ λp+µr

λq+µs ≤ r
s . Let p

q ≤ a
b ≤ r

s with ps−rq = −1
then a = λp + µr and b = λq + µs.

There are infinitely many primes of the form 4n + 3. Largest power of p dividing n! is
∑

l≥0b n
pl c.

Erdos’ proof of Bertrand: (1) prove for n < 4000, (2) Πp≤xp ≤ 4x−1, (3)
(
2n
n

)
contains p

∑
k≥1b 2n

pk c −
2b n

pk c, (4) 4n

2n ≤
(
2n
n

) ≤ (Πp≤√2np)(Π√2n<p≤ 2n
3

p)(Π 2n
3 <p≤2np), (5) 4n ≤ (2n)1+

√
2n4

2
3 n, so n < 4000.
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Dirichlet: If a > 0 and (a, n) = 1, then there are infinitely many primes p, such that p = a (mod n).

The following moduli have primitive roots for p > 2, 2, 4, pk, 2pk. Fact for Miller-Rabin: n−1 = 2sr, r 6= 0
(mod 2), (a, n) = 1. If n is prime, either ar = 1 (mod n) or a2jr = −1 (mod n) for some j : 0 ≤ j ≤ (s−1).

ζ(s) =
∑

1
ns which converges for Re(s) > 1. Note: ζ(2) = π2

6 . Riemann Hypothesis: If s = a + bi,
all the zeros of ζ(s) have a = 1

2 .

Prime Number Theorem: Let Π(x) be the number of primes ≤ x. Π(x) ≈ ( x
ln(x) ).

Euler:
∑

y<n≤x f(n) =
∫ x

y
f(t)dt +

∫ x

y
(t− btc)f ′(t)dt + (x− bxc)f(x)− (y − byc)f(y).

∑
n≤x

1
n = ln(x) + C + O( 1

x ).
∑

n
µ(n)
n2 = 1

ζ(2) = 6
π2 .

Dirichlet: Let α be a real number and Q a positive integer. There is a rational number p
q with 1 ≤ q ≤ Q

such that |α− p
q | ≤ 1

qQ . Proof: Let Bq = { q−1
Q ≤ x < q

Q}. Let cq = qα−bqαc. By the pigeon hole principle,
at least 2 cq’s must lie in a single Bk. This completes the proof. It’s easy to extend this to show that if α
is irrational, there are infinitely many rational numbers p

q such that |α − p
q | ≤ 1

q2 , which was sharpened by
Hurwitz. Hurwitz: If α is irrational, there are infinitely many rational numbers p

q such that |α− p
q | ≤ 1√

5q2 .
Liouville: Let α be an algebraic number of degree d ≥ 2. There is a constant c(α) > 0 such that for all
p
q , |α − p

q | > c(α)
qd . Roth: Let α be an algebraic number of degree d ≥ 2 and ε > 0. There is a constant

c(α, ε) > 0 such that for all p
q , |α− p

q | > c(α,ε)
q2+ε . Consequence: z =

∑∞
i 10−i! is transcendental.

(2a − 1, 2b − 1) = 2(a,b) − 1. Proof: Let a = bq + r, xa − 1 = (xb − 1)(xa−b + xa−2b + . . . + xa−qb) + xr − 1.
This parallels the construction of (a, b) in the Euclidean algorithm.

p-adic valuation: x = pk a
b , (a, b) = (a, p) = (b, p) = 1 then νp(x) = k. If f(x, y, z) over Z is quadratic, then

f has a solution over Z iff it has a solution in the p-adics over for all p. Counterexample for higher order
equations: 3x3 + 4y3 + 5z3 = 0 (mod p) is solvable for p but 3x3 + 4y3 + 5z3 = 0 has no solutions.

1.1.2 Inequalities

Arithmetic-Geometric: 1
n

∑
n ai ≥ (

∏
n ai)

1
n . Proof: An =

∑
n ai, Gn = (a1a2 . . . an)

1
n . Put (1)

A = xn+1+(k−1)An+1
n and (2) An + A = 2An+1. Now apply induction to equation (1) and (2).

Triangle: |x|+ |y| ≥ |x + y|. Simple Cauchy: (a2 + b2)(c2 + d2) ≥ (ac + bd)2 with equality iff bc− ad = 0.
Cauchy-Schwartz: |u · v| ≤ ||u||||v||. Proof: Look at

∑
(aix + bi)2. Get (

∑
ai

2)x2 + 2(
∑

aibi)x +
∑

bi
2.

Complete square. Constant is always ≥ 0.

Holder: If 1
p + 1

q = 1 then ap

p + bq

q ≥ ab and (
∑

i ai
p)

1
p · (∑i bi

q)
1
q ≥ ∑

i aibi. Proof: If f is mono-

tonically increasing, f(0) = 0, then
∫ a

0
f +

∫ b

0
f−1 ≥ ab. Another proof: You can prove first part using

Arithmetic-Geometric inequality. Apply this inequality repeatedly with a = ai

(
Pn

i=1 ai
p)

1
p

and b = bi

(
Pn

i=1 bi
q)

1
q
.

Adding these we get (
∑n

i=1 ai
p)

1
p (

∑n
i=1 bi

q)
1
q ≥ ∑n

i=1 aibi.

Minkowski: (
∑

ai
p)

1
p +(

∑
bi

p)
1
p ≥ (

∑
(ai+bi)p)

1
p . Proof: Write (x1+x2)p+(y1+y2)p = [(x1+x2)p−1x1+

(y1+y2)p−1y1]+[(x1+x2)p−1x2+(y1+y2)p−1y2]. Apply Holder to each term to get (xp
1+yp

1)
1
p [(x1+x2)(p−1)q+

(y1 + y2)(p−1)q]
1
q ≥ x1(x1 + x2)p−1 + y1(y1 + y2)p−1 and (xp

2 + yp
2)

1
p [(x1 + x2)(p−1)q + (y1 + y2)(p−1)q]

1
q ≥

x2(x1 + x2)p−1 + y2(y1 + y2)p−1. Since 1
p + 1

q = 1, (p − 1)q = p. Adding the two inequalities and dividing

by [(xp
1 + xp

2) + (yp
1 + yp

2)]
1
q while noting that 1− 1

q = 1
p , we get Minkowski.

Chebyshev: If a1 ≤ a2 . . . an, b1 ≤ b2 . . . bn. ( 1
n

∑
ai)( 1

n

∑
bi) ≤ ( 1

n

∑
aibi). Proof:

∑
i,j(aibi − aibj) =

n
∑

i aibi − (
∑

i ai)(
∑

i bi)
∑

i,j(ajbj − ajbi) = n
∑

i aibi − (
∑

i ai)(
∑

i bi) so n
∑

i aibi − (
∑

i ai)(
∑

i bi) =
1
2

∑
(aj − ai)(bi − bj) ≤ 0.
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∑
i aibi is max when ai and bi are in order, a,bi ≥ 0. min(a, b) ≤ 2ab

a+b ≤
√

ab ≤ a+b
2 ≤

√
a2+b2

2 ≤ max(a, b).
Concave (convex cap): f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y). f is concave if f ′′(x) < 0. log is concave.
Convex (convex cup): f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y). f is convex if f ′′(x) > 0. x2, x > 0 is
concave. Concave Jensen: E(f(X)) ≤ f(E(X)). Convex Jensen: E(f(X)) ≥ f(E(X)).

log(x) ≤ (x− 1), equality iff x = 1. Hadamard inequality: |D(a1, a2, a3, . . . , an)| ≤ ||a1|| · ||a2|| . . . ||an||.
a2+b2+c2 ≥ ab+ac+bc and b

a+c + a
b+c + c

b+c ≥ 3
2 . Weighted AM-GM: If λ1, . . . , λn > 0 and

∑n
i=1 λi = 1,

then
∑n

i=1 λixi ≥
∏n

i=1 xλi
i .

1.1.3 Combinatorics and Sets

Let f(x) = ckxk + . . .+c0 be a polynomial with c0ck 6= 0 which factors as f(x) = ck(x− r1)
m1 . . . (x− rl)

ml ,
then a sequence {an} satisfies a linear recurrence with characteristic polynomial f(x) iff ∃ : g1(x), . . . , gl(x)
such that an = g1(n)r1

n + . . . + gl(n)rl
n where deg(gi) < mi.

Linear congruential generator: xn+1 = (axn + c) (mod m) has period n if (c,m) = 1. b = a − 1,
b = 0(p) if p|m, b = 0(4) if m = 0(4).

Burnside: Let a permutation group G act on A inducing an equivalence relation S. Let n be the number
of equivalence classes. n = 1

|G|
∑

g∈G |Ag|. Let D be a set of elements operated on by G and R be a set
of colors. A coloring is a map f : D → R. Two colorings, f1, f2, are equivalent if f1(d) = f2(dg), ∀d. Let
cyc(π) be the number of cycles in π and c ∈ C(D, R) be a coloring. To use Burnside to count colorings, show
that |DR

π| = |R|cyc(π). Polya: PG(x1, x2, . . . xn) = 1
|G|

∑
g∈G x

π1(g)
1 x

π2(g)
2 . . . x

πn(g)
n . Example (Vertices on a

cube): PG = 1
24 (x8

1+9x4
2+6x2

4+8x2
1x

2
3). Example (Faces on cube): PG = 1

24 (x6
1+6x2

1x4+3x2
1x

2
2+6x3

2+8x2
3).

For f ∈ RD, store:
∑

w(r), inventory: W (f) =
∏

d f(d), pattern inventory of RD =
∑

f W (f). Polya: pat-
tern inventory = PG(

∑
w(r),

∑
w(r)2, . . .

∑
w(r)n). Number of equivalence classes= PG(|R|, |R|, . . . |R|).

(v,k, t, λ) design: |X| = v, B is a set of k subsets of X is a design if each t subset T of X, the num-
ber of blocks containing T is λ and |B| = b. r, the incidence number, is the number of blocks incident with

one point. These designs are denoted t− (v, k, λ) or Sλ(t, k, v). bi = λ
(v−i

t−i)
(k−i

t−i)
, b0 = b, b1 = r. (vr)

k ≤ (
v
k

)
.

Hall’s Theorem: J(A) = {y ∈ Y, (x, y) ∈ E, x ∈ A} and |J(A)| ≥ |A| if and only if there is a com-
plete matching.

Inclusion-Exclusion: Let A1, A2, . . . , An be a family of subsets of X. The elements of X that are
not in

⋃n
i Ai is

∑
I⊆[n](−1)|I||AI | where AI =

⋂
i∈I Ai. (Note: Aφ = X.) For classical statement, let

Ai = {x : ci(x) is true}.

Ramsay: Let Pr(S) be the r-subsets of S. Let Pr(S) = A1 ∪ . . .∪At and 1 ≤ r ≤ q1, . . . qt. ∃N(r, q1, . . . qt)
such that for n ≥ N , S contains a (qi, Ai). R(m,n) ≤ R(m− 1, n) + R(m, n− 1) and R(s, t) ≤ (

(s+t−2)
(s−1)

)
.

Generating Functions: Let 12 objects be distributed to A, B,C subject to: A gets at least 4, B and C
get at least 2 and C gets no more that 5. The coefficient of x12 in (x4 + . . . x8)(x2 + . . . x8)(x2 + . . . x5) is the
number of ways this can happen. For selections with repetitions note that: ( 1

1−x )n =
∑

i

(
n+i−1

i

)
xi. For par-

titions, examine 1
1−x ( 1

1−x )2 . . .. Exponential generating functions: f(x) = a0+a1x+ 1
2!a2x

2+. . . 1
k!akxk+. . ..

Difference calculus:
∑

i in = (1 + ∆)nu0.

Dearrangements: n!(1− 1
1! +

1
2! − 1

3! . . .+(−1)n 1
n! ). Menages (i is not in i+1 (mod n)):

∑n
r=0(−1)r(n−

r)!
(
(2n−r)

r

)
2n

2n−r . Number of solutions of n1+n2+ . . .+nr = r is
(
(n+r−1)

r

)
. Restricted permutation positions:

N(a′1, a
′
2, . . . , a

′
n−1) = n!−(

n−1
2

)
(n−2)!+

(
n−1

3

)
(n−3)!− . . .+(−1)n

(
n−1
n−1

)
(n−1)!. For permutations of a, b,

c, d, e, f which don’t contain ace or fd: N(a′1, a
′
2) = 6!−4!−5!+3!. Rook polynomials: R(x,C) = xR(x,Ci)+

R(x,Ce). Forbidden positions: N(a′i, a
′
2, . . . , a

′
n) = e0 = n!−r1(n−1)!+r2(n−2)!− . . . =

∑
(−1)jrj(n− j)!.

Exactly m with property: em =
∑n

j=0(−1)j
(
m+j

j

)
sm+j .

Number of surjective maps from [n] → [k] is
∑k

i=0 (−1)i
(
k
i

)
(k − i)n. n! =

∑n
i=0 (−1)i

(
n
i

)
(n− i)n.
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Multinomial coefficients:
(
a+b+c
a,b,c

)
and (x + y + z)a+b+c.

(
ne
k

) ≤ (ne
k )k,

(
n
k

) ≥ (n
k )k. Identities:

(
r
k

)
=

r
k

(
r−1
k−1

)
,
(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
,
(

r
k

)
= (−1)k(

k−r−1
k

)
,
(

r
m

)(
m
k

)
=

(
r
k

)(
r−k
m−k

)
,
∑n

k=0

(
r+k

k

)
=

(
r+n+1

n

)
,
∑n

k=0

(
k
m

)
=(

n+1
m+1

)
,
∑n

k=0

(
r
k

)(
s

n−k

)
=

(
r+s
n

)
,
∑b−1

k=a f(k) =
∫ b−1

k=a
f(x)dx+

∑m
k=1

Bk

m! f
(k−1)(x)b

a+Rm, anTn = bnTn−1+cn →
snanTn = snbnTn−1 + sncn, snbn = sn−1an−1, Rn = snanTn, Rn = Rn−1 + sncn,

(−n
r

)
= (−1)r

(
n+r−1

r

)
, (1 +

x)−n = 1 +
(−n

1

)
x−1 + . . . +

(−n
n

)
x−n. S(n, k) (Stirling numbers of the first kind) is the number permu-

tations in Sn with exactly k-cycles. T (n, k) (Stirling numbers of the second kind) is the number of ways
of grouping n objects into k groups. “Bell” numbers,(Bn: the number of ways to divide n things into
groups. Bn+1 =

∑n
k=0

(
n
k

)
Bn.

∑n
k=0 S(n, k) = bn, S(n + 1, k) = kS(n, k) + S(n, k − 1)

∑n
k=0 T (n, k) =

n!, T (n + 1, k) = nT (n, k) + T (n, k − 1). Let Bn denote the nth Bernoulli number.
∑m

j=0

(
m+1

j

)
Bj = 0 and

B0 = 1. x
ex−1 =

∑∞
n=0 Bn

xn

n! . Catalan numbers: cn = 1
n+1

(
2n
n

)
, cn =

∑n−1
k=0 ckcn−k−1.

Let p(n) be the number of partitions of n. Then, p(n) ≈ 1
4n
√

3
e
√

2n
3 . The number of partitions of n

into k things is the number of partitions of n with largest partition k.

A sequence of (n − 1)(m − 1) + 1 different numbers has either increasing sub-sequence of length n or a
decreasing sub-sequence of length m. Proof: Let x ∈ Br if the longest increasing sequence beginning with x
has length n. If any Br, with r ≥ n is non empty, we’re done. Otherwise, there must be a Bk with k < n
containing at least m elements. These m elements form a decreasing sequence.

Similarly, if 1 ≤ a1, . . . , an ≤ m and 1 ≤ b1, . . . , bn ≤ m , ∃p, q, r, s with ap+1 + . . .+ap+q = br+1 + . . .+ br+s.
Proof: Let j = j(k) be the smallest integer with a1 + . . . + aj ≥ b1 + . . . + bk. Let ck =

∑j(k)
i=1 ai −

∑k
i=1 bi.

At least two cl’s (say cu and cv, u > v) are equal. cu − cv provides the right sequence.

In permutation, i < j and ai > aj is inversion. Inversion table is (bj) where bj = number of elements
left of j that are > j. For 5 9 1 8 2 6 4 7 3, it’s 2 3 6 4 0 2 2 1 0. Inversion table uniquely determines
permutation. Inverse has same number of inversions.

Generating permutations of {1, 2, 3, . . . , n}:
1. Set π = 123 . . . n. Output π.

2. If πi > πi+1, ∀i, stop.

3. Get largest i: πi < πi+1.

4. Find smallest j: i < j such that πi < πj .

5. πi ↔ πj .

6. Reverse the order of the numbers following, πj , denote this by π. Output π. Go to 2.

Another algorithm: Steinhaus weaving generator (by recursion).

Permanent: per(aij), m × n matrix, is
∑

σ a1i1a2i2 . . . amim where σ runs through m permutations of
[n]. n! = per(J) =

∑n−1
r=0

(
n
r

)
(−1)r(n− r)n.

Let Ar be the matrix obtained by replacing r specified columns of A by 0. Let S(Ar) be the product
of row sums of Ar. Let

∑
r S(Ar) over all choices of r: per(A) =

∑
S(An−m) − (

n−m+1
1

)
S(An−m+1) +

. . . (−1)m−1
(

n−1
m−1

)
S(Am−1).

G(V, E) a graph with vertex set V and edge set E. g(G) - girth - length of minimum cycle. ω(G)- clique
number. α(G) = ω(G)- independence number. χ(G) - chromatic number. δ(G) - minimum degree. ∆(G) -
maximum degree. d(x, y) = number of edges between x and y. DG(x, y) = maxx,yd(x, y).

A graph is bipartite iff it contains no cycles of odd length. Theorem: α(G)χ(G) ≥ n. Cayley graph.
Strongly regular graphs. Expander graphs and short paths (Todo).
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There are nn−2 labeled trees with n nodes. Proof: Use Prufer Code for tree T : remove leaf with smallest
label, add the label of the vertex it’s connected to at end of sequence.

G(n, M), N =
(
n
2

)
. Random graph selecting M of the N edges. Pr[G = H] = pe(H)qN−e(H). Xs(G) =

number of complete graphs of order s. E(Xs) =
∑

α∈S E(Yα(G), where Yα(G) = 1, if G[α] = Kα, 0

otherwise. EM (Yα) = PM (Gp[α] = Kα) = pS =
(

N−S
M−S

)(
N
M

)−1
. Ep(Xs) =

(
n
s

)
ps. If a is the order of the

automorphism group of F then Kk has k!
a subgraphs isomorphic to F . NF =

(
n
k

)
k!
a = (n)k

a . For cycles, a = 2k.

Erdos: There is a graph, G, with g(G) ≥ n and χ(G) ≥ n. Another formulation: Given natural num-
bers g ≥ 3, k ≥ 2, ∃G, with |G|k3g, g(G) ≥ g and χ(G) ≥ k.

Fact 1: If G ∈ G(n, p), q = 1 − p then Pr[α(G) ≥ k] ≤ (
n
k

)
q(

k
2) Fact 2: Markov’s inequality. Fact 3: Let X

be a r.v. representing the number of k-cycles. E(X) = (n)k

2k pk. Fact 4: If k > 3 and p(n) is a function with

p(n) ≥ 6kln(n)
n then limn→∞Pr[α ≥ n

2k = 0:
(
n
r

)
q(

r
2) ≤ nnq(

r
2) ≤ (ne−p r−1

2 )r inside expression is ≤ √
e
n → 0.

Argument: Fix 0 < ε < 1
k , p = n1−ε, X(G) is the number of cycles ≤ k. E(X) ≤ ∑ (n)i

2i pi ≤ 1
2 (k − 2)(np)k.

Pr[X ≥ n
2 ] = E(X)

n
2

≤ (k − 2)nkε−1. Pick n big enough so that Pr[X ≥ n
2 ] > 1

2 and Pr[α ≥ n
2k ] < 1

2 . So ∃G
with < n

2 short cycles and α(G) < n
2k delete up to n

2 points to eliminate the short cycles producing a graph
H ⊆ G. χ(H) ≥ H

α(H) ≥
n
2

α(G) > k.

ε-regular: (A,B) with X ⊆ A and Y ⊆ B such that |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy |d(X, Y )−d(A,B)| ≤ ε.
ε regular partition: (1) |V0| < ε|V |, (2) |Vi| = |V1|, for i ≥ 1, (3) all but εk2 of the pairs (Vi, Vj) are ε regular.
Szemeredi Regularity Lemma: For every ε > 0 and every m ≥ 0, ∃M such that every graph of order at least
m admits an ε regular partition {V0, V1, . . . , Vk} with m ≤ k ≤ M .

Giant component in G(n, p) when p = 1+ε
n . Sunflower Lemma: Let T = {S1, S2, . . . , Sk} be a sys-

tem over a set U , such that (1) |Si| ≤ l and (2) k > (p− 1)l
l!. Then ∃F ⊆ T , F = {Si1 , Si2 , . . . , Sip} such

that ∀A,B ∈ F, A ∩B = F .

Random function statistics: Tail, cycle, predecessor length:
√

πn
8 , Tree Size: n

3 , Number of compo-
nents: lg(n)

2 , Component Size: 2n
3 .

Sperner: A collection F of non-empty subsets of a set X is called an antichain if no set in F is prop-
erly contained in another set of F . If |X| = n, |F | ≤ (

n
n′

)
, where n′ = bn+1

2 c. If |X| is even there are exactly
2 maximal antichains, the collection of bn−1

2 c subsets of X and the collection of bn+1
2 c subsets of X. If n is

even, there is exactly one maximal antichain, namely, the collection of bn
2 c subsets of X.

Posets, chains (totally ordered subset) and antichains (set in which all subsets are incomparable). Dil-
worth: The cardinality of a maximal antichain is equal to the minimum number of disjoint chains into
which a poset can be partitioned. In a chain of mn + 1 elements there is a chain of m + 1 elements or there
are n + 1 incomparable elements. Rubik group: |GR| = 227314537211.

If f(x) ∈ Z → x ∈ Z then bf(x)c = bf(bxc)c. bx+m
n c = b bxc+m

n c. ∑m−1
i=0 dn−i

m e = n.
∑m−1

k=0 bnk+x
m c =∑n−1

k=0bmk+x
n c.

The following are equivalent: (1) [Axiom of choice] If I 6= ∅ and ∀i ∈ I, Ai 6= ∅ then
∏

i∈I Ai 6= ∅;
(2) [Zorn’s Lemma] If A 6= ∅ is partially ordered and if every chain (including infinite chains!) has an
upper bound in A then A contains a maximal element; (3) [Well ordering] If A 6= ∅ has a linear order, ≤,
then (A,≤) is has a least element. Transfinite Induction: if B ⊆ A and A is well ordered under ≤ and if
{c ∈ A : c < a} ⊆ B → a ∈ B then A = B.

|P (A)| > |A|. Proof: f : a 7→ {a} shows |P (A)| ≥ |A|. Suppose |P (A)| = |A|, then there is a bijec-
tion f between P (A) and A. Let B = {a : a /∈ f(a)}. If b ∈ B and b 7→ f(b) then b /∈ B, this is a
contradiction.
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Schroeder-Bernstein: If A,B are two sets and there are injections f : A → B and g : B → A then
there is a bijection h : A → B. Lemma: If there is a subset A′ ⊆ A satisfying the hypothesis of the theorem
with A′ = B then there is a bijection h : A → A′. The Lemma implies the theorem: Let A′ = g(f(A)) then
by the lemma, ∃h : A → A′ and g−1 ◦h is the desired bijection. Proof of Lemma: Set X =

⋂
n≥0 f (n)(A\A′)

and define h(x) = f(x), x ∈ X, h(x) = x, x /∈ X; this is a bijection. First note f(X) ⊆ X. If x, y ∈ X
or x, y /∈ X it is clear that h(x) = h(y) → x = y and by construction, there is no x ∈ X, y /∈ X with
h(x) = h(y). If y ∈ A′ and y ∈ X, then y ∈ f (n)(A \ A′) for some n in which case ∃x ∈ X : h(x) = y
otherwise y /∈ X and h(y) = y.
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1.2 Algebra

1.2.1 General Algebra

For x2 + px + q = 0, (x1 − x2) =
√

D,D = p2 − 4q, x1 + x2 = p. For ax3 + bx2 + cx + d = f(x), substi-
tute y = x + b

3a and divide by a to get x3 + nx + p. Put y = (u + v), get p = 3uv, q = u3 + v3. Note

S3 ⊇ A1 ⊇ 1, (x1−x2)(x1−x3)(x2−x3) =
√

D, D = −4p3−27q2. Solution is: y = (−p
2 +−

√
p2

4 + n3

27 )
1
3 . For

ax4+bx3+cx2+dx+e = f(x), substitute y = x+ b
4a and divide by a to get x4+px2+qx+r. Note S4 ⊇ A4 ⊇

C4 ⊇ Z1 ⊇ 1 and θ1 = (x1+x2)(x3+x4) is fixed by C4 but not A4. The θi are solutions of Θ3−b1Θ2+b2Θ3−b3

with b1 = 2p, b2 = p2 − 4r, b3 = −q2 and D = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3. Look at
(y2 + p)2 = py2 − qy − r and pick z to make RHS (y2 + p + z)2 = (p + 2z)y2 − qy + (p2 − r + 2pz + z2) a
perfect square.

Fundamental Theorem of Algebra: Let f(z) = zn + an−1x
n−1 + ... + a0 and µ = inf(|f(z)|). If

µ = 0, we’re done (min must occur in bounded ball). So assume µ 6= 0. Let the minimum occur at z0 and
put f(z0) = w0, w = f(z0 + ζ). w

w0
= 1 + qζν(1 + ζξ) = 1− hρν(1 + ζξ) where ζ = ρ(cos(θ) + isin(θ)) and

q = h(cos(λ)+ isin(λ)). So we can find a point with smaller modulus than w0. This contradicts the assumes
minimality at z0.

Roots of Unity: Consider f(x) = xh − 1 over F where (char(F ), h) = 1 or char(F ) = 0. The roots
of f form an abelian group, G. x ∈ G → |x| | |G|. Since (f, f ′) = 1 there are h distinct roots, set
h =

∏m
i=1 qvi

i . {x : xh/qi = 1} is a group of order h/qi so ∀i, ∃xi ∈ G : xh/qi 6= 1. Setting bi = x
h/qi

vi

i ,
then χ =

∏
bi has order exactly h and is a primitive hth root of unity. Let the number of such roots be

ϕ(h); if (r, s) = 1, ϕ(rs) = ϕ(r)ϕ(s) so ϕ(
∏

i qi
vi) =

∏
i ϕ(qi

vi) =
∏

i(qi
vi − qi

vi−1) = h
∏

i(1 − 1
qi

). Set
n = ϕ(h) and Φn(x) =

∏
i(x − ψi) where ψi are the primitive roots. xh − 1 =

∏
d|h Φd(x) and by Moebius

inversion, Φh(x) =
∏

d|h(xd − 1)µ( h
d ). Φh(x) is irreducible of degree ϕ(h). Proof: Let ζ ∈ C be a primitive

root of Φh(x) with minimal polynomial f(x) and (p, h) = 1. Let g(x) be the minimal polynomial for ζp

so g(ζp) = 0. xh − 1 = f(x)g(x)h(x) and g(xp) = f(x)k(x). g(xp) = g(x)p (mod p). If φ(x) | f(x) then
φ(x) | g(x)p (mod p). So φ(x)2 | xh − 1 but this contradicts the fact that xh − 1 does not have roots of
multiplicity 2. It follows the if (pi, h) = 1, ζp1p2...pk is a primitive root and the degree of f(x) is ϕ(h). Note
this shows that Aut(Q[ζ]) ∼= Z∗h. It also allows us to calculate the Galois group if h = q = pn (its cyclic)
and the subfields correspond to the cyclic subgroups of Z∗q . The qth roots of 1 are expressible as radicals if
char(F ) = 0 or char(F ) > q. If Np(d) = number of irreducible monic polynomials of degree d in GF (p)[x]
then pn =

∑
d|n dNp(d) and Np(d) = 1

n

∑
d|n µ(n

d )pd. xpn − x =
∏

firred,monic,deg(f)|n f .

Eisenstein: If f(x) =
∑n

i=0 anxn, an 6= 0 (mod p), ai = 0 (mod p), i < n and a0 6= 0 (mod p2)
then f is irreducible. Factoring in finite number of steps: Let g(x) ∈ Z[x] if f(x) | g(x) then f(n) | g(n)
for all n. deg(f) = s ≤ bdeg(g)

2 c. Pick s integers ij and use the integer factors of g(ij) to get possible g(ij);
there are a finite number of ways to pick the factors. For each possibility, we can solve for the s coefficients
of f .

1.2.2 Free Groups, Rings and Modules

Every group is the homomorphic image of a free group. If G is a free abelian group generated by n elements
and H is a subgroup of G then H is generated by m ≤ n elements.

Let Fm be a free abelian group generated by a1, a2, . . . , am and define Ei = ri1a1 +ri2a2 + . . .+rimam where
rij ∈ Z and 1 ≤ i ≤ n; further, put bi = Ei and let K =< bi >. Suppose G is the free abelian group generated
by ai subject to Ei = 0. Then G ∼= Fm/K. Let R represent the matrix (rij) then (1) if the matrix S = (sij)
is obtained from R by elementary row operations then ci = si1a1 + . . . + simam ∈ K; and, (2) if the matrix
S = (sij) is obtained from R by elementary column operations then ∃a′i ∈ Fm : bi = si1a

′
1 + . . . + sima′m (so

the a′i generate K). By applying elementary row and column operations we can transform R into the diagonal
matrix D = diag(d1, d2, . . . , dr, 0, . . . , 0) where di | di+1 and G ∼= Z/(d1)×Z/(d2)× . . .×Z/(dr)×Z× . . .×Z
where there are m− r copies of Z in the product.

Let D be a UFD and f(x) = a0 + a1x + . . . + anxn, ai ∈ D. Let K be the field of fractions. If f1(x)
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and f2(x) are primitive in R[x] and are associates in K[x] then they are associates in D[x]. Define
cont(f) = gcd(a0, a1, . . . , an). Gauss’ Lemma: If D is a UFD and f, g ∈ D[x] then cont(f(x)g(x)) =
cont(f(x))cont(g(x)). If f(x) ∈ R[x], deg(f) > 0 and f(x) is irreducible in R[x] then it is irreducible in
K[x]. Theorem: If D is a UFD then D[x] is a UFD. (Embed D in its field of quotients and apply Gauss).
Euclidean domains are principal ideal domains (PID) and all PIDs are UFDs.

Ring theoretic CRT: If Ij , j = 1, 2, . . . , n are ideals of R and Ij + Ik = R for j 6= k, then ∀x1, x2, . . . , xn ∈
R, ∃x ∈ R such that x = xj (mod Ij). Corollary: Under the same assumptions, ψ : R → R/I1×R/I2×. . .×
R/In given by x 7→ x (mod I1)×. . .×x (mod In) is surjective and R/(

⋂n
j=1 Ij) ∼= R/I1×R/I2×. . .×R/In.

Z/(mZ) ∼= ∏
i Z/(pi

riZ) and ψ(m) =
∏

i ψ(pi
ri). If R is cyclic of order n then End(R) ∼= Z/(nZ) and

(Z/(nZ))∗ ∼= Aut(R).

Groups with operators (M) and invariant subgroups. Projection commutes with all inner automorphisms;
such an endomorphism is called normal. An M−group G is decomposable iff there are projections. Any
M−group satisfying DCC is a direct product of a finite number of indecomposable M−groups. If η ∈ End(G)
then

√
η = {z ∈ G : zηs = 1}. Fitting: Let G be an M−group that satisfies ACC and DCC and η is a normal

endomorphism of G then G =
√

η ×H and Hη = H. If G is an indecomposable M−group satisfying ACC
and DCC then any normal M−endomorphism of G is either nilpotent or an automorphism. Suppose η1, η2

are normal nilpotent M−endomorphisms, if η1 + η2 is an endomorphism it is nilpotent. Krull-Schmidt
follows from this. Unitary: RM = M . Hilbert Basis Theorem: If R is a ring with identity such that
every ideal is finitely generated then R[x] has the same property.

If A,B are ideals, we say A | B if B ⊆ A. Q is primary iff ab = 0 (mod I) → a = 0 (mod Q) or
b ∈ √I. If Q is primary then

√
Q is prime. Every irreducible ideal in a Noetherian ring is primary. Every

ideal in a Noetherian ring is the finite intersection of primary ideals. If Q1, Q2 are primary and
√

Q1 =
√

Q2

then Q1 ∩Q2 is primary. If Q1 ∩Q2 ∩ . . .∩Qr = Q′1 ∩Q′2 ∩ . . .∩Q′s are two irredundant representations into
primary ideals whose associated primes are distinct, then r = s and the set of associated primes is identical.
If R2 = R is a commutative ring then every maximal ideal is prime. Let P be a prime ideal of R (1 ∈ R)
then (1) There is a 1-1 correspondence between the set of prime ideals of R contained in P and (2) the
prime ideals of RP given by Q 7→ QP . A local ring is a commutative ring with identity containing a unique
maximal ideal. If R is a commutative ring with identity, the following are equivalent: (1) R is a local ring;
(2) all non-units of R are contained in an ideal M 6= R; (3) the non-units form an ideal. Substitution from
a the polynomial ring to the ring of coefficients is a homomorphism.

If R is Noetherian and a ∈ M is R−integral iff ∃ a finitely generated submodule of M that contains
all powers of a. The totality G of elements of M that are R−integral is a subring of M containing R. The
ring G or R−integral elements is integrally closed in R.

If A,B, C, A′, B′, C ′ are modules over a ring R with identity and we have the diagrams 0 → A
f→ B

g→ C → 0

and 0 → A′ f′→ B′ g′→ C ′ → 0 with A
α→ A′, B

β→ B′, and C
γ→ C ′, then (1) β is a monomorphism if α and β

are and (2) β is a epimorphism if α and β are. P is projective if given A,B, g, f and morphism diagrams:
A

g→ B → 0 and P
f→ B, ∃h, P

h→ B which makes the diagram commute. J is injective if given A,B, g, f and
morphism diagrams: A

g→ B → 0 and A
f→ J , ∃h,B

h→ J which makes the diagram commute. Every free mod-
ule F over R with identity is projective. If R is a ring with identity, TFAE: (1) P is projective, (2) every short
exact sequence 0 → A

f→ B
g→ P → 0 splits so B = P ⊕A and (3) ∃F , free such that F = K⊕P . If R is a ring

with identity, TFAE: (1) J is injective, (2) every short exact sequence 0 → A
f→ B

g→ C → 0 splits so B = J⊕C

and (3) J is a direct summand. 0 → A
ψ→ B

φ→ C is exact if: 0 → Hom(D,A)
ψ→ Hom(D, B)

φ→ Hom(D,C) is.

A
θ→ B

ζ→ C → 0 is exact if: 0 → Hom(A,D)
ψ→ Hom(B, D)

φ→ Hom(C, D) is. The full short exact sequence
is split exact iff the corresponding dual (Hom) sequence is.

If A us a unique factorization domain, A is integrally closed. The integral closure in a number field K
is called the ring of algebraic integers. Algebraic integers form a free Z-module of rank [K : Q].

Let [E : F ] = n and [F (x) : F ] = d and x1, x2, . . . , xd be the roots of minF (x) then NE/F (x) =
(
∏d

i=1 xi)
n
d and TrE/F (x) = n

d (
∑d

i=1 xi). If E/F is separable then NE/F (x) =
∏n

i=1 σi(x) and TrE/F (x) =
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∑
i = 1nσi(x). If F ⊆ E ⊆ K then NE/F (NK/E(x)) = NK/F (x) and TrE/F (NK/E(x)) = NK/F (x). If E/F

is a finite separable extension, ∃x ∈ E : TrE/F (x) = 0 and (x, y) → TrE/F (xy) is bilinear.

For this paragraph, L be a separable extension of K, A ⊆ K be a ring of integers and B ⊆ L be a
ring of algebraic integers. ~x is a basis for L/K iff ∆(~x) 6= 0. If L = K(x) and f is a minimal polynomial of
x over K then ∆(1, x, x2, . . . , xn−1) = disc(f) =

∏
i<j(xi − xj) = (−1)(

n
2)NL/K(f ′(x)). There is a basis for

L/K consisting of elements of B. If A is a PID then B is a free A-module of rank [L : K]. If ai ∈ A then
(x1 − a1, x2 − a2, . . . , xn − an) is a maximal ideal.

Let M be an R module. The following are equivalent (1) M satisfies ACC (Noetherian), (2) Any non
empty collection of submodules of M has a maximal element. The following are equivalent (1) M satisfies
DCC (Artinian), (2) Any non empty collection of submodules of M has a minimal element. M is Noethe-
rian iff every submodule is finitely generated. M is Artinian iff every submodule is finitely co-generated.
Noetherian: PIDs, F [x]. F [x1, x2, . . .] is neither Noetherian nor Artinian. IfN ⊆ M then M is Noetherian
iff N and M/N are. M has a composition series iff M is Noetherian and Artinian. L be a separable ex-
tension of K, A ⊆ K be a ring of integers B ⊆ L be a ring of algebraic integers, if A is integrally closed
in K and A is Noetherian, so is B. Let P be a prime ideal of R and P ⊇ I1I2 . . . In then ∃k : P ⊇ Ik.
Let I be a non-zero ideal of a noetherian integral domain R then I ⊇ P1P2 . . . Pn for Pi prime. Let R
be a non-zero ideal of a noetherian integral domain and K its field of quotients, I is a fractional ideal if
I is an R-module and ∃r ∈ R : rI ⊆ R. If I is a finitely generated R submodule of K then I is a frac-
tional ideal. If R is Noetherian and I is a fractional ideal of R then I is a finitely generated R submodule of K.

A Dedekind Domain (“DD”) is an integral domain, R, such that (1) R is Noetherian, (2) R is inte-
grally closed, and, (3) Every non-zero prime ideal of R is maximal. PIDs are DDs. Algebraic integers in a
number field is a DD. If P is a non-zero prime ideal in a DD, R and J = {x ∈ K : xI ⊆ R} then (1) R ⊆ J

and (2) J is a fractional ideal and PJ = R. If I is a fractional ideal in a DD, R then I =
∏N

i=1 Pi
ni (ni ∈ Z

not just Z≥0), nP (I) = ni. The fractional ideals form a group. A non-zero fractional ideal is integral iff all
ni in the forgoing representation are ≥ 0. I1 ⊃ I2 iff ∀P, nP (I1) ≤ nP (I2). If I1, I2 are integral ideals then
I1 | I2 if I2 = JI1. I1 | I2 iff I1 ⊇ I2. L be a separable extension of K, A ⊆ K be a ring of integers, if A is a
DD, B is a DD.

If 0 → A
f→ B

g→ P → 0, B satisfies ACC (resp DCC) iff A and C do. A satisfies ACC on submodules
iff each submodule is finitely generated (same for rings). Jordan-Holder for modules (composition series
have unique refinements). A has a composition series iff A satisfies ACC and DCC. If D is a division ring
then Matn×n(D) is both Noetherian and Artinian. An ideal P (6= R) in a commutative ring R is prime iff
R − P is a multiplicative set. If S is multiplicative and S ∩ I 6= ∅, ∃P , prime that is maximal with respect
to the disjoint property. Rad(I) = {r ∈ R : rn ∈ I}.

Every transcendental extension has a transcendence basis. If < x1, x2, . . . , xn > spans E algebraically
and S ⊆ E is algebraically independent then |S| ≤ n. (Use Steinmetz replacement.)

Noetherian Normalization Lemma: Let R be an integral domain which is a finitely generated ex-
tension of K and suppose r is the transcendence degree over K of the quotient field of R, then ∃t1, . . . , tr
algebraically independent elements such that R is integral over K[t1, . . . , tr].

Localization: Let S be a multiplicative subset of R and h : a 7→ a/1 be the natural map. If J is an
ideal in S−1R then S−1J = I is an ideal of R and I ⊆ h−1(S−1(I) with equality if I ∩S = ∅. If I is a prime
ideal of R and I ∩ S = ∅ then S−1R is a prime ideal of S−1R. If P is a prime ideal of R and S = R − P
is a multiplicative set, denote S−1R as RP . RP has a unique maximal ideal consisting of non-units of RP .√

I = P1 ∩ P2 ∩ . . . ∩ Pk for some prime ideals Pi.

1.2.3 Polynomials

Basic Symmetric polynomials: σ1 =
∑

xi, σ2 =
∑

xixj , etc. Every symmetric function f(x1, . . . , xn) =
(z − x1) . . . (z − xn) can be written as a polynomial with coefficients in the basic symmetric polyno-
mials. Proof 1: Let ax1

a1x2
a2 . . . xn

an be the leading coefficient of a symmetric form in lexicographic
order, subtracting aσ1

a1−a2σ2
a2−a3 . . . σn

an leaves a symmetric form with leading coefficient smaller in
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lexicographic order. Proof 2: By induction on the weight. True for 1. If f(x1, . . . , xn) is symmet-
ric, so is f(x1,...,xn−1,0)

z . So f(x1,...,xn−1,0)
z = φ((σ1)0, . . . , (σn−1)0) Set f1(x1, . . . , xn) = f(x1, . . . , xn) −

φ((σ1)0, . . . , (σn−1)0). f1(x1, . . . , xn−1, 0) = 0 so xn and hence σn divides f1 thus f1 = σng and g is
writable as a polynomial in the basic symmetric functions by induction so f(x1, . . . , xn) = σnψ(σ1, . . . , σn)+
φ(σ1, . . . , σn−1). Further, the representation is essentially unique which you can show by proving φ(y1, . . . , yn) 6=
0 → φ(σ1, . . . , σn) 6= 0 (Prove).

Resultant: If fv(x) = vnxn + . . . + v0 and gw(x) = wmxm + . . . + w0, ∃φv,w(x), ψv,w(x) : φv,w(x)fv(x) +
ψv,w(x)gu(x) = R(v, w) = vn

mwm
n

∏
i<j(ti − uj), where ti, uj are roots of f, g respectively. Resultant is 0 iff

equations have common solution. Consider the equations written in matrix notation:



xm−1fv(x)
xm−2fv(x)

. . .
fv(x)

xn−1gw(x)
xn−2gw(x)

. . .
gw(x)




=




vn vn−1 . . . v0 0 0 . . . 0
0 vn vn−1 . . . v0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 vn vn−1 . . . v0

wm wm−1 . . . w0 0 0 . . . 0
0 wm wm−1 . . . w0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 wm wm−1 . . . w0







xn+m−1

xn+m−2

. . .

. . .

. . .

. . .
x
1




Proof: Let the column vectors be Cm+n−1 . . . C0. C = (xm−1fv(x), . . . , gw(x))T . C = Cm+n−1 · xm+n−1 +
. . . + 1 · C0. Now solve for 1. 1 = det(Cm+n−1...C1,C)

det(Cm+n−1...C1,C0)
. Get φv,w(x)fv(x) + ψv,w(x)gw(x) = R(v, w).

Theorem: Let f1, . . . , fs be polynomials of one variable with indeterminate coefficients. ∃d1, d2, . . . , dh

of integral polynomials in the coefficients of fi such that if the coefficients are assigned values (“special-
ized”) from k, di = 0 iff either the fi = 0 have a common solution or the leading coefficients vanish. Proof:
Set fu = u1f1 + . . . + usfs, fv = v1f1 + . . . + vsfs. (fu, fv) = 1 iff (f1, f2 . . . , fs) = 1. R(fu, fv) = 0 iff fu

and fv have a non-trivial common factor. But R(fu, fv) is a polynomial in ui, vj with coefficients which are
integral in the coefficients of fi. Arrange these in the order of powers of uivj . These are the di. The proof
also shows that di = 0 (mod (f1, f2, . . . fr)) and (d1, d2 . . . dl) = 0 (mod (f1, f2, . . . fr)).

Theorem: If f1, . . . , fr ∈ F [x1, . . . , xn] has no common zeros, ∃A1, ...Ar such that
∑

i Aifi = 1. Proof
by the induction on number of variables. True for n = 1 by usual theory of polynomials over fields. Assume
it’s true for n− 1. Let f i(x) = fi(x, x2, . . . , xn) =

∑ni

j−0 gij(x2, . . . , xn)xj . The f i have no common solution
or the fi would; thus by the previous result, regarding the coefficients of xj as indeterminants, ∃dlk which
are not simultaneously 0 [or again, the fi would have a common solution], such that

∑
lk Blkdlk = 1. After

substitution,
∑

ij Cijgij = 1. Further, gij =
∑

j Ajfj , again by the previous result. After substituting again,
we get

∑
j Djfj(x, x2, . . . , xn) which is what we want.

Nullstellensatz: If f(x1, . . . , xn) ∈ F vanishes at all the common zeros of f1(x1, . . . , xn), . . . , fr(x1, . . . , xn)
in every extension of F , then fk(x1, . . . , xn) ∈ (f1(x1, . . . , xn), . . . , fr(x1, . . . , xn)) for some k. Look at
f1, . . . , fr, 1− zf , put z = 1

f and clear denominators. Note that if h1, . . . , hm are zero for all common zeros
of the fi, (h1, . . . , hm)ρ = 0(f1, f2, . . . , fr).

Note that an algebraic condition for solvability is not always possible: Consider a1x1 + a2x2 + a3 = 0,
b1x1 + b2x2 + b3 = 0; they have a solution in general if a1b2 − b1a2 6= 0 and the di (the resultant system)
would have to vanish for indeterminant a, b and the equation would always have a solution but it doesn’t.
However, this does work for homogeneous equations (forms).

General idea of elimination for forms relies on three lemmas: Lemma 1: We can assume x1 appears
with non-zero constant coefficient. Proof: if not, substitute x1 = u1x

′
1, x2 = x′2 + u2x

′
1, ..., xn = x′n + unx′1.

Lemma 2: If F has a non-trivial common solution, the di do too. Proof: If the coefficients do not vanish,
the di give rise to a solution (ξ2, . . . , ξn) in (x2, . . . , xn) which can be extended to x1; if not, the di vanish
identically and have a solution, say (1, 1, . . . , 1) and the fi have a solution (1, 0, . . . , 0) with the coefficients of
the x1 terms 0. Lemma 3: The system F has a resultant system of integral polynomials bj in the coefficients
of the fi such that for a specialization of the coefficients of the fi, F has a non-trivial common solution iff the
bj = 0; further, the bj are homogeneous in the coefficients of the forms. Elimination procedure: Successively
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eliminate x1, x2, . . . , xn. At each step, the di obtained by eliminating previous xi are forms, we can continue
the elimination procedure until only xn remains and the resultant system becomes: xn

s1b1, xn
s2b2, . . . , xn

skbk

and by the above xn
sj bj = 0 (mod (f1, . . . , fn)). If elimination results in a non-zero constant, there is no

common solution and we get 1 = 0 (mod (f1, f2, . . . , fr)).

Observe that not all solutions can be obtained by specialization. Consider f1 = x2
1 + x1x2, f2 = x1x2 +

x2
2 + x1 + x2, (x1 + x2) is a common factor so the resultant vanishes. ξ1 = −ξ2 is a solution; however, if

ξ2 = −1, ξ1 = 0 is also solution which does not fit the specialization solution.

For the next few paragraphs, the system F consists of r forms, f1, ..., fr in n variables with indetermi-
nant coefficients. The indeterminants in f1 are a1, . . . , aω, the indeterminants in f2 are b1, . . . , bω and the
indeterminants in fr are e1, . . . , eω. When r = n the resultant system is generated by a single polynomial,
R, called the resultant.

Let F be a system of forms as above with deg(fi) = l1 and l1 = α, l2 = β, . . . , lr = ε. By the above,
∃T ∈ Z[a1, . . . , eω] such that xi

τT = 0 (mod (f1, . . . , fn)). T is called an inertial form. Set f1 =
f∗1 + aωxn

α, f2 = f∗2 + bωxn
β , ... , fn = f∗n + eωxn

ε, substituting aω = − f∗1
xα

n
, ..., eω = − f∗r

xα
n
, we get

T (a1, . . . ,− f∗1
xα

n
, . . . ,− f∗r

xα
n
) = 0 (Condition “A”) and this actually holds for all i if it holds for any xi. Con-

versely, if Condition “A” is satisfied, xn
τT = 0 (mod (f1, . . . , fr)). Proof: We can use Condition A to

rearrange T in powers of aω + f∗1
xα

n
, . . . , eω + f∗r

xε
n

and the term independent of the powers vanishes so T = 0

(mod (aω + f∗1
xα

n
, . . . , eω + f∗r

xε
n
)); multiplying through by the largest power of xn in the denominators, we get

xτ
nT = 0 (mod (f1, f2, . . . , fr)). The inertial forms form and ideal I which is prime and a basis for I thus

forms a resultant system.

Theorem: If the number of forms, fi, is less than the number of variables, n, then there is no inertial form
distinct from 0; if r = n, there is no inertial form independent of eω and distinct from 0. The proof uses the
following Lemma: When a sequence of polynomials f1, . . . , fs in indeterminants a1, a2, . . . , ap, x1, x2, . . . , xq

is algebraically dependent in k[a1, . . . , ap], this dependence is valid for every specialization ap = α. Proof
of Lemma: Since F (a1, . . . , ap, f1, . . . , fs) = 0 and F (a1, . . . , ap, z1, . . . , zs) 6= 0, F (a, z) is not divisible by
(ap−α) or we could reduce the relations. So F (a1, . . . , ap−1, α, f1, . . . , fs) 6= 0. Proof of theorem: If r < n, by
Condition “A”, − f∗1

xα
n
, . . . ,− f∗r

xα
n

would be algebraically dependent relative to k[a1, . . . , aω−1, e1, . . . , eω−1] and

this continues to be true if xn = 1. If r = n and the hypothesis is false, − f∗1
xα

n
, . . . ,− f∗n−1

xδ
n

would be algebraically
dependent relative and we can set xn = 1. In both cases, the lemma applies and we can specialize over any
of the indeterminantes without losing dependency. Choose a specialization so f1, . . . , f

δ
s → xα

1 , . . . , xδ
s. This

is a contradiction since these terms are algebraically independent.

Theorem: If r = n, there is a non-vanishing inertial form De, homogeneous in the indeterminantes and of
degree Ln = l1l2 . . . ln−1 in the ej . Proof: Put l = 1 +

∑n
i (li − 1) and consider, P, the monomials of degree

l in the xi. P is a disjoint union of the following sets: monomials of degree l containing x1
l1 , monomials

of degree l containing x2
l2 but not x1

l1 , . . . , monomials of degree l containing xn
ln but not x1

l1 , x2
l2 , etc.

Suppose H
(m)
l−l1

are the complementary monomials of the elements of the disjoint sets, i.e. - x1
l1H

(m)
l−l1

are

in the disjoint sets. H
(m)
l−ln

has l1l2 . . . ln−1 power products (xk
1 , 0 ≤ k < l1, etc). Now form H

(m)
l−li

fi. Since
there are as many of these as power products, the matrix is square. Denote its determinant as De which
has the value 1 under the specialization fi = xi

li . Multiplying the equations H
(j)
l−li

fi =
∑

amkH
(k)
l by the

subdeterminants of a column of De and adding, the left hand side becomes linear in the fi and the right
hand side, DeH

(k)
l . Letting H

(k)
l = xl

i, we get Drx
l
i = 0 (mod (f1, f2, . . . , fr)) and De is homogeneous in

each form, fi and has degree Ln in the coefficients of fn.

Now, let f1, f2, . . . , fn be forms in x1, x2, . . . , xn with indeterminate coefficients and I the ideal generated by
the inertial forms. Theorem: If R is a polynomial of minimal degree in eω, every element of I is divisible
by R. R is the resultant. Proof: Arrange R in powers of eω, R = Seω

λ + . . .. If T is in I, we can get a
polynomial, T ′ = SjT −QR of lower degree which is also in I but then T ′ = 0 and R | T . Note if R vanishes
for a specialization, every element of I does also and the fi have a common 0; conversely, if the fi have a
common zero, since xi

τR = A1f1 + . . . + Anfn, substitution makes the right side of the equation 0 but at
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least one xi 6= 0 so R = 0. We have: Theorem: R(gh, f2, . . . , fn) = R(g, f2, . . . , fn)R(h, f2, . . . , fn), R is
homogeneous of degree L1 in the coefficients of F1, homogeneous of degree L2 in the coefficients of F2, ...,
and homogeneous of degree Ln in the coefficients of Fn, R = (Da, Db, . . . , De) is a principal ideal and the
resultant contains a principal term a1

L1 . . . eω
Ln .

Bezout: Suppose the system F , r = n has a finite number of non-trivial solutions (ξ(α)
1 , . . . , ξ

(α)
n ), α =

1, 2, . . . , q. Add the form l = u1x1 + . . . + unxn and form the resultant system b1(u), b2(u), . . . , bt(u). The
resultant system has a solution iff lα = u1ξ1

(α) + . . . + unξn
(α) = 0. By the Nullstellensatz: (bi(u))τi = 0

(mod (
∏

α lα)) and (
∏

α lα)τ = 0 (mod D(u)) where D(u) = (b1(u), . . . , bt(u)). So D(u) =
∏

α lα
ρα (the

ρalpha’s are the multiplicities). If we consider n − 1 forms fi and add the form l = u1x1 + . . . + unxn, we
get Bezout’s theorem, namely: If n− 1 homogeneous equations have a finite number of solutions then sum
of the multiplicities (defined above) equals the product of the degrees of the equations.

Berlekamp polynomial factorization: f(x) square free. Compute xiq (mod f(x)) =
∑

qijx
j . Find

null space of Q− I with basis v1(x), . . . , vt(x). Compute (f(x), vk(x)− α).

fn(x) =
(xn − 1)∏

d|n,d<n fd(x)

Submodules of finitely generated free modules over a PID: Let D be a PID and D(n) be a free
module of rank n over D. Then any submodule, K of D(n) is free with base m ≤ n elements. Proof: By
induction. For n = 1, submodule is isomorphic to a principal ideal. Inductive step: examine D

(n)
= D(n)

D(n−1) .

Fix a monomial order (≤) for terms in x1, x2, . . . xn. Denote leading term of f under this order as in≤(f). The
division algorithm for f with respect to the monomial order produces f(x) = a1(x)f1(x)+. . .+am(x)fm(x)+
r(x) where r = 0 or r is a linear combination of monomials none of which are divisible by in≤(fi). This is
written as r = fF . Procedure for multi-variable division algorithm: Set r ← f(x), ai(x) ← 0. Pick or-
dering of f1(x), f2(x), . . . , fm(x). If in≤(fj)|in≤(r) for any j, pick first such j, set t ← in≤(r)

in≤(fj)
, s ← s−tfj(x),

aj(x) ← aj(x) + t; repeat this step until if condition fails. r ← s. In general, the result depends on the
ordering of the fj(x).

Grobner Basis: A finite subset G = {g1, g2, ..., gs} is a Grobner basis for an ideal I with respect to the
monomial order ≤ if < in≤(g1), in≤(g2), ..., in≤(gs) >=< in≤(I) >. Equivalently, if f ∈ I, in≤(gi)|in≤(f)
for some i. If G is a Grobner basis fG is independent of the order of the fi(x). If G is a Grobner basis and
I =< G >, f ∈ I iff fG = 0.

Dickson’s Lemma: If S ⊆ Nn then ∃v1, v2, . . . vm such that S ⊆ (v1 + Nn)∪ (v2 + Nn)∪ . . .∪ (vm + Nn).
Consequence: Every ideal has a Grobner basis. Proof: Let S = {v : xv = in≤(f), f ∈ I}. By Dickson,
S ⊆ ⋃

i(vi + Nn), i = 1, 2, . . .m. If f(x) ∈ I, axw = in≤(f), w = vi + v for some i, v then xw = xvixv hence
in≤(fi)|in≤(f).

Buchberger reduction: f ∈ R reduces to 0 with respect to f =< f1, f2, . . . , fm >⊆ R − {0} iff
∃a1, a2, . . . , am ∈ R: f = a1f1 + a2f2 + . . . + amfm and in≤(aifi) ≤ in≤(f) if aifi 6= 0. This is de-
noted by f →F 0. Let G = (g1, g2, . . . , gm), I =< G >. If f →G 0 for all f ∈ I then G is a Grobner
basis. If G is a Grobner basis for I, fG = 0 iff f →G 0, ∀f ∈ I. S(f, g) = xγ

in≤(f)f − xγ

in≤(g)g, where
xγ = LCM(in≤(f), in≤(g)). If S(fi, fj) →F 0,∀i, j then f →F 0, ∀f ∈ I. F is a Grobner basis iff
S(fi, fj) →F 0, ∀i, j iff S(fi, fj)F = 0, ∀i, j.

Buchberger Algorithm: Test S(fi, fj)F 6= 0, F = F ∪ {S(fi, fj)}. Do this until all S(fi, fj)F = 0.
This procedure terminates.

Minimal Grobner: in≤(fi) does not divide in≤(fj) and coefficients are 1. Reduced Grobner: Min-
imal Grobner where in≤(fi) does not divide any term of in≤(fj). Example: F = (x2 + y, x2y + 1).
S(x2 + y, x2y + 1) = y2 − 1, (x2 + y, x2y + 1, y2 − 1) is a Grobner basis. Elimination ideals: Il =
I ∩ k[xl+1, ..., xn].

More on Resultants. Condition 1: F0(x0, x1, . . . , xn) = F1(x0, x1, . . . , xn) = . . . = Fn(x0, x1, . . . , xn) = 0,
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with each Fi homogeneous of degree di in the xi. Let Fi(x0, x1, . . . , xn) =
∑
|α|=di

ui,αxα. Theorem
1: Fix d0, d1, . . . , dn, there is a unique polynomial Res ∈ Z[ui,α] such that if ui,α are replaced by the
corresponding ci,α ∈ C and Fi is homogeneous of degree di then (a) the equations of condition 1 have
a non-trivial solution in C iff Res(F0, F1, . . . , Fn) = 0, (b) Res(xd0

0 , xd1
1 , . . . , xdn

n ) = 1, (c) Res is irre-
ducible. Sometimes we write Resd0,d1,...,dn

to emphasize degrees. Note that Res1,1,...,1 is just the de-
terminant. Theorem 2: For fixed j, 0 ≤ j ≤ n, Res is homogeneous in uj,α of degree d0 · d1 · dj−1 ·
dj+1 · dn; further, Res(F0, . . . , Fj−1, λFj , Fj+1, . . . , Fn)λd0·d1·dj−1·dj+1·dnRes(F0, F1, . . . , Fn) and the total
degree of Res is

∑n
j=0 d0 · d1 · dj−1 · dj+1 · dn. Res is alternating in the Fi and Res(gh, F2, . . . , Fn) =

Res(g, F2, . . . , Fn)Res(h, F2, . . . , Fn). Example: Res2,2,2(F0, F1, F2) has 18 variables of total degree 12 and
21, 894 terms. If f(x) = alx

l + . . .+a0 and g(x) = bmxm + . . .+ b0 then Res(f, g, x) = am
l bl

m

∏l
i=1

∏m
j=1(ξ−

ηi) = am
l

∏l
i=1 g(ξi) = bl

m

∏m
i=1 f(ηi). Put Af = k[x]/(f(x)) and let [h]f be the natural map from k[x] → Af ,

further, let mg : [h]f 7→ [gh]f then mg is a linear map and Res(f, g, x) = det(mg).

1.2.4 Linear Algebra

Homomorphisms on modules: Left module M over R with RM ⊂ M , 1m = m, (r + s)m = rm + sm,
etc. Notation: EndR(X) = HomR(X,X). HomR(U, V ) = {f, f : U → V, f(r1u + r2v) = r1f(u) + r2f(v)}
where ri ∈ R.

If V is a vector space (or module) then V ∗, the set of linear functions over V , is the dual space. If
V is finite dimensional, dim(V ) = dim(V ∗). V ≈ V ∗∗. Solution space as kernel of linear map, L.
colRank + dim(ker(L)) = n. rowRank + dim(ker(L)) = n.

Theorem: The row rank equals column rank. Proof: Let A = (aij) be and m × n matrix. Ri = (rij)
are rows, Cj are columns. Let row rank be r and S1, . . . , Sr be a basis. Put Si = (sji). Ri =

∑
j kijSj .

So rji =
∑

i kjisji. So the column vectors (k1i, k2i, . . . , kmi)T span the column space. Thus the row rank ≤
column rank. The same holds for AT .

Artin’s proof that row rank equals column rank. Lemma: If W ⊂ V are vector spaces over k
and W⊥ ⊂ V ∗ then dim(W ) + dim(W⊥) = dim(V ). Proof of result: Let T : kn → km be the linear
transformation represented by the matrix M with rows r1, r2, . . . , rm and columns c1, . . . , cn and let the
row space of M be R and the column space, C; finally, let r = dim(R), c = dim(C) and W = ker(T ).
Since dim(Im(T )) + dim(W ) = n = dim(V ), r = n − dim(W ) and dim(W ) + dim(W⊥) = n, it suffices
to show dim(W⊥) = r. Note that ri · w = 0 for w ∈ W so, if λi is the usual dual basis of V ∗ with re-
spect to < e1, e2, . . . , en > where < e1, e2, . . . , ek >= W . Let λj be the natural dual basis and note that
R ⊆< ek+1, ek+2, . . . , en > since ri · λj = 0 for j ≤ k. Now let bk+1λk+1 + . . . + bnλn = λ ∈ W⊥. Consider
ϕ : λ 7→ bk+1ek+1 + . . . + bnen. If ϕ(λ) = 0, λ = 0 so dim(R) = dim(W⊥) and the result holds.

Change of basis for matrix: Let [e] = {e1, . . . , en} be a basis for Vn and let L be a linear transformation
on Vn. Let v[e] = [c1, c2, ..., cn]T denote the coordinates of v with respect to [e]: v[e] = c1e1 + ... + cnen. Let
L[e] denote the matrix for L with respect to [e]: L[e] =

∑
j ajiej . Then L[e]v[e] = (Lv)[e]. If fi =

∑
j bjiej

is another basis, P = (bij) is called the transition matrix from [f ] to [e] and P−1 is the transition matrix
from [e] to [f ] (note the sum over the first index). Pv[f ] = v[e] and v[f ] = P−1v[e]. Finally, L[f ] = P−1L[e]P .
The same holds over free modules. Alternate notation: L : V → W , V has basis B and W has basis B′ with
L(wi) =

∑
j aijvj then MB

B′(F ) = AT . If B and B′ are over the same space, MB′
B′ (F ) = N−1MB

B (F )N where
N = MB′

B (id).

The group of affine transformations is isomorphic to the subgroup of the matrices with last column (0, 0, . . . , 0, 1).
The translations form a normal subgroup.

Cayley-Hamilton: Any matrix over an algebraically closed field is similar to a triangular one. The mini-
mum polynomial divides the characteristic polynomial.

Let A∗ denote the adjoint (conjugate transpose). (Ax, y) = (x,A∗y). Hermitian: Self adjoint over
complex numbers. Symmetric: self adjoint over reals. Unitary: AA∗ = I; equivalently: A is length
preserving: (Ax,Ay) = (x, y). If A is symmetric and X is orthogonal then XAX−1 is symmetric. If A is
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symmetric there is a P such that P ∗AP is diagonal. All the eigenvalues are real.

Suppose V is a vector space with a non-degenerate bilinear form and T a linear transformation on V , if
W is T -invariant, so is W⊥ and V = W ⊕W⊥. Witt’s Theorem: Let Q be a non-degenerate quadratic
form on V over F of char(F ) 6= 2, U1 and U2 non-degenerate sub-spaces which are isometric. Then U⊥

1

and U⊥
2 are isometric. Isometries over subspaces can be extended to the whole space. If V is a vector space

with over R with a positive definite form (resp. C with a hermitian form) and W is a subspace of V then
V = W ⊕W⊥. V ∗ ⊗ V → L(V, V ) via Lφ⊗v(w) = φ(w)v.

Extreme point in convex set: P with no Q1, Q2 such that P = tQ1 + (1 − t)Q2. Krien Millman: If
S is a closed, bounded convex set, then S is the convex closure of its extreme points.

A is orthogonal iff it takes orthonormal basis into orthonormal basis which happens iff AAT = I. Ev-
ery real quadratic form is equivalent to a diagonal one with a signature of positive and negative coefficients.
Two forms are equivalent iff they have the same rank and signature.

Principal Axis Theorem: Any real quadratic form is equivalent to one with Q(η) = λ1x1
2 + . . . + λnxn

2

with λ1 ≥ λ2 ≥ . . . ≥ λn. Proof: Find eigenvector v, V =< v > ⊕ < v >⊥.

If T is any linear transform on Vn, ∃M0,M1, . . . , Mn: (i) AMk ⊆ Mk, (ii) dim(Mj) = j, (iii) {0} =
M0 ⊆ M1 ⊆ . . . ⊆ Mn = Vn.

Nilpotent: ∃q: Aq = 0, smallest q is degree of nilpotence. If A is nilpotent of degree q, ∃x: Aq−1x 6= 0 and
x,Ax, A2x, . . . Aq−1x are linearly independent. Every linear transform is the direct sum of a nilpotent and
an invertible transform.

If A is a linear transform on Vn with proper values λ1, λ2, . . . , λp having multiplicity m1,m2, . . . , mp then
Vn = M1 ⊕ . . .⊕Mp with AMj ⊆ Mj , dim(Mj) = mj and A− λjI is nilpotent on Mj .

An n × n matrix is diagonalizable iff it has n linearly independent eigenvectors. A matrix is diago-
nalizable iff its minimal polynomial is a product of different linear factors. Two matrices are simultaneously
diagonalizable iff they are diagonalizable and commute.

Spectral Theorem: If T is normal (TT ∗ = T ∗T ), ∃E1, . . . Er such that T =
∑r

i λiEi with T =
∑r

i Ei = I,
EiEj = 0 and transforming matrix, A, unitary (A

t
= A−1).

Let f : A → A′ be surjective. A, A′ abelian, A′ free. ∃C ⊆ A such that A = ker(f)⊕ C.

Structure Theorem for Finitely Generated Modules over Principal Ideal Domains: If M( 6= 0) is a
finitely generated module over a PID, D, M = Dz1⊗Dz2⊗ . . .⊗Dzs such that: (z1) ⊃ z2 ⊃ . . . (zs), zk 6= D.
Proof: η : D(n) → M canonically (base of D is ei) by

∑
i aiei →

∑
aixi. M ∼= Dn/K. K has base fi, i =

1, 2, ...,m and fj =
∑

i ajiei. Let e′ = Pe, f ′ = Qf . Relations matrix is QAP−1 = {d1, d2, ..., dr, 0, 0, ...0}
and di | di+1 f ′j = die

′
i. Then y = Px is another set of generators and the yi are linearly independent over

D. ann(yi) = (di) if di is a unit, drop it from the list of generators. If the first t are units, put z1 = yt+1....
s = n− t in the statement of the theorem.

Application to an endomorphism, Tui =
∑

j aijej . M ∼= D(n)/K, with D = F [λ]. fi = λei −
∑

j aijej

are generators of K. After diagonalization by elementary row and column operations, P (λI − A)Q =
diag(1, . . . , 1, d1(λ), . . . , ds(λ)). K is generated by f ′i = die

′
i. If Q−1 = (q∗ij), vi =

∑
j q∗ijuj , zi = vn−s+i and

V = F [λ]z1 ⊕ . . .⊕ F [λ]zs. Example:

A =



−1 −2 6
−1 0 3
−1 −1 4


 , B =




0 1 0
0 −1 1
−1 2− λ −3


 , C =




1 3 λ− 3
0 0 −1
0 1 −1




B(λI −A)C =




1 0 0
0 (λ− 1) 0
0 0 (λ− 1)2


 , C−1 =




1 λ −3
0 −1 1
0 −1 0



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v1 = u1 + λu2 − 3u3, v2 = −u2 + u3, v3 = −u2. z1 = v2 = −u2 + u3, z2 = v3 = −u2, z3 = λv3 = u1 − 3u3.
So, 


0 −1 1
0 −1 0
1 0 −3






−1 −2 6
−1 0 3
−1 −1 4







0 −1 1
0 −1 0
1 0 −3



−1

=




1 0 0
0 0 1
0 −1 2




Let Oij = (δilδjk)1≤l≤n,1≤k≤n and Jij(α) = I + αOij . Jij(α)A: add α times row j to row i. AJij(α)A: add
α times column i to column j.

Rational Canonical Form and Jordan Canonical Form are the same over an algebraically closed
field. A finite group of transformations over R3 has fixed points. |G| = vpnp, 2(|G| − 1) =

∑
p(vp − 1).

PA = A(AT A)−1AT where the rank of A is the number of columns, is the symmetric projector; PA⊥ = I−PA.
P 2

A = PA, P 2
A⊥ = PA⊥ , PT

A = PA, PT
A⊥ = PA⊥ . S = AAT is invertible. P~a(~w) is the projection

of ~w along ~a. The linear system A~f = PA
~b has solution ~f = A−1PA

~b the least squares approxima-
tion of data points (xi, yi) can be calculated from this too. Example, fit f(x) = f0 + xf1 to the data

(−1, 1), (0, 0), (1, 2) by solving




1 −1
1 0
1 1


 (f0, f1)T = (1, 0, 2)T . In general, the least squares approximation

arises from the symmetric projection in the sample space Rs where s is the number of data points. f(A)~v =
(f0 +f1A+ . . .+fnAn)~v = (~v,A~v, . . . , An~v). Vandermonde determinant and Fourier V (x0, x1, . . . , xn) where
the xi are roots of xn+1 − 1 = 0. Z(x) = (x − xj)Zj(x) solves for coefficients f0, f1, . . . , fn using Lagrange
interpolants Λj(x) = Zj(x)

Zj(xj)
. For PCA, µA(x) = (x − λ1)m1(x − λ2)m2 . . . (x − λt)mt . There are polyno-

mials in A, denoted Aλ1Aλ2 . . . Aλt such that (A − λiI)mAλi = 0 and A = Aλ1Aλ2 . . . Aλt . The Aλi are
called components. The list of basic eigenvectors of A form the columns of the diagonalizing matrix, P and
AP = PD; A is diagonalizable when P is invertible.

Approximating a rank r n×n matrix requires 2nr terms. Mean clustering: replace M with D = diag(α1, . . . , αi)
where αi =

√
1

(MMT )ii
. How closely can a scatterplot be approximated by a line A with direction ~a? Find the

vector ~a that maximizes |P~a( ~m1)|2 + |P~a( ~m2)|2 + |P~a( ~ms)|2 = (~aT ~m1)2 + (~aT ~m2)2 + . . . (~aT ~mt)2. Maximize
~aT MMT~a,∀~a ∈ Rs, |~a| = 1. C = MMT is a correlation matrix with cij is the correlation of i, j; if ui ⊥ uj

they are uncorrelated. ∃P : CP = PD, MMT = C = PDP−1 and maximize ~uT D~u, |~u| = 1, ~u = PT~a ∈ Rs.
C is diagonalized by P : PPT = I.

1.2.5 Bilinear Forms and Classical Groups

A pairing, (W,V ) → k is a bilinear map. If V0 ⊂ V , V ∗
0 = {~w ∈ W : (~w, ~v0) = 0, ∀~v0 ∈ V0}, v0 ⊂ (V ∗

0 )∗. V ∗

is called the left kernel. Same holds mutatis mutandis for W0 ⊆ W provided W ∗ = 0 is the right kernel. If
(W,V ) → k is a pairing with left kernel 0 and ~w ∈ W , define ϕ~w(~v) = (~w,~v). ϕ~w ∈ V̂ and the map ~w 7→ ϕ~w

is an injection from W → V̂ . Similarly, if the right kernel is 0, there is an injection V → Ŵ .

If W0 ⊆ W , codimW (W0) = dim(W ) − dim(W0). If W0 ⊂ W , V0 ⊂ V and V ∗ = 0, there are nat-
ural injective morphisms V/W ∗

0 → Ŵ0 and V ∗
0 → ˆV/V0. Thus, dim(V/W ∗

0 ) ≤ dim(Ŵ0) = dim(W0)
and dim(W ∗∗

0 ) ≤ codim(W ∗
0 ) ≤ dim(W0). If W = V̂ , both kernels are 0. If (W,V ) is a pairing, (a)

dim(W/V ∗) = dim(V/W ∗), (b) if V ∗ = 0, dim(W ∗∗
0 ) = codim(W ∗

0 ) = dim(W0) and if W0 is finite dimen-
sional, W ∗∗

0 = W0 and W0 and V/W ∗
0 are naturally dual, (c) If V ∗ = 0 and W ∗ = 0, and V and W are finite

dimensional, V and W are naturally dual and there is a 1-1, inclusion reversing correspondence of subgroups
of V and W under the ∗ operator: W0 ↔ W ∗

0 .

Let A = (aij) be an m×n matrix with entries in k and ~x = (x1, . . . , xn)T . Let ~b = (b1, . . . , bm)T then A~x = ~b

is a system of linear equations. Set x = E1x1+E2x2+ . . .+Enxn, Ei ∈ V = kn. Suppose V̂ is dual to V with
basis ϕ1, . . . , ϕn: ϕjEk = δjk. Let ψi(x) = (ai1ϕ1 + . . . + ainϕn)(E1x1 + . . . + Enxn) = ai1x1 + . . . + ainxn.
W ⊂ V̂ , W =< ψj(x) > and dim(W ) = row rank. Sm is the m−tuple column vectors with entries
in k. Note that if Ai are column vectors forming A, they are in the column space of A as is ~b and
A1x1 + . . . + Anxn = ~b,~b = (ψ1(x), . . . , ψm(x)). If f : V → Sm, f(x) = (ψ1x, . . . , ψnx), ker(f) = W ∗.
If Im(f) = U , U ∼= V/W ∗ and dim(U) = codim(W ∗) = dim(W ). This shows the row rank equals the
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column rank.

Let Bij(λ) = I + λ(δilδjk)lk. If A ∈ GLn(k), A = BD(λ) where B ∈ SLn(k) and D(λ) is the same as
the identity except for λ in the lower rightmost position. Put Z = Z(k), S =< x2, x ∈ k > (as an additive
group). If x2 ∈ Z, ∀x then k is commutative; further, unless k is commutative and char(k) = 2, S = k.

τ ∈ GLn(k) is a transvection if ∃H = {h : ϕ(h) = 0, ϕ ∈ V̂ } with τ(h) = h, h ∈ H and τ(x)−x ∈ H, ∀x ∈ V .
If τ is a transvection with hyperplane H, pick ~b : ϕ(~b) = a 6= 0, set t(x) = x−~ba−1ϕ(x) then τ(t(x)) = t(x),
thus τ(x) = x + ~aϕ(x) with ~a = τ(~ba−1)−~ba−1. So all transvections are of this form. Bij(λ) is a transvec-
tion. If ~a,~b ∈ H then τ~a(τ~b(x)) = τ~a+~b(x). If σ ∈ GLn(k) and τ is a transvection, so is τ ′ = στσ−1 and
τ ′(x) = x + (σ(A))ϕ(σ−1(x)); conversely, if τ ′′(x) = x + ~a′ψ(x) is another transvection with hyperplane H ′,
we show ∃σ: σ(H) = H ′ and σ(~a) = a′ and thus that all transvections are conjugate and hence have the
same determinant. Proof: Pick ~b, ~b′ with ϕ(~b) = ψ(~b′) = 1. ∃σ : σ(~a) = ~a′, σ(H) = H ′, σ(~b = ~b′. Then
τ ′′(x) = x + ~a′ϕ(σ−1(x)), ∃c : φ(x) = ϕ(σ−1(x), setting x = ~b′, σ−1(x) = ~b we get c = 1 and τ ′′ = τ ′.
If H has at least three vectors then ∃~a,~b,~c with ~c = ~a + ~b and τ~a(τ~b(x)) = τ~c(x) and since they all have
the same determinant, it must be 1. In that case, f : GLn(k) → GLn(k)/GLn(k)′, f(στσ−1) = f(τ) so all
transvections have the same image under f and τ ∈ GLn(k)′ = SLn(k). If n ≥ 3 H and H ′ have independent
vectors and we can choose σ : det(σ) = 1 so the transvections are conjugate in SLn(k). Finally, the center
of SLn(k) consists of the matrices αI with αn = 1. We can conclude: If G is a normal subgroup of GLn(k)
containing a transvection and n ≥ 3 or n = 2 and |k| ≥ 4 then SLn(k) ⊆ G if G > Z(GLn(k)).

Pairings and isometries: Let V × V → k be a pairing with trivial left and right kernels. σ is an isometry if
(x, y) = (σx, σy), ∀x, y ∈ V . det(σ)2 = 1 for all isometries; if det(σ) = 1, σ is a rotation, if det(σ) = −1, σ is a
reflection. A quadratic map, Q satisfies Q(ax) = a2Q(x) and (x, y) = Q(x+y)−Q(x)−Q(y) = (y, x) is a pair-
ing. If char(F ) 6= 2, Q(x) = 1

2 (x, x). Pairings arising from quadratic maps are symmetric. ~a ⊥ ~b ↔ (~a,~b) = 0.
If < v1, v2, . . . , vn > span V and (~vi, ~vj) = gij and if < u1, u2, . . . , un > is another basis related to the original
by ui =

∑
j ajivj then gij = AT GA, where G = (gij). The form is symmetric if aij = aji, antisymmetric if

aij = −aji.

Let V ∗ = rad(V ) = V ∩ V ⊥ and V = rad(V ) ⊕ U , U ∼= V/rad(V ). Suppose V is non-singular and
U ⊂ V then U∗∗ = U, dim(U) + dim(U∗) = dim(V ) and rad(U) = rad(U∗) = U ∩ U∗. The subspace U is
non-singular iff U∗ is non-singular and then V = U ⊥ U∗. A vector ~v is isotropic if (~v,~v) = 0. U is isotropic
if (u1, u2) = 0, ∀u1, u2 ∈ U . There are two geometries for symmetric metric spaces: (1) Symplectic if
(~v,~v) = 0,∀~v ∈ V and (x, y) = −(y, x); (2) Orthogonal if (x, y) = (y, x), ∀x, y ∈ V . If V is orthogonal and
every vector is isotropic then V is isotropic.

Suppose dim(V ) = 2 and V is non-singular but has an isotropic vector, ~n then ∃~m : ~n2 = ~m2 = 0, ~n~m =
1, V =< ~n, ~m >. ( V =< ~n,~a > for some ~a. Set ~m = x~n + y~a; if ~n~a = 0, V is singular so we can find
y : y~n~a = 1. Can also find x : ~m2 = 0.) < ~n, ~m > is a hyperbolic plane. A non-singular space, V , with
orthogonal geometry is an orthogonal sum of lines. A non-singular space, V , with symplectic geometry is an
orthogonal sum of hyperbolic planes. Witt’s Theorem: Let V and W be isometric via ρ. Let σ : V0 → W0

be an isometry for V0 ⊂ V and W0 ⊂ W , then σ can be extended to an isometry of V . On: isometries. O+
n :

rotations, O−
n : reflections. Ωn = O′n.

If n is odd, 1V = Z(O+
n ). If n is even, ±1V = Z(O+

n ). If n = 2 over Fq, the plane contains q + 1
lines: < A + xB >, < B >; if V is isotropic, ε = 1, otherwise V contains no isotropic vectors and ε = −1.
There are q − ε non-isotropic lines. O(V ) has q − ε elements. Let ϕn be the number of isotropic vectors in
V and λn the number of hyperbolic pairs. If < N,M > is a hyperbolic plane, < N, M > ⊕ < N, M >∗= V .
< N∗ > contains qϕn−2 isotropic vectors. A type I form: TBD. Type I, II form: ϕn = qn−1. Type III, IV
form: ϕn = qn−1 + cq

n
2 , n ≥ 1. If Φn = |O+

n (q)| or |PSpn(q)|, Φn = λnΦn−2.

Classical Groups Summary: SLn(F ) =< Tij(b) >, Tij(b) = 1 + beij . SLn(F )′ = SLn(F ), n > 1.
|PSLn(q)| = (qn − 1)(qn − q) . . . (qn − qn−2)qn−1/(d(q − 1)), d = (n− 1, q). τu,c(x) = x + cB(x, u)u. Every
orthogonal transform is the product of ≤ n reflections. If U is defined by (x, u) = 0 and τ is a transvection,
∃a ∈ U, xτ = x − (u, a)a. < transvections >= SL(V ). If G is one of SL(V ), Sp(V ), SO(V ) or SΩ(V ),
G = BWB, where B is the Borel subgroup (upper triangular matrices) and W is the Weyl subgroup
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(the permutation matrices).

1.2.6 Fields

Field extensions: If α is the root of an irreducible polynomial p(x) ∈ F [x] then F (α) = F [α] = F [x]/(p(x)).
Isomorphisms between fields can be extended to isomorphisms of extensions over associated (under the iso-
morphism) polynomials.

Any two splitting fields of the same polynomial over F are isomorphic. Proof: Let α and β be two roots of
and irreducible polynomial which divides a f(x); let E be the splitting field of f(x). There is an isomorphism
from F (α) into F (β) which can be extended to an automorphism of E.

Definitions: E is a Galois over F if EG = F . E is normal over F if an irreducible polynomial over
F with one root in E, splits.

Artin: Distinct automorphisms are linearly independent. Proof: Suppose not. Let c1φ1(x) + c2φ2(x) +
. . . + crφr(x) = 0 be a minimal relation. Since the automorphisms are distinct, ∃β : φ1(β) 6= φr(β). Obtain
two equations from the minimal relation, the first by substituting βx into the equation for beta, the second
by multiplying the equation by φr(β), then subtract them. This is a shorter relation.

If G is a finite set of automorphisms fixing F , then r = |E : F | ≥ |G| = n. Proof: Suppose not. Let
{ω1, . . . , ωr} be a basis for E over F . Consider the r equations: φ1(ωk)x1 + . . . + φn(ωk)xn = 0 for
k = 1, 2, . . . r. Since n > r there is a non trivial solution c1, c2, . . . , cn. Let x =

∑r
i=1 aiωi. Multiply the first

equation by a1, the second by a2 and so on then add them to get c1φ1(x) + c2φ2(x) + . . . + cnφn(x) = 0 for
all x. This contradicts the Artin’s result.

Let G = {φ1, φ2, . . . , φn} be a finite group of Aut(E), F = EG, then r = [E : F ] = |G| = n. Proof: Suppose
r > n. Let {ω1, . . . , ωr} be a basis for E over F . Consider the n equations: φk(ω1)x1 + . . . + φk(ωr)xr = 0
for k = 1, 2, . . . n. This has a non trivial solution with r − n more unknowns than equations. Set
ai =

∑n
j=1 φj(ci); we can choose c1, . . . , cr−n so a1, . . . , ar−n are not 0. The ai are fixed by G so they

are in F .
∑r

i=1 aiωi =
∑r

i=1

∑n
j=1 φj(ci)ωi =

∑n
j=1

∑r
i=1 φj(ci)ωi =

∑n
j=1 φj(

∑r
i=1 ciφj

−1ωi) = 0. But
then

∑r
i=1 ciφj

−1ωi = 0 which contradicts the linear independence of the ωi’s. So r ≤ n. Now r ≥ n by the
previous result so n = r.

Primitive Element Theorem: If E = F [α1, . . . , αn] with α2, . . . , αn separable then E = F [α], some
α. Every separable finite extension is primitive. Proof: Assume F is not finite, E = F [α, β] with f, g the
minimal polynomials for α = α1 and β = β1 respectively, αi the roots of f and βi the roots of g. Let E be the
splitting field of f(x)g(x). αi +xβk = α1 +xβ1 has one root for each i, k; pick c such that αi +cβk 6= α1 +cβ1

and set θ = α + cβ. Claim: E = F [θ]. f(θ − cβ) = g(β) = 0) so (f(θ − cx), g(x)) = (x− β) ∈ F [θ][x].

Let E be a splitting field for f(x) over F [x]. If p(x) is irreducible and has one zero in E, then p(x)
splits in E. Proof: Let L be the splitting field of f(x)p(x). Set E = F (a1, a2, . . . , an) where a1, a2, . . . , an

are the roots of f(x). Suppose p(α) = 0, α ∈ E and p(β) = 0. Let σ : F (α) → F (β) be an isomorphism
with σ(α) = β. Extend σ to τ : L → L. τ permutes the roots of f(x) so τ(E) = E. α = m(a1,a2,...,an)

n(a1,a2,...,an) . So

β = τ(α) = τ(m(a1,a2,...,an)
n(a1,a2,...,an) ) ∈ E.

Let E be a finite extension of F , char(F ) = 0. If E is a splitting field of f(x) ∈ F [x] then |G(E/F )| = [E : F ].
Proof: E = F (w), p(w) = 0 and p splits by foregoing. deg(p) = [E : F ] = |G|.

Let F ⊆ E, char(F ) = 0. If G = G(E/F ) fixes F then E is a normal extension iff F is the fixed field
of G. Proof: E = F (w), |G| = [E : F ]. Let K = {a : σ(a) = a,∀σ ∈ G}. F ⊆ K ⊆ E and E = K(w). STS
if g is irred over F and g(w) = 0 then g is irreducible over K. Let p be an irreducible polynomial for w over
K. Applying elements of G, each root of p is a root of g.

Let E be a normal extension of F . E ⊃ K ⊃ F . If G(E/F ) > S has K as a fixed field then G(E/K) = S.
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E is Galois over F iff (i) every irreducible polynomial in F [x] with one root in E splits and (ii) E = F (θ).
GF (pm) ⊆ GF (pn) iff m|n. The following are equivalent: (1) E is a splitting field over F of a separable
polynomial f(x). (2) F = EG. (3) E is finite dimensional, normal and separable. Lemma: Let K be the
splitting field of f(x) over k and let p(x) an irreducible factor of f(x), if the roots of p(x) are α1, . . . , αr,
there is a σi ∈ G(K/k) such that σi(α1) = αi.

Galois: Let K be a normal, separable extension of k. Let G = G(K/k), H < G, K ⊃ F ⊃ k. There
is a bijective pairing of H, F , such that (i) H1 ⊃ H2 ↔ Inv(H2) ⊃ Inv(H1), (ii) |H| = [K : Inv(H)],
[G : H] = [Inv(H) : k] and (iii) H C G ↔ Inv(H) is normal over F and G(Inv(H)/k) = G/H.

If f(x) is solvable by radicals, the Galois group of its splitting field is solvable. Galois group of an equation
is a permutation group on its roots. Splitting field of 2x5 − 10x + 5 is S5.

Compute Galois group for arbitrary polynomial: f(t) = tn − s1t
n−1 + s2t

n−2 − . . . (−1)n. Let
α1, α2, . . . , αn be the roots. For σ in Sn, set β = x1α1 + . . . +xnαn and put σx(β) = xσ(1)α1 + . . . +xσ(n)αn

and σα(β) = x1ασ(1) + . . . + xnασ(n). σx(β) = τx(β) iff σ = τ (since the roots are distinct). Set
Q =

∏
σ∈Sn

(t − σα(β)) then Q =
∑n!

j=0(
∑

i gi(s1, s2, . . . , sn)xi1
1 xi2

2 . . . xin
n )tj . Factor Q into irreducible

factors: Q = Q1Q2 . . . Qk with (t − β)|Q1. Qj =
∏

σ∈Tj
(t − σx(β)) and

⋃
j Tj = Sn. Now Q = σx(Q) =

(σxQ1) . . . (σxQk), i.e. σx permutes the irreducible factors of Q. Define G = {σ ∈ Sn : σxQ1 = Q1}.
Theorem: G = G(E/K). Hint: If g ∈ G(K/k) then g transforms β into a conjugate; so does the σ. This
lets us prove the following: Let R be a UFD and p a prime. Set R = R/(p) and let QR and QR be their
fields of quotients. Let f(x) and f(x) be corresponding polynomials with no double roots with corresponding
splitting fields K and K respectively. Then G(K/QR) < G(K/QR).

Valuation: ϕ : K → F≥0 where F is an ordered field such that ϕ(ab) = ϕ(a)ϕ(b), ϕ(0) = 0, ϕ(x) > 0
if x 6= 0 and ϕ(a+b) ≤ ϕ(a)+ϕ(b). If a = s

t p
n, ϕ(a) = p−n is a valuation. Ostowski: A non trivial valuation

of Q is either (i) ϕ(a) = |a|ρ, 0 < ρ ≤ 1 (the Archemedean valuation) or (ii) ϕ(a) = ϕp(a) (the p−adic valu-
ation. w(a) = log(ϕ(a)) is the exponential valuation. Set ℘ = {a : w(a) > 0}. Hensel: Let K be complete in
the exponential valuation w and f(x) a primitive polynomial in K[x] with integral coefficients. Let g0, h0 be
polynomials with integral coefficients such that f(x) = g0(x)h0(x) (℘) then there are polynomials f(x), h(x)
with integral coefficients in K such that (1) f(x) = g(x)h(x), (2) g(x) = g0(x) (℘), (3) h(x) = h0(x) (℘)
provided (g0(x), h0(x)) = 1 further deg(g) = deg(g0) (℘).

F is perfect iff every irreducible polynomial is separable. F is perfect if (1) char(F ) = 0, (2) char(F ) = p
and every element is a pth root, (3) F = GF (q), (4) F is algebraically closed.

Let E = F [θ] and ρ = a0+a1θ+. . .+an−1ρ
n−1. T (ρ) =

∑
g∈G(E/F ) ρg is the trace and N(ρ) =

∏
g∈G(E/F ) ρg

is the norm; both are in F .

For every q = pn there is, up to isomorphism, only one field F = GF (q) and the multiplicative group
is cyclic. Consider f(x) = xh− 1, h = q− 1 whose roots are roots of 1. The automorphisms of F are exactly
σi : x 7→ xpi

. If char(F ) = p, every irreducible polynomial f(x) of degree n either has distinct roots or
is of the form φ(xp) in which case all roots have the same multiplicity pl for some l > 0 with n = n′pl

in which case there are n′ relative automorphisms. Thus in successive extensions there are
∏

i n′i relative
automorphisms which have cardinality [E : F ] if E is a separable extension and < [E : F ] if not.

If G is solvable, G(n) = 1 for some n. If n > 4, then S
(m)
n contains every 3 cycle for every m.

Suppose f ∈ k[x], deg(f) = n and let Gf (k) denote G(K/k) where K is the slitting field for f over k.
Then Gf (k) is isomorphic to some subgroup of Sn and if f is irreducible, the group is transitive on n sym-
bols. Set ∆ =

∏
i<j(ui − uj) and Disck(f) = ∆2, then if f is irreducible, the Galois group is A3 or S3

according to whether Disck(f) = ∆2 is a square in k. If f is a quartic with separated roots u1, u2, u3, u4

and α = u1u2 + u3u4, β = u1u3 + u2u4, γ = u1u4 + u2u3; setting K = k(α, β, γ) and [K : k] = m, then
Gf (k) is S4 if m = 6, Gf (k) is A4 if m = 3, Gf (k) is Z× Z if m = 1, and Gf (k) is Z4 or D4 if m = 2.

Let k ⊂ K ⊂ k and σ1, σ2, . . . , σr be the distinct k-monomorphisms from K → k, for u ∈ K, define
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NK
k (u) = (

∏
i σi(u))[K:k]i and TrK

k (u) = (K : k]i
∑

i σi(u). Note that distinct automorphisms are linearly
independent. From now on, assume all extensions are separable (even Galois). NK

k (uv) = NK
k (u)NK

k (v) and
TrK

k (u + v) = TrK
k (u) + TrK

k (v); if u ∈ k, NK
k (u) = u[K:k] and TrK

k (u) = [K : k]u; if E is an intermediate
field, NK

k (u) = NE
k (NK

E (u)) and TrK
k (u) = TrE

k (TrK
E (u)). If K is a cyclic extension of k of degree n with

generator σ then TrK
k (u) = 0 iff ∃v ∈ K : u = v − σ(v) and NK

k (u) = 1 iff ∃v ∈ K : u = v(σ(v))−1. If
n = mpt, (p, n) = 1 where char(k) = p 6= 0, there are intermediate cyclic fields, all of which, except the
last have degree p and each of which is the splitting field of f(x) = xp − x + a. If char(k) = p 6= 0, K is a
cyclic extension of degree p iff K is the splitting field of an irreducible polynomial f(x) = xp − x − a and
K = k(u), f(u) = 0. Suppose ζ is a primitive nth root of unity over k and K = k(ζ), if d | n, ζn/d is a prim-
itive d-th root of unity and, K is the splitting field over k of an irreducible polynomial f(x) = xd − a, a ∈ k.
If k contain a primitive n-th root of unity, ζ, TFAE: (1) K is cyclic of degree d d | n, (2) K is the split-
ting field over k of f(x) = xn − a, a ∈ k, (3) K is the splitting field over k of an irreducible polynomial
f(x) = xd − a, a ∈ k.

Let (n, char(k)) = 1, and K a cyclotomic extension of k, then, (1) K = k(ζ) where ζ is a primitive
n-th root of unity; (2) K is an abelian extension of k of dimension d, d | ψ(n); (3) |G(K/k)| = d and is a
subgroup of Z∗n.

Radical extensions: K = k(u1, u2, . . . , un) where ∃n1 : u1
n1 ∈ k and ∃nm : um

nm ∈ k(u1, . . . , um−1).
f is said to be solvable by radicals if there is a radical extension containing the splitting field of f . If K is
a radical extension of k and E is an intermediate field then G(E/k) is solvable. If E is a finite dimensional
extension of degree n, char(k) - [E : k] and G(E/k) is solvable then there is a radical extension K of k
containing E. If char(k) - n! and f ∈ k[x], deg(f) = n then f(x) = 0 is solvable by radicals iff Gf is solvable.

1.2.7 Boolean Functions

For boolean functions, f : GF (2)n → GF (2) and g : GF (2)n → GF (2), define C(f, g) = 2Prob(f(x) =
g(x))− 1. Consider two real vectors, in R2n

,

~a = ((−1)f(0), (−1)f(1), . . . , (−1)f(2n−1))

and
~b = ((−1)g(0), (−1)g(1), . . . , (−1)g(2n−1))

We denote < f, g >=< ~a,~b > and ||f || =
√

< f, f >. With this notation, C(f, g) = <f,g>
||f ||·||g|| . The vec-

tors ~w = (−1)w·x as x varies over GF (2)n are called the linear parities and form an orthogonal basis for
R2n

. The correlation matrix, C, for a boolean function f , is a row matrix (indexed by w) defined by
C(f(x), wT · x) =< (−1)f(x), (−1)wT ·x > and hence consists of the projections of the “reified” version of f
on each of the parities. The definition of a correlation matrix can be extended to a vector boolean function
h : GF (2)n → GF (2)m (or m boolean functions) and, in this case, the correlation matrix, C, is a 2m × 2n

matrix. This matrix has entries Cuw = C(uT · h(a), wT · a) where u indexes the rows and w indexes the
columns; thus the u row is represented as (−1)uT ·h(a) =

∑
w C

(h)
u,w(−1)wT ·a. To emphasize the association

with h, we sometimes write the correlation matrix as C(h).

Hadamard-Walsh Transform and correlation: For boolean function, f : GF (2)n → GF (2), define
F (w) = 2−n

∑
x(−1)f(x)+w·x = C(f(a), wT a) and we say W(f) = F and call W the Walsh or Hadamard

transform. Actually, owing to the factor 2−n in front of the sum this is the normalized Walsh transform, the
term “Walsh Transform” is also used for the operation without the 2−n and to distinguish, we will describe
this as the “un-normalized” Walsh transform. Basic results:

∑
w F (w)2 = 1 (Parseval). If f(x) = g(Mx+b),

M , invertible, the absolute value of the spectrums of F and G are the same. dist(f(v), u·v) = 1
2 (2n−2nF̂ (u)).

dist(f(v), u · v + 1) = 1
2 (2n + 2nF̂ (u)). Define A⊗B = (aijB). The operation is associative but not commu-

tative. W(f ⊕ g) = W(f)⊗W(g) =
∑

v F (v⊕w)G(v). Also, W(fg) = 1
2 (δ(w)+W(f)+W(g)−W(f ⊕ g)).

All correlation matrices are doubly stochastic. Involutions have symmetric correlation matrices. Fast
Hadamard Transform: H2m = H2 ⊗H2m−1 . H2m = M

(1)
2m M

(2)
2m . . . M

(m)
2m , M

(i)
2m = I2m−1 ⊗H2 ⊗ I2i−1 .

W (f̂)(t) = F̂ (t) =
∑

x f̂(x)(−1)x·t. If f is boolean, f̂(x) = (−1)f(x). Convolution: f∗g(a) =
∑

x f(x)g(x+
a). Theorem: W−1(F )(x) = f(x) = 2−n

∑
t F (t)(−1)x·t. W (f ∗ g) = W (f)W (g). For Boolean f ,
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f(v1, v2, . . . , vm) =
∏

a∈V m g(a)v1
a1v2

a2 . . . vm
am where g(a) =

∑
b⊆a f(b1, b2, . . . , bm) (subset means po-

sitions of 1’s in a is a subset of b positions of 1’s in b.) The “correlation coefficients” are ĉfg(b) =
C(f(a), g(a⊕ b)) = 2−n

∑
a(−1)f(a)⊕g(a⊕b) = W−1(FG).

A balanced boolean function is uncorrelated with either constant function. Overall Question: What
is the best affine approximation of a balanced function? The question is important because if E(k, x) is a
block cipher on blocks of n bits, each Ei(k, x) is a balanced boolean function. How many inputs satisfy
all approximations? Fail on all approximations? For the correct input, what are the expected number of
equations that agree with it? Variance, etc.

Theorem: If f is balanced,
∑

w F (w) = ±2n. Proof:
∑

w F (w) =
∑

w

∑
x(−1)f(x)+w·x =

∑
x(−1)f(x)(

∑
w(−1)w·x) =∑

x(−1)f(x)2nδw,x, so
∑

x(−1)w·x+c = (−1)c2n, w = 0, 0, w 6= 0. Let F (w, c) =
∑

x(−1)f(x+w·x+c) then∑
w,c F (w, c) = 0.

All Hadamard transform values of bent functions are equal to ±2
m
2 and hence the distance to any affine

function is 2m±2
m
2 −1. If f(x1, x2, . . . , xm) is bent and m ≥ 6 then f is indecomposable. f(u1, . . . , um, v1, . . . , vm) =

g(v1, . . . , vm) +
∑

i uivi is bent. If f(u1, . . . , um, v1, . . . , vm) =
∑

i uivi, then f + u1u2, u3, f + u1u2, u3u4,
. . . , f + u1u2, u3 . . . um are all inequivalent bent functions.

In this paragraph, F denotes the unnormalized Walsh transform of f . A function z = f(x1, . . . , xn) on
n variables x1, . . . , xn is m-th order correlation immune if for every subset of these variables or size
m, I(z; xi1 , . . . , xim) = 0. If f has correlation immunity m and non-linear order k, m + k ≤ n. Let
Nab(ω) = |{x : z = f(x) = a, ω · x = b}| then F (ω) = N10(ω) − N11(ω). Denote pa = P (z = a) then
P (ω · x = b|z = a) = P (ω·x=b,z=a)

P (z=a) = p−1
a 2−nNab(ω). We obtain the following: P (ω · x = 0|z = 1) =

1
2 + p−1

1 2−n−1F (ω), P (ω · x = 1|z = 1) = 1
2 − p−1

1 2−n−1F (ω), P (ω · x = 0|z = 0) = 1
2 + p−1

0 2−n−1F (ω),
P (ω ·x = 1|z = 0) = 1

2 −p−1
0 2−n−1F (ω). Let h(t) = −tlg(t)− (1− t)lg(1− t). Theorem 1: Let x0, . . . , xn−1

be independent and uniformly distributed arguments of the boolean function f whose output is the random
variable z; then ∀ω 6= 0, I(z;ω ·x) = 1−p0h( 1

2− F (ω)
2n+1p0

)−p1h( 1
2− F (ω)

2n+1p1
). Moreover, when z is uniformly dis-

tributed then I(z; ω·x) = 1−h( 1
2−2−nF (ω)). F thus describes the best affine approximation of f (pick ω with

largest coefficient, the coefficients of the best affine approximation has coefficients of 1 for the corresponding
variables). This generalizes to Theorem 2: Let x0, . . . , xn−1 be independent and uniformly distributed
arguments of the boolean function fi ∈ F where F = {f1, . . . , fm}, pf = 1

m and the outputs of the randomly
selected fi is the random variable z; then ∀ω 6= 0, I(z; ω · x) = 1− p0h( 1

2 −
Pm

i=1 Fi(ω)

2n+1mp0
)− p1h( 1

2 −
Pm

i=1 F (ω)

2n+1mp1
).

Moreover, when z is uniformly distributed then I(z; ω · x) = 1− h(1
2 − 2−n+1m−1

∑m
i=1 Fi(ω)). Again, this

provides the best affine approximation for the set of functions. Finally, this implies Theorem 3: A boolean
function f is correlation immune of order m if F (ω) = 0, ∀ω : 1 ≤ wt(ω) ≤ m.

Counting Results: Let N = 2n and BF (n) denotes the set of boolean functions on n-bit values then
|BF (n)| = 2N . Let BBF (n) be the balanced functions on n bits then |BBF (n)| = (

N
N
2

)
, |GA(n)| ≈ 2m2+m.

The natural isomorphism: L : GF (2)n → R2n

by a 7→ (−1)aT ·x. L(a + b) = L(a)L(b) by pointwise
multiplication. Almost directly from the definitions, we get Theorem: C(h)(L(a)) = L(h(a)).

If h(x) = f(g(x)) then C(h) = C(f)C(g) because (−1)uT ·h(a) =
∑

v C
(f)
u,v(−1)vT ·g(a) =

∑
v C

(f)
u,v(

∑
w C

(g)
v,w(−1)wT ·a).

If h is invertible, (C(h))−1 = (C(h))T . (For a bijection, C(uT h−1(a), wT a) = C(uT b, wT h(b)) = C(wT h(b), uT b)T ,
so, C(h−1) = (C(h))−1.)

Theorem: A boolean transformation is invertible iff its correlation matrix is invertible. The → direc-
tion follows from the inverse formula above. The proof of ←: (−1)uT h(a) =

∑
w C

(h)
u,w(−1)wT a. If C(h) is

invertible, (−1)wT a =
∑

u(C(h))−1
w,u(−1)uT h(a). If ∃x 6= y : h(x) = h(y), substituting into the equation above,

(−1)wT x = (−1)wT y and that is just wrong.

Correlation matrices for standard functions: If h(x) = x + k, Cu,u = (−1)uT k. If h(x) = Mx,
Cu,w = δ(MT u⊕w). If h(x) = (b(1), b(2), . . . , b(n)), b(i) = h(i)(a(i)) and C(i) = Ch(i) then Cu,w =

∏
i C

(i)
u(i),w(i)

(uses disjunct support). If h(x) = g(x) + wT x, H(u) = G(u ⊕ w); if Vf ∩ Vg = ∅, w ∈ Vf , u ∈ Vg,
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H(u + w) = F (w)G(u).

Theorem: C
(h)
u+v,x =

∑
w C

(h)
u,w+xC

(h)
v,w. Proof: W((u ⊕ v)T h(a)) = W(uT h(a)) ⊗ W(vT h(a)); note that

first transform on right is C
(h)
u,w and second is C

(h)
v,w. One consequence is: Cu⊕v,0 =

∑
w Cu,wCv,w.

Theorem: A Boolean transformation is invertible iff every output parity is a balanced binary boolean
function of the input bits. Proof of →: If h is invertible, CCT = I, C00 = 1 and the norm of every row and
column is 1. C(uT h(a), 0) = δ(u); all rows except row 0 are correlated to 0 hence the function is balanced
for u 6= 0. For ←: The condition on output parities being balanced is Cu,0 = 0, u 6= 0. i.e.- C is orthogonal.
CCT = I ↔ ∑

w Cu,wCv,w = δ(u⊕ v) (“*”) also
∑

w Cu,wCv,w = Cu⊕v,0 but Cu,0 = 0, u 6= 0 and C00 = 1 so
“*” holds ∀u, v hence C is orthogonal. Let ~f and ~g be two surjective boolean transformations on n variables
and define C(~f,~g) in the obvious way. C(~f,~g) is invertible but not necessarily invertible. If u and w are
parities then and Fu denotes the normalized Walsh transform of uT ~f(~x) while Gw denotes the normalized
Walsh transform of wT~g(~x) then (C(~f,~g))u,w =

∑
v Fu(v)Gw(v).

Theorem: The correlation coefficients and spectrum values for a boolean function over GF (2) are inte-
ger multiples of 21−n. Proof: The values are of the form k + (2n − k)(−1) = 2k − 2n which is even.

Theorem: The elements of a correlation matrix corresponds to an invertible transform of n-bit vectors
are integer multiples of 22−n. The proof uses the restriction map and the fact that

∑
(F (w)+F (w+v))2 = 2.

For Fq, q = 2n, TrFq/F2(x) = Tr(x) =
∑n−1

i=0 x2i

. Theorem: Tr(x) 6= 0 for some x. Tr(x+y) = Tr(x)+Tr(y).
Tr(x2) = Tr(x). Tr(x) ∈ F2. Tr(ωx) is linear in x. Tr(ω1x) = Tr(ω2x) → ω1 = ω2. Tr(ωx) are exactly
the linear functions.

F : F2n → F2m is differentially δ uniform if ∀α, β, α 6= 0: |{x : F (x + α) + F (x) = β}| ≤ δ. Theo-
rem: F (x) = x2k+1, s = (k, n) then F is differentially 2s-uniform. N(F ) = 2n−1 − 2

n+s
2 −1. Theorem: Let

G(x) = x−1, x 6= 0; 0, x = 0. F is differentially 4 uniform. N(G) ≥ 2n−1 − 2
n
2 .

a ∨ b = a ⊕ b ⊕ ab as a boolean function. Let ~x = (x4, x3, x2, x1) with x1 the least significant bit. ~F (~x) =
(F4(~x), F3(~x), F2(~x), F1(~x)). If ρ = (0000, 0001) then ~F ρ

i (~x) = xi, i > 1 and ~F ρ
1 (~x) = (x2 ∨ x3 ∨ x4)(x1⊕1)⊕

(x2 ∨ x3 ∨ x4)x1 = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4 ⊕ x2x3x4. If σ = (0000, 0001, . . . , 1111), then
~F σ
1 (~x) = x1 ⊕ 1, ~F σ

2 (~x) = x1(x2 ⊕ 1) ⊕ x1x2 = x1 ⊕ x2, ~F σ
3 (~x) = (x1x2)(x3 ⊕ 1) ⊕ (x1x2)x3 = x1x2 ⊕ x3,

~F σ
4 (~x) = (x1x2x3)(x4 ⊕ 1)⊕ (x1x2x3)x4 = x1x2x3 ⊕ x4.

Discrete Fourier Transform and FFT: Let c(x) = a(x)b(x) which corresponds to the convolution ~c = ~a∗~b.
Define the DFT as F (~a) = A~a, A = ωij with inverse A−1 = 1

nω−ij . Note that F (~b∗~c) = F (~b)·F (~c) (pointwise
multiplication). Tukey-Cooley Idea: Suppose n = pq, set j = j(j1, j2) = j1q+j2, k = k(k1, k2) = k2p+k1, 0 ≤
j1 < p, 0 ≤ j2 < q, 0 ≤ k1 < p, 0 ≤ k2 < q. Then f̂(k1, k2) =

∑q−1
j2=0 e

2πij2(k2p+k1)
n

∑p−1
j1=0 e

2πij1k1
p f(j1, j2).

This requires p2q and q2p operations respectively or pq(p + q) rather than (pq)2. Now do this recur-
sively if p, q factor further. Strassen and FFT: For matrix multiply, Strassen found 7 products that
do the trick: m1 = (a12 − a22)(b21 − b22), m2 = (a11 + a22)(b11 + b22), m3 = (a11 − a21)(b11 + b12),
m4 = (a11+a12)b22, m5 = a11(b21−b22), m6 = a22(b21+b11), m7 = (a21+a22)b11. c11 = m1+m2−m4+m6,
c12 = m4 + m5, c21 = m6 + m7, c22 = m2 − m3 + m5 − m7. T (n) = 7T (n

2 ) + 18n
2

2, which is O(2lg(7)).
Fi,j = ωij . F evaluates, F−1, interpolates. ql,m =

∏l+2m−1
j=l (x − cj) and ql,m = al,m−1ql+2m,m−1. What is

Rem( p(x)
ql,0(x) ), ∀l? If q = q′q′′, Rem( p(x)

q′(x) ) = Rem( rl,m(x)
q′(x) ), ql,m = x2m

= ωrev(l/2m). For algorithm, crucial
step is rl,m(x) =

∑
(aj + ωsaj+2m)xj and rl+2m,m(x) =

∑
(aj + ωs+ n

2 aj+2m)xj .

Theorem: RM(r,m) has minimum distance 2m−r. R(1, 5) has 48 inequivalent affine classes.

Each possible Boolean transformation on n bits is a permutaion on the 2n, n-bit values and so listing them
in order, the columns are the possible ~f vectors representing the component functions. If we label these
as points in GF (2)2

n

and draw an edge between allowable co-components with the edges labeled by the
correlation between these vectors, any allowable n boolean functions form a complete graph with the label
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0 on each edge. C(f, g) = 1 − wt(f+g)
2n−1 . Generalized Balance Theorem: For each n ≤ 128 and each

1 ≤ b1 < b2 < . . . < bn ≤ 128 and fixed ~k, (Eb1(~k, ~x), Eb2(~k, ~x), . . . , Ebn(~k, ~x)) takes each value in Zn
2 as ~x

varies over Zn
2 . So does any non-trivial sum of any of these functions. Theorem: If f : GF (2)n−1 → GF (2)

is any boolean function, g(x1, . . . , xn) = f(x1, . . . , xn−1) + xn is balanced.

Write ε = EK and ε′ = EK′ . What does [εi, ε′j ] reveal about K for known K ′. Let P = {p1, p2, . . . , pm}
and let l be given put N = pl

1 . . . pl
m and denote the set of n-bit elements of the block by S; what is

CS(εN )? How do you characterize the x : g(x) = x where, say, g represents N applications of ε. In
general, ε is complicated but εm = 1 for some m and εt many be much simpler for some m < t. Let
g
(0)
(i) (x1, x2, . . . , xi−1, xi+1, . . . , xn) = f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn). Idea: Suppose εi and εj are rel-

atively easy to determine (low degree, good approximation whatever) and (i, j) = 1 then we can find
a, b : ai + bj = 1 and calculate ε = (εi)a(εj)b = ε. Let Bn(r,~v) = {~x : wt(~v ⊕ ~x) = r}. |Bn(~v, r)| = 2n−r.
Motivation for idea is while there are lots of “far away” approximations of ε there aren’t many near ones.
However, there may be close approximations of εi.

Let f is a Boolean Function define S0
f = {x : f(x) = 0} and S1

f = {x : f(x) = 1}. If ei(x) = Ei(k, x)
then |Sb

e1
∩ Sb

e2
∩ . . . ∩ Sb

ek
| = 2n−k. What are the permutations that fix such a set?

Let f, g : GF (2)n → GF (2) and N = 2n. Let f, g : GF (2)n → GF (2) and N = 2n. C(f, g) = 2Pr[f(x) =
g(x)]− 1. Let a be the number of positions where f and g agree and d be the number of positions where f
and g disagree, then Pr[(f(x) = g(x)] = a

2n . Note that wt(f⊕g) = d = dist(f, g). Now suppose g(x) = w ·x,
the linear function. F (w) = 1

2n

∑
x(−1)f(x)=g(x) = 1

2n (a − d) Since a + d = 2n, F (w) = 2 a
2n − 1 and thus

C(f, w) = F (w). These yield dist(f(x), w · x) = 2n(1 − F (w)). Thus the best affine approximation is the
one which maximizes |F (w)| for some w.

Now let f : GF (2)n → GF (2) be a bijective boolean transformation with component functions f1, f2, . . . , fn.
All such transformations represent permutations in S2N and the correlation matrices of these transformations
is orthogonal (CCT = I). A block cipher gives rise to such transformations by setting f(x) = EK(x) for
fixed K. Note that all balanced boolean functions can be obtained by applying a permutation in S2N to a
sequence of N

2 , 1’s and N
2 , 0’s.

With the foregoing notation: Theorem 1: C(fi, 1) = C(fi, 0) = 0, C(fi, fj) = 0, i 6= j, wt(fi) = 2n−1, ∀i,
wt(fifj) = 2n−2, i 6= j and in general, wt(fi1fi2 . . . fik

) = 2n−k. Further, C(fifj , fk) = 1
2 , C(fi, fj , fkfl) =

C(fifjfk, fl) and in general C(fi1fi2 . . . fik
, fl) = 2n−k−1. Let f be a boolean function. Theorem 2: Let

f be a boolean function. The N functions fi1fi2 . . . fik
form a basis for the space of boolean functions;

that is, for any boolean function g, ∃a(g)
i1,i2,...,ik

such that g(x) =
∑

1≤i1<i2<...<ik=n a
(g)
i1,i2,...,ik

fi1fi2 . . . fik
.

In particular, there are such coefficients such that xi =
∑

1≤i1<i2<...<ik=n a
(xi)
i1,i2,...,ik

fi1fi2 . . . fik
. Define

Appxi(f) = {g : dist(f, g) ≤ i}, then |Appxi(f)| = ∑i
j=0

(
N
i

)
.

NL(f) ≤ 2n−1 − 2
n
2−1, NL(f) ≤ 2n−1 +

√
2n + maxe 6=0(F (De(f))), where Def = f(x)⊕ f(x⊕ e).

Theorem (Rothaus): Let n ≥ 4 of even algebraic degree then any bent function on GF (2)n has de-
gree ≤ n

2 . An n-Boolean function, f , is m-resilient iff f is balanced and F (u) = 0, ∀u : wt(u) ≤ m.
Maiorana-MacFarland class M = {f : f(x, y) = xπ(y) ⊕ g(y)} where π is a permutation on GF (2)

n
2 and g

is affine. |M| = (2
n
2 )!2

n
2 . For Bent Quadratics:

⊕
1≤i,j≤n aijxixj ⊕ h(x), h, affine.

For this section, f : GF (2)m → GF (2). The sensitivity of v is defined by S(v) = |{v′ : f(v) 6= f(v′), dist(v, v′) =
1}|. The average sensitivity aS(f) = 1

2m

∑
v S(v). The “influence” of xi is defined by

I(xi) = Prob(f(x1, . . . , xi−1, y, xi+1, . . . , xm), the probability that the function is determined no matter
what y is.

Theorem: Let f be a boolean function of n variables with average sensitivity aS(f) = k. Let ε > 0

and M = k
ε then (1) ∃h depending on exp((2 +

√
2log(4M)

M )M) variables such that Prob(f 6= h) ≤ ε; and,
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(2) ∃g of degree at most exp((2 +
√

2log(4M)
M )M) such that Prob(f 6= g) ≤ ε

2 .

Basic Question: Let F be a family of m binary n-vectors. How densely packed is F?. Given b ≤ n,
|F |, what is the largest possible number of pairs of vectors in F whose Hamming distance is less than b?

Trace and correlation in GF (2n): Cf
u,w = 2−n

∑
a(−1)Tr(wa)(−1)Tr(uf(a)) so the terms are determined

by the condition Tr(wa+uf(a)) = 0, if this is satisfied by r values the entry is r21−n. If a function is linear
over GF (2n), it is linear over GF (2) but not vice versa.

Theorem: Let rn be the ratio of the number of invertible n × n matrices over GF (2) to the num-
ber of n × n matrices over GF (2), then limn→∞(rn) ≈ 0.288. Proof: The number of invertible n × n

boolean matrices is tn = (2n − 1)(2n − 2) . . . (2n − 2n−1). The number of n × n boolean matrices is 2n2
.

tn = 2
n(n−1)

2 (2n−1)(2n−1−1) . . . (2−1). Define sn = (2n−1)(2n−1−1) . . . (2−1). Now tn+1 = 2
n(n+1)

2 sn+1 =
2

n(n+1)
2 2−

n(n−1)
2 (2

n(n−1)
2 sn)(2n+1 − 1) = 2n(2n+1 − 1)tn. Dividing both sides of this by 2(n+1)2 , we get

rn+1 = tn+1

2(n+1)2 = 2n

22n+1
tn

2n2 (2n+1 − 1) = rn(1− 2−(n+1)). Using this recurrence, we get rn =
∏n

i=1(1− 2−n).
The product approaches ≈ 0.288 as n →∞.

1.2.8 Computational Algebra

Hensel: If I ⊆ R, f = gh (mod I) such that the pseudo GCD(g, h) = 1 then ∃g∗, h∗ such that (1)
f = g∗h∗ (mod I2), (2) g = g∗ (mod I), (3) h = h∗ (mod I), and pseudo GCD(g∗, h∗) = 1 (mod I2).
If g′, h′ satisfy the conditions also, g′ = g∗(1 + u) (mod i2) and h′ = h∗(1− u) (mod i2).

Bivariate Factoring: If |F| > 4d2, f ∈ F, degx(f) ≤ d, ∃ ∈ F: fβ(x, 0) ∈ F[x] has no repeated fac-
tors.

• 1a Obtain square free factorization

• 1b Find β ∈ F such that f(x, β) is squarefree.

• 1c fβ = f(x, y + β).

• 2a f(x, y) = g(x, y)h(x, y) (mod y)

• 2b Lift f(x, y) = gk(x, y)hk(x, y) (mod yk)

• 3a Find g′′ and lk: g′′ = gklk (mod y2k

), degx(g′′) ≤ degx(f), degy(g′′) ≤ degy(f), g′′ 6= 0.

• 3b Find gcd(f, g) as polynomials in F (y)[x].

|Res(f, g, x)| ≤ (m + 1)
n
2 (n + 1)

m
2 A

m
2 B

n
2 .

Extension Theorem: Let I =< f1, ..., fs >∈ C(x1, x2, ..., xn) and I1 is the first elimination ideal of I.
For each 1 ≤ i ≤ s write fi = g(x2, ..., xn)x1

Ni + .... Suppose c = (c2, ..., cn) ∈ V (I1). If c /∈ V (g1, g2, ..., gs),
∃c1 such that (c1, c) ∈ V (I).

Linear Programming: max(cx) subject to Ax ≤ b, x ≥ 0. Quadratic Programming: max(
∑

ρijσiσjxixj),
subject to

∑
xi = 1, xi ≥ 0,

∑
xiui ≥ R.

1.2.9 Algebraic Number Theory

Gaussian Integers: Z[i]. Let α, β, γ, δ represent gaussian integers. N(x + yi) = x2 + y2. ∀α, β, ∃γ, δ such
that α = βγ + δ with 0 ≤ N(δ) < N(β). α is a unit iff N(α) = 1. Units are 1,−1, i,−i. Let S = {αη + βγ},
φ with minimal norm is the gcd. If π is a Gaussian integer with N(π) = p then π is prime. If π is a Gaussian
prime and π|αβ then π|α or π|β. Gaussian integers form a UFD. Let π be a Gaussian prime, there is one
and only one p such that π|p. Note that π = x + yi, N(π) = x2 + y2 divides p or p2 so x = 0, 1, 2 (mod 4).
Characterization of Gaussian primes: p = 2: p = −iπ2. p = 3 (mod 4), p = π. p = 1 (mod 4), p = ππ
and π and π are non-associated primes. If p = 1 (mod 4) then p | (z2+1). If π | p, π|(z+i)(z−i) so π|(z−i).
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x is integral over A if x is a root of a monic polynomial f with coefficients in A. If A is a subring of
R, the integral closure of A in R is the set Ac of elements of R that are integral over A. Note that A ⊆ Ac.
We say A is integrally closed in R if Ac = A. If A is an integral domain with quotient field K, and A is
integrally closed in K we simply say that A is integrally closed without reference to R.

Integral Ring Extensions: Let M be an A-module. M is faithful if aM = 0 → a = 0. Let A ⊆ B,
α ∈ B. The following are equivalent: (1) α is a root of f(x) = xn + an−1x

n−1 + ... + a0; (2) A[α] is a finitely
generated A module; (3) ∃ a faithful module over A[α] which is a finitely generated A-module.

If A is an entire ring and a UFD then it is integrally closed. If B is integral over A and φ is an em-
bedding of A into its algebraic closure, L, φ extends to B.

NE/F (x) = det(m(x)), TrE/F (x) = trace(m(x)). If α = x + yi, Tr(α) = 2x, N(α) = αα. S(α) =
∑

σ ασ is
an integer, so is N(α) =

∏
σ ασ. α is a unit iff |N(α)| = 1. α is an integer of Q(

√
d) iff T (α) and N(α) are

integers.

Quadratic integers: Id = {x + yωd, x, y ∈ Z}, ωd =
√

d if d = 2, 3 (mod 4), 1+
√

d
2 , if d = 1 (mod 4).

Ideal Theory: P = (2, 1+
√−5), Q = (3, 1+

√−5). P 2 = (2) and QQ = (3). Fermat analogue: αN(π)−1 = 1
(mod π).

Rational algebraic integers are integers. If θ is an algebraic number, there is an integer n such that nθ
is an algebraic integer. Every basis for R(θ) has n elements. ∆(α1, α2, . . . , αn) = det(αi

σj )2. Alterna-
tively, ∆(α1, α2, . . . , αn) = det(S(αiαj)). ∆(α1, α2, . . . , αn) is an integer. If {αi} and {βi} are basis with
αj =

∑
k ajkβk then ∆(α1, α2, . . . , αn) = det(aij)2∆(β1, β2, . . . , βn). {αi} is a basis iff ∆(α1, α2, . . . , αn) 6= 0.

If {αi} is an integral basis for R(θ) then ∆(α1, α2, . . . , αn) is minimal, in which case it is called the dis-
criminant of R(θ) and written Disc(R(θ)). All integral basis have the same discriminant.

Every ideal contains a basis. If A is an ideal of Q(θ) then Z ∩ A 6= ∅. If A,B are ideals in R(θ),
A|B iff A = BC iff B ⊆ A. If A is an ideal in R(θ), ∃B such that AB = (a) for some a in R(θ). If A,B
are ideals in R(θ),with AC = BC then A = B. If P |AB and P does not divide A then P |B. Every ideal
has finitely many distinct divisors. Every prime ideal must divide the principal ideal of a rational prime.
Every ideal can be written as a product of prime ideals. The factorization is unique apart from order. Every
rational integer belongs to finitely many ideals. Rational prime is ramified if its principal ideal factors into
prime ideals in which one prime ideal is repeated. If this happens, p|∆(α1, . . . , αn).

An ideal has finitely many divisors. If A is an ideal with basis αi =
∑

j aijωj then N(A) = det(aij).
A ∼ B iff ∃α, β such that (α)A = (β)B. each equivalence class is called an ideal class. There are finitely many
ideal classes h of R(θ) and Ah ∼ (1). Proof: For K = R(θ), ∃C(K) : ∀A, ∃0 6= α ∈ a : |N(α)| ≤ C(N(A).
Use this to show ∃B : N(B) ≤ C so there are a finite number of ideals containing B. ∃α : (α) = AD.
AN ∼ AD.

The ring of integers DK in the number field, K, has the following properties: DK is a domain with field of
fractions K. DK is noetherian (Use the fact that DK is a free abelian group of degree n = K : Q.) A D,
a is a fractional ideal if ∃c ∈ D: ca ⊆ D. Every non zero prime ideal p of D is maximal. ( D/a is a finite
integral domain.) Fractional ideals form an abelian group. Every non-zero ideal of D can be factored into
prime ideals (D is noetherian).

Norm of an ideal: N(a) = |D/a|; if a =< a > is principal N(a) = N(a). N(ab) = N(a)N(b).
∆K/Q(α1, α2, . . . , αn) = [det(σi(αj))]2. Every non-zero ideal of D has a finite number of divisors. A non-
zero rational integer belongs to a finite number of ideals of D. Only a finite number of ideals of D have
a given norm. If a 6= b are ideals of D then ∃α ∈ a : αa−1 + b = D. Let a 6= 0 be an ideal of D and
0 6= β ∈ a,∃α ∈ a : a =< α, β >.

Minkowski: X is convex if x, y ∈ X → λx+ (1−λ)y ∈ X, ∀λ ∈ [0, 1]. X is symmetric if x ∈ X → −x ∈ X.
Let L be an n-dimensional lattice in Rn with fundamental region T and let X be a bounded, convex, sym-
metric subset of Rn; if v(X) > 2nv(T ),∃α ∈ X ∩ L, x 6= 0. Let L be a lattice then Rn/L ∼= Tn (a torus).

25



Let T be a fundamental region of L, φ : T → Tn then v(X) = v(φ−1(X)). If ν : Rn → Tn is the natural
homomorphism with ker(ν) = L. If X is a bounded subset of Rn, ν exists and v(ν(X)) 6= v(X) then
ν|X is not injective. Four squares: If p = 4k + 1 then p = a2 + b2. (< g >= Zp is cyclic gk = u and
u2 = −1. Let L = {(a, b) : b = ua (mod p)}, Z2 : L = p2, vol(TL) = p. Cr : {x : ||x|| < r} and πr2 > 4p,
r2 = 3p

2 , 0 6= a2 + b2 ≤ r2 < 2p.

Examples in algebraic fields: In R = Z[
√−3]: −1+

√−3
2 is a unit note that 2× 2 = −1 +

√−3×−1−√−3.
In R = Z[

√−5] ideals are not all principal; note that 2 × 3 = −1 +
√−5 × −1−√−5. Pell related: There

are two equivalence classes of forms of determinant 5: x2 + 5y2 and 2x2 + 2xy + 3y2 and the class number
of Z[

√−5] is 2. If p is a rational prime and K/Q is a Galois extension then G = G(K/Q) acts transitively
on the ideal divisors of (p), the exponent of the ideal divisors are called the ramification index. The ideal
generated by a rational ideal (p) factors into indecomposable factors in an algebraic number field, OF , in
one of three ways: (a) (p), (b) (p) = Pσ(P ) (“p splits”), or (c) (p) = P 2 (“p ramifies”).

Analytic formulas: f ∗g(n) =
∑

d|n f(d)g(n
d ). This is commutative, associative and has an inverse. Λ(n) =

ln(n), if n = pm, Λ(n) = 0, otherwise. Note: ln(n) =
∑

d|n Λ(d). σα(n) =
∑

d|n dα. ψ(x) =
∑

n≤x Λ(n),

ϑ(x) =
∑

p≤x ln(p). ψ(x)
x − ϑ(x)

x ≤ ln(x)2

2
√

xln(2)
. L(1, χ) =

∑∞
n=1

χ(n)
n , χ, a non-principal character. Dirichlet:

If k > 0 and (h, k) = 1, ∀x > 1
∑

p≤x,p=h (mod k)
ln(p)

p = 1
φ(k) ln(x) + O(1). πa(x) =

∑
p≤x,p=a (mod k) 1.

πa(x) ≈ π(x)
φ(k) , x → 0, ∀a, (a, k) = 1 and πa(x) ≈ πb(x) when (a, k) = (b, k) = 1.
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1.2.10 Group Theory

Isomorphism Theorems: (1) If ϕ : G → H is a homomorphism, G/ker(ϕ) ∼= Im(ϕ), (2) If G . H and
G . N and N ⊆ H ⊆ G then G/H ∼= (G/N)/(H/N), (3) If G = HN , G . N then HN/N ∼= H/(H ∩N).

Derived series: G[0] = G, G[i+1] = [G,G[i]]. G is solvable iff derived series terminates at 1. Subnor-
mal Series: G = G0 B G1 B . . . B Gk = H, if this happens, we say G B BH. Normal series: Subnormal
series where G B Gi, ∀i. Chief series: Normal series with no repeated terms and no normal subgroup
properly lying between two series elements. Zassenhaus. If A / A∗ and B / B∗ then A(A∗ ∩B) / A(A∗ ∩B∗)
and B(B∗∩A)/B(B∗∩A∗); further, A(A∗∩B∗)

A(A∗∩B)
∼= B(B∗∩A∗)

B(B∗∩A) . The following are equivalent: (1) G is solvable,
(2) G has a normal series terminating at the identity whose factor groups are cyclic of prime order, (3) G
has a subnormal series with abelian quotients.

Schreier: Two normal series for G have equivalent refinements. Two compositions series for G are
equivalent. Proof: By induction on length (l) of shortest such series. If l = 1, G is simple. Suppose
G = G0 ≥ G1 ≥ . . . ≥ Gr = 1 and H = H0 ≥ H1 ≥ . . . ≥ Ht = 1 and assume l = r > t and that the theorem
is true for all series of length less than l. If H1 = G1 then we are done by induction on the shortened series.
Assume G1 6= H1, H1 C G,G1 C G then G1H1 = G and G/G1

∼= H1/K, K = G1 ∩ H1. Consider the two
series G1 ≥ G2 . . . ≥ Gr = 1 and G1 ≥ K ≥ K1 . . . ≥ Kt = 1. By induction, r − 1 = t + 1 and they are
equivalent. Thus, H1 ≥ H2 . . . ≥ Hs = 1 and H1 ≥ K ≥ K1 . . . ≥ Kr−2 = 1 so r = s and they are equivalent.

φ is a normal endomorphism iff φ(a−1xa) = a−1φ(x)a, ∀x, a ∈ G. Lemma 1: If G satisfies ACC or
DCC then G is the direct product of indecomposable groups. Lemma 2: If G satisfies ACC (resp. DCC) on
normal subgroups and f is a normal endomorphism of G, then f is an automorphism iff f is an epimorphism
(resp automorphism). Lemma 3 (Fitting) Let G satisfy both chain conditions. If φ is a normal endomor-
phism of G then G = Ker(fn) × Im(fn), some n ≥ 1. If G is an indecomposable group satisfying ACC
and DCC on normal subgroups and if f is a normal endomorphism then f is nilpotent or an automorphism.
Krull-Schmidt: If G has both chain conditions on normal subgroups and G = H1× . . .×Hs = K1× . . .×Kt

are two decompositions into indecomposable factors then s = t and, after reindexing, Hi
∼= Ki and for each

r < t, G = G1 ×G2 × . . .×Gr ×Hr+1 ×Ht. Proof: Let P (0) be the statement G = G1 ×G2 × . . .×Gs and
for 1 ≤ r ≤ min(s, t) let P (i) be the statement G = G1 × G2 × . . . × Gr ×Hr+1 × . . . Ht. P (0) is true by
assumption, assume P (r−1). Let πi (resp pi′i be the canonical epimorphisms from G1×G2× . . .×Gs (resp.
G1×G2× . . .×Gr×Hr+1×Ht and λi (resp λ′i) be the inclusion maps, ϕi = λiπi and φi = λ′iπ

′
i. ϕrφi = 0|G

for i < r and ϕ1(1|G) = ϕrφ1 + . . . + ϕrφt = ϕrφr + . . . + ϕrφt so (ϕrφj)|G is an automorphism of Gr. ϕjφr

must be an automorphism of Hj and φj : Gr → Hj is and isomorphism and so is ϕr : Hj → Gr reindexing
we have the first half of P (r). Let g = g1g2 . . . gr−1hrhr+1 . . . ht define θ(g) = g1g2 . . . gr−1ϕ(hr)hr+1 . . . ht.
G = Im(θ) = G∗ = G1 ×G2 × . . .×Gr ×Hr+1 ×Ht which completes the argument.

Lower Central Series: L1(G) = G, Ln+1(G) = [Ln(G), G]. G is nilpotent if Ln(G) = 1 for some
n. Note Ln(G)/Ln+1(G) ⊆ Z(G/Ln+1(G)). Upper Central series: Z0(G) = 1; Let H∗ = H/Zn(G),
define Zn+1(G)∗ = Z(G/Zn(G)). Upper and Lower central series have same length. Finite nilpotent groups
are direct products of their Sylow subgroups.

G is an extension of K by Q if G . K and G/K ∼= Q. If 1 → N →i G →ϕ Q → 1, the following are
equivalent (1) ∃Q∗ ⊆ G : Q∗ → Q and (2) ∃s : Q → G such that ϕ · s = id. (3) G is a semi-direct product
of N by Q written N nQ; in this case, we say G is a split extension of N by Q.

G is complete if it is centerless and every automorphism is inner. in which case G ∼= Aut(G). Sn is
complete if n 6= 2, 3. Proof: Let Tk be the set of k disjoint transpostions so x ∈ Tk → x2 = 1; note that if
θ ∈ Aut(Sn), θ(T1) = Tk for some k. Also observe that θ preserves transpositions iff θ ∈ Inn(Sn). Now we
can show |T1| = n(n−1)

2 and |Tk| = (n−2k+1)!
(n−2k)!k!2k . Comparing the two |T1| = |Tk| is possible only if k = 2, 3 and

in fact, only if k = 3. If θ ∈ Out(S6) and τ is a transposition, θ(τ) must be a product of three transpositions
and such an automorphism exists. If G is a non-abelian simple group, then Aut(G) is complete. If K C G
and K is complete, G = K × Q. Hol(K) ⊂ SK is < Kl, Aut(K) >, Kl C Hol(K), Hol(K)/Kl ∼= Aut(K)
and CHol(K)(Kl) = Kr. If K is a direct factor whenever K is a normal subgroup then K is complete.

Suppose G is an extension of N by H and let φ : H → G/N . Pick s : G → H such that s(1) = 1
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and φ(h) = Ns(h), then ∃f : H × H → N : s(h1h2) = f(h1, h2)s(h1h2) and f(h1, h2)f(h1h2, h3) =
f(h2, h3)s(h1)f(h1, h2h3). Note that θh : n 7→ s(h)ns(h)−1 is in Aut(N) and θh1(θh2(n)) = θh1h2(n)f(h1,h2).
Given N, H with θh ∈ Aut(N) and θ1 = 1 and a map f : H × H → N with f(1, h) = f(h, 1) = 1 and
f(h1, h2)f(h1h2, h3) = θh1(f(h2, h3))f(h1, h2h3), suppose f is compatible in the sense that θh1(θh2(n) =
θh1h2(n)f(h1,h2) then the operation (n1, h1) · (n2, h2) = (n1θh1(n2)f(h1, h2), h1h2) defines a group G which
is an extension of N by H.

Suppose T is a subset consisting of a representative of each coset of an G/K which is called a transver-
sal. If π : G → Q is a surjective homomorphism with kernel K, l : Q → G is a lifting if π(l(x)) = x.
G realizes (Q,K, θ) with K ′ = 1, θ : Q → Aut(K) and l : Q → G if G is an extension of K by Q and
every transversal l : Q → G satisfies xa = θx(a) = l(x) + a − l(x). Note additive notation for non-abelian
operation. If π : Q → G is a surjective homomorphism with kernel K and l : Q → G is a transversal with
l(1) = 0 then f : Q × Q → K defined by l(x) + l(y) = f(x, y) + l(xy) is called a factor set. Cocycle
identity: xf(y, z) − f(xy, z) + f(x, yz) − f(x, y) = 0. Note xf(y, z) = l(x)f(y, z)l(x)−1. Given “data,”
(Q,K, θ), f : Q×Q → K is a factor set iff it satisfies the cocycle identity and f(1, y) = 0 = f(x, 1). Proof: Let
G = {(a, x) : a ∈ K, x ∈ Q}. With (a, x)+(b, y) = (a+xb+f(x, y), xy). This is a group if the conditions hold.

Let G realize (Q,K, θ) and l and l′ be transversals with l(1) = l′(1) = 0 giving rise to factor sets f and f ′

then there is an h : Q → K with h(1) = 0 such that f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x),∀x, h ∈ Q and
g is called a coboundary. The set of all coboundaries is B2(Q,K, θ). Z2(Q,K, θ) is the set of all factor
sets. H2(Q,K, θ) ∼= Z2(Q,K, θ)/B2(Q,K, θ). Two extensions are equivalent if the difference of their two
factor sets is in B2(Q,K, θ). There is a bijection from H2(Q,K, θ) and the set of equivalence classes of
extensions realizing (Q,K, θ) taking 0 to the class of the semidirect product. See proof of Schur-Zassenhaus.

G, an extension of K by Q, is a central extension if K < Z(G). Functorially, a central extension G
is a pair (H, π) satisfying π : H → G, ker(π) ⊆ Z(H). A cyclic extension G of N is one where G/N is
cyclic. Solvable groups are built from cyclic extensions. α : (H1, π1) → (H2, π2) is a morphism in this
category. If (G̃, π̃) is universal if ∀(H, σ), ∃!α : (G̃, π̃) → (H, σ). G possesses a universal central extension
iff G is perfect. If (G̃, π) is a universal central extension then ker(π) is the Schur multiplier. Homological
version: If G > N and H > K are normal subgroups isomorphic under φ, the pullback is (g, h) where
gN = φ(hK). (Q,K, θ) is trivial iff every extension realizing (Q,K, θ) is a central extension. There’s a
bijection between H2(Q,K, θ) and central extensions. Schur multiplier: M(Q) = H2(Q,C×) (θ is trivial).
Here f(1, y) = f(x, 1) = 1, f(x, y)f(xy, z)−1f(x, yz)f(x, y)−1 = 1, g : Q × Q → C× is a coboundary iff
∃h : Q → C× with h(1) = 1 such that g(x, y) = h(y)(h(xy))−1h(x). Assume G is perfect then a central
extension (E, φ) of G is universal iff (a) E is perfect and (b) all central extensions of E are trivial. In that
case, 1 → R → F → G → 1, F , free and E = [F, F ][F, R] → [F, F ]/R = G.

Central Product: G =< Gi >, [Gi, Gj ] = 1 for i 6= j. Equivalently, ρ : (x1, x2, . . . , xn) 7→ x1x2 . . . xn is
a surjective homomorphism from (G1 × G2 × . . . × Gn) to G with ρ(Di) = Gi where πi(G1, . . . , Gn) = Di

and ker(ρ) ∩ Di = 1, ker(ρ) ⊆ Z(G). Let Z < Z(A)) ∩ Z(B), A × B/Z is a central product. Both
D8 and Q8 are central products of Z2 by Z2 × Z2. Let Gi, 1 ≤ i ≤ n be a family of groups with
Z(g1) = Z(Gi) and AutGi(Z(Gi)) = Aut(Z(Gi)). Then up to isomorphism there is a unique central product
with Z(G1) = Z(Gi).

Wreath Product: G∗ = GX - maps from X to G. fg(x) = f(x)g(x). Let H act on X: fh(x) = f(xh−1).
Let φ be the natural action of H induced on G|H|, then G oH = H oφ G∗. If Gx = {f : f(y) = 1 if x 6= y}.
G∗ =

∏
X Gx. Put gx(y) = g(y) if x = y, 1 otherwise. Note that gx

h = gxh. If H is finite and G/K = H, G
can be embedded in the regular wreath product K oH: Universal Embedding Theorem: Let GBN and
K ≡ G/N , ∃φ : G → N o K such that φ maps N onto im(φ) ∩⊗

i N . exp(G) = min{e : xe = 1,∀x ∈ G}.
If Q is finite then M(Q) is a finite abelian group and exp(M(Q)) | |Q|.

Representations (1): M is a simple R-module if it has no non-trivial submodules. Let M be a non-
zero R-module. The following are equivalent (“semisimple”): (1) M is a sum of simple modules, (2) M is
a direct sum of simple modules, (3) if N ⊆ M is a submodule, there is another submodule N ′: M = N ⊕N ′.
Schur: If f ∈ HomR(M,N) and M, N are simple then f = 0 or is an isomorphism. If M is simple,
A = EndR(M) is a division ring. Let M be a semi-simple R-module, A = EndR(M) and f ∈ EndA(M), if
m ∈ M, ∃r ∈ R : f(m) = rm. EndR(V n) ∼= Mn(EndR(V )). Jacobson: Let M be a semi-simple R-module,
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A = EndR(M) and f ∈ EndA(M), m1,m2, . . . ,mn ∈ M, ∃r ∈ R : f(mi) = rmi. Corollary: Let M be a
faithful simple R-module, D = EndR(M), if M is finite dimensional over D then EndD(M) ∼= R. If R is
a ring and I is an ideal, say I is simple if it is simple as a left module of R; say I is semi simple if it is
semi-simple if it is semi-simple as a module and all simple left ideals are isomorphic. If R is a semi-simple
ring then all non-zero R modules are semi-simple. Let I be a simple left ideal in a semi-simple ring R and
let M be a simple R-module; either IM = M and I ∼= M or IM = 0.
From now on let R be a semisimple ring. Bi =

∑
I⊂R,I∼=Ii

I. If Ij is not isomorphic to Ik then BjBk = 0;
R =

∑
Bi and each Bi is a two-sided ideal. There are only finitely many isomorphism classes of left ideals.

If R =
⊕t

i=1 Bi and 1 =
∑t

i=1 ei. If bi ∈ Bi then eibi = bi = biei and Bi = Rei. Each Bi is a simple ring.
If M is a simple module it is isomorphic to some Ik so there are only finitely many isomorphism classes of
simple R-modules. Let M be a non-zero R-module, define Mi as the sum of all simple R modules isomorphic
to Mi, then

⊕t
i=1 BiM,Mi = eiM . A semi-simple ring, R is ring isomorphic to the direct product of simple

rings. Let R be a simple ring and V a simple R-module with D = EndD(V ), then V is a finite dimensional
vector space over D, R ∼= EndD(V ) ∼= Mn(Do). Let B = b1 ⊕ . . . ⊕ Bn be a direct sum of simple algebras
then two sided ideals of B are of the form J1 ⊕ . . . ⊕ Jn where the Ji’s are 2 sided simple ideals of the
Bi’s. Let S1, S2, . . . , Sr be distinct simple A-modules; for each i, let Ui be a direct sum of copies of Si and
U = U1⊕U2⊕ . . .⊕Ur then EndA(U) = EndA(U1)⊕EndA(U2)⊕ . . .⊕EndA(Ur). If S is a simple A-module
then EndA(nS) ∼= Mn(EndA(S)) and if F is algebraically closed then EndA(S) ∼= F . Wedderburn: Let
R be a semi-simple ring then (1) R is isomorphic to the direct sum of simple rings B1, B2, . . . , Bt, (2) there
are t isomorphism classes of simpleR-modules; if V1, V2, . . . , Vt are representatives, let Di = EndR(Vi) then
Bi

∼= EndDi(Vi) ∼= Mn(Di
o), and (3) BiVj = 0, i 6= j, BiVi = Vi. Maschke: If G is a finite group and k

is a field with char(k) - |G| then kG is semi-simple. Let K = EndR(E) with E semi-simple over R and
f ∈ EndK(E); further, let x ∈ E then ∃α ∈ R: f(x) = αx. Proof: E = Rx ⊕ F let π ∈ EndK(E) be
the projection on the first factor. f(x) = πf(x) = f(πx) ∈ Rx. Jacobson: Let K = EndR(E) with E
semi-simple over R and f ∈ EndK(E) let xi ∈ E, i = 1, 2, . . . , n then ∃α ∈ R: f(xi) = αxi. Let R be a ring,
ψ ∈ EndR(R), ∃α ∈ R: ψ(x) = zα. ψ(x) = ψ(x1) = xψ(1). Rieffel: Let R be a ring without non-trivial
two sided ideals. Let L be a non zero left ideal and R′ = EndR(L), R′′ = EndR′(L), then there is a natural
map λ : R → R′′. Definition: R is simple iff it has no non-trivial two sided ideals. If R is semi-simple,
R = R1⊕R2⊕ . . . Rk with each Ri simple. The decomposition is unique apart from order. Proof: Let R1 be
a minimal 2 sided ideal, R = R1⊕R1, R1 = Re, R2 = R(1− e). Both are idempotent so sums and products
act on each summand separately. Regularity is inherited by the summands. Now you can decompose R2

into a further sum. We get R = R1 ⊕ . . .⊕Rs and e = e1 + e2 + . . . + es, ei
2 = e1, eiej = 0 and each ei is in

ri and is in the center of Ri.

Two FG modules afford equivalent representations iff they are isomorphic. Every irreducible ordinary
representation of G occurs as a component of the regular representation R(G). The number of inequivalent
irreducible representations is the number of conjugacy classes of G. If ρ1, ρ2, . . . , ρr are inequivalent repre-
sentations and deg(ρi) = ni then dim(ρi) = ni

2 and ρi occurs ni times in R(G). |G| =
∑r

i=1 ni
2. Proof:

Extend F to a suitable algebraic extension so that the center of RG is the direct sum of r matrix rings:
R1, R2, . . . Rr. if dim(ri) = ni

2, deg(ρi) = ni. Since dim(RG) = |G|, dim(RG) =
∑r

i=1 ni
2. Each Ri is the

direct sum of the ni right ideals: e11R, . . . , eniniR. So ρi occurs ni times in RG. Z(G) has an irreducible
faithful representation iff it is cyclic.

Representations (2): Let V be an CG module, V = U1⊕U2⊕ . . .⊕Ur with Ui irreducible. If V, W are CG-
modules and θ : V → W is a CG module homomorphism, ∃U , a submodule of V such that V = ker(θ)⊕U .
HomCG(V, W ) is a vector space over C. If V,W are irreducible CG modules, dimC(HomCG(V,W )) is 1 if
V ∼= W and 0 otherwise. dimC(HomCG(V,W )) 6= 0 if V and W have a common composition factor. Let V
be an CG module, V = U1 ⊕ U2 ⊕ . . . ⊕ Ur with Ui irreducible; (a) if W is an irreducible CG module then
dimC(HomCG(V,W )) = dimC(HomCG(W,V )) is the number of Ui

∼= W ; (b) each Ui is a composition factor
in the Jordan Holder series. CG = U1 ⊕ U2 ⊕ . . . ⊕ Ur with Ui irreducible; if G is finite, there are finitely
many irreducible CG modules. dim(HomCG(V1⊕ . . .⊕Ur,W1⊕ . . .⊕Ws) =

∑r,s
i=1,j=1 dim(HomCG(Vi,Wj)).

dim(HomCG(CG,U)) = dim(U). [Proof: Let d = dim(U) and u1, u2, . . . , ud be a basis for U . Define
rφi = uir. The φi are a basis for HomCG(CG,U)]. If V1, V2, . . . , Vr are a complete set of irreducible CG-
modules then |G| = ∑r

i=1 dim(Vi)2. [Proof: V = U1 ⊕ U2 ⊕ . . .⊕ Uk, of these, dim(Vi) are isomorphic to Vi

and each of these had dimension dim(Vi)].

If G ⊆ Sn, α : G → C by α(g) = |fix(g)|−1, then α is a character of G. Define ker(ρ) = {g : χρ(g) = χρ(1);
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ρ is faithful iff ker(ρ) = 1. N = {n : |χ(n)| = χ(1)} C G. If N C G, ∃χi :
⋂r

i=1 ker(χi) = N . g ∼ h iff
χ(g) = χ(h), ∀χ. Let x ∈ An; if there is an odd permutation that commutes with x, cclAn

(x) = cclSn
(x)

otherwise cclSn(x) splits into two conjugacy classes in An. Let Ci =
∑

x∈ccl(y) x then the Ci form a basis for
Z(FG).

Suppose χ is a character of a CG-module, V , and g ∈ G has order m then (1) χ(1) dim(V ), (2) χ(g)
is a sum of m-th roots of unity, (3) χ(g−1) = χ(g) and (4) χ(g) is real iff g ∼ g−1. If χ is an irreducible
character, χ(1) | |G| [If gi is in the ith conjugacy class, |G|

|CG(gi)|
χ(gi)
χ(1) and χ(g) are algebraic integers so

∑k
i=1

|G|
|CG(gi)|

χ(gi)
χ(1) χ(g) = |G|

χ(1) is.]

Burnside’s Theorem: |χ(g)
χ(1) | ≤ 1 if |χ(g)

χ(1) | 6= 1 it is not an algebraic integer. Let p be a prime and G

a finite group with conjugacy class of size pr, r ≥ 1, then G is not simple. Every group of order paqb is
solvable. Let χ be an irreducible character and C a conjugacy class. If(χ(1), |C|) = 1 then either C ⊆ Z(χ)
or χ(C) = 0. If G is a non-abelian simple group {1} is the only class with prime power order.

χreg = χ1(1)χ1(g) + χ2(1)χ2(g) + . . . + χr(1)χr(g). Let U, V be non-isomorphic irreducible CG modules
with characters χ, ψ, then < χ, χ >= 1 and < χ,ψ >= 0. χ(g) is real iff χ(g) = χ(g−1),∀χ. N C G iff
∃χi, i = 1, . . . , k such that

⋂k
i=1 ker(χi) = N . G is not simple iff ∃χ, g 6= 1 : χ(g) = χ(1). G has |G/G′|

linear characters. If all irreducible representations of G have dimension 1, G is abelian.

Feit’s moduleless treatment. Maschke: If char(F ) does not divide |G|, then F -representations of G
are completely reducible. For φ irreducible, if ∃S : ∀g, Sφ(g) = φ(g)S then S is non-singular. If A(g), B(g)
are k-irreducible then (i) if A is not similar to B, and,

∑
g ais(g)btj(g−1) = 0; or, (ii) A, B are absolutely

irreducible and
∑

g ais(g−1)atj(g) = |G|
n δijδst, where n × n is the dimension of (ais(g)). If As is absolutely

irreducible then as
ij(g) are linearly independent and

∑k
s=1 n2

s ≤ |G|.

Define (θ, η) = 1
|G|

∑
g θ(g)η(g). If U = U1⊗...⊗Us, the number of these similar to U1 is (θ,η)

(η,η) . (θ, ρG) = θ(1),
(χi, χj) = δij ,

∑
g χ(g) = |G|δi1,

∑
i χ2

i (1) = |G|. ωi(Rj) = |rj |χi(g)/χi(1), ωt(Ri)ωt(Rj) =
∑

s aijsωt(Rs).∑
t χt(gi)χt(gj) = |G|

|Rj |δij . The number of conjugacy classes = number of irreducible representations. ωi(Rj)
is an algebraic integer. χi||G|, (|R|, χ(1)) = 1, χirred → |χ(g)| = 1 or χ(g) = 0. Let H be the kernel of θ
then (i) |θ(g)| ≤ θ(1), (ii) θ(g) = θ(1), iff g ∈ H, (iii) |θ(g)| = θ(1), iff gH is in the center if G/H.

Induced representations: If H ≤ G and ϕ a class function on H, define ϕG(g) = 1
|H|

∑
x∈G ϕ∗(x−1gx).

Frobenius Reciprocity: (ϕG, θ) = (ϕ, θ|H).

Brauer’s Characterization of Characters: p-elementary groups are the products of a cyclic p′ group
and p group. Every irreducible character is an induced character of a linear character of a p elementary
subgroup for some p.

RSK correspondence for representations of the symmetric group: ∃ bijection between Sn and the set
of ordered tableau of the same shape g ↔ (S, T ), further g−1 ↔ (T, S). Young’s diagram: D(λ),
n = n1 + n2 + . . . + nk, n1 ≥ n2 ≥ . . . ≥ nk. Number of tableaus with shape λ: fλ = n!Q

i,j∈D(λ) h(i,j) ,

where h(i, j) = number of cells in hook Hi,j .

Let G be a transitive permutation group on X and 1 6= g ∈ G fixes no more than one element then
N = {g : Xg = ∅} is a normal subgroup of G. Thompson showed any finite group having a fixed point free
automorphism is nilpotent.

Characters and group structure: The character table determines the normal subgroups and the nilpo-
tent groups. General procedure for calculating characters: (1) Derive a faithful representation, (2) generate
group elements, (3) determine conjugacy classes, (4) determine structure constants (|Ci||Cj | =

∑
k αijk|Ck|),

(5) get characters from structure constants.

Schrier and coset enumeration: Let G =< g1, g2, . . . , gm >. Let k1, k2, . . . , ks be a group of coset
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representatives for a subgroup H < G. g is the coset representative for g in G/H and k1 = 1 then
H =< (kigj)(kigj)−1 > for i = 1, 2, 3, . . . , s and j = 1, 2, 3, . . . , m. Maintain following tables: Coset, relation
table for each relation, subset table. Column headers are generators, rows are right coset labels. To calculate
|G|, calculate orbit of point. Calculate point stabilizer by completing paths in Schrier tree and using the
resulting relations.

B =< β1, ..., βn > is a base for G ≤ Sym(Ω) if GB = 1. If G[i] = Gβ1,...,βi
and G = G[1] ≥ ... ≥ G[m+1] = 1

then S is a strong generating set relative to B if it is a generating set and S ∩G[i] = G[i]. Can use this
to get orbit sizes. Schrier-Sims calculates base and strong generating set.

Coxeter groups: M = (mij), 1 ≤ i, j ≤ n, mii = 1, mij ∈ Z,mij ≥ 2. Associate to each such matrix
a graph with nodes i, 1 ≤ i ≤ n, (i, j) is an edge if mij > 0 if mij > 2, label it with mij − 2. The Coxeter
group is G generated by S = {si}, 1 ≤ i ≤ n with (sisj)mij = 1. Note the si’s must be involutions, θ = π

mij
.

Geometrically: If ∆ = {r1, . . . , rn}, ||ri|| = 1 is a root system with each ri defining a reflection along its
associated hyperplane by Sr(x) = x−2(r, x)r and αij = −cos( π

pij
) = (ri, rj). Associate a marked graph with

edges labeled by pij (unmarked edged have pij = 3) and associated quadratic form Q(~x) =
∑

αijxixj . The
Coxeter group is generated by the involutions Sr and SriSrj has order pij . The quadratic forms are positive
definite and the associated forms are irreducible iff the graphs are connected. The root system is effective
iff the roots generate the underlying vector space. Union of the fundamental region under each element of
G is the vector space.

Classical Groups: Every transvection in SLn(F ) is conjugate if n > 2. Group orders: PSLn(q) =
1

(q−1)(n,q−1) (q
m−1)(qm−q)(qm−q2)...(qm−qm−1), simple if n > 2 or q > 3. PSp2l(q) = 1

(2,q−1)q
l2(q2−1)(q4−

1)...(q2l− 1), simple unless (2l, q) = (2, 2), (2, 3), (4, 2). PSUn(q2) = 1
(n,q+1) (q

n(n−1)
2 − 1)(q2− 1)(q3 +1)(q4−

1)...(qn − (−1)n), simple unless (2l, q) = (2, 4), (2, 9), (3, 4). For next two, set Ωn(q) = (On(q))′ ⊆ SOn(q).
PΩ2l+1(q) = 1

(n,q−1)q
l2(q2−1)(q4−1)...(q2l−1), simple if l > 1. Note PΩ2l+1(q) is not isomorphic to PSp2l(q)

despite having the same order. For |ε| = 1, PΩε
2l(q) = 1

(4,ql−ε)
ql(l−1)(q2 − 1)(q4 − 1)...(q2l−2 − 1)(ql − ε), if

q = 2k, simple if l > 2.

Finite Simple Group Families: Zp, Schur Multiplier: 1. Σ′n simple if n > 4, Schur Multiplier: 6
if n = 6, 7, 2 if n = 5, n > 7. An(q) = PSLn+1(q) simple if n ≥ 1, Schur Multiplier: (n + 1, q − 1) except
A1(4)[2], A1(9)[6], A2(4)[48], A3(2)[2]. Bn(q) = PΩ2n+1(q) simple if n ≥ 1 , Schur Multiplier: (2, q − 1)
except B2(2), B3(2)[2], B2(2)[6]; Cn(q) = PSp2n(q) simple if n > 2 , Schur Multiplier: (2, q − 1) except
C3(2)[2]. Dn(q) = PΩ+

2n(q) simple if n ≥ 4, Schur Multiplier: (2, q − 1) except D4(2)[4]. E6(q) of order
1

(3,q−1)q
36(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1), Schur Multiplier: (3, q − 1). E7(q) of order

1
(3,q−1)q

63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1), Schur Multiplier: (2, q − 1). E8(q) of
order q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1), Schur Multiplier: 1. F4(q) of
order q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1), Schur Multiplier: 1 except F4(2)[4]. G2(q) simple except G2(2)
of order q6(q6 − 1)(q2 − 1), Schur Multiplier: 1 except G2(3)[3], G2(4)[2]. 2An(q2) = PSUn+1(q) simple if
n ≥ 2, Schur Multiplier: (n+1, q+1) except 2A3(22)[2], 2A3(32)[36], 2A5(22)[12] . 2Dn(q) = PΩ−2n(q) simple
if n ≥ 4, Schur Multiplier: (4, qn + 1). 3D4(q3) of order q12(q8 + q4 + 1)(q6 − 1)(q2 − 1), Schur Multiplier: 1
. 2E6(q) of order q36(q12− 1)(q9 + 1)(q8− 1)(q6− 1)(q2− 1), Schur Multiplier: (3, q + 1) except 2E6(22)[12].
2B2(22m+1) = Sz(22m+1) simple if m > 1 of order q2(q2 + 1)(q − 1), Schur Multiplier: 1, n > 2. 2F4(22m+1)
(Ree) simple if m > 1 of order q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1), Schur Multiplier: 1,m > 1. 2G2(32m+1)
(Ree) simple if m > 1 of order q3(q3 + 1)(q − 1), Schur Multiplier: 1,m > 1.

Sporadic Groups: M11 (24 ·32 ·5·11), Schur: 1. M12 (26 ·33 ·7·11), Schur: 2. M22 (27 ·32 ·5·7·11), Schur: 12.
M23 (27 ·32 ·5·7·11·23), Schur: 1. M24 (210 ·33 ·5·7·11·23), Schur: 1. J1 (23 ·3·5·7·11·19), Schur: 1. J2 = HJ
(27 ·33 ·52 ·7), Schur: 2. J3 = HJM (27 ·35 ·5 ·17 ·19), Schur: 3. J4 (221 ·33 ·5 ·7 ·113 ·23 ·29 ·31 ·37 ·43), Schur:
1. Co1 (221 ·39 ·54 ·72 ·11 ·13 ·23), Schur: 2. Co2 (218 ·36 ·53 ·7 ·11 ·23), Schur: 1. Co3 (210 ·37 ·53 ·7 ·11 ·23),
Schur: 1. HS (29 ·32 ·53 ·7 ·11), Schur: 2. Mc (27 ·36 ·53 ·7 ·11), Schur: 3. Sz (213 ·37 ·52 ·7 ·11 ·13), Schur: 1.
Ly (28 ·37 ·56 ·7 ·11 ·31 ·37 ·57), Schur: 1. He (210 ·33 ·52 ·73 ·17), Schur: 1. Ru (214 ·33 ·53 ·7 ·13 ·29), Schur: 1.
O′N−S (29 ·34 ·5·73 ·11·19·31), Schur: 3. F22 (217 ·39 ·52 ·7·11·13), Schur: 6. F23 (218 ·313 ·52 ·7·11·13·17·23),
Schur: 1. F24 (221 ·316 ·52 ·73 ·11 ·13 ·17 ·23 ·29), Schur: 3. F3 (Thompson) (215 ·310 ·53 ·72 ·13 ·19 ·31), Schur:
2. F5 (Harada) (214 ·36 ·56 ·7 ·11 ·19), Schur: 1. F2 (Baby Monster) (241 ·313 ·56 ·72 ·11 ·13 ·17 ·19 ·23 ·31 ·47),
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Schur: 2. F1 (Monster) (246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71), Schur: 1.

Let ∆ be an orbit of G and let δ ∈ ∆. For each γ ∈ ∆ let v(γ) ∈ G be such that δ 7→ γ. Finally,
suppose S generates G. Then Gδ =< v(γ)sv(γs)−1|γ ∈ ∆, s ∈ S >.

System of imprimitivity for permutation group G: B = {∆i} |∆i| > 1 with the property that
for ∆ ∈ B, g ∈ G either ∆ ∩ ∆g = φ or ∆ = ∆g. Primitive: No set of imprimitivity. Γ is G invariant if
ΓG = Γ so Γ is a union of G orbits. G/GΓ ≡ GΓ. If ∆ ⊆ Γ and α ∈ Ω then ψ =

⋂
α∈∆g ∆g is a block

of a transitive group G ⊆ Sym(Ω). A transitive group is imprimitive iff ∃Z: Gα < Z < G. G is primitive
iff Gα is maximal. Let G act transitively on Ω, H C G then (1) The orbits of H are blocks of G, (2) If ∆
and ∆′ are two H orbits then they are permutation isomorphic, (3) If any point lies is fixed by all elements
of H then H lies in the kernel of the action on Ω, (4) The group H has at most |G : H| orbits, if finite,
it divides |G : H|, (5) If G acts primitively on Ω then either H is transitive or it lies in the kernel of the action.

Define G(G, Ω) as the graph of G acting on Ω as follows: G acts on Ω×Ω. Diagonal orbital is ∆1 = {(α, α)}.
If ∆ = {(α, β)}, ∆∗ = {(β, α)}. Self paired if ∆∗ = ∆. ∆(α) = {β : (α, β) ∈ ∆} — corresponds to orbits
of Gα. The rank of the permutation group is number of orbitals. On a self-paired orbit ∆, the graph
G = (G,X, ∆) is symmetric and G is transitive on edges. Let G be a transitive permutation group of even or-
der and rank 3 with two necessarily self-paired non-diagonal orbits ∆ and Γ. G is primitive iff G is connected.

A transitive permutation group is regular if |X| = |GX | or, equivalently |Gx| = 1, ∀x ∈ X and GX ,
transitive. Let X be a faithful primitive G− set with Gx simple. The either G is simple or every non-trivial
normal subgroup H of G is a regular normal subgroup. Iwasawa: Let G = G′ and X be a faithful prim-
itive G − set. If there is an x ∈ X and an Abelian normal subgroup K C Gx whose conjugates generate
G then G is simple. Permutation representation: Let H ≤ G and Hg1, ...,Hgn be the cosets; the map
π(g) :< Hg1, ..., Hgn > 7→< Hg1g, ...,Hgng > is a map from G to Σn whose kernel is the largest normal
subgroup of G in H. Corollary: If H < G and G is simple then |G| | |G : H|!. If GX is primitive and
1 6= N C GX then NX is transitive. If GX is primitive and Gx is simple then either (1) G is simple, or (2)
∃N C G : NX is regular. If N is a regular normal subgroup of GX then Gx acts on N#. If A is transitive
on H# then H ∼= (Zp)n, if 2-transitive, H ∼= (Z2)n or Z3, if 3-transitive, H ∼= (Z2)2.

Frobenius group: Transitive permutation group with non-trivial stabilizers but only the identity fixes
more than one letter. If G is a Frobenius group then the set S of elements which fix no points together with
e form a normal subgroup of order |G : Ga|; Thompson showed this normal subgroup is nilpotent.

Metacyclic: ∃H C G : G/H, H are cyclic. CoreG(H) =
⋂

g∈G Hg (Can use this to show |G : CoreG(H)| ≤
|G : H|!). OA(G) =

⋂
ACG,G/A∈AA. OA(G) =

∏
ACG,A∈AA. Socle: soc(G) =< M > where M is a

non-trivial minimal normal subgroup of G. Oπ(G) = maximal normal π−subgroup of G. Oπ(G) = smallest
normal subgroup of G such that G/Oπ(G) is a π-group. G is p−closed if Op(G) ∈ Sp(G). SCN(P ) =
set of self centralizing normal subgroups of P . SCN(p) = SCN(P ) where P ∈ SCN(P ). NG(A, π) = set
of all A− invariant π subgroups of G. N ∗

G(A, π) = maximal subgroups in NG(A, π). For a p−group, P ,
Ωn(P ) =< x ∈ P : xpn

= 1 > and fn(P ) =< xpn

: x ∈ P >. H ⊆ G and S an H-invariant subset of
G, H is said to control fusion in S if for s ∈ S, sG ∩ S = sH . Let X ≤ H ≤ G. X is weakly closed in
H with respect to G if Xg ∩H = {X}. G is p−solvable if it has a normal series whose factors are either
p−groups or p′-groups. G is p-constrained if P ∈ Sp(Op′,p(G)) implies C(P ) ⊆ Op′,p(G). G is p-stable if
p 6= 2 and if A ∈ p(N(P )) with [P,A, A] = 1 implies AC(P )/C(P ) ⊆ Op(N(P )/C(P )). mp(P ) is the rank
of the largest elementary abelian p-group in P . O∞(G) = largest solvable normal subgroup of G. F (G) is
the unique maximal normal, nilpotent subgroup of G and F (G) =

∏
p Op(G) . Epn denotes the elementary

abelian p−group of rank n. m2,p(G) = max{mp(H)}, where H is 2-local. e(G) = max{m2,p(G), p 6= 2}
(e(G) is a good approximation of the Lie rank.).

Modular Property: If A,B, C ≤ G and A ≤ C then AB ∩ C = A(B ∩ C). [ab, c] = [a, c]b[b, c] and
[a, bc] = [a, c][a, b]c. Jacobi: [x, y−1, z][y, z−1, x][z, x−1, y] = 1. If x, y ∈ C(z), z = [x, y] then [xn, ym] = zmn

and (yx)n = ynxnz
n(n−1)

2 . Three Subgroups: A,B, C ⊆ G and N C G with [A, B,C] ⊆ N and
[B, C, A] ⊆ N then [C, A, B] ⊆ N .
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Let G be a group with G/Z(G) finite, then G(1) is finite. Proof: Let n = |G/Z(G)|. For z ∈ Z(G)
and g, h ∈ G: [g, hz] = [g, h] = [gz, h] so the set of commutators, ∆, is of order at most n2. Claim: g ∈ G(1)

then g = x1x2 . . . xm, xi ∈ ∆ and m ≤ n3.

Critical subgroup of a p-group: H char G with Φ(H) ≤ Z(H) ≥ [G,H]. CG(H) = Z(H). Every
p−group has a critical subgroup. A p−group P is special if Φ(G) = Z(G) = G′ and extra-special
if Z(G) is cyclic. Let G be a non-abelian group of order pn with cyclic subgroup H of index p then
G ∼=< pn >,D2n , SD2n , Q2n .

O-Nan-Scott: Let G be a finite primitive permutation group of degree n and H = soc(G). Then either (1)
H is a regular elementary abelian p group for some p and G is isomorphic to a subgroup of AGLm(P ) ; or,
(2) H is isomorphic to Tm where T is a non-abelian simple group with a bunch of conditions.

Mathieu Groups: M11: π1 = (123)(456)(789), π2 = (147)(258)(369), < π1, π2 >= Z3 × Z3, ρ1 =
(2437)(5698), ρ2 = (2539)(4876), < ρ1, ρ2 >= Q ∼= Q8. Set M9 =< π1, π2, ρ1, ρ2 >, |M9| = 72. Now set
σ = (1, 10)(4, 5)(6, 8)(7, 9), µ = (4, 7)(5, 8)(6, 9)(10, 11), θ = (4, 9)(5, 7)(6, 8)(11, 12). M10 = M9 ∪M9σM9,
(M10)x = M9, M11 = M10∪M10µM10, (M11)x = M10, M12 = M11∪M11θM11, (M12)x = M11. |M11| = 7920.
|M24| = 24 · 23 · 22 · 21 · 20 · 48. M11 is simple: Let N be a non-trivial normal subgroup, it is regular and all
Sylow 11 subgroups are contained in it (there are 144 by sylow) and G : N= 5. All Sylow 3 subgroups of
M11 are in N and ψ = π1σπ2

2σ−1 has order 5 which is a contradiction. Note symmetries of S(4, 5, 11) also
generate it. Note that (M11)a = PSL2(9) and (M22)a = PSL3(4).

Schur-Zassenhaus: Let G be a finite group, H C G and (|H|, |G : H|) = 1 and either are solvable
then G splits over H and G is transitive on H complements.
Proof of existence by induction: Suppose it holds for all groups of order < G and that |G| = nm; (m,n) =
1; N C G; |N | = n. If ∃K ≤ G : |K| = m then the theorem is true. Let P ∈ Sp(N). (1) We may as-
sume P C N : If not G = NG(P )N, NN (P ) = NG(P ) ∩ N C NG(P ) and m = |G/N | = |N(P )N/N | =
|NG(P )/(NG(P ) ∩ N | = |NG(P )/NN (P )| and NG(P ) has a normal Hall group NN (P ) so by induction
∃K ⊆ NG(P ) with |K| = m and NN (P )K = NG(P ), so NK = G. (2) We may assume P = N : If
not, |(G/P )/(N/P )| = m so ∃L/P : (N/P )(L/P ) = G/P and |L| = m|P |, |L ∩ N | | (|L|, |N |); but
(m, |N |) = 1 so L ∩ N ⊂ P and L < G and ∃K ⊂ L : |K| = m. (3) May assume N = P is abelian:
If not 1 6= Z = Z(N) char; N C G and |(G/Z)/(N/Z)| = m so ∃L/Z : (L/Z)(N/Z) = (G/Z) and
L ∩ N = Z, L < G and (|Z|, |L/Z|) = 1 and L and hence G has a desired subgroup K. (4) So it suf-
fices to show the theorem if N is a normal abelian Hall p−group. Let H = G/N . If h ∈ H and t, u
are two elements of h then t−1u ∈ N so tnt−1 = unu−1. Define hx = txt−1, t ∈ h. H acts on N - i.e.
H ⊂ Aut(N). Select a transversal {th|h ∈ H}. t−1

h1h2
N = (th1h2N)−1 = (h1h2)−1 = h1

−1h2
−1,∀h1, h2 ∈ H,

so th1th2t
−1
h1h2

∈ N . Define f : H×H → N by f(h1, h2)th1h2 = th1th2 . Since th1(th2th3) = (th1th2)th3 , we get
h1f(h2, h3) + f(h1, h2h3) = f(h1, h2) + f(h1h2, h3). If ∃c : H → N : f(h1, h2) = c(h1h2) − c(h1) − h1c(h2),
then c(h1h2)th1h2 = c(t1)th1c(t2)th2 , this would be an isomorphism whose image would satisfy the require-
ments of K. Define: e : H → N by e(h) =

∑
k∈H f(h, k). mf(h1, h2) = −e(h1h2) + e(h1) + h1e(h2). Since

(m, |N |) = 1, x
m is well defined for x ∈ N and c(x) = −1

m e(x) satisfies the desired properties.
Proof of conjugacy: Suppose G/N is solvable and π is the set of primes dividing m = |G : N | and H, K ≤ G
and |H| = |K| = m, put R = Oπ(G) so Oπ(G/R = 1. Let L/N be a minimal normal subgroup of G/N then
L/N is an elementary abelian p−group for some p. H ∩ L ∈ Sp(L) and S = (H ∩ L) = (K ∩ L)g = Kg ∩ L.
SC < H, Kg >= J . If J = G, S C J and S ⊆ R = 1; thus L is a p′−group which is a contradiction. So
J 6= G and by induction K, Kg are J-conjugate. This concludes this case. Suppose N is solvable and again
|H| = |K| = m = |G : N |. HN ′/N ′ ∼= KN ′/N ′ so hg ⊆ KN ′ and again by induction, Hgk = K.

Philip Hall’s Theorem: Let G be a solvable group and π a set of primes then (i) G has a π-Hall subgroup,
(ii) G acts transitively on its Hall π-subgroups via conjugation, (3) any π subgroup is contained in a Hall
π subgroup. Proof: By induction on |G|. Let N be a minimal normal subgroup of G then 1 6= N C G.
N is elementary abelian for some p and p | mn. If p | m, |G/N | = m

p and ∃L : |L/N | = m
p , |L| = m and

we’re done. If p | n,∃H : |H/N | = m, |H| = |N |m. If |H| < |G|, we’re done by induction. Otherwise
H = G,N C G, |N | = n, |G : N | = m and (m,n) = 1 so by Schur Zassenhaus, ∃K : |K| = m.

Theorem: Let G be a finite group possessing a Hall π′ subgroup for each p, then G is solvable. (Proof
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requires Burnside paqb theorem.)

|A|, |H| < ∞, (|A|, |H|) = 1. Suppose A → Aut(H) and either are solvable then (1) ∃A−invariant Sy-
low p−group of H, (2) CH(A) is transitive on the A−invariant sylow p−subgroups of G, (3) If K is an
A−invariant normal subgroup of H and H∗ = H/K then CH∗(A) = NH∗(A) = (CH(A))∗. (5) Every
A−invariant p−subgroup of H is contained in an A−invariant Sylow p−group of H.

Frattini subgroup: Φ(G) is the intersection of all maximal subgroups of G. Φ(G) char G. If H =<
X, Φ(H) > then H =< X >. If P is a p−group P/Φ(P ) is elementary abelian. Frattini Argument: H C G,
P ∈ Sp(H) then G = HNG(P ).

If A is a maximal abelian normal subgroup of P and Z = Ω1(A). Then (1) (CP (A/Z) ∩ C(Z))(1) ≤ A,
(3) if p is odd Ω1(CP (Z)) ≤ CP (A/Z). If p is odd and Z is a maximal elementary abelian subgroup of P
then Z \ Ω1(CP (Z)).

Co-prime action 1: In this paragraph A acts on G and (|A|, |G|) = 1 with either A or G solvable. If
U ≤ G is A−invariant and g satisfies (Ug)A = Ug then ∃c ∈ CG(A): Ug = Uc. If N is an A−invariant
normal subgroup of G then (1) CG/N (A) = CG(A)N/N (This shows G = [G,A]CG(A).) and (2) if A acts
trivially on N and G/N then G acts trivially on G. If p | |G| (the analogous results hold for π) then (1)
∃S ∈ Sp(G) : SA = S, (2) all such A−invariant Sylow p−groups are conjugate under CG(A), (3) every
A−invariant p-group of G is contained in an A−invariant Sylow p−group. If T =

⋂
S∈Sp(G),SA=S S, the T

is the largest A−invariant p−subgroup of G normalized by CG(A). If P is an A−invariant Sylow p−group
and H ≤ G with HA = H, HCG(G) = H then P ∩ H ∈ Sp(H). If A = P × Q acts on M and P,M are
p−groups and Q is a p′−group with CM (P ) ≤ CM (Q) then [M,Q] = 1. If A acts trivially on G/Φ(G) then
A acts trivially on G and if Φ(G) is a p−group then so is A/CA(G). Applying P × Q: If p ∈ π(G) and
G = G/Op′(G) with CG(Op(G)) ≤ Op(G) then ∀P ∈ p(G), Op′(NG(P )) = Op′(G) ∩NG(P ).

Co-prime action 2: If P is a p−group and Q a p′− group with Q 7→ Aut(P ) then Q is faithful on
P/Φ(P ). A group of automorphisms A of a group P stabilizes a chain 1 = Pn ⊆ Pn−1 ⊆ . . . ⊆ P0 = P if
[A,Pi] ⊆ Pi+1. If P is a π group stabilized by A then A is a π group. Proof: a ∈ A is a π′ automorphism.
xa = xy, y ∈ P1. Similarly, xa|a| = xy|a| = x, so y = 1 and [a, P ] = 1. If A is a π′ group of automorphisms
on a π group P with [P, A,A] = 1 then [P,A] = 1. Proof: A stabilizes [P, A, A] ⊆ [P, A] ⊆ P . Let A
be a π′ group of automorphisms of a π group P . Let Q be an A−invariant normal subgroup of P . Then
CP/Q(A) = (CP (A)Q)/Q. Proof uses Schur-Zassenhaus. P is a π group, A is a π′ group. P = [P,A]CP (A).
Proof: [P,A] ⊆ P and A centralizes P/[P, A]. P is an abelian π group, A is a π′ group. P = [P, A]⊕CP (A).
Proof: θ = 1

|A|
∑

a a.

If G is solvable, (1) C(F (G)) ⊆ F (G), (2) if P is a p−group of G then Op′(C(P )) ⊆ Op′(G) and Op′(NG(P )) ⊆
Op′(G). If P ∈ p(G) with NG(P ) p−constrained then CG(P ) is also p−constrained.

Transfer: |G| < ∞,H ≤ G . |G : H| = n and {l1, l2, . . . , ln} be a left traversal and suppose gli = ljxi

then V (g) =
∏n

i=1 xiH
′. ∃h1, h2, . . . , hm ∈ H and n1, n2, . . . , nm. (1) hi ∈ {l1, l2, . . . , ln}, (2) h−1

i gnihi ∈ H,
(3)

∑m
i=1 ni = |G : H|, (4) V (g) =

∏
(h−1

i gnihiH
′. If Q is an abelian subgroup of finite order n in G and

if Q ⊆ Z(G) then V (g) = gn,∀g ∈ G. Let Q ∈ Sp(G); if g, h ∈ C(Q) and g and H are G conjugate then
they are N(Q) conjugate. Let Hxig

j , 1 ≤ i ≤ r, 0 ≤ j ≤ ni, cycles of g on G/H. X = {xig
j} then (a)

(gni)x−1
i ∈ H for 1 ≤ i ≤ r, (b)

∑r
i=1 ni = |G : H| and (c) V (g) =

∏r
i=1((g

ni)x−1
i )α.

Let G be a finite group H ≤ G, (p, |G : H|) = 1,K C H, H/K abelian, g a p−element in H \ K:
gma ∈ gmK, ∀m, all a ∈ G such that gma ∈ H then g /∈ G(1).

Fusion: Let p be a prime, T ∈ Sp(G),W ≤ T with W weakly closed in T with respect to G and D = CG(W ).
Then NG(W ) controls fusion in D. P ∈ Sp(G). X ∈ p(G) is a tame intersection of Q,R ∈ Sp(G) if X = Q∩R
and NQ(X), NR(X) ∈ Sp(N(X)). Alperin’s Fusion Theorem: If P ∈ Sp(G), g ∈ G and < A, Ag >⊆ P .
Then for 1 ≤ i ≤ n, ∃Qi ∈ Sp(G) and xi ∈ N(P ∩ Qi) such that (1) g = x1x2...xn, (2) P ∩ Qi is a
tame intersection of P and Qi for each i, (3) A ⊆ P ∩ Q1 and Ax1x2...xi ⊆ P ∩ Qi+1. Supporting lem-
mas: R, Q ∈ Sp(G). Say R → Q if ∃Qi ∈ Sp(G), Xi ∈ NG(P ∩ Qi) such that (1) P ∩ Qi is tame, (2)

34



P ∩ R ≤ P ∩ Q1 and P ∩ R)x1x2...xi ≤ P ∩ Qi and (3) Rx = Q, x = x1x2 . . . xn. Sometimes say R →x Q.
(1) Q → P,∀Q ∈ Sp(G). (2) P → P . (3) → is transitive. (4) S →x P , Qx → P and P ∩ Q = P ∩ S then
Q → P . (5) Assume P ∩Q is tame and S → P, ∀S ∈ Sp(G) with |S ∩P | > |Q∩P | and S → P then Q → P .

Gaschutz: Let K be a normal abelian p-subgroup of a finite group G and let P ∈ Sp(G). Then K
has a complement in G iff K has a complement in P . If K is an abelian normal subgroup of G with
(|K|, |g : K|) = 1 then K has a complement. Proof: Set σ(x) =

∑
y∈Q f(x, y).

Focal Subgroup Theorem: S ∈ Sp(G) then S ∩ G′ =< x−1y|x, y ∈ S, x ∼G y >. Suppose P ∈ Sp(G)
and A1, A2 C G, if Ag

1 = A2, then ∃y ∈ NG(P ) : Ag
1 = A2. Burnside Normal p-complement: (proved

using transfer): If P ∈ Sp(G) and P ⊆ Z(N(P )) then P has a normal p-complement. If P ∈ Sp(G), P ′ = 1
then P ∩G′ = P ∩NG(P )′. Frobenius Normal p−complement: The following are equivalent: (1) G has
a normal p−complement, (2) Each p−local subgroup of G has a normal p−complement, (3) AutG(P ) is a
p−group ∀P ∈ p(G). If H ≤ G and H ∩Hg = 1, ∀g ∈ (G \H) then G = NH,N C G.

Thompson: Let a be a π′ automorphism of a π group P and suppose X C CP such that [a,X] = 1 =
[a,CP (X)] then a = 1. P×Q Lemma: Let A = P × Q, P a p−group, Q a p′-group. Suppose M is a
p-group and CM (P ) ≤ CM (Q). Then Q acts trivially on M .

Thompson subgroup: A(P ): abelian subgroups of P of maximal order. J(P ) =< {A|A ∈ A(P )} >. If
Op(G) 6= 1, G is p-stable and p-constrained, p 6= 2. If P ∈ Sp(G) then G = Op′(G)N(Z(J(P ))). Thompson
Factorization: Let G be solvable with F (G) = Op(G), P ∈ Sp(G), Z = Ω1(Z(P )), V =< ZG >, G∗ ∼= G/Z.
The either (i) G = NG(J(P ))C(Z); or (ii) p ≤ 3 and J(G)∗ is a direct product of copies of SL2(p) permuted
by G and J(P )∗ ∈ Sp(J(G)∗). Note if p = 3 and G has an abelian Sylow 2−subgroup, so (i) holds. Thomp-
son Normal p−Complement: Let p 6= 2 and P ∈ Sp(G). Assume NG(J(P )) and CG(Ω1(Z(P ))) have a
normal p−complement then so does G. By Burnside transfer, A ∈ SCN(p) → CG(A) = A×Q,Q ∈ p′(G).
Property PC: If G is a group in which the normalizer of every p group is p-constrained we say PC(G)..
Thompson Transitivity Theorem: If PC(G) and if A ∈ SCN3(p) then CG(A) permutes all maximal
A-invariant q groups of G, q 6= p. Consequence: Under the TTT conditions, if P ∈ Sp(G), A ∈ SCN3(P )
and ∀q 6= p, P normalizes some A−invariant q−subgroup of G; so if P normalizes no p′ subgroup of G,
neither does A. Used to show the Maximal Subgroup Theorem: If P ∈ Sp(G), SCN3(P ) 6= ∅, p 6= 2
and every element of N∗(P ) is p−constrained and p−stable and ∃1 6= H C P : [Q,P ] = 1 if H ∈ p′(G) and
HP = H then N∗(P ) has a unique maximal element.

Baer-Suzuki: X ∈ p(G) then either X ≤ Op(G) or ∃g ∈ G with < X,Xg > not a p−group. Thomp-
son (from N-group paper): G is not solvable iff ∃x, y, z ∈ G \ {1} with (|x|, |y|) = (|y|, |z|) = (|x|, |z|) = 1
such that xy = z. If G is a non-abelian simple group all of whose p−locals are solvable then G is isomorphic
to one of the following: (1) PSL2(q), q > 3, (2) Sz(q), q = 22m+1,m ≥ 1 or (3) A7, PSL(2(3), U3(3), or
M11.

Quadratic action: If V is an abelian p−group then a acts quadratically on V if [V, a, a] = 1 or v(a−1)2 = 0.
If G acts quadratically on V then (a) [vn, a] = [v, an] = [v, a]n, (b) |V | ≤ |CV (a)|2, (c) G/CG(V ) is an
elementary abelian p−group. If G acts on an Fq vector space W 6= 0, q = pm. Suppose G =< a, b > and
a, b act quadratically on W , G/CG(W ) is not a p−group, |ab| = pek, k | (p − 1) then ∃ϕ : G → SL2(q). G
is p−stable if ∀a ∈ G, [V, a, a] = 1 implies aCG(V ) ∈ Op(G/CG(V )). Let p 6= 2 and G be faithful on V .
Suppose (1) G =< a, b > where a and b act quadratically on V and (2) G is not a p−group then (1) the
Sylow 2 subgroups of G are not abelian and (2) If Q is a normal p′-subgroup of G and [Q, a] 6= 1 then p = 3
and there is a section of G isomorphic to SL2(3). If p 6= 2. Suppose the action of G on V is faithful and not
p−stable then (1) the Sylow 2-subgroups of G are non-Abelian and (2) if G is p−separable (G is said to be
p-separable if two non conjugate elements of G remain non-conjugate in some finite p-group endomorphic
image of G.) then p = 3 and there is a section of G isomorphic to SL2(3). Suppose G acts faithfully on
V and E1, E2 are two subnormal subgroups of G such that [V, E1, E2] = 1 then [E1, E2] ≤ Op(G). Let G
be a group and CG(Op(G)) ≤ Op(G) then V =< Ω(Z(S))|S ∈ Sp(G) > is an elementary abelian normal
subgroup of G and Op(G/CG(V )) = 1.

Q8 =<

(
i 0
0 −i

)
,

(
0 −1
−1 0

)
>. Let m = max{|A|, A ∈ E(G)}, A(G) = {A ∈ E(G)||A| = m}
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and J(G) =< A|A ∈ A(G)}. Let A ∈ A(G) acts quadratically on V and A0 = [V,A]CA([V, A]) then A0

is in A(G) and acts quadratically on V and if [V, A] 6= 1 then [V, A0] 6= 1. Thompson factorizable with
respect to p if G = Op′(G)CG(Ω(Z(S)))NG(J(S)). Let Op′(G) = 1 and V =< Ω(Z(S))|S ∈ Sp(G) > then
G is Thompson factorizable iff J(G) ≤ CG(V ).

Weilandt: If A C CG and B C CG then < A, B > C C G; if A C C < A,Ag >,∀g ∈ G then A C CG.
Quasi-simple: L′ = L and L/Z(L) is simple. L is a component of H if L C CH and L is quasi-simple.
Let Comp(G) = {H : H is a component of G}. E(G) =< Comp(G) > where H is a component of G.
If K ∈ Comp(G), U C CG then K ⊆ U or [K, U ] = 1. F∗(G) = F(G)E(G). CG(F ∗) ⊆ F ∗(G). G is
of characteristic p−type if F ∗(H) = Op(H) for every p−local, H (Groups of Lie type over character-
istic p are, for example.). G is of characteristic p−type if P ∈ p(G), N = NG(P ) → F ∗(N) = Op(N).
PSLn(pm) is of characteristic p−type. Let G be a non-abelian simple group, G is of characteristic p−type iff
F ∗(N(P )) = Op(N(P )) for every maximal p−local. If F ∗(G) is a p−group then so is F ∗(N(P )), ∀P ∈ p(G)
(use P ×Q).

Amalgams: P1, P2 ≤ G, |Pi| < ∞. Construct a graph Γ(G,P1, P2) = Γ as follows: Γ has verticies
consisting of right cosets of P1 and P2; the verticies Pigj and Pngm are joined by an edge if Pigj 6= Pngm

and Pigj ∩ Pngm 6= ∅. ∆(α) denotes the verticies adjacent to α. G act on graph by right multiplication
on cosets. G → Aut(Γ). Γ is connected iff G =< P1, P2 >. Theorem: (a) G has 2 orbits. Every vertex
stabilizer Gα is a G−conjugate of P1 or P2. (b) G acts transitively on edges of Γ; every edge stabilizer in
G-conjugate of P1 ∩ P2. (c) G acts transitively on ∆(α). |∆(α) : ∆(α, β) = |Gα : Gα,β |, β ∈ ∆(α). (d)
(P1 ∩ P2)G (the largest normal subgroup of G in P1 ∩ P2) is the kernal of the action of G on Γ. Condition
A: Let G be a finite group generated by P1, P2, T = P1 ∩ P2 satisfying: CPi(O2(Pi)) ≤ O2(Pi), T ∈ S2(Pi),
TG = 1, Pi/O2(Pi) ≈ S3 and [Ω(Z(T )), Pi] 6= 1. Goldschmidt: If A holds either (i) P1 ≈ P2 ≈ S4 or (ii)
P1 ≈ P2 ≈ C2 × S4.

Some examples motivating components and classification by centralizers of involutions: Brauer proved
if G = PSL3(q), q = 3 (mod 4) and x ∈ Inv(G) then CG(t) ∼= GL2(q) and that the converse is true
for q > 3; if q = 3 other possibilities are PSL3(3) and M11. Classifications fall into two steps: (I) Given
H = CG(t), t ∈ Inv(G), find |G| and its structure and (II) find C(t) for simple groups. Note that all simple
groups are determined by their character table. Step (I) consists of two steps: (A) ∀v ∈ Inv(H), determine
CG(v) and the fusion patterns of Inv(CG(v)), (B) if G has more than one conjugacy class, this determines
the order, if not we must examine all if H using characters. Let L = SLn(q), G = PSLn(q) = L/Z(L),
t ∈ Inv(G) corresponds to T ∈ L with T 2 = λIn putting Z = {λIn, λn = 1}, d = |Z| = (n, q − 1) and
C = {X ∈ L : XT = µTX}, CG(t) = C/Z. Let p 6= 2 and the eigenvalues of T be ρ,−ρ then T is conjugate

to
(

ρIr 0
0 −ρIs

)
, or

(
0 Im

−λIm 0

)
, depending on whether the minimum polynomial is (x + ρ)(x − ρ)

or (x2 − λ) which depends on whether the eigenvalue is in GF (q) or GF (q2) \ GF (q). Let X ∈ C with

X =
(

X1 X2

X3 X4

)
, so either X2 = X3 = 0 and det(X1)det(X4) = 1 or r = s and X1 = X4 = 0 and

det(X2)det(−X3) = 1; let δ : X 7→ det(X1),K = ker(δ) then K = SLr(q) × SLs(q). Put E = KZ/Z,
E C C/Z and E = K/(K ∩ Z) and E is a central product.

Here are a bunch of results on the centralizers of the classical groups: Let G = PSLn(q), q odd, t ∈ Inv(G),
(1) if n is odd ∃N C C(t) with N the minimal central product of SLr(q) and SLs(q), r + s = n (type *) and
both C(t)/N and Z(N) are cyclic groups with orders dividing q − 1; (2) if n is even there is a centralizer
as above and centralizers of two additional types: (A) ∃C0 : |C(t) : C0| = 2 and E C C(t) of type * with
r = s and C(t)/E is dihedral and C0/Z and Z(E) are cyclic — there is an element of order 2 outside
C0 that interchanges the factors of E, (B) ∃C0 : |C(t) : C0| = 2 and E C C(t) of type * with r = s and
E/Z(E) ∼= PSLr(q2) and Z(E) is cyclic with order dividing q + 1 and C(t)/E is dihedral of order q + 1 or
2(q + 1); further, there is an element of order two in C(t) \ C0 which transforms elements in E/Z(E) like
the element of order 2 in the Galois group of GF (q2)/GF (q). If G = PSp2m(q) with q odd and t ∈ Inv(G)
then either (1) C(t) is a minimal central product of Sp2r(q) and Sp2s(q) with r + s = m, r 6= s, or (2)
∃C1 C C(t) with C1 a minimal central product of two copies of Sp2l(q), 2l = m and there is an element of
order two in C(t) \C1 that interchanges the two, or (3) ∃C1 CC(t) with C1

∼= GLm(q)/{±I} and there is an
element of order two in C(t)\C1 that corresponds to A 7→t A−1 and q = 1 (mod 4), or (4) ∃C1 CC(t) with
C1

∼= Um(q)/{±I} and there is an element of order two in C(t) \C1 that corresponds to A 7→ Aτ and q = 3
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(mod 4), τ the generator of the Galois group. If G = PSUn(q) with q odd and t ∈ Inv(G) then either (1)
∃N CC(t) with N a minimal central product of SUr(q) and SUs(q) with r + s = m, r 6= s, both C(t)/N and
Z(N) are cyclic with orders dividing q + 1, (2) if n is even there is a centralizer as above and centralizers of
two additional types: (A) ∃C0 : |C(t) : C0| = 2 and E CC(t) of type * with r = s and C(t)/E is dihedral and
C0/Z and Z(E) are cyclic — there is an element of order 2 outside C0 that interchanges the factors of E, (B)
∃C0 : |C(t) : C0| = 2 and E CC(t) with r = s , Z(E) cyclic of order dividing q− 1 and E/Z(E) ∼= PSLr(q2)
and there is an element of order two in C(t) \ C1 that corresponds to A 7→t (Aτ )−1 τ the generator of the
Galois group. If G = PΩn(q) with q odd and t ∈ Inv(G) then either (1) ∃E C C(t) with C(t)/E solvable,
E′ = E and E is either SLm(q)/{±I} and SUm(q)/{±I} (2m = n in both cases) or a central product of Ωr(q)
and Ωs(q). For G = An, let H1 = Σk,H2 = Z2 oΣl and C(t) = H1×H2 with (σ, ρ) ∈ C(t), sign(σ) = sign(ρ).

Since C(F ∗(G)) ⊆ F ∗(G), G → Aut(G) has kernel Z(F ∗(G)); further, F ∗(G) is uncomplicated and its
embedding in G is well behaved. Want to study relationship of F ∗(G) and its p−locals. Hard when F ∗(G)
is a p − group but then we can use Thompson factorization. Thompson p−complement → nilpotence of
Frobenius kernel.

Let X/Z(X) be a non-abelian simple group then X = X ′Z(X) and X ′ is quasi-simple. Let X be quasi-simple
and H C CX, then X = H or H ≤ Z(X). H C CX → Comp(H) = Comp(x) ∩H. L ∈ Comp(G),H C CG,
then L ∈ Comp(H) or [L,H] = 1. Distinct components commute. Let L ∈ Comp(G), H and L− invariant
subgroup, then (a) L ∈ Comp(H) or [L,H] = 1, (b) If H is solvable, [L,H] = 1. E∗ = E(G)/Z(E(G)) then
(a)Z = Z(L) : L ∈ Comp(G) >, (b) E∗ is a direct product of < L : L ∈ Comp(G) >, E is a central product
of its components.

Signalizers: r, prime, G finite and A an abelian r−subgroup of G. An A−signalizer is a map θ : A# → S
where S is a set of r′ A−invariant subgroups such that a, b ∈ A# and θ(a) ≤ CG(a) and θ(a)∩C(b) ≤ θ(b). θ
is complete if ∃θ(G) an r′, A−invariant subgroup such that θ(a) = Cθ(G)(a) for each a ∈ A#. θ(a) = CX(a)
is one such function; if m(A) ≥ 3 then every A−signalizer functor is complete. Under these conditions, for a
solvable A−signalizer, Nθ(A) has a unique maximal element. Goldschmidt proved this for solvable signalizer
functors.

Op′(G) is called the p-core of G. O2′(G) is often called the core of G. Walter: Let G be a group with 2
rank ≥ 5 and O2′(G) = 1 with the property that the centralizer of every involution is 2−constrained then
O2′(C(x)) = 1 for every involution x.

Semi-regular action: CG(a) = 1, ∀a ∈ A#. Suppose A acts semi-regularly on G. Then (1) |G| = 1
(mod |A|), (2) A is semi-regular on each A−invariant subgroups factor group of G, (3) ∀p ∈ π(G), ∃!A−invariant
Sylow p−subgroup of G, (4) ∀a ∈ A, g 7→ [g, a] is a permutation of G, (5) if 2||A|, ∃t : |t| = 2, t ∈ A : gt =
g−1, g ∈ G and G(1) = 1.

Let p, q ∈ π(A) then for S ⊆ A. (1) p 6= 2, Sp(A) → S is cyclic. (2) S ∈ S2(A) is cyclic or quater-
nion. (3) |S| = pq → S is cyclic. (4) |S| = 1 (mod 2) → S is metacyclic.

If x, y are two involutions in G then < x, y > is dihedral of order 2|xy|. Let G be even order with Z(G) = 1,
let m be the number of involutions in G and n = |G|/m. Then G possesses a proper group of order at most
2n2.

Let G be a simple group of even order, t and involution and n = |CG(t)|. Then |G| ≤ (2n2)!. From
this we get: Brauer-Fowler: Let H be a finite group. There are at most a finite number of finite simple
groups with H ∼= CG(t).

Feit-Thompson: The only finite simple groups or odd order are Zp, p 6= 2. The proof follows the CN
classification.

Thompson Order Formula: Assume G has more than two congugacy classes of involutions {xi
G}

and let ni be the number of ordered pairs (u, v) with u ∈ x1
G, v ∈ x2

G and xi ∈< uv > then |G| =
|C(x1)||C(x2)|

∑k
i=1

ni

|C(xi)| .
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Let Ω be a collection of subgroups. Define D(Ω) as the graph formed by joining A,B ∈ Ω if [A,B] = 1. If
k > 0 let, Ep

k (G) be the elementary abelian subgroups of p-rank at least k. G is said to be k− connected for
prime p if D(Ep

k (G)) is connected.

If G is a non-abelian finite simple group with m2(G) ≤ 2 then either (1) a Sylow 2-group is either di-
hedral, semi-dihedral or Z2n wr Z2 and G ∼= L2(q), G ∼= L3(q), G ∼= U3(q) q,odd, or M11; or, (2) G ∼= U3(4).

Note that Q8 ∈ S2(SL2(3)) and
(

2 0
0 2

)
is the unique involution.

If G is a non-abelian finite simple group with m2(G) > 2 and assume G has a proper 2-generated 2-core,
then either G is a group of Lie type of characteristic 2 and Lie rank 1 or G ∼= J1.

Glauberman ZJ : If CG(Op(G)) ≤ Op(G) and the action of G on its chief factors of G is p−stable then
G = NG(Z(J(S))). Every group admitting a fixed-point-free automorphism of prime order is nilpotent.
Glauberman’s Z∗ Theorem: Let G be a finite group and t and involution in G which is weakly closed in
C(t). Then t∗ ∈ Z(G∗) where G∗ = G/O2′(G).

Bp property: Suppose Op′(G) = 1 and x ∈ G, |x| = p then Op′,E(C(x)) = Op′(C(x))E(C(x)). A standard
subgroup for the prime p is a group H = CG(x), |X| = p such that H has a unique component, L, and
CG(L) has a cyclic Sylow p−group. Component Theorem: Let G be a finite group with F ∗(G) satisfying
the B2 property and with in involution, t such that O2′,E(C(t)) 6= O2′(C(t)) then G possesses a standard
subgroup for the prime 2. Standard Form problem for (L, r): Determine all finite groups, G, possessing a
standard subgroup H for the prime r with E(H) ∼= L.

Let G be a minimal counter-example to the classification theorem and assume G is generic of even charac-
teristic. Then one of the following holds: (1) G possesses a standard subgroup for some p ∈ σ(G); (2) there
is an involution t ∈ G such that F ∗(C(t)) is a 2-group of symplectic type; or, (3) G is in the uniqueness case.

In real simple groups O2′(C(t)) is cyclic and almost central. Bender’s Theorem: For any group X,
we have CX(F ∗(X)) ≤ F ∗(X) and if W C X and CX(W ) ≤ W then E(X) ≤ W . If Op′(X) = 1 then
F (X) = Op(X) and every component of X has order divisible by p so X is p-constrained iff E(X) = 1 or,
equivalently, CX(Op(X)) ≤ Op(X). Let X = E(X/Op′(X)), L is a minimal normal subgroup subject to
L = E(X), Li is a component of E(X), Li = Op′(Li), [Li, Li] = Li and [Li, Lj ] ≤ Op′(X), L is called the
p-layer. F ∗(X) controls embedding of X of p′-cores and the p-layer of every p-local. Oπ((X/Oπ(X))) = 1.
If Oπ(X) = 1 then F (X) is divisible by p ∈ π and every component is divisible by some p ∈ π′.

Recall signalizers. The idea is that A−invariant p′ subgroups of G can be glued into a single p′ sub-
group θ(G,A) which is either normal or strongly p−embedded in G. M ⊆ G is strongly p−embedded
if p||M | but p does not divide |M ∩ Mg| for g ∈ G − M . Tightly embedded: p = 2. If M is strongly
embedded, G fixes one point when acting on the cosets of M . Bender identified all simple groups with
strongly 2-embedded subgroups, namely, SL2(2n), SZ(2n), PSU3(2n). No simple group of p− rank ≥ 3 has
a strongly 2−embedded 2′ local subgroup.

Let G be a finite simple group and S ∈ S2(G) then one of the following holds: (a) S is dihedral, (b)
S is semidihedral, (c) G has a strongly embedded subgroup, (d) S has a non-cyclic characteristic elementary
abelian subgroup, A, and E = NG(A) has conjugacy classes, < zG

i >, that do not fuse in G such that
G =< E,CG(zi) >. If G is a finite simple group and H < G with Z(H) of even order and h ≈ CH(z)
then G is said to be of H-type. Note we can construct a faithful transitive permutation representation of
G given a presentation of H. A group has an H-satellite if there are non-isomorphic groups of h-type. A
finite simpe group, G, is uniquely determined by CH(z) for a 2−central involution, z, if G does not have any
non-isomorphic H-satellites.

Netto: Let x, y ∈ Sn be selected randomly. Pr[< x, y >= Sn] = 3
4 . Irreducible characters of the

symmetric group Sn: n = n − m,µ1, . . . , µj , dn(µ) is the dimension of the irreducible character deter-
mined by: lj+1 = µj , lj = µj−1 + 1, lj−1 = µj−2 + 2, . . . , l1 = n−m + j. dn(µ) =

∏
s>r(lr − ls).
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1.3 Algebraic Geometry

1.3.1 Basics

Every conic in the affine space over R is equivalent under an affine transformation to one of the following:
(1) X2 + Y 2 + P = 0 (ellipse, point, empty set), (2) X2 − Y 2 + P = 0 (hyperbola, intersecting lines), (3)
X2 +Y +P = 0 (parabola), (4) X2 +P = 0 (parallel lines, point empty). In projective space (1), (2), (3) are
equivalent. In the projective space over C, they are all projectively equivalent. f(x, y) is rational if ∃φ, ψ:
f(φ(t), ψ(t)) = 0. Any conic (2nd order equation) in 2 variables has either infinitely many rational solutions
or none.

rad(I) =
√

I = {a : an ∈ I}. Radical ideals ↔ varieties, prime ideals ↔ subvarieties, maximal ideals
↔ points. Γ[V ] = k[x1, x2, . . . , xn]/I(V ). Γ(V ) is the quotient field of Γ[V ]. OP (V ) denotes the ratio-
nal functions on V defined on P . k ⊆ Γ(V ) ⊆ OP (V ) ⊆ Γ(V ). MP (F ) denotes the maximal ideal of
OP (F ). 0 → Mn/Mn+1 → O/Mn+1 → O/Mn → 0. χ(n) = dim(O/Mn) = Hilbert polynomial. Pull-
back: φ : An(k) → Am(k), f ∈ k[y1, . . . , ym]; the pullback φ∗ : φ∗ ◦ f = f ◦ φ. DVR: Noetherian,
local, maximal ideal is principal. If a form, F, does not vanish on an irreducible projective variety X then
dim(XF ) = dim(X)− 1. MP is the maximal ideal associated with (T − P ).

Intersection multiplicity: Multiplicity of root of f(t) = gcd(F1(ta), . . . , Fm(ta)). L touches X at O if
its intersection multiplicity is greater than 1. Locus of points touching X at x is the tangent space, Θx,X .

Let k be algebraically closed. An affine irreducible algebraic set is an algebraic variety. There is a one
to one correspondance between polynomial maps ϕ : V → W . and the homomorphisms ϕ̃Γ[W ] → Γ[V ]. Let
T (V, k) = {f : f : V → W}. If ϕ : V → W , ϕ̃ : T (W,k) → T (V, k). Two affine varieties V, W are isomorphic
if ∃φ, ψ : φ ◦ ψ = idW . The following are equivalent: (1) The set of non-units in R form an ideal; (2) R
has a unique maximal ideal. The following are equivalent and define a discrete valuation ring (DVR): (1)
R is Noetherian and its maximal ideal is principal; (2) ∃t ∈ R : ∀0 6= z ∈ R : z = utn, where u is a unit.
Reimann Roch: Let X be a non-singular projective plane curve. ∃g ≥ 0 : ∀D, dimk(L(D)) ≥ deg(D)+1− g.
The minimum such g is called the genus. A variety is rational if it is birationally equivalent to An for some n.

A closed set is union of solutions of polynomial equations. Every closed set is the union of finitely many
irreducible ones. Every irreducible closed set is birationally isomorphic to a hypersurface in An. Two curves
are birationally equivalent iff their fields of functions are isomorphic. k[X] = k[T ]/UX . Every irreducible
curve of degree 2 is rational. xn +yn = 1 is not rational for n > 2. Let C be a plane curve with only ordinary
multiple points, rP = mP (C) and n = deg(C) then g = (n−1)(n−2)

2 −∑
P∈C

rP (rP−1)
2 .

Weak Bezout: If two curves of dimension m and n meet at more than mn points (counting multiplic-
ity) then they have a common component. Strategy of Proof: (S-1) #(C1 ∩C2 ∩A2) ≤ dim( R

(f1,f2)
) ≤ n1n2,

(S-2) first inequality is an equality, (S-3) first inequality can be strengthened to I(C1∩C2, P ) ≤ dim( R
(f1,f2)

),
(S-4) inequality in 4 is an equality, (S-5) I is invariant under projective transformations — transform so the
line at infinity does not intersect C1 ∩ C2. Notation: Let f1(x, y), and f2(x, y), defining curves C1 and C2,
have dimension m,n respectively. R = k[x, y], (f1(x, y), f2(x, y)) = Rf1 + Rf2.

S-1: C1 ∩ C2 ≤ dimk( R
(f1,f2)

) ≤ mn. [Argument: If P1, P2, . . . Pr are distinct, ∃hi(x, y) with hi(Pj) = δij , so
if there are r common root of f1 and f2,

∑r
i=1 cihi(x, y) = r1f1(x, y) + r2f2(x, y) implies ci = 0.]

Let Rd be polynomials of degree ≤ d then dimk(Rd) = φ(d) = (d+1)(d+2)
2 . Let Wd = Rd−mf1 + Rd−nf2, for

d ≥ (m+n). Rd−mf1∩Rd−nf2 = Rd−m−nf1f2. dimk(Rd)−dimk(Wd) = mn. g =
∑l

i cjgj has a non-trivial
dependency for l > mn with g ∈ Wd.
S-2: Second inequality is equality if C1 ∩ C2 don’t meet at infinity. Let f∗ be the homogeneous polynomial
consisting of the highest degree terms in f . If ∞ /∈ C1 ∩ C2 then f∗1 , f∗2 have no common factor. If f∗1
and f∗2 have no common factor then (f1, f2) ∩ Rd = Wd. Under the conclusion of the previous sentence, if
d ≥ n1 + n2 then dim( R

(f1,f2)
) ≥ n1n2 which proves the result.

Define OP = {F ∈ K(x, y) : F (P ) exists }, MP = {f ∈ OP : f(P ) = 0}. MP is a unique maximal ideal of
OP . (f1, f2)P = f1OP + f2OP . Now define I(C1 ∩ C2;P ) = dim( OP

(f1,f2)P
).

S-3: OP

(f1,f2)P
≤ R

(f1,f2)
< ∞. OP = (f1, f2)P +R. If P /∈ C1∩C2 then I(C1∩C2, P ) = 0; If P ∈ C1∩C2 then
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(f1, f2)P ⊂ MP ; I(C1 ∩ C2; P ) = 1 + dim( R
(f1,f2)P

) iff (f1, f2) = MP . If P ∈ C1 ∩ C2 and r ≥ dim( OP

(f1,f2)P
)

then Mr
P ⊂ (f1, f2)P . If P, Q ∈ C1 ∩ C2 ∩ A2, ψ ∈ OP then ∃g ∈ R: g = ψ (mod (f1, f2)P ) and g = 0

(mod (f1, f2)Q) if P 6= Q.
S-4: Kernel of natural map R → ∏

P∈(C1∩C2∩A2)
OP

(f1,f2)P
is just (f1, f2) where the natural map is: f 7→

(. . . , f (mod (f1, f2)), . . .). dim(R
J ) =

∑
P dim( OP

(f1,f2)
) =

∑
P I(C1 ∩ C2, P ). The last equality holds iff

J ⊂ (f1, f2). Define L = {g ∈ R : gf ∈ (f1, f2)} and 1 ∈ L. L is an ideal (f1, f2) ⊂ L ⊂ R. P ∈ A2,
∃g ∈ L : g(P ) = 0, P ∈ L. ∃a ∈ k : 1 /∈ L + R(x− a) and ∃b ∈ k : 1 /∈ L + R(x− a) + R(y − b).
S-5: Properties of intersection multiplicity. I((y− xm), y; 0) = m. Show the definitions make sense and that
there is a line L which does not contain any of the intersection points. The proof requires knowing there are
only a finite number of points in the intersection.

Genus for non-singular curve: gf = (n−1)(n−2)
2 −d. L(D) = {f : K(C)∗ : div(f) ≥ −D}. l(D) = dim(L(D)).

Riemann-Roch: l(d) = l(K −D) + deg(D)− g + 1.

The r forms f1, f2, ..., fr with indeterminate coefficients possess a resultant system of integral polynomials bk

such that for special values of the coefficients in K (algebraically closed). The vanishing of all resultants is a
necessary and sufficient condition for f1 = f2 = ... = fr = 0 to have a solution 6= 0. The bk are homogeneous
in the coefficients of every form fi and satisfy xsr

k bk = 0 (mod (f1, f2, ..., fr)).

Bezout’s Theorem. If f, g are two curves of degree n, m respectively that have no common component
then they intersect in mn points counting multiplicity. Notes: A homogeneous system f1 = f2 = ... = fr = 0
has solutions (ξ(a)

1 , ξ
(a)
2 , ...ξ

(a)
n ), a = 1, 2, 3, ..., q. Set lx = u1x1 + u2x2 + ... + unxn. Form resultant system

b1(u), ..., bt(u). The common zeros of b1, ... are
∏

la. By Nullstellensatz, (
∏

a la)τ = 0(b1(u), b2(u), ..., bt(u))
→ D(u) =

∏
la

ρa and (bi(u))ri = 0(
∏

la) → D(u) = (f1, ..., fr, l). R(u) is the same as the u-resultant so∑
ρa is the degree of R(u) =

∏
deg(fi).

Example: F1(x, y, z) = x2 + y2 − 10z2 = 0, F2(x, y, z) = x2 + xy + 2y2 − 16z2 = 0, add F3(x, y, z) =
u0z +u1x+u2y. Res1,2,2(F0, F1, F2) = (u0 +u1− 3u2)(u0 +2

√
2u1 +

√
2u2)(u0− 2

√
2u1−

√
2u2). Solutions

are (1,−3, 1), (−1, 3, 1), (2
√

2, 2
√

2, 1), (−2
√

2,−2
√

2, 1).

Proofs with Generics. Example: F1(X, Y, Z) = X − Y 2, F2(X, Y, Z) = XY − Z, (X, Y, Z) → (t2, t, t3)
is generic because it is a solution for any specialization of t and any solution is obtainable this way.

Let D be a domain and Ω = ΩD = D(t1, t2, ...) is called a universal field. Note that Ω ↔ prime ideals
over D[X1, ...].

Theorem: x1, ...xn ∈ Ω. I = {f : f(x1, ..., xn) = 0} is a prime ideal. If I is a prime ideal and 1 /∈ I
then I has a generic 0. Any extension K(α1, ..., αm) can be embedded in Ω.
Hints: look at E = D[X]/I. Under this homomorphism the image of (X1, ...Xn) is generic.

Theorem: If ξ1, ..., ξn are elements of an arbitrary extension of K then If < = K[X1, ..., Xn] and ℘ =
{f : f(ξ1, ..., ξn) = 0}. 1 /∈ < and ℘ is a prime ideal. Every prime ideal has a generic element.

Theorem: Any ideal g = (f1, ..., fn) which has no zeros in Ω is the unit ideal. Proof: Otherwise a maximal
ideal would correspond to a non-zero generic point.

Extension of Nullstellensatz: If p1, ..., ps all vanish at the common zeros of (f1, ..., fn), then ∃q such
that powers of the pi’s of degree q are in (f1, ..., fn). Proof: For s = 1, this is the simple Nullstellensatz. Let
the exponent for each i be qi. Set q = q1 + q2 + ... + qn − n + 1. Nullstellensatz bound: ρ ≤ 13dn where d is
the degree and n is the number of variables.

Let Nq be the number of products Xj of degree q. Theorem: Suppose F1, F2, ..., Fr are forms. (0, ..., 0)
is the only common zero iff all products Xj can be expressed as linear combinations of the XkiFi with
coefficients in K. Note: This means they are linearly independent. So there are other common zeros is there
are fewer than Nq. Note that X1, ..., Xn satisfy the Extension conditions. If the XkiFi =

∑
akijXj are not

linearly independent, the determinant families, Ri(a), form a resultant set.
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Multivariate resultants: If we fix degrees d0, d1, . . . dn then there is a unique polynomial Res ∈ Z[ui, α]
such that (a) if F0, F1, . . . , Fn are homogeneous polynomials of degrees d0, d1, . . . dn then F0 = . . . = Fn = 0
has a nontrivial solution over C iff Res(F0, . . . , Fn) = 0, (b) Res(xd0

0 , . . . , xdn
n ) = 1, (b) , (c) Res is irreducible

in C[ui, α]. If PP = PP (x1, x2, . . . , xn) is a set of power products in the xi, there are Nm =
(
m+n−1

n−1

)
PP ’s

of degree m. Example: A3 = a3x
2b3y

2 + c3z
2, A2 = a2x + b2y + c2z, A1 = a1x + b1y + c1z. Si = PP d

i

xd
i

,

S1 =< x2, xy, xz >, S2 =< y2, yz >, S3 =< z2 >.



x2 xy xz y2 yz z2

xA1 a1 b1 c1 0 0 0
yA1 0 a1 0 b1 c1 0
zA1 0 0 a1 0 b1 c1

yA2 0 a2 0 b2 0 0
zA2 0 0 a2 0 b2 c2

A3 a3 0 0 b3 0 c3




.

1.3.2 Elliptic Curves

Elliptic Curves: Y 2Z = X3 + aXZ + bZ3, Pi = (xi, yi), O = (0 : 1 : 0). We want to calculate R = P1 + P2.
If P1 or P2 is O, result is obvious. If x1 = x2 and y1 = −y2, R = O. If x1 6= x2, set λ = y2−y1

x2−x1
. If x1 = x2

and y1 6= −y2, set λ = (3x1
2 + a)(y1 + y2)−1. In either case, x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1 and

R = (x3 : y3 : 1). |εp| ≤ 2
√

p. Multiple roots iff −(4a3 + 27b2) = 0. Usually pick Z axis tangent to O, or
(0, 1, 0) as the point at ∞, If this intersects C at P , pick X axis tangent to C at P .

Mordell: If a non-singular cubic curve has a rational point then the rational points are finitely generated
as a k-module. Use H(m

n ) = max(|m|, |n|). Let P = (x, y). Define H(P ) = H(x) and h(P ) = log(H(P )).
From now on assume C is given by y2 = x3 + ax2 + bx + c.

To prove it, need four lemmas: Lemma 1: There are a finite number of points P : h(P ) < M . Lemma
2: Fix P0 on C, ∃K0(P0, a, b, c) : h(P + P0) ≤ 2h(P ) + k0. Show that if P is on C(Q), P = ( m

e2 , n
e3 ).

Then show n ≤ KH(P )
3
2 . Use this to get k0. Lemma 3: Fix ∃K(a, b, c) : h(2P ) ≥ 4h(P ) −K. Lemma 4:

|{C(Q) : 2C(Q)}| < ∞.

For lemma 4, assume y2 = x3 + ax2 + bx (so the curve always has a rational point), and use Γ = C(Q)
and ∆ = 2Γ. Define the map φ(x, y) = (x + a + b

x , y x2−b
x2 ). Define ψ similarly. Note that ψ(φ(P )) = 2P

and ker(φ) = {0, (0, 0)}. Q∗2 α(x, y) = x (mod Q∗2). im(φ) ⊆ ker(α). Let pi|b, i = 1, 2, . . . t then
|Γ : φ(Γ)| ≤ 2t+1. |Γ : φ(Γ)| ≤ 2t+1. Use the following lemma: If A and B are abelian A → B → A and
|B : φ(A)| < ∞, |A : φ(B)| < ∞, then |A : 2A| ≤ |B : φ(A)||A : φ(B)|.

Proof given lemmas: Let Q0, . . . , Qm−1 be the coset representatives. P − Qi1 = 2P1 is in the subgroup,
P1 −Qi2 = 2P2, repeatedly doing this yields: P = Qi1 + 2Qi2 + . . . + 2m−1Qim + 2mPm, h(Pj) ≤ 3

4h(Pj−1).
Since there are a finite number of Qi there’s a k′ so that h(P − Qi) ≤ 2h(P ) + k′ for all P . Using the
inequalities h(Pj) ≤ h(Pj−1)

2 + k+k′
4 . So the group is generated by the Qi and the (finite number of) points

of ht ≤ k+k′
4 .

Let C be a non-singular cubic curve C : x3 + ax2 + bx + c. Set D = −4a3c + a2b2 + 18abc− 4b3 − 27c2. Let
Φ be the set of points of finite order. Let φ be the reduction map mod p. If (p, 2D) = 1 then φ is an in-
jection into C(Fp). Nagel-Lutz: Same as above with P (x, y) as a rational point of finite order y = 0 or y|d2.

General Weierstrauss Form: E(F ) : y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6. If Eq is an eliptic curve

over a finite field of characteristic p, Eq is said to be supersingular if Eq[p] = {∞}. (1) char(F ) 6= 2, 3,
(x, y) 7→ (x−3a2

1−12a2
36 , y−3a1x

216 − a3
1+4aaa2−12a3

24 ), sends the general equation to Eq(a, b) : y2 = x3 +ax+ b,∆ =

−16(4a3 + 27b2). (2) char(F ) = 2, a1 6= 0, (x, y) 7→ (a2
1x + a3

a1
, y + a2

1a4−a2
3

a2
1

), sends the general equa-
tion to Eq(a, b) : y2 + xy = x3 + ax + b,∆ = b. This is non-supersingular. (3) char(F ) = 2, a1 = 0,
(x, y) 7→ (x+a2, y), sends the general equation to Eq(a, b) : y2+cy = x3+ax+b,∆ = c4. This is supersingular.
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(4) char(F ) = 3, a2
1 6= −a2, (x, y) 7→ (x+ d4

d2
, y+a1x+a1

d4
d2

+a3), d2 = a2
1 +a2, d4 = a4−a1a3, sends the gen-

eral equation to Eq(a, b) : y2 = x3 +ax+b,∆ = −a3b. This is non-supersingular. (5) char(F ) = 3, a2
1 = −a2,

(x, y) 7→ (x, y + a1x + a3), sends the general equation to Eq(a, b) : y2 = x3 + ax + b,∆ = −a3. This is super-
singular.

Suppose E = Ea,b(K), char(K) 6= 2, 3. Let x1 = µ2x and y1 = µ3y then (x1, y1) ∈ Ea′,b′(K) with
a′ = µ4a and b′ = µ6b. Define the j-invariant: j(E) = 1728 4a3

4a3+27b2 . Theorem: If j(E1) = j(E2)
then ∃µ ∈ K, µ 6= 0 : a2 = µ4a1, b2 = µ6b2. A homomorphism α : E → E is an endomorphism if α is
a rational map. E[n] = {P ∈ E(K) : nP = ∞}. Theorem: (1) If char(K) 6= 2 E[2] = Z2 ⊕ Z2; if
char(K) = 2 E[2] = Z2 or 0. (2) If char(K) - n or is 0, E[n] = Zn ⊕ Zn. (3) If char(K) = p | n, n = prn′

then E[n] = Zn ⊕ Zn′ or E[n] = Zn′ ⊕ Zn′ . Proof uses division polynomials. Let E be an elliptic curve over
Fq. Then E(Fq) = Zn or Zn1 ⊕ Zn2 with n1 | n2. Proof uses the above theorem.

Hasse: Let Eq be an elliptic curve then q + 1 − 2
√

q ≤ #Eq ≤ q + 1 + 2
√

q, #Eq = q + 1 − t, t is
the Frobenius trace. Theorem: q = pm, ∃Eq : #Eq = q + 1 − t iff (i) t 6= 0(p), t2 ≤ 4q; or, (ii) m = 1(2)
and either (a) t = 0 or (b) t2 = 2q, p = 2, or (c) t2 = 3q, p = 3; or, (iii) m = 0(2) and either (a) t2 = 4q
or (b) t2 = q, p 6= 1(3) or (c) t = 0, p 6= 1(4). Epm is supersingular iff p | t. Eq = Zn1 ⊕ Zn2 and
n2 | n1 | (q − 1). Proof of Hasse: Let ψ be the Frobenius map. #Ep = |ker([1] − ψ)|. First note that
deg([1]) = 1 (in fact, deg([n]) = n2) deg(ψ) = p. Also note that deg(a + b) − deg(a) − deg(b) = B(a, b) is
bilinear. 0 ≤ deg([t] + [2]ψ) = t2− 4p− 2tB[1,−ψ] = 4p− t2; so (deg([1]−ψ)− deg([1])− deg(ψ))2 ≤ 4p but
the first term is #E(Fp).

Functions on Elliptic Curves: If E(a, b) is non-singular, E is irreducible and we can embed k[x, y]/(E)
in the field of fractions K(E) with s

t
∼=E

u
v iff sv − ut = 0 (mod E) and we can define a map from

K(R) → K ∪ {∞}.

If K = Fpm , p 6= 2, 3 and E
(1)
K (a, b) ∼= E

(2)
K (a, b) iff ∃u ∈ K∗ such that u4a = a and u6b = b under the

map (x, y) 7→ (u2x, u3y). j-invariant: j(E) = 1728 4a3

4a3+27b2 . Then j is invariant under the transforma-
tion above (i.e. - two curves related by the transformation have the same j value) and, conversely, two
curves with the same j value are related in this way (and are thus isomorphic in the elliptic curve defined
over the algebraic closure). The number of equivalence classes of elliptic curves over K is 2q + 6, 2q + 2,
2q + 4, 2q according to q = 1, 5, 7, 11 (mod 12). If K = F2m and EK(a, b) : y2 + xy = x3 + ax2 + b then
E

(1)
K (a, b) ∼= E

(2)
K (a, b) iff b = b, T r(a) = Tr(a) and if so ∃s : a = s2 +s+a under the map (x, y) 7→ (x, y+sx).

Projective coordinates: (X1, Y1, Z1) ∼ (X2, Y2, Z2), X1 = λcX2, Y1 = λdY2, Z1 = λZ2, c, d ∈ Z>0. Jacobian
projective coordinates: ∞ = (1 : 1 : 0) and −(X : Y : Z) = (X : −Y : Z). Standard projective coordinates:
∞ = (0 : 1 : 0) and −(X : Y : Z) = (X : −Y : Z).

Note: the decision ECDLP problem is in NP ∩ co − NP . Attacks (1) Exhaustive Search - to avoid, make
sure #Eq = nh, n a large prime > 2160, h, small; (2) Pohlig-Hellman/Pollard-ρ use Pohlig to reduce from
n = pe1

1 ...pet
t to p, since this step is easy, want p large, Pollard costs O(

√
p) [For Pollard, “random” function

is f(X) = X + ajP + bjQ (mod p).]; (3) Isomorphism attack; (4) MOV for anomalous curves - to avoid
make sure q = pm and p - #Eq; (5) Weil-Tate pairing - to avoid make sure n - (qk − 1), k ≤ C and that the
DLP problem for FqC is intractable; (6) Weil descent - to avoid, if q = 2m, make sure m is prime. Index
calculus attack is unlikely because the lifting required from Eq(a, b) to EQ(a, b) is unknown and the number
of points of small height in elliptic curves over Q is small. Let E(K) be an elliptic curve m ∈ Z, P = (x, y),
∃ψm(x, y), ωm(x, y), θm(x, y) ∈ K[x, y] such that [m]P = ( θm(x,y)

(ψm(x,y))2 , ωm(x,y)
(ψm(x,y))3 ). E[n] = {P ∈ E(K : [n]P =

∞}. ψ1 = 0, ψ1 = 2, ψ2 = 2y, ψ3 = 3x4+6ax2+12bx−a2, ψ4 = 4y(x6+5x4+20bx3−5ax2−4abx−8b2−a3),
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 ψ2m = (2y)−1ψm(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1), θm = xψ2

m − ψm+1ψm−1,
ωm = (4y)−1(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1).

An endomorphism is a homomorphic map between and an elliptic curve and itself that is expressible
as a rational function i.e.- If α is an endomorphism and P = (x, y), α(X + Y ) = α(X) + α(Y ), α(x, y) =
(r1(x, y), r2(x, y)). Because y2 = x3+ax+b, we may assume α(x, y) = (r1(x), yr2(x)); if r1(x) = p(x)

q(x) , the de-
gree of endomorphism is max(deg(p(x)), deg(q(x))). This endomorphism α is a separable endomorphism
if r′1(x) 6= 0. If α 6= 0 is a separable endomorphism of E, deg(α) = #ker(α) otherwise deg(α) > #ker(α).
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The endomorphism [n]P 7→ Q has degree n2. If char(K) - n then E[n] = Zn ⊕ Zn. If E[n] ⊆ E(K) then
µn ∈ K. Given Eq(a, b), n ≥ 1, (1) ker(φn

q−1) = #Eqn(a, b) and φn
q−1 is separable #Eqn(a, b) = deg(φn

q−1).
If α is separable, then deg(α) = #ker(α). For all isogony’s ψ, there is a dual transformation, φ, such that
φψ = [2]. Let E(Fq) be an elliptic curve E(Fq) ≈ Zn or Zn1 ×Zn2 , n1 | n2. The Frobenius endomorphism of
degree q and is not separable. #Eq(a, b) = 1+

∑
x∈Fq

(1+ (x3+ax+b
Fq

)). If Eq(a, b) = Zn⊕Zn then q = n2 +1
or q = n2 ± n + 1 or q = (n± 1)2.

Given E(K), P ∈ E(K), define D =
∑

j aj [Pj ], aj ∈ Z and deg(D) =
∑

j aj . Div0(E) are the divi-
sors of degree 0. If f is a function on E, div(f) =

∑
P ordP (f)[P ] ∈ div(E). If D is a divisor of E with

deg(D) = 0, ∃f on E: div(f) = D iff sum(D) = ∞. D =
∑

P nP P is the divisor of an elliptic curve function
on E iff (1)

∑
P nP = 0 and (2) ⊕P∈E [nP ]P = 0. f ◦n(P ) = f(nP ). If T ∈ E[n], ∃T ′ ∈ E[n2] : nT ′ = T and

g = f ◦ n, div(g) =
∑

R∈E[n][T
′ + R]− [R]. g(P + S)n = g(P )n so ( g(P+S)

g(P ) )n = 1. Define the Weil pairing

as en(S, T ) = g(P+S)
g(P ) .

Counting points by Baby-step Giant-step is (O(q
1
4+ε)). Set N = #Eq then q + 1 − 2

√
q ≤ N ≤

q + 1 + 2
√

q; if [m]P = ∞ then N = m, probably. Put m = q + 1 − 2
√

q + k, l = d√4
√

qe, k = al + b,
then [m]P = [c]P + [a]S + [b]P, c = q + 1 − 2

√
q, S = [l]P or [c]P + [a]S = −[b]P . Baby step computes

LHS and stores it. Giant step computes RHS and does a lookup. Schoof: Let ϕ be the Frobenius auto-
morphism ϕ(x, y) = (xq, yq). Schoof calculates t (mod l) for a set of primes l ∈ P with

∏
l∈P l > 4

√
q

and then reconstructs t using CRT finally returning q + 1 − t. Here’s how: (1) For l = 2, t = 0 (mod l)
iff (x3 + ax + b, xq − x) 6= 1. (2) if l is odd, set ql = q (mod l), |ql| < l

2 ; find (x′, y′) = ϕ(x, y)2 + ql(x, y)
(mod ψl(x, y))); for j = 1, 2, . . . l−1

2 : (i) Compute (xj , yj) = j(x, y); (ii) if x′−xq
j = 0 (mod ψl), go to iii, if

not, try next j, if all such j’s have been tried, go to (iv); (iii) Compute y′, yj , if y′−yj

y = 0 (mod ψl) then
t = j (mod l) otherwise t = −j (mod l); (iv) Let w2 = q (mod l), if no such w exists, t = 0 (mod l);
(v) if (xq − xw, ψl) = 1 then t = 0 (mod l), otherwise, set g = numerator(yq−yw

y , ψl), if g 6= 1, t = 2w

(mod l) otherwise t = −2w (mod l).

Lenstra Elliptic Curve Factoring Method:

1. (n, 6) = 1, n 6= mr.

2. Choose random b, x1, y1 between 1 and n.

3. c = y1
2 + x1

3 − bx1 (mod n).

4. (n, 4b3 + 27c2) = 1.

5. k = lcm(1, 2, . . . , K).

6. Compute KP = ( ak

dk
2 , bk

dk
3 )

7. D = (dk, n) If D = 1, go to 5 and bump K or go to 2 and select new curve.

1.3.3 Elliptic curves and Fermat

Regular point: unique tangent. Singular point: no tangent. Non-singular curve: no singular points.
Two curves C, D are projectively equivalent if there is a projective transformation φ with φ(C) = D.
Every nonsingular cubic is equivalent to a curve which in affine coordinates is y2 = 4x3 − g2 − g3 = 0. This
is the Weierstauss Normal Form. Note: To prove show that every non-singular curve has an inflexion
point (triple tangent). Map inflexion to (0, 0, 1).

Elliptic Functions from Trigonometry: S(x) =
∫

dx√
1−x2 . Let dx

du = c(u), s(u)2+c(u)2 = 1. s′(u) = c(u),
c′(u) = −S(u), s(−u) = −s(u) and c(−u) = c(u). s(x + y) = s(x)c(y) + s(y)c(x) and c(x + y) =
c(x)c(y) − s(y)s(x). Ω : R → S1 (S1 is the 1-sphere - circle) by u 7→ (c(u), s(u)) is a morphism:
Ω(x + y) = Ω(x) ⊕ Ω(y). Ω has a non-trivial kernel K since S1 is compact but R isn’t. K = 2πZ.
These functions are periodic, satisfy the given derivatives, parameterize S1 under the indicated morphism
and provide the integration property.
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By analogy, set F (k, v) =
∫

dz√
(1−z2)(1−k2z2)

and define sn by F (k, sn(u)) = u. cn(u) =
√

1− sn2(u),

dn(u) =
√

1− k2sn2(u). sn, cn, dn are doubly periodic with periods ω1, ω2. Lω1,ω2 = Zω1 + Zω2. Now set
℘(z)) = 1

z2 +
∑
L−{0}

1
(z−l)2 − 1

l2 then ℘′(z)) = −2 1
z2 +

∑
L−{0}

1
(z−l)3 . ℘ is meromorphic and doubly periodic

on L. Further, if we set g2 =
∑
L−0

1
l4 and g3 =

∑
L−0

1
l6 , ℘′(z)3 = 4℘(z)2 − g2℘(z) − g3. This leads to:

Let C be an elliptic curve in Weierstrauss Normal Form and ℘ be the corresponding Weierstrauss function
then (℘(z), ℘′(z)) ∈ C, ∀z and (℘(u), ℘′(u)) ⊕ (℘(v), ℘′(v)) = (℘(u + v), ℘′(u + v)). Motivation: Want to
parameterize solutions by finding y(t)2 = x(t)2 + ax + b.

Define the Moebius transformation g(z) = az+b
cz+d over C. The group of Moebius transformations is

denoted by M and is are conformal. The modular group SL2 is the subset of M with ad−bc = 1 with the

obvious identification and is generated by τ 7→ τ+1, τ 7→ − 1
τ . Note fundamental region. Set S =

(
0 −1
1 0

)

and T =
(

1 1
0 1

)
; these correspond to S(z) = −1

z and T (z) = z + 1. Define H = {z : Im(z) > 0} and

D = {z : − 1
2 ≤ Re(z) ≤ 0, |z| = 1∨− 1

2 ≤ Re(z) < 1
2 , |z| > 1}. M maps H into itself and D is a fundamental

domain for SL2.

Reimann surfaces: Glue two copies of C to get
√

z. For N ∈ Z, N > 0 define Γ0(N) ⊆ SL2 with
N |c. Γ0(N) acts on H and H/Γ0(N) ≡ X0(N)\K where K are the cusps. X0(N) is compact and the
members are the modular functions of level N .

Semi-Stable: For all primes l > 3, l|Disc and only two of the roots are equal (mod l). Frey curve:
CF

a,b
def= y2 = x(x− ap)(x− bp). If b is even and a = −1 (mod 4). Frey curve is semi-stable.

Denote EA,B,C,D(Q)def= y2 = Ax3 + Bx2 + CX + D,A, B, C, D ∈ Q. Define bp to be the number of so-
lutions to EA,B,C,D(Q) = 0. E is modular if ∃ eigenfunction, f(z) =

∑
n ane2πinz. E/Q is modular if ∃f

and eigenfunction with ap = p + 1− bp for all but finitely many p.

Taniyama-Shimura Conjecture: Every elliptic curve is modular. Alternate T-S: E(A,B, C, D). ∃ mod-
ular functions f(z), g(z) such that g(z)2 = Af(z)3 + Bf(z)2 + Cf(z) + D.

Define the conductor Conda,b,c =
∏

p|abc p. Two elliptic curves are isomorphic iff their j-invariants are

equal. The j-invariant of CF
a,b = 28 (a2p+b2p+apbp)3

a2pb2pc2p . If F (az+b
cz+d ) = (cz + d)2F (z), F is a modular form of

weight 2.

Proof of Fermat’s Last Theorem: Suppose it’s false and that ap + bp = cp is a counterexample. Let
CF

a,b be the Frey curve. Disc(CF
a,b) = a2pb2pc2p so CF

a,b is semi-stable. Wiles proved every semi-stable elliptic
curve is modular so CF

a,b is modular and has a cusp form of weight 2 and level N where N is the conductor. If
l is an odd prime and l|N , by Serre, we can obtain a new F of weight 2 of level N/l. By induction, keep doing
this until N = 2. The dimension of the space of cusps is equal to the genus of compact Reimann surface
X0(N). But Genus(X0(2)) = 0, so there is no such cusp forms of weight 2, level 2. This contradiction
establishes the theorem. Incidentially, the restriction of semi-stability in Wiles Theorem has been removed.

1.4 Analysis, Geometry and Topology

1.4.1 Geometry and Topology

[~a,~b,~c] = ~a · (~b × ~c). Plane Π, perpendicular to unit vector ~n and containing ~a: ~x · ~n = ~a · ~n = d. Dis-
tance from ~y to Π is |d − ~y · ~n|. ~x × ~y = (x2y3 − y2x3)~i + (x3y1 − y3x1)~j + (x1y2 − y1x2)~k. Denote
[~a,~b] as the line from ~a to ~b; [ ~x0, ~x0 + ~a] = {~x : (~x − ~x0) × ~a = 0}. So the line that includes ~x0 and ~x1 is
{~x : (~x− ~x0)×( ~x1− ~x0) = 0}. Denote [~a,~b,~c] as the plane containing ~a,~b and ~c. ~a×(~b×~c) = (~a·~c)~b−(~a·~b)~c. Let
θ be the angle (measured counterclockwise) between [0, u] and [0, v] then ∆(u, v) = u1v2−u2v1 = |u||v|sin(θ).

∆(u, v, w) = [u, v, w] = det




u1 u2 u3

v1 v2 v3

w1 w2 w3


. Distance between (~x − ~x0) × ~a = 0 and (~x − ~x1) ×~b = 0 is
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( ~x0− ~x1)·(~a−~b)

||~a×~b|| .

Moebius Transformations: C∞ = C ∪ {∞}. M = {τa,b,c,d(z) : τa,b,c,d(z) = az+b
cz+d}. If τa,b,c,d(z) =

τα,β,γ,δ(z), ∃λ ∈ C such that
(

a b
c d

)
= λ

(
α β
γ δ

)
. If τ ∈M, τ : C∞ → C∞ and τ is a product of maps

of the following type: z 7→ az, z 7→ z + b and z 7→ 1
z . For all ordered points, < z1, z2, z3 >, < w1, w2, w3 > in

C∞, there is a unique τ ∈M such that τ(zi) = wi. For ordered points, < z1, z2, z3, z4 >,< w1, w2, w3, w4 >
in C∞, there is a τ ∈ M such that τ(zi) = wi iff the cross-ratio of [z1, z2, z3, z4] equals the cross ratio of

[w1, w2, w3, w4]. Φ : GL2(C) →M is a surjective homomorphism given by Φ(
(

a b
c d

)
) = az+b

cz+d ; the kernel

of the homomorphism is λI, λ ∈ C. The restriction of Φ to SL2(C) is also a surjection with kernel ±I.

cos(a) = sin(b)sin(c)cos(A) + cos(b)cos(c), sin(a)
sin(A) = sin(b)

sin(B) .

Circumcenter: common intersection of the 3 perpendicular bisectors of each side of a triangle. Incenter:
common intersection of the 3 angle bisectors of each side of a triangle. Orthocenter: Intersection of the
altitudes. Angle bisector divides opposite side in proportion to adjacent sides.

Pick’s Theorem: Let B be a polygon which contains ni interior lattice points and nb lattice points on
its boundary. A(B) = ni + nb−2

2 . Flex: A non-singular point intersecting P with multiplicity 3. Every
irreducible cubic in the plane has a singular point or a flex. H = det([Fxx, Fyx, Fzx]T , ...). Flex or singular
if H = 0.

Projective points as one dimensional subspaces. Projective lines are 1 dimensional. np on lnl = nl on; pnp.

Fundamental of Projective Geometry: Given 3 distinct collinear points on each of
two distinct lines there is a projective transform that maps the two sets of points in the specified order.

Cross Ratio of four points: r = (x1y3−x3y1)(x2y4−x4y2)
(x1y4−x4y1)(x2y3−x3y2)

.

Desargues: If ABC and A′B′C ′ are perspective from a point X, then AB ∩ A′B′ = P , AC ∩ A′C ′ = Q,
BC ∩ B′C ′ = R are collinear. Pappus: If ABC is on L and A′B′C’ is on L′, then AB′ ∩ A′B = P ,
AC ′ ∩A′C = Q, CB′ ∩ C ′B = R are collinear.

Ptolemy’s Theorem: Let ABCD be a cyclic quadrilateral (vertices lie on a circle). Then AB · CD +
AD ·BC = AC ·BD. Pascal: Suppose a hexagon is inscribed in a conic section, and opposite pairs of sides
are extended until they meet in 5 points. Then if 4 of those points lie on a common line, the last point will
be on that line, too.

Menelaus: If points X, Y, Z on BC, CA, AB (suitably extended) are collinear AZ
ZB

BX
XC

CY
Y A = 1. Similarly,

ABC with X opposite A. AX, BY, CZ are concurrent iff AZ
ZB

BX
XC

CY
Y A = 1

Spherical Geometry: Let PQR be a spherical triangle with subtended angles p, q, r on a sphere of ra-
dius R. The area of PQR is R2(p + q + r − π). Proof: Let P ′, Q′, R′ be the antipodal points of P,Q, R
respectively and CP , CQ, CR be the great circles containing PP ′, QQ′ and RR′ respectively. Let ∆C be
the common area of the three great circles in the hemisphere containing P,Q, R which forms the spherical
triangle. If Λ(CP , CQ) is the lune formed by the intersection of the great circles, set ∆1 = Λ(CP , CQ)−∆C ,
∆2 = Λ(CP , CR)−∆C , ∆3 = Λ(CR, CQ)−∆C , and let ∆′

C , ∆′
1, ∆′

2, and ∆′
3 be the corresponding antipodal

areas. ∆C +∆1+∆2+∆3 = ∆′
C +∆′

1+∆′
2+∆′

3, and ∆C +∆1+∆2+∆3+∆′
C +∆′

1+∆′
2+∆′

3 = 4πR2 (“EQ
1”), so ∆C + ∆1 + ∆2 + ∆3 = 2πR2. Further, ∆C + ∆1 = 2R2p, ∆C + ∆2 = 2R2r, and ∆C + ∆3 = 2R2q
so 3∆C +∆1+∆2+∆3 = 2R2(p+q+r), subtracting EQ 1 from this and dividing by 2 gives the desired result.

Euler’s Formula: V − E + F = χ. For a sphere, χ = 2. Let ni: number of vertices with valence i,
2e ≥ 3F ,

∑
ini = 2E. Let U(~x) = ~x

|~x| . Curve length: s(t) =
∫ t

t0
|γ′(t)|dt. ~T (t) = U(γ′(t)), ~N(t) =

U(γ′′(t))− < γ′′(t), ~T (t) > ~T (t). Alternatively, ~T (s) = U(γ′(s)), ~N(s) = U(~T ′(s)). κ(t) = <~T ′(t), ~N(t)>
γ′(t) ,
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~B(t) = ~T (t)× ~N(t), τ(t) = < ~N ′(t), ~B(t)>
|γ′(t)| . First Fundamental Form: If E = ~xu · ~xu, F = ~xu · ~xv and G = ~xv · ~xv

then I(du, dv) = Edu2 + 2Fdudv + Gdv2. If ~N = ~xu× ~xv

| ~xu× ~xv| then L = − ~xu · ~Nu, M = − 1
2 ( ~xu · ~Nv + ~xv · ~Nu),

N = − ~xv · ~Nv and II(du, dv) = Ldu2 + 2Mdudv + Ndv2. κn = II
I . κ is a principal curvature iff

det

(
L− κE M − κF
M − κF N − κG

)
= 0. Gaussian curvature: If k1 and k2 are the maximum and minimum

values of the curvature at a point on a surface, the Gaussian curvature is K = k1k2; χ = 2− 2g is the Euler
characteristic, where g is the genus. The genus of a connected, orientable surface is an integer representing
the maximum number of cuttings along closed simple curves without rendering the resultant manifold dis-
connected and it is equal to the number of handles on it. Gauss-Bonnet: If X is a compact, hypersurface
in Rk+1, then

∫
X

K = V ol(Sk)χ(X)
2 .

Let G(u, v) be a homogeneous polynomial and (u0, v0) ∈ P1
K , ∃k ≥ 0 and H(u, v) with H(u0, v0) 6= 0 :

G(u, v) = (v0u − u0v)kH(u, v). Any line in P2
k can be parameterized by (x, y, z) = (a0u + b0v, a1u +

b1v, a2u + b2v). L intersects C to order n at P = (x0 : y0 : z0) if C(u, v) = (v0u − u0v)nH(u, v) in the
foregoing theorem; denote this as ordL,P (C) = n, ordL,P (C) = ∞ if C is identically 0. If L1, L2 are lines,
ordL1,P (P ) = 1 or ∞. If C is a curve defined by C(x, y, z) = 0, C is non singular at P if (Cx, Cy, Cz) 6= 0 in
which case the tangent line is CxX + CyY + CzZ = 0. If C is non-singular at P there is a line in P2

K that
intersect C to order at least 2.

Eight Point Theorem: Suppose C is a curve in P2
K defined by homogeneous cubic polynomial C(x, y, z) =

0. Let l1, l2, l3 and m1, m2,m3 be lines in P2
K with li 6= mj , ∀i, j and Pij = li ∩mj . Suppose further that C

is not singular at Pij ,∀i, j 6= 3, 3. Then P33 ∈ C. This is proved in a series of lemmas. Lemma 1: Let Pi1 =
(ui : vi) and mj : ajx + bjy + cjz = 0, mj(ui, vi) = 0 and mj vanishes only at Pij . m1(u, v)m2(u, v)m3(u, v)
is a homogeneous cubic polynomial. Lemma 2: If R(u, v), S(u, v) are homogeneous of degree 3 and is
not identically 0 and they both vanish at (ui : vi) then ∃α ∈ K,α 6= 0: R = αS. Lemma 3: C =
αm1(u, v)m2(u, v)m3(u, v) and C = αl1(u, v)l2(u, v)l3(u, v). Lemma 4: li | (C−αm1(u, v)m2(u, v)m3(u, v)),
mj | (C − βl1(u, v)l2(u, v)l3(u, v)) and if D = C −αm1(u, v)m2(u, v)m3(u, v)− βl1(u, v)l2(u, v)l3(u, v), then
limj | D. Lemma 5: D = l1m1l(u, v) and l(P22) = l(P23) = l(P32) = 0, so D = 0. To conclude the proof of
the eight point theorem, observe, since D = 0, C = αm1(u, v)m2(u, v)m3(u, v) + βl1(u, v)l2(u, v)l3(u, v) and
l3(P33) = m3(P33) = 0 thus C(P33) = 0.

The eight point theorem proves associativety of elliptic curve addition. Let P, Q,R be points on C and con-
sider l1 = P, Q, l2 = ∞, Q + R, l3 = R,P + Q, m1 = Q,R, m2 = ∞, P + Q, m3 = P, R + Q. l1 ∩m1 = Q,
l1 ∩ m2 = −(P + Q), l1 ∩ m3 = P , l2 ∩ m1 = −(Q + R), l2 ∩ m2 = ∞, l2 ∩ m3 = Q + R, l3 ∩ m1 = R,
l3 ∩ m2 = (P + Q), l3 ∩ m3 = X. X is −((P + Q) + R) (from the definition of l3) and −(P + (Q + R))
(from the definition of m3) by the definition of addition. Now apply the eight point theorem to get the result.

The eight point theorem also proves Pascal’s Theorem: Let ABCDEF be a hexagon inscribed in a conic
section whose equation is Q(x, y, z) = 0. If X = AB ∩ DE, Y = BC ∩ EF , Z = CD ∩ FA, then
X, Y, Z are collinear. Proof: Put l1 = EF , l2 = AB, l3 = CD, m1 = BC, m2 = DE, m3 = FA,
C(x, y, z) = Q(x, y, z)l(x, y, z) and apply the theorem. It also proves Pappus’s Theorem: Let l,m be two
distinct lines A,B,C on l and A′, B′, C ′ on m none of which are on l∩m. If X = AB′∩A′B, Y = BC ′∩B′C,
Z = CA′ ∩ C ′A, then X,Y, Z are collinear. Proof: Use Pascal with hexagon AB′CA′BC ′.

1.4.2 Complex Analysis

If w = f(x + iy) = u(x, y) + iv(x, y) is analytic in a region R then ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x .

Cauchy: If f(z) is analytic in a region R and its boundary C then
∫
C f(z)dz = 0. Morrera: If f(z) is

continuous in a simply connected region R and
∫
C f(z)dz = 0 around every simple closed curve C in R, then

f(z) is analytic in R.

If f(z) is analytic inside and on a circle C of radius r and center at z = a then |f (n)(a)| ≤ Mn!
rn where

|f(z)| ≤ M on C in R. If an analytic function is bounded in the plane it is constant.

If f(z) is analytic inside and on a circle C of radius r and center at z = a then f(z) = 1
2π

∫ 2π

0
f(a + reiθ)dθ.
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Meromorphic: Analytic everywhere in the plane except at a finite number of poles. Entire: Analytic
everywhere in the complex claim. If f(z) is analytic inside and on a closed curve C except at a finite number
of pole then 1

2πi

∫
C

f ′(z)
f(z) = N − P where N and P are, respectively, the number of zeros and poles of f(z)

inside C. Rouche’s theorem: If f(z), g(z) are analytic in and on a simple closed curve C and |f(z)| > |g(z)|
on C then f(z) and f(z) + g(z) have the same number of zeros in C.

Cauchy Integral Formula: If f(z) is analytic inside and on a closed curve C and a is any point inside C
then f (n)(a) = 1

2πi

∫
C

f(z)
(z−a)n+1 . Laurent: If f(z) is analytic inside an annular region A = {a ≤ z − z0 ≤ b}

then f(z) =
∑∞

n=−∞ cn(z−z0)n. In that case, c−1 = Limz→a
1

(k−1)!
dk−1

dzk−1 ((z−a)kf(z)). Residue Theorem:∫
C f(z)dz = 2πi(a−1 + b−1 + ...).

1.4.3 Real Analysis and Manifolds

Taylor: f(x) =
∑n

k=0
f(k)(a)

k! (x − a)k + f(n+1)(c)
n! (x − a)n for some c : a < c < x. Proof: Set F (t) =

f(t) +
∑n

k=0
f(k)(t)

k! (x − t)k and let En(x) = f(x) −∑n
k=0

f(k)(a)
k! (x − a)k. Note F (x) − F (a) = En(x) and

F ′(t) = f(n+1)(t)
n! (x−t)n. Put G(t) = (x−t)n and H(t) = G(t)[F (x)−F (a)]−F (t)[G[x]−G(a)]. H(a) = H(x)

so ∃c : a < c < x with H ′(c) = 0. So En(x) = F (x) − F (a) = F ′(c)
G′(c) [G(x) − G(a)]. Substituting gives the

desired result.

X separates if ∃A,B, A 6= X, ∅,∃B 6= X, ∅ both open with A ∪ B = X and A ∩ B = ∅. X is connected iff
there is no separation. Suppose f : X → Y is continuous. If X is compact so is f(X). If X is connected,
so is f(X). If X compact, connected set in R then X = [a, b].

Let Φ : Q → P be a homotopy of ϕ0 into ϕ1 as closed curves and let y /∈ Φ(Q). Then the winding
number W (ϕr, y) is constant for 0 ≤ r ≤ 1. Let ϕ be a closed curve ϕ : [a, b] → P and suppose y0, y1 can
be joined by a curve which does not intersect ϕ, then W (ϕ, y0) = W (ϕ, y1). Let f : D → P be a mapping of
the disk onto the plane and let C = ∂D and let y /∈ f(C); if the winding number of f |C about y is not zero,
then y ∈ f(D) such that f(x) = y. Let f : D → P be a mapping of a disk onto a plane, P and C = ∂D that
fixes all of C then D ⊆ f(D). No mapping of a disk onto its boundary fixes each point of the boundary. If
f is a mapping of a disk onto itself, it has a fixed point.

∫ π

−π
cos(mx)cos(nx)dx =

∫ π

−π
sin(mx)sin(nx)dx = δmnπ. Bernoulli: φ′n(x) = φn−1(x), φ0(x) = 1,

∫ 1

0
φn(x)dx =

1. Γ(x) =
∫∞
0

ux−1e−udu.
∫ ∫

R
( ∂q

∂x − ∂p
∂x ) =

∫
C

pdx + qdy.

Fixed Point Theorem: Let E be a complete metric space and f : E → E. Suppose ∃k < 1 : ∀p, q ∈
E, ||f(p) − f(q)|| ≤ k||p − q||. Then there is a unique P ∈ E : f(P ) = P . Proof: Let pn+1 = f(pn).
||f(pn+1) − f(pn)|| ≤ k||pn − pn−1|| ≤ kn||p1 − p0||. This is a Cauchy sequence and converges. Set
p = limn→∞pn, f(p) = p. Uniqueness: if q is another such point: ||f(p) − f(q)|| = ||p − q|| ≤ k||p − q|| so
||p− q|| = 0.

Simple Implicit Function Theorem: Let f be a real valued continuous function on an open set E ⊂
R2, (a, b) ∈ E with continuous partial ∂f

∂y (a, b) 6= 0. There are open sets U, V with a ∈ U, b ∈ V and a continu-
ous function ϕ : U → V such that f(x, ϕ(x)) = 0, x ∈ U . Proof: Define F (x, y) = y−f(x, y)(∂f

∂y )−1. F (a, b) =
b, ∂F

∂y (a, b) = 0 and F (x, y) = y iff f(x, y) = 0. Pick r small enough so that in the ball Br(a, b) : |∂F
∂y | < 1

2 .
Choose k : 0 < k < r then choose h : 0 < h <

√
r2 − k2 such that |F (x, b) − b| < k

2 when |x − a| < h. Put
U = (a−h, a+h), V = (b−k, b+k). Fix x ∈ U and |y− b| ≤ k and suppose ||(x, y)− (a, b)||2 < h2 +k2 < r2

and ||(x, y′) − (a, b)||2 < h2 + k2 < r2. ∃y′′ : |F (x, y) − F (x, y′)| ≤ ∂F
∂y (x, y′′)|y − y′| ≤ 1

2 |y − y′| and
|F (x, y)− b| ≤ |F (x, y)− F (x, b)|+ |F (x, b)− b| < k. Apply Fixed Point Theorem to get y = f(x, y). This
is unique. Define ϕ(x) = y. A simple argument shows ϕ is continuous.

Simple Inverse Function: Let g be a real valued function on an open set E ⊂ R and suppose g′ ex-
ists and is continuous in E and g′(b) 6= 0. There are open sets U, V ⊂ R with b ∈ V : g|V is 1-1 and
g−1 : U → V is differentiable. Proof: Put f(x, y) = x− g(y) and apply the Implicit function theorem.
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Existence of solution to ordinary differential equation: Let f be a continuous real valued function in
an open set E ⊂ R2 containing (a, b) and suppose ∃M : |f(x, y) − f(x, z)| < M |y − z|, (x, y), (x, z) ∈ E
then ∃h > 0 and ϕ : (a − h, a + h) → (b − M, b + M) : ϕ′(x) = f(x, ϕ(x)) on (a − h, a + h) and
ϕ(a) = b. Proof: This is equivalent to ϕ′(x) =

∫ x

a
f(t, ϕ(t))dt + b. Suppose ψ is a function and define

F : ψ 7→ ∫ x

a
f(t, ψ(t))dt + b. F maps the complete metric space of functions on a closed interval of E itself.

A fixed point in this metric space would satisfy the theorem; we show such a fixed point exists. Choose
N > |f(a, b)|, ∃r : ||(x, y) − (a, b)|| < r → |f(x, y)| < N . Choose h > 0 : h < r

2N , h < 1
2 , hM < 1 and con-

sider the complete metric space of continuous functions on [a− h, a + h] denoted by C([a− h, a + h]); define
R = {(x, y) ∈ E : |a−x| ≤ h, |y−b| ≤ Nh} and B = {ψ : [a−h, a+h] → [b−Nh, b+Nh]}, finally, Let BNh(b)
be the ball in C([a−h, a+h]) of functions within Nh of the constant function b. For ψ, ω ∈ BNh(b) note that
|ψ(x)−b| < Nh and f(t, ψ(t)) < N so |Fψ(x)−b| < Nh. For ψ, ω ∈ BNh(b) : |Fψ(x)−Fω(x)| ≤ hM ||ψ−ω||.
This satisfies the conditions of the fixed point theorem and the fixed point satisfies the conclusion of the
theorem.

Implicit Function Theorem: Let a ∈ Em ⊂ Rm and b ∈ En ⊂ Rn with (a, b) ⊂ Em+n, and open
set. Suppose f1(a, b) = . . . = fn(a, b) = 0 and ∂fi

∂yj
exist and are continuous in Em+n and det( ∂fi

∂yj
(a, b)) 6= 0

then ∃Uopen ⊂ Em, a ∈ U, V open ⊂ En, b ∈ V, ϕ : U → V such that fi(x, ϕ(x)) = 0 for i = 1, 2, . . . , n.
Proof: Define x = ~x = (x1, . . . , xm), y = ~y = (y1, . . . , yn) and F = ~F = (F1(~x, ~y), . . . , Fn(~x, ~y)). De-
fine Fi(x, y) = yi −

∑
j cijfj(x, y) with each partial continuous. (1) The Fi are continuously differen-

tiable; (2) Fi(a, b) = b; (3) ∂Fi

∂yj
(a, b) = 0; (4) fi(x, y) = 0 iff Fi(x, y) = yi. For 3 to hold (cij) must

be the inverse of the Jacobian. For 4 to hold, the determinant of the Jacobian must be 6= 0. Choose
r > 0 such that for (x, y) ∈ Br(a, b) ⊂ Em+n, |∂Fi

∂yj
| < 1

2n2 and det(∂Fi

∂yj
) 6= 0. Choose k : 0 < k < r

and choose h so that 0 < h <
√

r2 − k2 and ||F (x, b) − b|| < k
2 if ||x − a|| < h. Fix x ∈ U with

||(x, y)− (a, b)|| < r. If y′ ∈ En, ||y′− b|| ≤ k,∃y′′ : F (x, y)−F (x, y′) = (y− y′) · (∂F1(x,y′′)
∂y1

, . . . , ∂Fn(x,y′′)
∂yn

) ≤
1

2n2 (|y1−y′1|+ . . .+ |yn−y′n|) ≤ 1
2n ||y−y′||. So ||F (x, y)−F (x, y′)|| < k and the fixed point theorem applies.

Extended Inverse Function Theorem: fi(x, y) = xi − gi(y), a = g(b). Same deal.

Inverse Function Theorem: Suppose f : Rn → Rn is continuously differentiable and |det(f ′(a)| 6= 0.
∃V open, W open, f−1, a ∈ V, f(a) ∈ W with f−1 : W → V and f−1(f(x) = x. Further f ′−1(y) = 1

f ′(f−1(y)) .
Notes: Let λ = D(f(a)). May assume λ = I. Can show |x1 − x2| ≤ |f(x1)− f(x2)|.

Implicit Function Theorem: If f : Rn × Rm → Rm is continuously differentiable in an open set con-
taining (a, b), f(a, b) = 0 with M = (Dn+j(f i(a))) with 1 ≤ i, j ≤ m. If det(M) 6= 0, ∃Aopen ⊆ Rn and
Bopen ⊆ Rm, a ∈ A, b ∈ B : ∀x ∈ A there is a unique g(x) ∈ B, f(x, g(x)) = 0. Further, g is differentiable.
Notes: Look at F (x, y) = (x, f(x, y)) and apply Inverse Function Theorem.

Partitions of unity: Aopen ⊆ Rn and O and open cover of A. ∃Φ ∈ C∞ such that ∀ϕ ∈ Φ: (1)
0 ≤ ϕ(x) ≤ 1 and ∀x ∈ A, (2) ∀x, ϕ(x) = 0 for all but finitely many ϕ ∈ Φ, (3)

∑
ϕ∈Φ ϕ(x) = 1. (4)

∀ϕ ∈ Φ,∃Uopen ∈ O : φ(x) = 0 for x /∈ U where U is some closed subset of U .

Direct proof of inverse function theorem. Suppose f is a C′ mapping f : E → Rn, a ∈ Eopen ⊆ Rn

with f ′(a) invertible and f(a) = b, then (a) ∃Uopen, V open ⊆ Rn : a ∈ U, b ∈ V such that f is 1-1 on U ;
f(U) = V . (b) If g = f−1 then g ∈ C′(V ). Proof of a: Put f ′(a) = A and choose λ : 2λ||A−1|| = 1,
set U = Bλ(a) ⊆ E: ||f ′(x) − A|| < λ, ∀x ∈ U . Set ϕy(x) = x + A−1(y − f(x)), ∀y ∈ Rn. ||ϕ′y(x)|| =
||A−1(A − f ′(x))|| < 1

2 . ||ϕy(x1) − ϕy(x2)|| < 1
2 ,∀x1, x2 ∈ U [Equation 1] by the mean value theo-

rem. ϕy is a contraction map so it has a unique fixed point x : y = f(x). Put V = f(U) and sup-
pose y0 ∈ V , there is a x0 ∈ U : y0 = f(x0). Pick r > 0 : Br(x0) ⊆ U . Fix y : |y − y0| < λr.
For x ∈ Br(x0), |ϕ(x0) − x0| ≤ |ϕ(x) − ϕ(x0)| + |ϕ(x0) − x0| < 1

2 |x − x0| + r
2 ≤ r so ϕ(x) ∈ Br(x0)

and again ϕy is a contraction map. Its fixed point x satisfies f(x) = y, y ∈ Br(x0) ⊆ f(U) = V , so
V is open. Proof of b: Pick y ∈ V , y + k ∈ V, ∃x, x + h ∈ U : y = f(x), y + k = f(x + h). Now
ϕ(x + h) − ϕ(x) = h + A−1(f(x + h) − f(x)) = h − A−1(f(x + h) − f(x)) = h − A−1k ≤ 1

2h by equation
1, so ||A−1k|| ≥ ||h|||

2 and ||h|| ≤ 2||A−1k|| = λ−1||k||. f ′(x) has an inverse T and g(y + k) − g(y) − Tk =
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h − Tk = −T [f(x + h) − f(x) − f ′(x)h] and ||g(y+k)−g(y)−Tk||
||k|| = ||T ||

λ
||f(x+h)−f(x)−f ′(x)h||

||h|| . Now h → 0 as
k → 0. Since the right hand side goes to 0, the left hand side goes to 0 and we get g′(y) = T .

Fubini’s Theorem:
∫ ∫

I2 f(x, y)dydx =
∫ 1

0
(
∫ 1

0
f(x, y)dy)dx. In a simply connected region of the plane,

S for a ≤ x ≤ b bounded by b1(x) ≤ y ≤ b2(x),
∫ ∫

S
f(x, y)dydx =

∫ b

a
(
∫ b2(x)

b1(x)
f(x, y)dy)dx. Change of

variables: Let A ⊆ Rn be an open set, g : A → R continuously differentiable and det(g′(x)) 6= 0,∀x ∈ A. If
f : g(A) → R is integrable then

∫
g(A)

f =
∫

A
f ◦ g| det(g′)|.

Let T k(V ) = {T : V → R}, V ⊆ Rn where ∀i: T (v1, ..., vi−1, u+w, vi+1, ..., vk) = T (v1, ..., vi−1, u, vi+1, ..., vk)+
T (v1, ..., vi−1, w, vi+1, ..., vk) and T (v1, ..., vi−1, au, vi+1, ..., vk) = aT (v1, ..., vi−1, u, vi+1, ..., vk). T n(V ) are
called the n−tensors V . If f : V → W with V, W ⊆ Rn then f∗ : T n(W ) → T n(V ) by f∗(T (v1, ..., vn)) =
T (f(v1), ..., f(vn)). If T ∈ T k, S ∈ T s define T ⊗ S = T (x1)S(x2). T 1(V ) is just the dual space V ∗. If
e1, ..., en is a basis for V and ϕj ∈ V ∗ such that ϕj(ei) = δij then the set of all k − fold tensor products
ϕi1 ⊗ ϕi2 ⊗ ...⊗ ϕik

is a basis T k(V ) which thus has dimension nk.

Alternating forms: Λk(V ) = {T ∈ T k(V )} such that T (...v...w...) = −T (...w...v...). ∀T ∈ T n(V ), Alt(T ) =
1
k!

∑
σ sgn(σ)T (vσ(1), ..., vσ(n)) ∈ Λk(V ). If ω ∈ Λk(V ), Alt(ω) = ω. If ω, η ∈ Λk, Λl, ω∧η = (l+k)!

k!l! Alt(ω⊗η).
∧ is multilinear and ω∧η = (−1)klη∧ω; f∗(ω∧η = f∗(ω)∧f∗(η). (ω∧η)∧θ = ω∧(η∧θ) = (k+l+m)

k!l!m! Alt(ω⊗
η ⊗ θ). If ω =

∑
wi1,...ik

dxi1 ∧ ... ∧ xik then dω =
∑

dwi1...ik
∧ dxi1 ∧ ... ∧ xik . dim(φi1 ∧ ... ∧ φik

) =
(
n
k

)
.

orientation: [e1, ..., en]. Volume elements: wi =
∑

j aijvj then ω(w1, ..., wn) = det(aij)ω(v1, ..., vn) for
ω ∈ Λk.

Forms: Let p, v ∈ Rn, define the tangent space of Rn at p, Rn
p, as the (p, v) with (p, v)+ (p, w) = (p, v +w)

and (p, av) = a(p, v).

Vector field: F (p) = F 1(p)(e1)p + ... + Fn(p)(en)p with the usual rules (F + G)(p) = F (p) + G(p)
(f · g)(p) = f(p) · g(p). ∇ =

∑
Di · ei.

ω(p) ∈ Λk(Rn
p): If ϕi(p) is the dual basis for (e1)p, (e2)p, ..., (en)p then ω(p) =

∑
ωi1,...ik

ϕi1 ∧ ... ∧ ϕik

is a differential form and df(p)(vp) = Df(p)(v). df =
∑n

i Difdxi.

If f : Rn → Rm, f∗ : Rn
p → Rm

p by f∗(vp) = (Df(p)(v))f(p). Thus f∗ : Λk(Rm
f(p)) → Λk(Rn

p). So
if ω is a k−form on Rm, f∗ω(p) = f∗(ω(p)) is a k−form on Rn. f∗(dxi) =

∑
j Djf

i · dxj , f∗(ω1 + ω2) =
f∗(ω1) + f∗(ω2), f∗(g · ω) = g ◦ ff∗ω and f∗(ω + η) = f∗ω + f∗η. If f : Rn → R, Df(p) ∈ Λ1(Rn).
df(p)(vp) = Df(p)(v). f∗(vp) = (Df(p)(v))f(p). f : Rn → Rm, f∗ : Rn

p → Rm
f(p). f∗ : Λk(Rm

f(p)) →
Λk(Rn

p). f∗(dxi) =
∑n

j=1 Djf
idxj . f∗(g ◦ ω) = g ◦ f ◦ f∗ω.

d2ω = 0, closed form: dω = 0, exact form: ∃η : dη = ω. Poincare: If Aopen ⊆ Rn is a star
shaped region then every closed form in A is exact. ∂In =

∑n
i=1

∑
α=0,1(−1)i+αIn

(i,α) where In
(i,α) =

In(x1, ..., , xi−1, α, xi+1, ...xn). Note that ∂2In = 0. If Aopen ⊆ Rn and g : A → Rp is differentiable and g′(x)
has rank p whenever g(x) = 0 then g−1(0) is an n−p dimensional manifold. Diffeomorphism, k−dimensional
manifold. An n-dimensional differentiable manifold is called orientable if it has a differential form ω of
degree n which is nonzero at every point on the manifold.

Stokes: If M is a compact oriented k−dimensional manifold with boundary and ω is a k − 1 form on
M then

∫
c
dω =

∫
∂c

ω.

Classical Integral Theorems: Let ~x = (x1, x2, . . . , xn). Lagrange: Maximize F (~x) subject to φ1(~x) =
0, φ2(~x) = 0, . . . , φm(~x) = 0; form G(~x) = F (~x)+λ1φ1(~x)+λ2φ2(~x)+ . . .+λmφm(~x) and solve ∂G

∂xj
= 0. Sup-

pose R ⊆ Rn R′ ⊆ Rn and f : R→ R′ is continuously differentiable then
∫
R F (~x)d~x =

∫
R′ F (f(~u))|Jf (~u)|d~u

where Jf (~u) = |det(f ′)|. Green: If C surrounds R, a simply connected region of the plane then
∫

C
Pdx +

Qdy =
∫
R(∂Q

∂x − ∂P
∂y )dxdy. Gauss: If S is a surface enclosing a convex region V and ~F is continuously

differentiable then
∫
V ∇ · ~F (~x)d~x =

∫
~S

~F (~x) · dS. Stokes: If S with boundary C and ~F is continu-
ously differentiable then

∫
S ∇ × ~F (~x) · dS =

∫
~C

~F (~x) · d~l. Fourier: F (x) = 1√
2π

∫∞
−∞ f(u)eiuxdu and
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f(u) = 1√
2π

∫∞
−∞ F (x)e−iuxdx.

Calculus of variations: Let I =
∫ x2

x1
L(x, y, y′)dx and f(x) be the function that minimizes I (δI = 0),

then − d
dx

∂L
∂y′ + ∂L

∂y = 0.
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1.5 Probability

1.5.1 General Probability

µX = E(X), σX
2 = V ar[X] = E[(X −E[X])2], Covariance: µXY = E((X −µX)(Y −µY )). Correlation:

ρ(X,Y ) = E((X−µX)(Y−µY ))
σ(X)σ(Y ) . Moment generating function: G(et) =

∑
k≥0 Pr[X = k]etk = E[etX ]. Mo-

ment Generating Function for Poisson distribution (f(x) = e−λx) is φ(t) = E(etx) =
∫∞
0

etxλe−λxdx = λ
λ−t .

E(X2) = d
dtφ(t) = 2

λ2 . V ar(X) = 1
λ2 .

Stirling’s approximation: n! ≈ √
2πn(n

e )n. Proof: Mn = ln(n!) =
∑n

i=1 ln(i).
∫ n

1
ln(x) < Mn <∫ n+1

1
ln(x). So nln(n)− n < Mn < (n + 1)ln(n + 1)− n. Set dn = ln(n)− (n + 1

2 )ln(n)− n. dn − dn+1 =

(n + 1
2 ln(n+1

n ) − 1. Writing n+1
n =

1+ 1
2n+1

1− 1
2n+1

and expanding the log, and comparing to the geometric se-

ries in 2n + 1, we find dn converges to, say, C. So, n! ≈ eCnn+ 1
2 e−n. To find eC use Wallis’ formula:

limn→∞
(n!)222n

(2n)!
√

n
=
√

π. To get this, show
∫ π

2
0

sinn(x) = n−1
n

∫ π
2

0
sinn−2(x).

Bayes: P (Bi|A) = P (A|Bi)P (Bi)P
P (A|Bj)P (Bj)

. Normal Distribution: N(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , Z = (X−np)√
npq . Bino-

mial Distribution: B(N,n, p) =
(
N
n

)
pn(1− p)N−n, E(B) = Np, σ2 = Np(1− p). Poisson Distribution:

P (x) = e−λ λx

x! , µ = λ, σ2 = λ, probability of count in time ∆t is λ∆t.

f(x, y) =
1

2πσ1σ2

√
1− ρ2

e
−(

(x−µ1)2

σ2
1

+(2ρ)
(x−µ1)(y−µ2)

σ1σ2
+

(y−µ2)2

σ2
2

)/(2
√

1−ρ2)

ρ is the cross correlation between x and y.

Central Limit Theorem: If Xi are independent, identically distributed random variables and Sn = X1 +
. . . + Xn, then limn→∞ P (a ≤ (Sn−np)

σ
√

n
≤ b) = 1√

2π

∫ b

a
e−(u2/2). Proof: E(Sn) = nµ, σ2 = V ar(Sn) = nσXi .

Define S∗n = Sn−nµ
σ
√

n
. So E[etS∗n ] = E[e

t(X1−µ)
σ
√

n e
t(X2−µ)

σ
√

n . . . e
t(Xn−µ)

σ
√

n ] = E[e
t(X1−µ)

σ
√

n ]n. Expanding the exponen-

tial in the taylor series, we get E[etS∗n ] = E[1 + t(X−µ)
1!
√

nσ
+ (t(X−µ))2

2!(
√

nσ)2
+ . . .] = e

−t2
2 . This is the same moment

generating function as the normal distribution, so were done.

χ2 = (Y2−np2)
2

(np2)
+ ... + (Y12−np12)

2

(np12)
, P (χ2 ≤ x) = 1

2
ν
2 Γ( ν

2 )

∫ x

0
u

ν
2−1e−

u
2 du.

Markov: Let Y be a random variable assuming only non-negative values, and with expected value E[Y ]
convergent. Then for any t > 0, Pr[Y ≥ t] ≤ E[Y ]

t .

Chebyshev: Let Y be a random variable with expected value µ = E[Y ] and variance, V ar(Y ). Then
for any t > 0, Pr[|Y − µ| ≥ t] ≤ V ar(Y )

t2 .

Chernoff: Let T1, T2, . . . , TN be mutually independent Bernoulli variables T =
∑N

i Ti. Then ∀c ≥ 0,
Pr(T ≥ cE(T )) ≤ eαE(T ) where α = ln(c) + 1

c − 1.

Wald: Let Q be a random variable that takes on only non-negative integer values such that E(Q) < ∞. Let
R1, R2, . . . be a sequence of random variables with the same distribution and let T = R1 + R2 + . . . + RQ.
Suppose Rk is independent of the event that it is included in the sum, that is ∀k ≥ 1, Rk is independent of
an indicator variable for the event Q ≥ k then E(T ) = E(Q)E(R1).

Occupancy: Let Xi be an indicator for a ball falling into i. E(Xi) = 1. Let Zi be the probability
that the bin is empty. E(Zi) = n

e . Let pm(r, n) be the probability of finding r balls in n cells with exactly
m empty cells. pm(r, n) =

(
n
m

)
(1− m

n )rp0(r, n−m). Further, p0(r, n) =
∑n

i=0(−1)i
(
n
i

)
(1− i

n )r.

Lovasz Local Lemma: Let G = (V,E) be a dependency graph for events e1, e2, ..., en in a probability
space. Suppose ∃xi ∈ [0, 1] for 1 ≤ i ≤ n, such that Pr[ei] ≤ xiΠ(i,j)∈E(1−xj). Then Pr[∩ei] ≥ Πn

i (1−xi).
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If {pi} and {qi} are probability distributions and G(q1, q2, . . . , qn) = −∑
piln(qi). Then G is minimum

when pi = qi.

1.5.2 Statistical Inference and Hidden Markov Models

Let Y = Pred(L), σ2(Y,L) = E((Y − L)2). Value of predictor: W (Y, L) = σ2(Y,L)−E(L−Y )2

σ2(Y,L) . 0 =
W (E(L), L) ≤ W (Y,L) ≤ W (L,L) = 1. E((X − t)2) is minimized t = E(Y ). Let cov(X,Y ) = E(XY ) =
E(X)E(Y ). Best linear predictor: Y = aX + b, a = cov(X,Y )

cov(X,X) (and solve for b). Worth of best predictor

(using mean square error) is ρ(X,Y )2 = cov(X,Y )2

cov(X,X)cov(Y,Y ) . Posterior models. P (|Y − µ| ≥ t) ≤ var(Y )
t2 .

Let S = {1, 2, 3, . . . , n} be the n possible states of a hidden markov process with T transitions and T + 1
outputs. Notation: Denote ~X(L) =

∏L
i=0 X and ~x ∈ ~X(L) with ~x = (x0, x1, . . . , xL); we denote ~xi = xi.

Suppose the output vector of the process is ~O ∈ (Zm)(T ). Finally, suppose the following distributions are
given: initial state distribution - π(i), i ∈ Zm; output distribution - qij = q(j|i) = Pr(Ot = j|~St = i),∀t;
state transition distribution: pij = P (j|i) = Pr(~St = j|~St−1) = i], ∀t.

• Problem 1 Given O = O0, O1, O2, ..., OT , λ = (P, q, π), how do we compute Pr(O|λ) efficiently?

• Problem 2 Given ~O = O0, O1, O2, ..., OT and λ, how do we choose an ~q which is optimal?

• Problem 3 How do we adjust the model parameters λ = (P, q, π), to optimize Pr( ~O|λ), given the
observed sequence: ~O?

Problem 1: Assuming the foregoing, the probability of the output ~O is:

Pr[ ~O|λ] =
∑

~s∈~S(T )

π(~s0)q(O0|~s0)
T∏

i=1

P (~si|~si−1)
T∏

i=1

q(Oi|~si)

The following recursion greatly improves the calculation cost. Let α0(i) = π(i)q(O0|i),∀i and αt(i) =
(
∑k

j=1 αt−1(j)P (St = i|St−1 = j))q(Ot|i), ∀i. This is called the “forward recursion”. Then αt(i) =∑
~s∈~St,~st=i π(~s0)q(O0|~s0)

∏t
j=1 P (~sj |~sj−1)

∏t
j=1 q(Oj |~sj), the probability of the observation of the sequence

up to time t given ~st = i. Pr( ~O|λ) =
∑n

i=1 αT (i); computing {αT (i)} takes O(n2(T + 1)) rather than
O(2(T + 1)nT+1). This solves problem 1.

Problem 2: Slightly abusing the notation from above define βt(i) = Pr(Ot+1, . . . , OT |St = i, λ). The
“backwards recursion” is: βT (i) = 1,∀i, βt(i) =

∑n
j=1 P (St = i|St+1 = j)βt+1(j)q(Ot+1|j). Now define

γt(j) = P (st = 1| ~O, λ) so γt(j) = αt(i)βt(j)

P (~O|λ)
. The most likely state at time t is the one that maximizes γt(i).

Problem 3: Define γt(i, j) = P (St = i, St+1 = j| ~O, λ) so γt(i, j) = αt(i)P (St=j|St+1=i)q(Ot+1|j)βt+1(j)

P (~O|λ)
and

γt(i) =
∑n

j=1 γt(i, j). γt(i, j) is the probability of being in state i at t and transitioning to state j.
Now, suppose the model, λ = (π, P, q), is unknown, the MLE of the model, given observations ~O is deter-
mined by:

• 0 = ∂
∂π(i) [Pr( ~O = (O0, . . . , OT ))− λ1(

∑m−1
k=0 π(k)− 1)].

• 0 = ∂
∂P (j|i) [Pr( ~O = (O0, . . . , OT ))− λ2(

∑m−1
k=0 P (k|i)− 1)].

• 0 = ∂
∂q(j|i) [Pr( ~O = (O0, . . . , OT ))− λ3(

∑m−1
k=0 q(k|i)− 1)].

Solving gives the following re-estimation formulas:

• π̂(i) = γ0(i) = α0(i)β0(i)Pn
k=1 α0(k)β0(k) ,

∑
π(i) = 1.

• P̂ (j|i) =
PT−1

t=0 γt(i,j)PT−1
t=0 γt(i)

=
PT−1

t=0 αt(i)q(Ot+1|j)P (j|i)βt(j)PT
t=0 αt(i)βt(i)

,
∑

j P (j|i) = 1.

• q̂(j|i) =
P

t∈{0,1,...,T−1},Ot=j γt(i)PT−1
t=0 γt(i)

=
PT−1

t=0,Ot=j αt(i)βt(i)PT
t=1 αt(i)βt(i)

,
∑

j q(j|i) = 1.
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Baum showed that if Q(λ, λ) =
∑

s∈S Pλ(O, s)log(Pλ(O, s) and Q(λ, λ) > Q(λ, λ) then Pλ(O, s) > Pλ(O, s).
Optimizing Q instead of P gives the Baum EM algorithm. Note that optimizing using dynamic program-
ming may give a different result: δ0(i) = π(i)q(i|O0), δt(i) = maxj∈{1,...,n}(δt−1(j)pjiqiOt) since it optimizes
the overall path. You can deal with underflow by taking logs or (in the HMM case) scaling in a way that
maintains the re-estimation result.

EM as Gaussian mixture problem: p(~x) =
∑K

k=1 N(~x| ~µk, ~Σk), let ~z be a K dimensional random variable
from the sample space all of whose components are 0 but a single one which is 1 (i.e.- zk = 1) under the
Gaussian model (πk, µk, Σk). p(~x|zk = 1) = N(~x| ~µk, ~Σk), p(zk = 1) = πk and p(~x) = p(~x|~z)p(~z). πk is the
prior estimate of zk = 1 and γ(zk) is the posterior estimate. γ(zk) = p(zk = 1|~x) = p(zk=1)p(~x|zk=1)P

j p(zj=1)p(~x|zj=1) . For

mixing, let < ~x1, . . . , ~xN > be a sample. The log likelihood is p(~x|~π, ~µ, ~Σ) =
∑N

n=1 ln(
∑K

k=1 πkN( ~xn|µk, Σk))
and EM maximizes this. Maximizing equations come from taking derivatives with respect to µk and set-
ting them to 0 — 0 = −∑N

n=1
πkN( ~xn|µk,ΣkP
j πjN( ~xj |µj ,Σj)

· Σk( ~xn − µk). The term in the denominator is γ(znk),

Nk =
∑N

n=1 γ(zn,k) and µk = 1
Nk

∑N
n=1 γ(zn,k). Taking the derivatives with respect to Σk give the re-

maining equations (Note: µk = Nk

N ). An alternative (Bayesian) view is to regard ~z as latent, Θ as the
model parameters and ln(p( ~X|Θ)) = ln(

∑
z p( ~X|~Z,Θ)). We use this to estimate the likelihood from

Θold for general Θ: Q(Θ,Θold) =
∑

z p(Z|X, Θold)ln(p(X, Z|Θ)); the “M” step corresponds to finding
Θnew = arg maxΘ(Q(Θ,Θold).

Principal Component Analysis: Suppose x1, x2, . . . , xN ∈ RD and we project this space onto
< u1, u2, . . . , uM > where uk ∈ RD and uiu

T
i = 1. For example, for M = 1, the variance of the projection

is 1
N

∑N
n=1(u

T
1 xn − uT

1 x) = uT
1 Su1 where x = 1

N

∑N
i=1 xi and S is the co-variance matrix. Finding the first

principal component requires us to to maximize uT
1 Su1 subject to ut

1u1 = 1. Using Lagrange multipliers,
this is equivalent to maximizing f(u1) = uT

1 Su1 + λ1(1 − uT
1 u1). Taking derivative, we get S(u1) = λ1u1

with λ1 the largest eigenvalue of S. Can also find λ1 with EM. For general M , uT
i uj = δij , ~xn =

∑D
i=1 αniui,

αnj = (xT
nuj), xn =

∑D
i=1(x

T
i ui · ui) and we want to minimize J = 1

N

∑N
n=1 ||xn − x||2 which reduces to an

eigenvalue problem.

1.5.3 Information and Coding Theory

Shannon conditions for entropy: (a) continuous in probability, (b) monotonically increasing in num-
ber of messages, additive with respect to refinement: H( 1

2 , 1
4 , 1

4 ) = H( 1
2 , 1

2 ) + 1
2H( 1

2 , 1
2 ). Number of bits

of information obtained in observing event that occurs with probability p is lg(p). H(P ) =
∑−pilg(pi),

lg(|X|) ≥ H(X) ≥ 0. I(X,Y ) = H(X)−H(X|Y ) = H(X) + H(Y )−H(X, Y ). H(X, Y ) ≤ H(X) + H(Y ).
H(U |V ) = 0 iff U = g(V ).

D(p||q) =
∑

x p(x)lg(p(x)
q(x) ) ≥ 0. Markov chain denoted by X → Y → Z. If X → Y → Z then I(X;Y ) ≤

I(X;Z). Let T (X) be any statistic and F =< fθ(x) > and X a sample from F then I(θ; T (X)) ≤ I(θ; X). T
is a sufficient statistic if equality holds. T (X) is a minimal sufficient statistic relative to F if it is a statistic
of every other sufficient statistic U(X). θ → T (X) → U(X) → X. A stochastic process X =< X1, X2, . . . >
is stationary if the joint distribution of any subsequence is invariant with respect to time shifts. Entropy
of a stochastic process is H(X) = limn→∞ 1

nH(X1, X2, . . . , Xn). For a stationary Markov chain, the entropy
rate is given by H(X) = H(X2|X1). If X is a stationary markov chain then so is the process < Yi = φ(Xi) >
and H(Yn|Yn−1, . . . , Y1, X1) ≤ H(Y ) ≤ H(Yn|Yn−1, . . . , Y1) equality holds by taking the limit across the in-
equalities.

Hδ(X) = lg(min{|T | : T ⊆ AX , P r(x ∈ T ) ≥ (1− δ)}. Asymptotic Equipartition: n, independent iden-
tically distributed random variables Xi, if Xn = (X1, X2, . . . , Xn) is almost certain to belong to B ⊆ An

X

having about 2NH members, each with probability “close” to 2−NH . This is equivalent to Shannon’s
Source coding Theorem: The n r.v.’s can be encoded by NH bits with negligible information loss. To
show this, show for any δ there’s an n such that Hδ(X(n)) ≈ NH. Hint: Define Y = 1

n lg( 1
p(x) ). Let

Tn,β = {y ∈ An
X : [ 1

n lg( 1
p(x) )−H]2 < β2}.

Channel Capacity: C = maxP (x)(H(I|J) − H(I)). For a DMC, BSC with error rate p, this implies
CBSC(p) = 1 + plg(p) + qlg(q). So for BSC R = 1−H(P ).
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Detect t errors d(C) ≥ t + 1. Correct t errors d(C) ≥ t + 1. Perfect code: M(
∑t

k

(
n
k

)
(q − 1)k) = qn.

Shannon Source Coding: If a memoryless source has entropy H then any uniquely decipherable code
over an alphabet Σ with D symbols must have length ≥ H

lg(D) . Further, ∃ a uniquely decipherable code with
average length ≤ 1 + H

lg(D) .

Shannon’s Theorem Channel Coding: If 0 ≤ R ≤ 1+plg(p)+qlg(q), Mn = 2dRne, then P ∗(Mn, n, p) → 0
as n → ∞. Notation: Each codeword has n bits. Let Pi be the probability of making an error in decod-
ing if xi is transmitted. Then PC = 1

M

∑
i Pi is the probability of making a decoding error if a randomly

chosen codeword is transmitted and every codeword is equiprobable. P ∗(Mn, n, p) = minC(PC), with
BlockLength(C) = n, R = lg(|C|)

n and Mn = 2bRnc. Proof: Define the following terms: f(u, v) = 0, if
d(u, x) > ρ and f(u, v) = 1, if d(u, x) ≤ ρ, gi(y) = 1−f(y, xi)+

∑
i 6=j f(y, xi). Then Pi =

∑
y P (y|xi)gi(y) =∑

y P (y|xi)[1 − f(y, xi)] +
∑

y

∑
i 6=j P (y|xi)f(y, xi). So, PC = minC [ 1

M

∑
i(

∑
y

∑
y P (y|xi)[1 − f(y, xi)] +∑

y

∑
i 6=j P (y|xi)f(y, xi))]. Now, taking expectations over all eligible C and using the fact that at least one

particular C must have PC ≤ the expected value of PC over all C, we get PC ≤ [ 1
M

∑
i

∑
y E(P (y|xi)[1 −

f(y, xi)]) +
∑

y

∑
i 6=j E(P (y|xi))E(f(y, xi))]. Now, let Ne be the number of received bits in error in a string

of length n, then E(Ne) = np and V ar(Ne) =
√

npq. Set b =
√

npq
ε
2

then P (ne > np+ b) ≤ ε
2 by Chebychev.

If Bρ(x) is the set of words of distance ≤ ρ. So, we get PC ≤ ε
2 +M−1

∑
i

∑
y

∑
i 6=j E(P (y|xi))E(f(y, xi)) ≤

ε
2 + (M − 1)2−n|Bρ)|. Now ρ = pn and Bρ(x) =

∑
i≤ρ

(
n
i

)
. But 1 = [λ + (1 − λ)]n =

∑pn
k=0

(
n
k

) ≤
λpn(1 − λ)n(1−p)

∑pn
k=0

(
n
k

)
. So, 2−nH(p) ≥ ∑pn

k=0

(
n
k

)
. Putting this back in the equation for PC we get

PC ≤ ε
2 + (M − 1)2−n(1+H(p)) ≤ 2n(R−1−H(p)) which goes to 0 if R < 1 + H(p).

(n,M, d) codes: M is number of codewords, d is minimum distance, n is dimension. An [n, k, d] linear
code is an k−subspace of an n− space over F with minimum distance d. Standard form for generator is
G = (Ik|A) with k message bits, n codeword bits. Codeword c = mG and d = minu 6=0,u∈C{wt(u)}. Parity
check matrix, H, of a code is the generator of its dual code. C⊥ = {x : (x, y))) = 0, ∀y ∈ C}. Note that
GH = 0. If C is a code, C⊥ is a code (the dual code). H = (−AT , In−k), GHT = 0. Consider a table with
the codewords forming the first row, subsequent rows add error e until all 2n blocks are in the table. Each
row is a coset and the element of minimum weight in each row is called the coset leader. To decode received
word r = c + e: (1) compute syndrome s(r) = rHT , (2) find coset leader with s(r) and locate the codeword,
c0 in that column, (3) decode as r − c0.

Define V (n, r) =
∑r

j=1

(
n
j

)
. Hamming Bound: |C| ≤ 2n

V (n,e) . Sphere Packing Bound: If d = 2e + 1,

Aq(n, d)
∑e

k=0

(
n
k

)
(q − 1)k ≤ qn. GSV Bound: A(n, d) ≥ 2n

V (n,d−1) , where A(n, d) is the largest code with
minimum distance d.

A Hamming code is a [n, k, d] linear code with n = 2m − 1, k = 2m − 1 − m and d = 3. To decode,
if r = c + e is received (1) calculate s(r) = rHT , (2) find j which is the column of H with syndrome s(r),
correct position j. The [7, 4] code has encoding matrix

C =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1




with check equations y1 + y3 + y5 + y6 = 0, y2 + y3 + y6 + y7 = 0, y4 + y5 + y6 + y7 = 0. For Hamming,
n = 2m − 1, m parity checks identify error position. Motivation for BCH is to use another m parity checks
which identify f(j) = j3 positions. Rows of Hadamard matrix HHT = nI forms a (n, 2n, n

2 ) code. Let Ai

be the number of codewords of weight i for a code C, then A(z) =
∑

i Aiz
i is the weight enumerator.

A cyclic code, C, has the property that (c1, c2, . . . , cn) ∈ C → (cn, c1, . . . , cn−1) ∈ C. Denoting Un(x) =
xn− 1 we have the following theorem: C is a cyclic code of length n iff its generator g(x) = a0 + a1x + . . . +
an−1x

n−1 | Un(x) where codewords c(x) have the form m(x)g(x). Further, if Un(x) = h(x)g(x), c(x) ∈ C
iff h(x)c(x) = 0 (mod Un(x)). Example: g(x) = 1 + x2 + x3 generates (7, 4) code. g(x)m(x) = c(x),
a = (1010), a(x) = 1 + x2; g(x)a(x) = c(x) = x5 + x4 + x3 + 1, c = (1001110). In shift register imple-
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mentations, bits come out of 0-degree term, recurrence is shifted into high-degree. Cyclic codes ideals in
Z2/(xn − 1). Codewords are multiples of the generator polynomial g(x). Let α be a primitive element of
GF (2m). [n = 2m − 1, k = n −m, d = 3] hamming code has parity check H = (1, α, α2, α3, . . . , α2m−2). If
g(x) is the generator for α, generator matrix is

C =




g(x) 0 0
0 xg(x) 0
0 0 x2g(x)
...




For BCH with [n = 2m − 1, k = n − 2m, d ≥ 5], g(x) = M (1)(x)M (3)(x) where M (3)(x), is the minimum
polynomial for α3.

BCH codes: If g(x)|xn − 1, the ideal generated by g(x) is a cyclic code. If g(x) factors into linear
factors in GF (2n) with roots A = {α1, . . . , αr}, the set C defined by f(x) ∈ C iff f(α) = 0,∀α ∈ A is
a cyclic code. For BCH, pick g(x) = m1(x)m2(x) . . . mr(x) of degree d with each factor irreducible. Let
n − d message bits be the high order coefficients CI(x) of an n − 1 degree polynomial whose remaining
terms are CR(x) with CI(x) = g(x)q(x) + CR(x). For a 2-ECC, pick g(x) = m1(x)m2(x) with m1(x)
the irreducible monic polynomial for a primitive nth root of 1, α and m2(x) the irreducible monic poly-
nomial for α3. Alternatively, suppose g(x) is a cyclic code and α is a primitive nth root of g(x) and
g(αl) = g(αl+1) = . . . = g(αl+δ) = 0 then d ≥ δ + 2 and the resulting BCH code has weight d. Decoding
BCH for r = c + e: (1) compute (s1, s2) = rHT , (2) if s1 = 0, no error, (3) if s1 6= 0 put s2

s1
= αj−1, error is

in position j (of p 6= 2, ej = s1
α(j−1)(k+1) ), (3) c = r − e.

Reed-Solomon code is BCH code over Fq with n = q − 1. Let α be a primitive root of 1 and choose
d : 1 ≤ d < n with g(x) = (x − α)(x − α2) . . . (x − αd−1). The BCH code generated by g(x) is a Reed
Solomon code (an MDS code too).

Building codes and Reed Muller: If C1 : (n, M1, d1) and C2 : (n,M2, d2), C3 = C1 ∗ C2 denotes the code
where codewords in C3 are (u, u + v), u ∈ C1, v ∈ C2. It is a (2n,M1M2,min(2d1, d2)) code. RM(0, m) =
{0, 1}, RM(r +1,m+1) = RM(r +1,m)∗R(r,m). R(r,m) is a (nr,Mr, dr) code, with nr = 2m, dr = 2m−r

and Mr = 2a, a = 1 +
(
m
1

)
+ . . . +

(
m
r

)
. R(r,m) has parameters [n = 2m, k = 1 +

(
m
1

)
+ . . . +

(
m
r

)
, d = 2m−r],

it consists of boolean functions whose polynomials are of degree ≤ m. RM(r,m)⊥ = RM(m− r − 1, m).

R = 1−H2(p)
1−H2(pe) (4,7) code. U = H(K)

D , 2RN messages 2rN meaningful ones, 2H(K) keys. 2H(K) − 1 keys have
probability, q, of spurious decryption R−r = D. F= number of false ones. F = (2H(K)−1)q = 2(H(K)−D)N .
The correct key maps cipher into meaningful class always. False keys map cipher into meaningful/meaningless
randomly. After how many message is the expected number of spurious keys which map all the samples into
meaningful less than 1? Shannon: MC : total message length, M : meaningful part, p: probability of error.
pMC = k, 2MC−M ≥ (

MC

k

)
.

Hadamard Code: Let hij = (−1)a0b0+...+a4b4 , where a and b index the rows and columns respectively.
This gives a 32× 32 entry matrix, H. Let generators be G = [H| −H]T . For each of the 0 ≤ i < 26 possible
messages, send the row corresponding to i. To decode, for the 32 bit received word, r, compute di = r ·Ri,
where Ri is the 32 bit row i. If there are no errors, the correct row will have di = 32 and all other rows will
have di = 0. If one error, di = 30, etc.

Golay Code G24 is a [24, 12, 8] linear code. G = [I12|C0|N ] = [I|B] where C0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T

and N is formed by circulating (1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0) 11 times and appending an row of 11 1’s. The first
row of N corresponds to the quadratic residues (mod 11). Note that wt(r1+r2) = wt(r1)+wt(r2)−2[r1 ·r2],
all codewords have weight divisible by 4 and d(C) = 8. G24 = G⊥24. To decode Golay, write G = [I12|B] and
BT = (b1, b2, . . . , b12) with bi a column vector. Suppose r = c + e is received and wt(e) ≤ 3. Put s = rGT

and compute sB, s+ cT
i , 1 ≤ i ≤ 24 and sB + bT

j , 1 ≤ j ≤ 12. If wt(sB) ≤ 3, there is a non-zero entry in the
k-th position of sB if the k + 12-th position of e is non-zero. If wt(s) ≤ 3 a non-zero entry in s at position
k corresponds to a non-zero entry in position k of e. If wt(s + cT

j ) ≤ 2, for some j, 13 ≤ j ≤ 24 then ej = 1
and non-zero entries of s+eT

j are in the same positions as non-zero entries of e. If wt(sB + bT
j ) ≤ 2, for some

j, 1 ≤ j ≤ 12 then ej = 1 and non-zero entries of sB+bT
j at position k correspond to non-zero entries of ek+12.
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Leech: Let R(C) be the row space of C over GF (2). Define the Γ to be the collection of (v1, v2, . . . , v24) =
v ∈ Z24 such that (1)

∑24
i=1 vi = 4m, (2) vi = m (mod 4), if ci = 0, (3) vi = m + 2 (mod 4) if ci = 1.

Rogers Bound: RB(n) =
√

(n+1)(n!)2π
n
2

2
3n
2 Γ( n

2 +1)
fn(n), Fn+1(α) = 2

π

∫ α
arcsec(n)

2
Fn−1(β)dθ, sec(2β) = sec(2θ) − 2,

F1(α) = F0(α) = 1, fn(sec(2α)) = Fn(α). RB(3) = .7404. A1 = 0, A2n =
(

An An

An An

)
.

L8: v ∈ L8 iff v ∈ Z8 and vi = ai (mod 2) or vi = ai (mod 2). L8 → Λ8: v ∈ Γ8 iff v ∈ L8 and∑2
i=1 4vi = 4m. Contact number: 4320, radius:

√
2.

L24: Sphere centers are equal (mod 2) to R(C) and
∑

i vi = 0 (mod 4).

Shape Number
016, (−1)8 759

016, (−1)6, 12 21252
016, (−1)4, 14 53130
016, (−1)2, 16 21252

016, 18 759
022, (−2)2 276
022,−2, 2 552

022, 22 276
Total 98256

Density of L24: 224

2×212 = 2−11, first factor of 2 in denominator is from condition that the sum of the coordi-
nates = 0 (mod 4). Packing density: .0009647.

Γ24: Express coordinates in L24 in binary and retain the ones that satisfy the following conditions (a)
the 24 1’s bits are either all 0 or all 1, (b) the 2’s bits form a row in R(C), (c) 4’s bits rows have even
parity for points with 1’s bits that are all 0 and odd otherwise. Equivalently, suppose ~c ∈ R(C) and for
m ∈ Z, define ~c(m) = {v ∈ Z24 :

∑
i vi = 4m, ci = 0 → vi = m (mod 4), ci = 1 → vi = m + 2

(mod 4)}, Λ = Λ24 = ∪m~c(m). Contact number: 98256 (even parity) + 98304 (odd) = 196, 560. Density:
.001929. Shapes: (016, (±2)8), (022, (±4)2), ((±1)23, (±3)). Each vertex is adjacent to 4600 others. Example:
(4, 4, 0, . . . , 0) is adjacent to (4, 0, . . . , 0) - there are 88 of these, (2, 2, . . . , 0) - there are 77× 27 of these and
(1, 3, . . . , 0) - there are 2048 of these.

Definition: Conway’s group .O is the set of rotations in R24 fixing O pointwise and Λ setwise.

Notation: vS =
∑

i∈S vi. The set GΛ = {2vK , K ∈ R(C)} ∪ {vΩ − 4∞} generates Λ. If v, w ∈ GΛ,
then v · v = 16n and v · w = 0 (mod 8). Λn = {x ∈ Λ, x · x = 16n}. Λ1 = ∅, Λ2 consists of Λ2

2 of shape
(016, (±2)8) - there are 97152 of these, Λ3

2 of shape ((±1)23, (±3)1) - there are 98, 304 of these, Λ4
2 of shape

(022, (±4)2) - there are 1104 of these.

Structure in .O. Ω = PL(23), α : x 7→ x + 1, β : x 7→ 2x, γ : x 7→ −1
x , δ : x 7→ 9x3, x /∈ Q

and δ : x 7→ x3

9 , x ∈ Q. PSL(23) =< α, γ >, M24 =< α, γ, δ >. If π ∈ SΩ, define (vi)π = vπ(i).
εS(vi) = −vi, i ∈ S and εS(vi) = vi, i /∈ S.

Preliminary results: If S ∈ R(C), εS ∈ .O. E =< εS >S∈R(C), M = M24. N = EM . If λ ∈ .O and
λ fixes vi (some i) then λ ∈ N . If λ ∈ N then λ(Λ4

2) = Λ4
2.

Main result: If H > N , H is transitive on Λ2 and H = .O. Proof: (1) Λ2
2, Λ3

2, Λ4
2 are all N -orbits. A counting

argument shows that the union of two of them can’t be an H orbit (otherwise, p | |.O| for p > 23). Now define
Λ2(x) = {y : y ⊥ x}. (2) Hx is transitive on Γ2(x) (hard). Orbit of Λ4

2 under Nx is {y} ∪ {λ(y)}, λ ∈ Nx.
There are 926. Since M24 is 5−transitive |Hx : Hx,y| = 926 and |.O| = |H| = 196560 · |Hx|; further, Hx

is transitive on Λ2(x) = {y : y ⊥ x}. An orbit of Hx has 93150 elements so |Hx| = (93150)|Hx,y| and
Hx,y = E10M22. This gives the order of H and shows H = .O.
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The simple groups: “.1” = .O/Z(.O). “.2” = {x ∈ .O, x stabilizes 2 points v, w ∈ Λ2 : |v−w| = 4
√

2}. “.3”
= {x ∈ .O, x stabilizes 2 points v, w ∈ Λ2 : |v − w| = 4

√
3}.

Reed-Solomon construction: Fix n elements, < α1, ..., αn >, |F | ≥ n, E(m) =< Mα1, ...,Mαn >,
d(E(m1,m2)) ≤ n + k − 1.
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Chapter 2

Computer Science

2.1 Basics

f ∈ O(g) ↔ g ∈ Ω(f) ↔ Lx→∞
f(x)
g(x) < ∞. f ∈ o(g) ↔ g ∈ ω(f) ↔ Lx→∞

f(x)
g(x) = 0. G1 ⊂ (G,E) is a strongly

connected component iff x, y ∈ G1 means there is a directed path x → y and a directed path y → x.

Recurrences: Suppose T (n) = aT (n/b) + f(n). If f(n) = O(nlogb(a)−ε) then T (n) = Θ(nlogb(a)). If
f(n) = Θ(nlogb(a)) then T (n) = Θ(nlogb(a)lg(n)). If f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), c < 1 then
T (n) = Θ(f(n)).

Adding an m bit number and n bit number takes O(max(m,n)) time and O(m + n) space. Multiply-
ing an m bit number and n bit number takes O(mn) time and O(m + n) space. The extended gcd of an m
bit number and n bit number takes O(mn) time and O(m + n) space. AE (mod M) where M is an m bit
number and E is an n bit number takes O(nm2) time. Rotation is linear in ⊕ but not in +. GCD(u, v)
average running time: O((1 + max(u,v)

(u,v) )lg(min(u, v))).

heapify(A,i) {
l:= LEFT(i); r:= RIGHT(i);
if (l <= heapsize[A] and A[l]>A[i])

M:= l;
else

M:= i;
if (r <= heapsize[A] and A[r] > A[M])

M:= r;
if (M != i) {

swap (A[i], A[M]);
heapify (A, M);
}

}

heapsort(A) {
n= length[A];

for(i=n;i>1;i--) {
swap(A[1], A[i]);
n--;
heapify(A,1);
}

}

heapsort(A) {
// stored in A[1...n]
for(i=2;i<=n;i++)

SiftUp(i);
for(i=n;i>1;i--) {

swap(A[1], A[i]);
ShiftDown(i-1);
}

}

Finding the shortest path between x and y in G = (V,E) where l(e) > 0 is the weight of e ∈ E is
O(elg(n)). d(v) contains an overestimate of the shortest path from s to v. prev(v) contains the previous
element in the shortest path from s to v. (Ford-Bellman version works for negative weights.)

shortestpath(V,E,s) {
for (v in V) {
d(v):= infinity;
prev(v):= empty-set;

}
H:= empty-set;

d(s)= 0;
mark(s);
while (H is not empty) {

h= deletemin(H);
for e=(v, w) in E, w unmarked) {

if(d(w)>(d(v)+l(e))) {
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d(w)=d(v)+l(e);
prev(w)= v;
insert(w, H);
}

}
}

}

Union-find: Link(x, y): make x and y kids of a common parent. Parent node points to itself. m
UNION-FIND operations on n elements is O((m + n)lg(n)).

makeset(x) {
p(x)= x;
rank(x)= 0;
}

find(x) {
if(x != p(x)) p(x)= find(p(x));
return(p(x));

}

link(x, y) {
if(rank(x)>rank(y)) swap(x, y);
if(rank(x)==rank(y)) rank(y)++;
p(x)= y;
return(y);
}

union(x,y) {
link(find(x), find(y));
}

2-3 Trees: Interior node has smallest key of 2nd and 3rd descendant. Insert: Do membership test stop
at terminal position; id 2 kids, add one, if not, split into two, (n, n′). Add n′ using insert. Delete: If two
kids left, done. Otherwise, try to move node of a siblings under common parent; if you can’t, transfer this
node to a sibling. If this leaves a singleton, in the parent, recurse the transfer on parent.

G = (V, E). Each edge has a weight. Blue: V = X ∪ (V − X), no blue edges between X and V − X.
Pick and edge of min wt between them. Color it Blue. Red: Find a cycle with no red edge. Pick an edge of
max wt, color it red. Apply blue and red in any order as long as possible. Blue edges form a MST.

Floating Point Numbers: f × be−q is represented as (e, f).

Given ε > 0 there is a multiplication algorithm such that the number of elementary operation T (n) needed
to multiply two n-bit numbers satisfies T (n) < c(ε)n1+ε. Strassen: T (n) = O(nlg(n)).

NP Completeness: P ⊆ N . If A ≤ B 1 and B ∈ P then A ∈ P . L ∈ NPC if and only if L ∈ NP ,
A ∈ NP → A ≤ L. Classical computation theory classifies problems by a “certain” solution on all instances.
Later we will encounter problems which can be solved in polynomial time “up to an arbitrary error, ε” and
call the class RP for “randomized polynomial.” P ⊆ RP ⊆ NP .

P: MST. Given a weighted graph, G, and a weight, K ∃ a tree, NP: TSP. Given a weighted graph, G,
and a weight, K ∃ a cycle, C, that connects all nodes of G with weight ≤ K.
P: Circuit value. NP: Circuit SAT.
P: 2-SAT: Use φ = (a1 ∨ b1) ∧ ... ∧ (an ∨ bn) to form graph with nodes ai, bi, ai, bi insert edges ai → bi

and bi → ai. Find strongly connected components. If no strongly connected component contains a variable
and its negation, it is satisfiable; otherwise not. So 2-SAT is not NP hard. NP: 3-SAT. Note in disjunctive
normal form SAT is easy but translating is hard.
P: matching. NP: 3D matching.
P: Linear Programming. NP: Integer Programming.

Ford-Fulkerson: Augmenting path p is a simple path from s to t that increases the flow.

Initialize flow, f to 0;
while (there is an augmenting path, p)

augment flow along p;
return f;

Undecidable: Suppose Term(P,X) is a boolean function which takes a program, P , and an input X.
Term(P, X) returns true iff P terminates on X. Term(P, X) returns false iff P does not terminate on X.
Theorem. Term(P,X) does not exist. Suppose it did. Set

1A ≤ B means problem A can be transformed to problem B in polynomial time; this is called a reduction from A to B.
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diag(P,X) {
if $Term(P,P)$==true

loop
}

diag(diag) terminates iff it doesn’t terminate. Contradiction.

Stable Matching (up to n2 rounds). (1) Boy goes to favorite girl on list. (2) Girl tells highest choice
“maybe”, tells everyone else No. (3) Boy crosses off girls that have said no. (4) terminate in the round when
every girl has told one boy “maybe”, convert “maybe” to yes.

Linear Programming Standard Form: Maximize x = CT X, subject to AX = B, X ≥ 0. Prob-
lem: There may be exponentially many corners. (Reason: introduce to n constraint inequalities m slack
variables; the corner points occur when m variables are 0. There are

(
m+n

m

)
ways to select the variables to

be set to 0.) Simplex idea: move along growing paths instead of trying all corners randomly. Dual, minimize
x = BT W , subject to AT W = C, W ≥ 0.
Notation: basic variables 6= 0, basic variables = 0. A is an m× n matrix, with m variables (including slack)
and m constraints. Tableau has basic variables and their values in 2 first columns. Top row is all variables
as labels middle is matrix (A). Rightmost column is constants (B). Bottom row is C −CT X in terms of the
non-basic variables.

1. Locate most negative coefficient in bottom row, call column containing it xj .

2. Compute Bi

Aij
. The smallest one, denoted k, is the pivot.

3. Convert pivot to 1 and eliminate all coefficients in the same column.

4. Replace xk row by xj .

5. repeat until no negative numbers in bottom row.

NP Complete: SAT, k-SAT (k > 2), k-clique, Vertex Cover, Independent set, Subset Sum, Partition,
Bin Packing, Hamilton circuit. Clique/SAT reduction: Each occurrence of a variable is a vertex, edges
between vertices if their occurrence in the clauses have same complementarity. k is number of clauses.
SAT/k-sat reduction: l1 ∨ l2 ∨ . . . ∨ ln → l1 ∨ l2 ∨ x1 ∧ x1 ∨ l3 ∨ x2 ∧ . . . xn−3 ∨ ln−1 ∨ . . . ∨ ln. Phase
transition for SAT: clauses

variables ≈ 4.3. 3-SAT → MQ. Replace + with ∨, · with ∧ , 1 with true, 0 with false. If
ci = xi1 ∨ xi2 ∨ xi3 add xi1 + xi2 + xi3xi4 and xi1 · xi2 + xi2 · xi3 + xi1 · xi3 = xi5 and xi4 + xi5 + xi4 · xi5 = 1.

Hard core bit: Let f be a one-way function from {0, 1}n to {0, 1}n, x ∈ {0, 1}n , r ∈ {0, 1}n , and
let G be a function that takes {0, 1}n to {0, 1}n+1 by G(x, r) = f(x), r, < x, r >. Let P be a prediction
function. Goldreich-Levin: If there is an algorithm A such that |Probr[A(f(x), r) =< x, r >]− 1

2 | ≥ ε then
there is an algorithm I that produces a list L of size ≤ 1

ε2 with x in L, (2) I runs in time polynomial in n and
1
ε and doesn’t compute f . Negligible: smaller that inverse of any polynomial. Witness: w : Σ∗ → P (Γ∗).
Decision problem: Aw ⊆ Σ∗, Aw = {x ∈ Σ ∗ |w(x) 6= 0}. Example: x ∈ Σ∗ is an encoding of a Boolean
Form. y ∈ Γ∗ is an encoding of a truth assignment. #P is class of witnesses, w, such that: (i) there is a P-
time algorithm to decide if x ∈ w(x) and (ii) ∃k ∈ N such that ∀y ∈ w(x), |y| ≤ |x|k. w ∈ #P → Aw ∈ NP
and A ∈ NP → ∃w,A = Aw.
Counting perfect matchings of a bipartite graph is #P complete.

Finite State Machine: Finite alphabet, A, finite states, S, two functions: δ : S×A → S and γ : S×A → A.
Finite State Automata is FSM without output.

Language L is a subset of A∗. Regular expression, R over alphabet, A with letters a ∈ A: (1) ε ∈ R, (2)
a ∈ A, (3) r∗ ∈ R if r ∈ T , (4) r1r2 ∈ R if r1, r2 ∈ R, (4) r1 ∨ r2 ∈ R if r1, r2 ∈ R. Language associated
with a regular expression: (1) L(ε) = {ε}, (2) L(a) = {a}, (3) L(r∗)L(r)∗, (3) L(r1r2) = L(r1)L(r2), (4)
L(r1∨ r2) = L(r1)∪L(r2). L is a regular language if ∃r ∈ R with L = L(r). Phrase structured Gram-
mar, G, consists of (1) Vocabulary V , (2) terminals (denoted by lower case letters) T ⊆ V , (3) variables
or non-terminals V \ T (denoted by upper case letters), (4) a designated non-terminal S, called the start
symbol, (5) a finite set P of productions: α → β. w ⇒ w′ iff ∃u, v, w = uαv and w′ = uβv.
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Grammar types defined by production rule limitation: (1) Type 0: no limitations, (2) Type 1: produc-
tion rules of the form α → β, |α| ≤ |β| or α → ε, (3) Type 2: production rules of the form A → β, (4)
Type 3: production rules of the form A → a or A → aB, (5) context free: production rules of the form
A → β, (6) context sensitive: production rules of the form αAα′ → αβα′, (7) regular: production rules
of the form A → a, A → aB or S → ε. Backus-Naur form for type 2 context free grammar: (i) ::= replaces
→, (ii) non-terminals enclosed in brackets <> and (iii) all productions with the same non-terminal LHS
are combined into a single RHS. Example: < sentence > ::= < noun phrase >< verb phrase >, < noun
phrase > ::= < noun > | < article >< noun >, < noun >::= boy.

A language L can be generated by a type 3 (regular) grammar iff there is a finite automaton M that
accepts L. Pushdown automata (with infinite stack) recognize L iff L is context free. L is recognized by a
linear bounded automata (tape linearly bounded in length of input) iff L is context sensitive.

Minimizing State machines: Two states, si, sj , are 0 equivalent if the states have the same output
for every input. States are k + 1 equivalent if they have the same outputs for any input and their successor
states are k equivalent. Minimization procedure: Define π0 as all states that are 0 equivalent. Do until no
further refinement happens: sub-partition πk into πk+1 into subblocks are k +1 equivalent. This terminates.
When it does, merge equivalent states.

Pumping Lemma: Let L be a finite state grammar accepted by a finite state machine, M , with n states.
If α is a string accepted by M of length at least n, then α = u||v||w where u||vi||w is also in L.

Turing machines are FSMs with a bi-directionally infinite tape with a finite number of pre-marked squares
and an additional transition function σ : S ×A → {L, R, HALT}.

Huffman algorithm: Label each node with frequency. As long as more than one node is present, take
the two nodes with the lowest frequency and combine them into a single node with the two combinants as
children. New node has combined frequency. Left subnode has lower of two frequencies, right the higher.
Read code by traversing from root. Left traversal at parent is 0, right, 1.
Resulting code is prefix free. Further H(X) ≤ l(x) ≤ H(X) + 1.

2.1.1 Concurrency

ECMA Consistency
1. Reads and writes cannot move before volatile read.
2. Reads and writes cannot move after volatile write.

CompareExchange(ref int loc, int value, int comp) {
Monitor.Enter;
ret= loc;
if(ret==comp) loc= value;
Monitor.Exit;
return ret;

}

class SpinLock {
volatile int isEntered=0; // 1 if lock acquired
int Enter() {

while(CompareExchange(isEntered,1,0)!=0);
}

Exit() {
isEntered= 0;

}
}

Memory Consistency Rules
1. Behavior of Thread in isolation is unaffected
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2. Reads cannot move before lock
3. Writes cannot move after lock

DPLL(C,A) {
// C: clauses, A: literal assignments
// Termination:
// empty clause: unsatisfiable
// empty set of clauses: satisfiable

if(A is empty)
return SATISFIED;

if(A has an empty clause)
return UNSATISFIABLE;

// unit clause is a clause with one literal
if unit clause (l) occurs in A

return DPLL (assign(l,C), A + l));
if l occurs with same polarity throughout

return DPLL (assign(l,C), A + l));
l= choose-literal(A);

return DPLL (assign(l,C), A + l)) OR
DPLL (assign(not l,C), A + not l));

}
Note: If A, B, C are p-free,
(A | p) & (B|!p) &C) is inconsistent iff (A|B)&C is.

Chase(C,x) {
set x to t;
delete all clauses containing x from C;
delete all occurences of !x from clauses in C;
if (empty clause)

return UNSATISFIABLE;
if (unit clause l)

return Chase(l,t);
if (C is empty)

return SATISFIED;

Priority Queue (arrays start at 1 here)

ExtractMax(A) {
if(heapsize(A)<1)

return error;
max= A[1];
A[1]= A[heapsize(A)];
heapsize(A)=heapsize(A)-1;
Heapify(A,1);
return max;

}

Insert(A,k) {
heapsize(A)=heapsize(A)+1;
i= heapsize(A);
while(i>1 & A[parent(i)]<k) {

A[i]= A[parent(i)];
i= parent(i);
}

A[i]= k;
}

Select(A,k) {
// select kth element from A[1,...n-1]
if(k==0) return min(A);
// For randomized, choose x in A at random
x= SideSelect(A);
Set B= < y in A: y <=x>
Set C= < y: y>x >
if(k<|B|) return Select(B,k)
return Select(C,|B|-k);
}

SideSelect(A,k) {
for(i<=0<=n=INT(size(A)/5))

Sort successive 5 elements
// A[5i]<=A[5i+1]<=A[5i+2]<=A[5i+3]<=A[5i+4]

R= < A[5i+2] > , 0<=i<=n
x= SideSelect(R,Size(R)/2);
// note x <= 3*INT((n-5)/10) elements.
}

// Note E(T(n))= E(T(sn))+n, x ~ 3/4

struct semaphore {
int count;
ProcessQueue queue;
};

void P(semaphore s) {
if(s.count>0) {

(s.count)--;
else

s.queue.Insert(); // block
}

void V(semaphore s) {
if(s.queue.empty())

(s.count)++;
else

s.queue.remove(); //schedule process
}

shared semaphore s= 1;
P(s);
//critical section
V(s);
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Map()
Reduce()
Scan() // || prefix
Scatter()
Gather()

Readers/writers
linear sweep

Architecture and current PCs: P = C × V 2 × f . Big endian word: 0, 1, 2, 3 (descending byte address).
Little endian word: 3, 2, 1, 0 (descending byte address).

Optimization Level Description Level
High Procedure inlining 3
Local common subexpression 1
Local constant propagation 1
Local stack height reduction (expression tree) 1
Global global common subexpression 2
Global global constant propagation 2
Global code motion 2
Global induction variable elimination 2
Global loop unrolling 4
Global strip mining 4
Arch specific strength reduction 1
Arch specific pipeline scheduling 1
Arch specific branch offset 1

Effect on performance of Bubblesort (100K items). Base is 300MHz Sparc Ultra.

Optimization level Relative performance Clocks Instructions CPI
0 1.00 158,615 114,938 1.38
1 2.37 66,990 37,470 1.79
2 2.38 66,521 39,993 1.66
3 2.41 65,747 44,993 1.46

SRAM: .5 − 1ns, 4, 000$/GB. DRAM: 50 − 70ns, 100$/GB. Disk: 107ns, 1$/GB. Dram address setup:
1 memory cycle, access time: 15 cycles, data transfer: 1 cycle. 4-way interleave plus multiword block gets
time down to 20 cycles on average. Miss penalty to main: 500 cycles, to L2: 25 cycles. TLB: 512 entries.
Miss: 100 cycles. Miss percentage; .5-1. Disk seek latency: 10 ms, rotational latency: 5 ms, transfer rate:
50 MB/s, MTTF: 106 hours. Bus speed: system (800 MHz), NB (266 MHz), SB (33 MHz). Bandwidth:

Device Bandwidth
Memory 3.2GB/sec

Disk 150 MB/sec
AGP 2.1 GB/sec
PCI 132 MB/sec
NIC 20 MB/sec

Dwarves: Finite state machines, combinatorics, graphs, Structured/unstructured grids, dense matrix,
sparse matrix, map-reduce, backtrack/branch-and-bound, N -body, FFT, Graphical models.

LU-factorization: Let A 6= 0 be an m × n matrix. There are permutation matrices P, Q such that
PT AQ = LU where L is lower triangular and U is upper triangular. QR-factorization: Let X ∈ Cn×p

have rant p then x = QR where Q is an orthogonal matrix and R is an upper triangular matrix. QR-
factorization via unitary operations is used in the least square approximation problem. Spectral decomposi-
tion: UHAU = diag(λ1, λ2, . . . , λn). The eigenvalues of XHX are the sequence of singular values of X. For
a p× q matrix, row major storage is A[1, 1] = a[1], A[1, 2] = a[2], . . . , A[2, 1] = a[q + 1], etc., and in general,
row major storage is A[i, j] = a[(i− 1)q + j], column major storage is A[1, 1] = a[1], A[1, 2] = a[q + 1], . . . ,
A[2, 1] = a[2], etc., and in general, column major storage is A[i, j] = a[(j − 1)p + i]. One step of Gaussian
Elimination: (

α11 αT
12

α21 A22

)
=

(
β1

b2

)
→

(
α11 αT

12

0 A22− α−1
11 α21α

T
12

)
=

(
β1

b2 − α−1
11 β1α21

)

.
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Chapter 3

Cryptography and Computer Security

3.1 Classical Systems

Shannon Theory: What is the amount of information in a number n : 0 ≤ n < 2m. Information learned
about Y by observing X is I(Y,X) = H(Y |X) − H(Y ). Note H(X|Y ) =

∑
pX(x)H(Y |X = x) which is

generally not equal to
∑

X,Y pY (y|x)lg(pY (y|x)). HE = limN→∞
H(P n)

n . H(K|C) = H(M |C)+H(K|M,C).
Perfect secrecy: Pr(M |C) = P (M). Unicity Theorem: Let H be the entropy of the source (say English)
and let Σ be the alphabet. Let K be the set of (equiprobable) keys, then u = lg(|K|)

(lg(|Σ|)−H) . IC(f) =
P

(fi(fi−1))
n(n−1) .

MC(f, f ′) =
P

fif
′
i

nn′ .

Vigeniere alphabet chaining: If α is the mixed plaintext alphabet and β is the mixed cipher alpha-
bet underneath, rearranging with the plain alphabet into its normal form we get the tableaux:

1 2 . . . n
β(α−1(1)) β(α−1(2)) . . . β(α−1(n))

β(α−1(1) + 1) β(α−1(2) + 1) . . . β(α−1(n) + 1)
. . . . . . . . . . . .

β(α−1(1) + n− 1) β(α−1(2)) . . . β(α−1(n) + n− 2)

Note that the columns have the same sequence of characters as the original rows — if plain A corresponds
to cipher F and if plain F corresponds to cipher W then the distance between plain A and plain F is the
same as cipher F and cipher W in the original sequence.

Heburn: Five rotors, two ratchet controls. Key: [i, j, k, m, n] and 2 ratchet stepping controls at right and
left (l, r). Rightmost (R5) rotor moved after every enciphered letter. Leftmost (R1) moved when fast rotor
reached position specified by r. a(m) character in line to R5. When the leftmost rotor hit l the middle (R3)
rotor moved one position. Equation: (p)KCiR1C

−iCjR2C
−jCkR3C

−kCmR4C
−mCnR5C

−nL = c, C is the
cyclic in alphabetical order. Solution: c(m) = a(m)C(m+p)R5C

−(m+p)L, d(m, p) = c(m)L−1C(m+p)R−1
5 C−(m+p)

then d(m, p)R−1
5 Cn−mR5 = d(n, p). Practical application relies on the IC for the monoalphabetic substitu-

tion (imagine all the input letters are the same). If i = d(m, p), j = d(n, p) and k = n−m. To remove noise,
tally s′[i, j, k] =

∑
m

∑
n s[i,m, k −m]s[m, j, n], this can be iterated.

Enigma: K: Keyboard. P = (ABCDEFGHIJKLMNOPQRSTUV WXY Z). N : First Rotor. M :
Second Rotor. L: Third Rotor. U : Reflector. Note: U = U−1. i, j, k: Number of rotations of first, second
and third rotors respectively. c = (p)P iNP−iP jMP−jP kLP−kUP kL−1P−kP jM−1P−jP iN−1P−i. Later
military models added plug-board or “Stecker ”(S):

c = (p)SP iNP−iP jMP−jP kLP−kUP kL−1P−kP jM−1P−jP iN−1P−iS−1.

Total key including rotor wiring (in bits): 67.1 + 3 × 88.4 = 312.3. Method of Batons (no Stecker):
Let N be the fast rotor and Z the combined effect of the other apparatus, then, N−1ZN(p) = c at first
letter; assuming other rotor doesnt turn, P−iN−1P iZP−iNP i(p) = c or ZP−iN(p(i))P i = P−iNP ic(i).
Rejewski: Let Q = MLUL−1M−1 = Q−1, the first 6 permutations (used to encrypt settings twice) are:

A = A−1 = SP 1NP−1QP 1N−1P−1S−1, B = B−1 = SP 2NP−2QP 2N−1P−2S−1
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C = C−1 = SP 3NP−3QP 3N−1P−3S−1, D = D−1 = SP 4NP−4QP 4N−1P−4S−1

E = E−1 = SP 5NP−5QP 5N−1P−5S−1, F = F−1 = SP 6NP−6QP 6N−1P−6S−1

Their products and ciphertext (c1c2c3c4c5c6) satisfy:

AD = SP 1NP−1QP 1N−1P 3NP−4QP 4N−1P−4S−1, (c1)AD = c4

BE = SP 2NP−2QP 2N−1P 3NP−5QP 5N−1P−5S−1, (c2)BE = c5

CF = SP 3NP−3QP 3N−1P 3NP−6QP 6N−1P−6S−1, (c3)CF = c6

So we can find AD, BE and CF after about 80 messages. To solve for rotors if S is known. First note
the following Theorem: If two permutations of the same degree consist of disjoint transpositions then
their product contains an even number of cycles of the same length (and conversely) and cillies (guessed
simple indicators like aaa) align cycles. Let U = P−1S−1ASP = PNP−1QPN−1P−1, V = P−2S−1BSP 2,
etc, then V W = NP−1N−1(UV )NPN−1, WX = NP−1N−1(V W )NPN−1, etc. which can be solved for N .

Assume we know all rotor wirings and the plaintext for some received ciphertext. We do not know plugboard,
rotor order, ring and indicator.

Position 123456789012345678901234
Plain Text OBERKOMMANDODERWEHRMACHT
CipherText ZMGERFEWMLKMTAWXTSWVUINZ

Observe the loop A[9] → M [7] → E[14] → A. (E)M7M9M14 = E, where Mi is the effect of the machine at
position i. British Bombe searched probable text for these loop isomorphisms. False alarms have probability
1
26 for each independent loop tested.

3.2 Public Key Systems

RSA: n = pq, choose e, ed = 1 (mod φ(pq)), e is often 216 + 1 for efficiency.

DLP: Given g, h and h = gx, find x. DHP: Given g, a = gx, b = gy, find z = gxy. DDH: Given
g ∈ G, a = gx, b = gy, c = gz, determine if z = xy. DDH ≤ DHP ≤ DLP . Theorem: FACTOR ≤
SQRT ≤ FACTOR. If the RSA problem is hard, then RSA is secure under a chosen plaintext attack. If
DHP is hard, El Gamal is secure under a chosen plaintext attack.

Finding square roots (mod p): We want x : x2 = a (mod p). First check (a
p ) = 1. If p = 3

(mod 4), x = a(p+1)
4 (mod p). If p = 5 (mod 8), b = a(p−1)

4 = ±1 (mod p), then if b = 1, x = a(p+3)
8

(mod p), otherwise, if b = −1, x = (2a)(4a)(p−5)
8 (mod p). This leaves the hard case, p = 1 (mod 8)). The

algorithm of Tonelli and Shanks solves this case (and the others). Again, we want x : x2 = a (mod p). Put
p−1 = 2eq, q, odd. Choose n: (n

p ) = −1, z = nq (mod p), Q = (q−1)
2 . Put y = z; r = e; x = aQ (mod p);

b = ax2 (mod p); x = ax (mod p). Now R = 2r − 1, ab = x2, yR = −1, bR = 1;. Do the following: loop:
if(b = 1) return(x);
Let M = 2m. For smallest m > 0 : bM = 1 (mod p)
if(m = r) return non-residue;
t = y2r−m−1

(mod p); y = t2 (mod p); r = m; x = xt; b = by; goto loop;

Factoring n may be equivalent to computing φ(n) which is equivalent to finding d. Strong primes: p− 1
has a large prime factor r, p + 1 has a large prime factor a, r − 1 has a large prime factor t. Miller-Rabin
has error probability p = 1

4 .

El Gamal: Let g be a generator of F ∗q . A picks a at random, this is A’s secret. User picks k at ran-
dom and sends (gk, Pgka). El Gamal Signature: g is a primitive element Z∗p. (p, g, y = gx) are public, x

is secret. To sign m, pick k: 1 ≤ k ≤ p− 2 with (k, p− 1) = 1. sigK(m, k) = (r, s), r = gk, s = k−1(m−xr).
verk(m, r, s) is true iff yrrs == gm. Note: k must be different for each signature and m must be a hash.
Recommended parameters: > 768 bits. Existential forgery if hash isn’t used in El Gamal: For key elements,
(< Zp >, g, a), pick (u, v), r = gugv = gu+av. s = −rv−1 (mod p− 1), M = su. Note that t = rsyr = gsu.
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Diffie Hellman: Let g be a generator of F ∗q . A generates a ∈ F ∗q at random and transmits ga, B generates
b ∈ F ∗q at random and transmits ga, they use gab as key.

Blinding and E-cash: Let M be a note or check. To blind, generate random k. Let (e, d, n) be the
bank’s key and H, a hash. Send bank r = H(M)ke. Bank sends back rd, now multiply by k−1. For fraud
resistant protocol, do this for a bunch of ks’s. Bank signs one of them.

DSA: Pick p, q, 2159 < q < 2160, 2511+64t < p < 2512+64t, 0 ≤ t ≤ 8 with q|(p − 1). Let x be a primi-
tive root (mod p). Set g = x

p−1
q > 1 (mod q). Finally, pick a at random and set A = ga (mod p).

p, q, g, A are public, a is secret. To sign M : generate random k : k < q. Set r = gk (mod q) and compute
s = k−1(h(M)+xr) (mod q), where h is a cryptographic hash. Signature is (r, s). To verify: u1 = s−1h(M)
(mod q), u2 = s−1r (mod q), v = gu1gu2 (mod p) (mod q). If v = r, it verifies. Unlike El Gamal sig-
nature, s does not carry full information about p (only (mod q)) and since q is large, the Pohlig-Hellman
attack is harder.

Montgomery Arithmetic: Suppose (r, n) = 1; think of r = 2k, 2k < n < 2k+1. R = ab (mod n).
a = ar (mod n). rr′ − nn′ = 1 MontPro(a, b): t = ab; m = tn′ (mod r); u = mn+t

r ; if(u > n) u− = n;
return(u); MontMult(a, b, n): Compute n′ ; a = ar (mod n); b = br (mod n); x = MontPro(a, b);
x = MontPro(x, 1);
return(x).

NAF: Let k =
∑l

j=0 sj2j , sj ∈ {0, 1}, NAF form is k =
∑l+1

j=0 cj2j , cj ∈ {−1, 0, 1}, conversion is achieved
by following algorithm:
c0 = 0;
for(j = 0; j ≤ l; j + +){
cj+1 = b(kj + kj+1 + cj)/2c;
sj = kj + cj − 2cj+1; }

AMD-64 3Ghz dual core timings.

Algorithm KSize T(µ-sec) Cycles Algorithm KSize T(µ-sec) Cycles
ECDSA-SIGN 256 4942 14,827,000 ECDSA-VERIFY 256 9,848 29,546,000
ECDSA-SIGN 384 13,000 38,860,000 ECDSA-VERIFY 384 25,900 77,639,000
ECDSA-SIGN 521 29,500 88,287,000 ECDSA-VERIFY 521 58,900 176,524,000

Algorithm KeySize T(mu-sec) Cycles Algorithm KeySize T(mu-sec) Cycles
DSA-SIG 512 1,077 3,233,000 DSA-VERIFY 512 2,142 6,427,000
DSA-SIG 768 2,332 6,999,000 DSA-VERIFY 768 4,641 13,924,000
DSA-SIG 1024 4,027 12,083,000 DSA-VERIFY 1024 8,015 24,047,000

Algorithm KeySize T(µ-sec) Cycles Algorithm KeySize T(µ-sec) Cycles
RSA-SIGN 1024 3,488 10,465,000 RSA-VERIFY 1024 168 505,000
RSA-SIGN 2048 22,905 68,717,000 RSA-VERIFY 2048 608 1,825,000
RSA-SIGN 3072 72,494 217,491,000 RSA-VERIFY 3072 1,340 4,021,000
RSA-SIGN 4096 168,548 505,664,000 RSA-VERIFY 4096 2,363 7,091,000

Algorithm KeySize T(sec) Algorithm KeySize T(sec)
RSA KeyGen 1024 .37 ECC KeyGen 160 .0053
RSA KeyGen 2048 3.5 ECC KeyGen 224 .0056
RSA KeyGen 3072 11.2 ECC KeyGen 256 .0067

McEliece Cryptosystem: Bob chooses G, an [n, k, d] linear code, G1 = SGP where P is an n × n per-
mutation matrix and S is a k × k invertible matrix. To send a message to Bob, Alice adds an error, e, of
weight t, y = xG1 + e. To decrypt, (1) compute y1 = yP−1 = xSG + e1; (2) apply error decode to y1 to get
x1; (3) compute x0 : x0G = x1; (4) compute x = x0S

−1. Want d to be large. For example, use Goppa code
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(n = 2m, d = 2t + 1, k = n = mt): m = 10, t = 50 to get [1024, 524, 101].

3.3 Symmetric Key Systems

CBC: y0 = IV , yi = EK(xi + yi−1). OFB: z0 = IV , zi+1 = EK(zi), yi = xi + zi. CFB: y0 = IV ,
zi = EK(yi−1), yi = xi+zi. CTR: zi = EK(Nounce||ctr), yi = xi⊕zi. HMAC: (K, m) 7→ h((K⊕a)||h(K⊕
b)||m). GCM: F = GF (2128), p(x) = 2128 + x7 + x2 + x + 1, (z0, y0) = (IV, 0128), (z1, yi) 7→ (zi+1, yi+1) by
zi+1 = πi(zi), if πi(x) = 0, zi ⊕ yi otherwise and yi+1 = yi >> 1 if LSB(yi) = 0 otherwise yi+1 = (yi >>
1)⊕ R, R = [11100001||0120. Define X · Y = (z128, y128). incs(X) = MSBlen(X)−s(X)||[int(LSBs(X)) + 1
(mod 2s)]s.
GHASHH(X), len(X) = 128m: H = EK(0128). Y0 = 0128, Yi+1 = (Yi ⊕Xi+1) ·H. return Ym.
GCTRK(ICB,X): If X is the empty string, then return the empty string as Y . n = d(len(X)/128e. Let
CB1 = ICB, CBi = inc32(CBi−1, i = 1 . . . n. Yi = Xi ⊕ EK(CBi). Yn

∗ = Xi
∗EK(CBi). return Y .

GCM − AEK(IV, P,A): H = EK(0128). If len(IV ) = 96, J0 = IV ||031||1. If len(IV ) 6= 96, let s =
128dlen(IV )/128e − len(IV ), and let J0 = GHASHH(IV ||0s+64||len(IV )64). C = GCTRK(inc32(J0), P ).
Let n Define S = GHASHH(A||0v||C||0u||len(A)64||len(C)64). T = MSBt(GCTRK(J0, S)). return (C, T ).

Recurrence for LFSR of length k: sj = c1sj−1 + . . . cksj−k. Hamming weight: wH(x) = #{n : xn 6=
0}. Modular weight: wM (x) = |x′| where x′ = x (mod 2n) and −2n−1 < x′ ≤ 2n−1. NAF weight:
wNAF (x) = #{i < n : αi 6= 0}. ∆⊕(x, y), ∆+(x, y), ∆±(x, y) are the xor, modular and signed differences
respectively. Distortion for map ϕ: D(ϕ, d1, d2) = supx 6=y

d2(ϕ(x),ϕ(y))
d1(x,y) supx6=y

d1(x,y)
d2(ϕ(x),ϕ(y)) . f(x1, . . . , xn) is

m-correlation immune if I(f(x1, . . . , xn); xi1 , . . . , xim) = 0 for any choice of the ik. This happens when the
boolean spectrum of F (w) is 0 when w has weight ≤ m. Shrinking Generator: Take two LFSR: LFSR1

and LFSR2 synchronously clocked. Use LFSR2(t) in stream when LFSR1(t) = 1. Take LFSRi(t) = xi(t)
for i = 1, 2, . . . , n use f(x1(t), x2(t), . . . , xn(t)) where f is non linear. For k stage shift register design, where
stage i has ni bits of state, keysearch takes 2n0+n+1+...+nk−1 while correlation attack [Example: Geffe com-
biner: f(x, y, z) = xy ⊕ yz ⊕ z], then f(x, y, z) = x with p = 3

4 ] takes 2n0 + 2n+1 + . . . + 2nk−1 .

Let Mj,k(x) =




xj xj+1 xj+2 ... xj+k−1

xj+1 xj+2 xj+3 ... xj+k

... ... ... ... ...
xj+k−1 xj+k xj+k+1 ... xj+2k−2


. If < xi > is generated by an LFSR of length N

but not one shorter then det(Mj,N (x)) = 1 and det(Mj,n(x)) = 0, n > N . If xn+m = c0xn+. . .+cm−1xn+m−1

and c(x) = xm +cm−1x
m−1 + . . .+c0, the associated connection polynomial, is irreducible, then the sequence

repeats at an interval of k = 2m − 1.

Connection polynomial for Ln(~s) is c(x) = 1 + c1x + . . . + clx
l with c(x) = 0 if Ln(~s) = 0. De-

fine dn as nth discrepancy, suppose m is the position of change of length in minimal generating LFSR.
Lm(~s) ≤ Ln(~s) and Lm+1(~s) = Ln(~s). The recurrence is c(n+1)(x) = c(n)(x) − dndm

−1xn−mc(m)(x).
The synthesis algorithm is O(n2). Theorem: A LFSR of length k has maximal period (= 2k − 1) iff
its connection polynomial is primitive. Proof: Let G(x) = a0 + a1x + a2x

2 + . . . + am−1x
m−1 + . . .,

am = c1am−1 + . . . + cma1, etc. We get a recurrence yielding K
1−c(x) , f(x) = 1 − c(x). If sequence is

p, G(x) = (a0+a1x+. . .+am−1x
m−1)+(a0+a1x+. . .+am−1x

m−1)xp+. . . = (a0+a1x+...+am−1xm−1)
1−xp = K

(f(x)) .

Massey’s Lemma: If Ln(~s) generates < s0, . . . , sn−1 > but not < s0, . . . , sn > then Ln+1(~s) ≥ max(Ln(~s), n+
1 − Ln(~s)). Proof: Suppose L generate < s0, s1, . . . , sn−1 > but not < s0, s1, . . . , sn > and let L′ with
L′n+1(~s) = l′ then l′ ≥ n + 1 − l. Proof. If l ≥ n, l′ ≥ 1 so it’s true. If l < n, let ci be the coefficients
of L and c′i, the coefficients of L′. sj +

∑l
i=1 cisj−i = 0 for j = l, l + 1, . . . , n − 1 but not for j = n and

sj +
∑l′

i=1 c′isj−i = 0 for j = l′, l′ + 1, . . . , n so −∑l
i=1 cisj−i =

∑l
i=1 ci

∑l′

k=1 c′ksn−i−k Switching the order
of summation, the second sum is sn which is a contradiction.

Berlekamp-Massey: Given s1, s2, . . . , sn−1 output linear complexity L.

1. C(x) = 1, L = 0, m = −1, b(x) = 1, n = 0.
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2. d = Sn +
∑L

i=1 cisn−i.

3. If (d == 1) t(x) = c(x), c(x)+ = b(x)xn−m) if(L ≤ n
2 ) L = n + 1− L,m = n, b(x) = t(x)

4. n = n + 1;

RC4Init() {
for (i=0; i<256; i++)

s[i]= i;
fill k[] with key repeating

as necessary;
j= 0;
for(i = 0; i<256; i++) {

j= (k[i]+s[i]+j) (mod 256);
swap(s[i], s[j]);
}

i= 0;
j= 0;
}

byte Next() {
i= (i+1) (mod 256);
j= (j+s[i]) (mod 256);
swap(s[i], s[j]);
return(s[(s[i]+s[j]) (mod 256)]);
}

Let Λ(sn) be the associated linear complexity of the sequence < si > of length n and Nn(L) be the number
of sequences of length n with linear complexity L, then Nn(L) = 2Nn−1(L) + Nn−1(n − L), if n ≥ L > n

2 ;
Nn(L) = 2Nn−1(L), if L = n

2 ; and, Nn(L) = Nn−1(L), if n
2 ≥ L ≥ 0. So Nn(L) = 2min(2n−2L,2L−1), if

n ≥ L > 0, Nn(L) = 1, if n ≥ L = 0. E(λ(sn)) = n
2 + 4+R2(n)

18 − 2−n(n
3 + 2

9 ), V ar(Λ(sn)) = 86
81 .

RC4 Weakness: Let Si be the state at time i, N = 2n (n = 8, usually). Let < zi > be the output
sequence. P (z2) = 0) = 2

N . Proof: Suppose S0[2] = 0, S0[1] 6= 2, S0[1] = X, S0[X] = Y . Round
1: i = 1, X = S0[1] + 0. Exchange S0[1] and S0[Y ]. Round 2: i = 2, j = X + S1[2] = X, Output
S1[S1[2] + S1[X]] = S1[X] = 0. So P (zj = 0) ≈ 1

N + 1
N (1− 1

N ) ≈ 2
N . So by Bayes, if z2 = 0, we can extract

byte of state with probability 1
2 .

ANSI 9.17 random stream generator: I = Ek(D). xi = Ek(I ⊗ s) and s = Ek(xi ⊗ s). FIPS
186 One Way Function (OWF): t, c 160 bits. Output G(t, c) where t = H1||H2 . . . ||H5. Pad c with 0s
to get 512 bit block X. Break X into 16 32 bits words x0, . . . , x15 and set m = 1, apply iterative step of
SHA-1.

Dual Elliptic Curve RNG
s[0] in [0,1, ..., #E-1]
output 240 bits
for(i=1 to k {

s[i]= x(s[i-1]P);
r[i]= lsb[240] x(s[i]Q);
}

return(r[1] ... r[k]);

// State for Hash_DRBG
V // seedlen bits
C // seedlen bits
reseedCtr

Hash_DRBG_Instantiate(entBitsIn, nonce,
extraEnt)

seedBits= entBitsIn||nonce||extraEnt;
seed= Hash_df(seedBits, seedlen);
V= seed;
C= Hash_df((0x00||V), seedlen);
reseedCtr= 1;
return;

Hash_DRBG_Reseed(entBitsIn, addInBits)
seedBits= 0x01||V||entBitsIn||addInBits;

seed= Hash_df(seedBits, seedlen);
V= seed;
C= Hash_df((0x00||V), seedlen);
reseedCtr= 1;
return;

Hash_DRBG_Generate(numReqBits, addInBits)
if(reseedCtr>reseedInterval) then

Reseed;
if(addInBits!=NULL)

w= Hash(0x02||V||addInBits);
V=(V+w) mod 2**seedlen;

returnedBits= Hashgen(numReqBits, V);
H= Hash(0x03||V);
V=(V+H+C+reseedCtr) mod 2**seedlen;
reseedCtr= reseedCtr+1;
return returnedBits;

Hashgen(numReqBits, V)
m= reqNumBits/outlen;
data= V;
W= NULL;
for i= 1 to m

w= Hash(data);
W= W||w;
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data= (data+1) mod 2**seedlen;
returnedBits= Leftmost numReqBits

bits of W;
return returnedBits;

Hash_df(inBits, numRetBits):
temp= NULL;
m= numRetBits/outlen;
counter= 8-bit representation of 1;
for i= 1 to len do

temp= temp|| Hash(counter||
numRetBits||inBits);

counter= counter+1;
reqBits= Leftmost numRetBits of temp;
return reqBits;

// State for CTR_DRBG
V // outlen bits
C // keylen bits
reseedCtr
nStrength
fPrediction

CTR_DRBG_Update(provided_data, Key, V):
temp= NULL;
while(len(temp)<seedlen) do

V=(V+1) mod 2**outlen;
outBits= blockEncrypt(Key, V);
temp= temp||ouput_block;

temp= Leftmost seedlen bits of temp;
temp= temp^provided_data;
Key= Leftmost keylen bits of temp;
V= Rightmost outlen bits of temp;
return Key and V;

// Full Entropy
CTR_DRBG_Instantiate(entBitsIn, extraEnt):

// Ensure that the length of
// extraEnt is seedlen bits.
temp= len(extraEnt);
if(temp<seedlen))

extraEnt= extraEnt||
[seedlen-temp] bits of 0;

seedBits= entBitsIn^extraEnt;
Key= [keylen] bits of 0;
V= [outlen] bits of 0;
(Key, V)= Update (seedBits, Key, V);
reseedCtr= 1;
return;

// Derivation function required
CTR_DRBG_Instantiate(entBitsIn, extraEnt):

seedBits= entBitsIn||nonce||extraEnt;
seedBits= Block_Cipher_df(seedBits, seedlen);
Key= 0 of[keylen];
V= 0 of[outlen];
(Key, V)= Update (seedBits, Key, V);
reseedCtr= 1;
return;

// Full entropy
CTR_DRBG_Reseed(entBitsIn, addInBits):
temp= len(addInBits);
if(temp<seedlen), then

addInBits= addInBits||
[seedlen-temp] bits of 0;

seedBits= entBitsIn^addInBits.;
(Key, V)= Update (seedBits, Key, V);
reseedCtr= 1;
return;

// Derivation Function Required
CTR_DRBG_Reseed(entBitsIn, addInBits):
seedBits= entBitsIn||addInBits;
seedBits= Block_Cipher_df(seedBits,

seedlen);
(Key, V)= Update (seedBits, Key, V);
reseedCtr= 1;
return;

CTR_DRBG_Generate(numReqBits, addInBits):
if reseedCtr>reseedInterval, then

reseed;
if(addInBits!=NULL)

temp= len(addInBits);
if(temp<seedlen))

addInBits= addInBits||
[seedlen-temp] bits of 0;

(Key, V)= Update (addInBits, Key, V);
else

addInBits= [seedlen] bits of 0;
temp= NULL;
while(len(temp)<numReqBits) do:

V=(V+1) mod 2**outlen;
outBits= blockEncrypt(Key, V);
temp= temp||outBits;

returnedBits= Leftmost numReqBits of temp;
// Update for backtracking resistance.
(Key, V)= Update(addInBits, Key, V);
reseedCtr= reseedCtr+1;
return returnedBits;

BCC(Key, data):
CV= [outlen] bits of 0;
n= len(data)/outlen;
Split the data into n blocks of outlen bits

forming block[1] to block[n];
for i= 1 to n do

inBlock= CV^block[i];
CV= blockEncrypt(Key,inBlock);

outBits= CV;
Return outBits;

Block_Cipher_df(numRetBits, inBits)
if(numRetBits>maxNumBits), then

return ERROR;
L= len(inBits)/8;
N= numRetBits/8;
S= L||N||inBits||0x80;
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// Pad S with zeros, if necessary.
while(len(S) mod outlen) != 0

S= S||0x00;
temp= NULL;
i= 0;
K= Leftmost keylen bits

of 0x00010203...1D1E1F.
while len(temp)<keylen+outlen)

IV= i||[outlen-len(i)] bits of 0;
temp= temp||BCC(K,(IV||S));
i= i+1;

K= Leftmost keylen bits of temp;
X= Next outlen bits of temp;
temp= NULL;
while len(temp)<numRetBits

X= blockEncrypt(K, X);
temp= temp||X;

reqBits= Leftmost numRetBits of temp;
return reqBits;

MGF property: Given no input and partial output,
remaining output is unpredictable.

mgf1(mSeed, nLen)
1. if (mLen>2^32$, return error
2. T= ||;
3. uL= ceiling(mLen/hLen),

// hLen is length of hash used

4. for(c=0; c<uL;c++)
T= t|| h(mSeed || c);

5. output leading bits

PSS-Encode(M, emBits, salt, sLen)
// M- message
// emBits- bits of EM >= 8 hLen + 8 sLen + 9
1. emLen= ceil(enBits/8);
2. if (l(M)> largest message), return error;
3. mH= h(M)
4. if( emLen < hLen+sLen+2 ), return error;
5. M’= (0x00)^8 || mH || salt
6. H= h(M’);
7. DB= (0x00)^(emLen-hLen-sLen-2)

|| 0x01 || salt
8. dbMask= mgf(H, emLen-hLen-1);
9. maskedDB= DB^dbMask;
10. Set leftmost 8*emLen-emBits to 0 in maskedDB
11. EM= maskedDB || H || 0xbc
12. return EM;

emsa-pkcs(M, emLen)
// emLen= l(EM)>= tLen+11
1. H= h(M)
2. T= hash-prefix || H ; // tLen= l(T)
3. EM= 0x00 || 0x01 || (0xff)^(emLen-tLen-3) || T;
4. return EM;

Blum-Blum-Shub: Select p, q each = 3 (mod 4), n = pq, s ∈ [1, n − 1]-seed, (s, n) = 1 x0 = s2

(mod n) for(i=1 to l) xi = x2
i−1 (mod n) zi = LSB(xi) . Next bit test: Given l bits, no polynomial time

algorithm can predict the l + 1st with probability > 1
2 + ε.

RC6 input: A,B,C,D, r rounds, w-bit round keys in S[0...2r+3].

RC6() {
B= B+S[0];
D= D+S[1];
for(i=1;i<=r;i++) {

t= (B*(2B+1)) <<< lg(w);
u= (D*(2D+1)) <<< lg(w);
A= ((A^t)<<<u)+S[2i];
C= ((C^u)<<t)+S[2i+1];
(A, B, C, D) = (B,C,D,A);
}

A= A+S[2r+2];
C= C+S[2r+3];
}

// Key L[0 to k-1];
RoundKeys(L,S,k) {

S[0]= 0xB7E15163al Elliptic Curve RNG
s[0] in [0,1, ..., #E-1]
output 240 bits
for(i=1 to k {

s[i]= x(s[i-1]P);
r[i]= lsb[240] x(s[i]Q);
}

return(r[1] ... r[k]);

OAEP: Want to send m. Let ρ(r) be a pseudo random number generator initialized with seed r. Calculate
a = ρ(r)⊕m, b = r ⊕H(a). Send E(a||b).

Traitor tracing: y = Π2k
i=1hi

δi . δ is the representation vector with respect to the base h. Convex combi-
nations of representations are also solutions. Generate l ≥ 2k + 2 private keys with security parameter s to
defend against coalition of size k. Choose g, a generator of Gq, ri, i = 1, 2, . . . , 2k at random with hi = gri .
Public key is < y, h1, h2, . . . , h2k > where y = Π2k

i=1hi
αi . Private key is θi with θiγ

(i) a representation of

y. Γ = {γ(1), γ(2), . . . , γ(l)} are public. Each γ(i) =
∑

j γj is a codeword. θi =
P2k

j=1 rjαjP2k
j=1 rjγj

. Encrypt: pick
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a randomly C =< Mya, h1
a, . . . , (h2k)a >. To decrypt C =< C, H1, . . . , H2k >, compute M = S

Uθi
where

U = Π2k
i=1Hi

γi . Tracing: Assume q > max(l, 2k) examine l − 2k − 1× 2k matrix A

A =




1 1 1 ... 1
1 2 3 ... l
12 22 32 ... l2

... ... ... ... ...
1l−2k−1 2l−2k−1 3l−2k−1 ... ll−2k−1




Rowspace ↔ polynomials of degree ≤ l − 2k − 1. Let B be formed by the column vectors b1, b2, . . . , b2k,
the basis of vectors satisfying AX = 0(q). ∃w of Hamming wt ≤ k with vB = d, null space of B ↔ f with
deg(f) ≤ l− 2k− 1 and v−w =< f(1), f(2), . . . f(l) > in all but (at most) k places. Use Berlekamp to find
f from v.

3.4 Public Key Analysis

Generally primality testing is O(nclg(lg(n))) and factoring (Number Theory Sieve) is O(nc(lg(n)
1
3 (lg(lg(n))

2
3 ).

Solovay-Strassen: Choose 1 ≤ a ≤ (n − 1). If ( a
n ) = a

n−1
2 (mod n) then n is prime with probability 1

2 .
Use the following to compute ( a

n ): (1) (m1m2
n ) = (m1

n )(m2
n ), (2) (m

n ) = −( n
m ), if m = n = 1, 3 (mod 4),

(m
n ) = ( n

m ), otherwise, (3) ( 2
n ) = −1, if n = 1, 7 (mod 8), 1, if n = 3, 5 (mod 8), (4) ( 2kt

n ) = ( 2
n )k( t

n ).

Pockington: Let n > 1 and s | (n − 1). Suppose for some a, (1) a
n−1

2 = 1 (mod n), and (2) ∀q, q|s,
(a

n−1
q − 1, n) = 1. Then p | n. So if s >

√
n, n is prime.

Pollard p − 1: (for numbers with a factor, p, where p − 1 factors into small primes). n is B smooth.

Q =
∏

q|B qb
ln(n)
ln(p) c. ∀a, aQ = 1(p), gcd(aQ − 1, n) = d. Q = LCMpi≤B(pi).

Application of Pollard-ρ to discrete log: Let xi+1 = f(xi) and n be the order of the multiplica-
tive group. m = (µ(1 + bλ

µc). For the discrete log problem, h = gx, xm = x2m; tail of length λ, µ is
length of cycle. λ ≤ m < λ + µ. Let S1, S2, S3 partition the multiplicative set, 1 /∈ S2 and define xi+1 =
f(xi) = hxi, xi ∈ S1 xi+1 = f(xi) = x2

i , xi ∈ S2 xi+1 = f(xi) = gxi, xi ∈ S3; ai+1 = ai (mod n), xi ∈ S1

ai+1 = 2ai (mod n), xi ∈ S2 ai+1 = ai + 1 (mod n), xi ∈ S3; bi+1 = bi + 1 (mod n), xi ∈ S1 bi+1 = 2bi

(mod n), xi ∈ S2 bi+1 = bi (mod n), xi ∈ S3 and consider 3-tuples (xi, ai, bi) with (x0, a0, b0) = (1, 0, 0).
Then logg(xi) = ai + bilogg(h) is an invariant of the sequence. When xm = x2m, am + xbm = a2m + xb2m

and x = a2m−am

b2m−bm
.

Quadratic Sieve: Factor Base is BB = {−1, 2, 3, . . . pl}, pl ≤ B. Define a sequence ai = ([
√

n] + i)2 − n.
Set bi = (

√
bnc] + i), b2

i − ai = n. For the ai’s that factor over the base, find a bunch using linear algebra
after taking the log. Then for these ail

’s,
∏

ail
= y2 (mod n), where y is a product of the corresponding

bi’s. Sieving finds B−smooth elements of sequence. Sieving: Fix sieving interval −C ≤ s ≤ C, compute
f(s) = (x + b√nc)2 − n, find s : p | f(s) - i.e.- find roots of f(x) = 0 (mod p), walk through sieving
interval by steps of p for others. Divide each f(s) in sieving interval by the higher dividing power of each p,
ones with 1 or −1 are smooth. Wiedemann algorithm for solving sparse linear equations is Ln[ 12 , 2v + o(1)].
Sieving is O(Ln[ 12 , v + 1

4v + o(1)]/p). Reason: Let ψ(X,Y ) be the number of Y−smooth numbers in [1, X].
Pr(a ∈ [1, X] is Y − smooth) = ψ(X,Y )

X ; expected trials to find one: X
ψ(X,Y ) need about π(Y ) to get enough

for a square and each takes π(Y ) work to test, so the total work is W (X,Y ) = π(Y )2X
ψ(X,Y ) . Minimum occurs

when Y = e
1
2

√
ln(X)ln(ln(X)) and X ≈ n

1
2+ε. Try n = 24961, 157.

Number Field Sieve: F = {p : p ≤ B} want to find a, λ : b = a + Nλ and b is B-smooth so
∏

p ∈ Fpap =∏
p∈F pbp (mod N). Procedure: (1) Fix λ, (2) let Array A have A + 1 0’s, (3) ∀p ∈ F , add lg(p) to all

positions congurent to −λN (mod p) and (4) choose a larger than some threshhold. Construct two monics
of degree d1, d2: f1(m) = f2(m) = 0 (mod N) using the number fields K1 = Q(θ1) and K2 = Q(θ2). We
have two homomorphisms φi : Z[θi] → Z/NZ, with θ1 7→ m. Set S = {(a, b) ∈ Z2 : (a, b) = 1} satisfying∏

S(a−bθ1) = β2 and
∏

S(a−bθ2) = γ2. Then φ1(β)2 = φ2(γ)2 (mod N) and (φ1(β)−φ2(γ)) | N . What’s
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left is to find S, β2, f1 and f2. An algebraic integer is smooth if the the ideal it generates is divisible only
by small primes. Define Fi(X, Y ) = Y difi(X/Y ) then NQ[θi)/Q(a − bi) = Fi(a, b). Use two factor bases

Fi = {(p, θi − r), fi(r) = 0 (mod p)}. Fi(a, b) =
∏

(pj ,r)∈Fi
pj

s
(i)
j . Sieving: (1) fix a, (2) init sieve array

−B ≤ b ≤ B, S[b] = lg(F1(a, b) · F2(a, b)), (3) ∀(p, r) ∈ Fi subtract lg(p) from every element: a − rb = 0
(mod p), (4) the desired b’s are the ones: S[b] ≤ Threshhold.

∏
(a,b)∈S(a − bθi) = I2, I ⊆ Z[θi]. Now find

enough relations such that
∏

S(a− bθ1) = β2, etc.

Example: N = 2902 + 1, f1(x) = x2 + 1, f2(x) = x−m,m = 290. f1(m) = f2(m) = 0 (mod N).

x y N(x− iy) Factors x−my Factors
−38 −1 1445 5 · 172 252 22 · 33 · 7
−22 −19 845 5 · 132 5488 24 · 73

(−31 + i) = −(2 + i)(4 − i)2, −22 + 19i) = −(2 + i)(3 − 2i)2, (−38 + m)(−22 + 19m) = 263274 =
11762 = (31 − 12i)2. φ1(31 − 12i) = 31 − 12m = −3449, (−3449)2 = (1176)2. (N,−3449 + 1176) = 2273,
(N,−3449− 1176) = 37.

Pollard ρ: f(x) = x2 + 1. Compute xi+1 = f(xi). Look at gcd((xi − xj), n) for factors of n. Floyd’s
trick: Compute (xi, x2i) from (xi−1, x2i−2), test (x2i − xi, n). Expected tail length:

√
πn
8 . Expected

loop:
√

πn
2 .

Define Ln[u, v] = evln(n)uln(ln(n))1−u

. Ln[0, v] is polynomial and Ln[1, v] is exponential. Let ψ(x,B) be
the B−smooth numbers ≤ x. Let ε > 0; if x ≥ 10 and w ≤ (ln(x))1−ε, then ψ(x, x

1
w ) = xw−w+f(x,w) and

f(x,w)
w → 0 for w →∞. Result: As n →∞, ψ(na, Ln[u, v]) = naLn[1−u,−(a

v )(1−u)+o(1). For QS: a ≈ 1
2 .

NFS discrete log is Ln[ 13 , (64
9 )

1
3 ]. MPQF: O(e(

√
ln(N)ln(ln(N)))). QS and NFS cross at 350 bits. Results

below. Note: 1MIP − yr = 3.1× 1013 instructions. 120000Mip− years = 55Opteron− 2.2GHz − years.

RSA-129 RSA-130 RSA-200
Date 4/1996 8/1999 5/2005

Time (MIP-years) 500 8,000 120,000
Rows 3.5× 106 6.7× 106 6.4× 107

Non Zero Members 1.4× 108 4.2× 108 1.1× 1010

NZ/R 39 62 171
Linear Algebra (hrs) 68 224 2160

RSA key ECC key Symmetric Key ArithOps SieveMem LAMem
428 110 51 5.5× 1017 2GB 128MB
512 119 56 1.7× 1019 64MB 10GB
768 144 69 1.1× 1023 - -
1024 163 79 1.3× 1026 256MB 100GB
2048 222 109 1.5× 1035 - -

Finding discrete logs using Pohlig-Silver: Let g a generator for Fq. Find x such that gx = y. q − 1 =

p1
α1 . . . pk

αk . First, precompute: ri,j = g
j(q−1)

pi , for j = 1, 2, . . . , p−1. Want to find x (mod pαi), for each p
then use Chinese Remainder Theorem (CRT). x = x0 +x1p+x2p

2 + . . .+xα−1p
α−1. y(q−1)/p = gx(q−1)/p =

rp,x0 . This yields x0. Next put y1 = y
gx0 . This reduces the discrete log over any group order to discrete log

over p. This takes O(
∑

p||G|(e(p)(lg(|G|) +
√

p)) if we use Pollard.

Finding discrete logs using Index Calculus. g a generator for Fq with q = pn. Find x such that gx = y.
Precompute: Let f(x) be an irreducible polynomial of degree n over Fp. Let Bm be the set of irreducible
polynomials of degree ≤ m. Pick random t and compute c(x) = g(x)t = c0

∏
Bm

a(x)αc,a . ind(c(x)) =
ind(c0) +

∑
a∈Bm

αc,aind(a(x)) = t (mod q− 1). Now solve for the ind(a(x)). To compute ind(y(x)), pick
random t and compute y(x)g(x)t =

∏
Bm

a(x)αc,a (mod f(x)). This runs in Lp[ 12 , c + o(1)]. In EF , there
is no good basis corresponding to primes.

Square Roots: Suppose (a
p ) = 1, so that a is a square and let n be a quadratic non-residue (mod p).
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Want to find x: x2 = a (mod p). Set p− 1 = 2αs and put b = ns (mod p) and r = a
s+1
2 . Then a−1r2 is a

2α−1 root of 1 (mod p). b is a primitive 2α−1 root of 1 (mod p) otherwise n would not be a non-residue
now use powers of b to make the x = bjr a perfect square; to do this set j = j0 + 2j1 + . . . + jα−22α−2 and
do the Pohlig routine.

Shanks Baby/Giant: < g >= G. Given y = gx, find x = logg(y). Put m =
√

n, Compute (j, gj)
for j = 1, . . . ,m sorted by second coordinate. Set t ← g−m, s ← y.
For(i=0 to m-1) { /* is s second component?*/ if(s = gj) return(x = im + j); s ← st}. Alternative: Solve
gx = a (mod p). Pick n : n2 ≥ (p − 1) and compute gj (mod p) and ag−nk (mod p) for 0 ≤ j, k ≤ n;
match two lists giving gj = ag−nk (mod p) or gj+nk = a (mod p).

Boneh-Joux attack on El Gamal/RSA with small messages and no preprocessing. Suppose we encrypt
an m bit message M which is small then M is often smooth — i.e. M = M1M2. If the El Gamal system
is < p, g, y = ga > and either the order of g is small (less than p

2m ) or p − 1 = qs and the DL problem is
tractable for subgroups of order s, much of the time (≈ .18) which solves the problem using about 2m/2 ex-
ponentiations. Here is the general problem: Let z ∈ Gq → Z∗p, where Gq is a subgroup of order q; if ∆ < 2m

and u = z∆ (mod p) then given u, find z. Here is a meet in the middle shortcut. Suppose ∆ = ∆1∆2,
∆1 ≤ 2m1 , ∆2 ≤ 2m2 , by tablizing ∆q

1 for possible ∆1’s and trying every possible ∆2 in ( u
∆2

)q = ∆q
1(modp),

we can find ∆ = ∆1∆2 in O(2m1 + 2m2) time and 2m1 space. With m1 = m2 = 32 this can solve for a 64
bit session key with probability about .18.

Defense for Boneh-Joux: OAEP (IND-CCA) c = E(m) = f(a = M ⊕G(r)||b = r ⊕H(a)
REACT: E(m, r||s) : (a = f(x, r), b = k ⊕m, c = H(m,x, a, b), k = G(x). For El Gamal: a = Rand(1..q),
R = Rand(< g >), A = ga, A′ = Rga, k = G(R), B = Ek(m), C = H(R, m, A, a′, B).

n p H(Bn(p)) n p H(Bn(p))
2 .5 2 3 .5 3
2 .60 1.94 3 .60 2.91
2 .75 1.62 3 .75 2.43
2 .80 1.44 3 .80 2.16
2 .90 .93 3 .90 1.4
2 .95 .57 3 .95 .85

λ H(P (λ)) λ H(P (λ))
.5 .91 .60 1.00

.75 1.14 .80 1.18

.90 1.27 .95 1.31

Shamir’s attack on RSA with multiplication bug: Assume the RSA implementation uses the CRT
(which yields a speedup of 4) and let the public key be n = pq with p < q. Suppose that a×b (two 32 bit quan-
tities) is computed incorrectly on a computer with a word size of w bits. We can pick c = b√nc so p < c < q.
Put c = ck2wk +ck−12w(k−1)+ . . .+c12w +c0 and select m such that m = ck2wk +ck−12w(k−1)+ . . .+a2w +b.
Assume we can have the flawed machine compute md (mod n). In the CRT (since p < m < q is likely),
m1 = m (mod q) will be computed correctly but m2 = m (mod p) will be computed incorrectly. Since
a and b are not likely to appear in the representation of m1 but will appear in m2, m1

2 will be computed
correctly but m2

2 will be computed incorrectly. When the combined result y = md (mod n) is computed, y
will likely be correct (mod p) but incorrect (mod q). Thus p | ye−m but p - ye−m and p = (ye−m,n).
Padding interferes with this attack.

Weiner’s attack: |α − p
q | ≤ 1

2q2 with d < 1
3N

1
4 . Put N = pq, q < p < 2q, ed = 1 (mod φ). | eφ − k

d | < 1
dφ

with ed−kφ = 1, |N −φ| = |p+q+1| < 3
√

N so | e
N − k

d | ≤ 3k
d
√

N
< 1

2d2 and k
d arises as a convergent, α = e

N .

Coppersmith: Let f(x) ∈ Z[x] be a monic polynomial of deg(f) = d, N ∈ Z. If ∃x0 : f(x0) = 0
(mod N) with |x0| ≤ X = N

1
d−ε, one can find x0 in time polynomial in lg(N) and 1

ε for fixed d. This can
be used to extend the Franklin Reiter attack.

If f(x) = f0 + f1x + . . . + fdx
d and ∃x0 : f(x0) = 0 (mod n) with |x0| < N

1
d , find x0 efficiently. The idea
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is to find h(x) ∈ Z[x] which shares a root with f (mod n) with ||h||2 =
∑deg(h)

i=0 |hi|2 with ||h|| small.

Lemma: Let h(x) ∈ Z[x], deg(h) ≤ n,X, N ∈ Z>0; suppose ||h(XN)|| < N√
n
; if |x0| < X satisfies h(x0) = 0

(mod N) then h(x0) = 0.

Suppose f(x0) = 0 (mod n) then f(x0)k = 0 (mod Nk). For some m, set gu,v(x) = Nm−vxuf(x)v, 0 ≤
u < d, 0 ≤ v ≤ m then gu,v(x0) = 0 (mod Nm). Fix m, try to find au,v ∈ Z : h(x) =

∑
u≥0

∑m
v=0 au,vgu,v(x)

that satisfies the lemma; that is ||h(xX)|| ≤ Nm√
d(m+1

with h(xX) =
∑

u≥0

∑m
v=0 au,vgu,v(xX) that. Use LLL

for this minimization problem. LLL conditions on < b1, b2, . . . , bn > are µij = <bi,b
∗
i >

<b∗i ,b∗i > , b∗i = bi−
∑

j<i µijb
∗
j ,

||b∗i ||2 ≥ ( 3
4 − µ2

i,i−1)||bi−1||2, if x ∈ L, ||b1|| ≤ 2
m−1

2 ||x||, ||b1|| ≤ 2
m
4 ∆

1
m .

Example: f(x) = x2 + ax + b. Want to find x0 : f(x0) = 0 (mod N). Set m = 2. g00(xX) = N2,
g10(xX) = XN2x, g01(xX) = bN + aXxN + XN2x, g11(xX) = bNXx + aX2x2N + N2X3x3, g02(xX) =
b2+2abXx+(a2+2b)X2x2+2aX3x3+X4x4, g12(xX) = b2Xx+2abX2x2+(a2+2b)X3x3+2aX4x4+X5x45.

A =




N2 0 bN 0 b2 0
0 XN2 aXN bNX 2abX Xb2

0 0 NX2 aNX2 (a2 + 2b)X2 2abX2

0 0 0 NX3 2aNX3 (a2 + 2b)X3

0 0 0 0 X4 2aX4

0 0 0 0 0 X5




. det(A) = N6X15, ||b1|| < 2
3
2 NX

5
2 .

b1 = Au, Bu = (u1, u2, . . . , u6), ||h(xX)|| ≤ N2√
6
, |x0| ≤ X = N

2
5

48
1
8

and |x0| < N .39.

Common Modulus attack: Suppose (e1, e2) = 1 and m is encrypted both with an < n, e1 > scheme and
a < n, e2 > scheme; let c1 = me1 (mod n) and c2 = me2 (mod n) with d1e1 +d2e2 = 1 then m = c1

d1c2
d2 .

Small exponent attacks: Suppose e = 3 and c1 = m1
e, c2 = m2

e with m2 = m1 + δ, where δ is
known. Put F (x) = xe − c1 (mod n) and G(x) = (x + δ)e − c2 (mod n) then (x−m) | (F (x), G(x)) and
we can recover m. Now if δ is unknown but |δ| < n

1
9 and there is an algorithm, A (e.g.- Coppersmith’s

algorithm), that can find the roots, α of f(x) = 0 (mod n) when |α| < n
1
9 , the foregoing attack can be

extended. To do this, consider F (x) = xe− c1 (mod n) and G(x, y) = (x+y)e− c2 (mod n) and compute
the resultant h(y) = Res(F, G) in the ring Zn[y]; note h has a root, δ.

3.5 Lattice Methods

LLL: F(A) = {α1a1 + ... + αnan : 0 ≤ ai ≤ 1} then vol(F(A) = det(A). Reduced basis: µij < 1
2 ,

||b∗i ||2 ≤ 4
3 ||bi+1(i)||2. Let (b1, ..., bn) be a reduced basis of L then ||b1|| ≤ 2

n−1
2 λ(L).

LLL motivation: AU = B has a solution iff M =
(

I 0
A −B

)
and M [U, 1]T = [U, 0]T has a solution

with U a 0, 1 vector. Since ||[U, 0]T || ≤ n, a short vector in the lattice generated by the column space of M
is likely to be close to a solution of AU = B. Let L be a lattice generated by M , vol(L) = |det(M)| Not all
lattices are generated by linearly independent vectors; for example < (1, 2), (1, 1), (2, 1) >.

Lattices in 2 dimensions (vectors are columns) [a, b] is reduced iff ||a|| ≤ ||b|| and ||a||, ||b|| ≤ ||a +
b||, ||a− b||. Lemma: If ||x|| ≤ ||x + y|| then ||x + y|| ≤ ||x + αy||, α > 1. Let λk = minx|{v ∈ L(B)− {0} :
||v|| ≤ x}| ≥ k (so λ1 is the shortest vector in the lattice.) Theorem: If a, b is a basis, ||a|| = λ1, ||b|| = λ2

iff [a, b] is a reduced basis. Gauss algorithm: (1) Find µ: ||b − µa|| is minimal. (2) if ||a − b|| > ||a + b||
replace b with −b. (3) if [a, b] is not reduced, swap a and b and go to 1. Note: LLL Gives an approximation
to reduced basis n > 2.

Definitions: πi(x) =
∑

j≤i

<b∗j ,x>

<b∗j ,b∗j >b∗j , b∗i = π(bi). dxc is integer closest to x. B = [b1, b2, . . . , bn] ∈ Rm×n is
LLL reduced with respect to δ if

1. |µi,j | ≤ 1
2 , i > j.
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2. δ||π(bi)||2 ≤ ||πi(bi+1)||2 (same as δ||b∗i ||2 ≤ ||b∗i+1 + µi+1,ib
∗
i ||2).

Note: For δ = 1 this just means πi[bi, bi+1] is reduced. Also observe that (δ − 1
4 )||b∗i ||2 ≤ ||b∗i+1||2. So

λ1 ≥ min||b∗i || ≥ 1
α

n−1
2 ||b1||, α−1 = δ − 1

4 .

LLL single step for δ = 1
4 :

1. b∗i = bi −
∑

j<i b∗j where µi,j = d<bi,b
∗
j >

<b∗j ,b∗j >c.

2. if δ||πi(bi)||2 > ||πi(bi+1||2, swap bi and bi+1 and repeat reduction step.

Note: Terminates because det(B)2 ∈ Z decreases by at least δ at each step.

LLL Theorem: Let L ⊆ Rn be a lattice with reduced basis (b1, b2, . . . , bn) then (a) ∀x ∈ L, ||bj || ≤ 2
n−1

2 ||x||
and (b) replace x by max of t linearly independent vectors.

K is convex and symmetric iff x, y ∈ K implies ax + by ∈ K provided |a| + |b| ≤ 1. Minkowski: Let L
be a lattice of rank r. Let v1 be the shortest vector, vi the shortest vector independent of < v1, . . . , vi−1 >,
then |v1||v2| . . . |vr| ≤ 2r

vol(Br)d(L) where vol(Br) = π
r
2

Γ(1+ r
2 )) .

Minkowski’s theorem on linear forms: Let Λ ∈ RN and L1, . . . , LN be linear forms with associated
matrix C; if det(C)d(λ) ≤ ε1ε2 . . . εN , there is a lattice point λ 6= 0 such that |Lm(λ)| ≤ εm. Corollary:
∃l : Lm(l) ≤ (det(C))

1
N .

Low density subset sum.
∑

aisi = s look at matrix formed by In with bottom row ( 1
2 , . . . , 1

2 ,ms) and
first n entries in rightmost columns (ma1,ma2, . . . , man). Round.

Weakness due to partial knowledge: If n = pq has m bits and we know the first or last m
4 bits of

p, then n is easy to factor. If plaintext is short, match cx−e = ye to get c = (xy)e (mod n). If q < p < 2q

and 1 ≤ d, e < ψ(n) with de = 1 (mod ψ(n)) and d < 1
3n

1
4 then d can be found easily.

Attack on RSA using LLL: Suppose message is of the form “M xxx” where only ‘xxx’ varies (e.g.-
“The key is xxx”). Thus the message is of the form B + x where B is fixed and |x| < Y . c = (B + x)3

(mod n) and f(T ) = (B + T )3 − c = T 3 + a2T
2 + a1T + a0 (mod n). We want to find x : f(x) = 0

(mod n). Let v1 = (n, 0, 0, 0), v2 = (0, Y n, 0, 0), v3 = (0, 0, Y 2n, 0), v4 = (a0, a1Y, a2Y
2, Y 3). Then

||b1|| ≤ 2
3
4 |det(v1, v2, v3, v4)| = 2

3
4 n

3
4 Y

3
2 . b1 = c1v1 + . . . + c4v4 = (e0, Y e1, Y

2e2, Y
3e3); e0 = c1n + c4a0,

e1 = c2n + c4a1, e2 = c3n + c4a2, e3 = c4, and g(T ) = e3T
3 + e2T

2 + e1T + e0. Since f(x) = 0 (mod n)
and c4f(T ) = g(T ) (mod n), 0 = c4f(x) = g(x) (mod n). If Y < 2

7
6 n

1
6 , |g(x)| ≤ 2||b1|| (use C-S) but

||b1|| ≤ 2−1n so |g(x)| < n and g(x) = 0 yielding 3 candidates for x. Coppersmith extended this to small
solutions of polynomials of degree d using a d + 1 dimensional lattice by examining the monic polynomial
f(T ) = 0 (mod n) of degree d when |x| ≤ n

1
d .

3.6 Symmetric Key Analysis

DES S Box Criteria: (1) S is not linear or affine in the inputs, (2) changing 1 bit of input changes
at least 2 bits of output, (3) minimize differences between 1s and 0s if one input bit is held constant,
(4)Ham(S(x)⊕ S(x⊕ 001100)) > 1, and (5) S(x) 6= S(x⊕ 11ab00).

Differential cryptanalysis: Notation: x → y, p means input difference x produces output y with prob-
ability p. If x′ → y′ and Dj(x′, y′) = {u : Sj(u) ⊕ Sj(u ⊕ x′) = y′} then x ⊕ k ∈ Dj(x′, y′), and
k ∈ Dj(x′, y′) ⊕ x. Set τj(x, x′, y′) = {k : k ∈ Dj(x′, y′) ⊕ x} and testj(Ej , Ej

∗, C ′j) = τj(Ej , Ej ⊕ E∗
j , C ′j).

Note: some candidate keys will scritch. To convert from chosen to known attack, select 232
√

2m pairs,
about m of these will have the right difference x produces output y with probability p. If x′ → y′

and Dj(x′, y′) = {u : Sj(u) ⊕ Sj(u ⊕ x′) = y′} then x ⊕ k ∈ Dj(x′, y′), and k ∈ Dj(x′, y′) ⊕ x. Set
τj(x, x′, y′) = {k : k ∈ Dj(x′, y′)⊕ x} and testj(Ej , Ej

∗, C ′j) = τj(Ej , Ej ⊕ E∗
j , C ′j).
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3-round Attack: (L0, R0), R3 = L2 + f(R2, k3) = L0 + f(R0, k1) + f(R2, k3). Choose R0
′ = 000000, so

that f(R0, k1) + f(R∗0, k1) = 0, get R′3 = L′0 + f(R2, k3) + f(R∗2, k3). Set C ′ = P−1(R′3 + L′0) which is the
output xor for round 3. Compute E = E(L3), E∗ = E(L∗3). Calculate testj(Ej , Ej

∗, C ′j), for j= 1,2,...,8
after choosing plaintexts. Can do this since R2 = L3 is known. Not that key bits overlap on initial and final
rounds and must satisfy both conditions. Best differential cryptanalysis attack on DES uses two 13 round
differentials in a 2R attack.

6-round Attack: Use L′0, R
′
0: 0x40080000, 0x40000000, L′1, R

′
1: 0x40000000, 0x00000000, p = .25; L′2, R

′
2:

0x00000000, 0x40000000, p = 1; L′3, R
′
3: 0x40000000, 0x40080000, p = .25.

R6 = L5 + f(R5,K6) = R4 + f(R5,K6) = L3 + f(R3,K4) + f(R5,K6). Estimate L′3 = 0x04000000 and
R′3 = 0x40080000 with p = 1

16 . Use this to estimate input xor for S-boxes of round 4. Get C ′1C
′
2...C

′
8 =

P−1(R′6 + 0x04000000) and E′
1E

′
2...E

′
8 = E(R5) = E(L6). Now compute testj(Ej , Ej

∗, C ′j), for j= 2,5,6,7,8.
Right pair follows characteristic. Right pairs bump count for correct key bits, wrong pairs are random. Filter:
If |testj(Ej , Ej

∗, C ′j)| = 0, for any j= 2,5,6,7,8, this is a wrong pair. 2
3 of the wrong pairs are detected this

way, so ratio of right pairs remaining is
1
16

1
16+ 15

16× 1
3

= 1
6 . Number of suggested pairs is Π|testj(Ej , Ej

∗, C ′j)|,
for j= 2,5,6,7,8, correct values will be suggested 3n

16 times; incorrect strings at random among approx 230

values. Let Tj be the counter vector of length 64. For each pair compute T i
j , j= 2,5,6,7,8, 1 ≤ i ≤ n. For

I ⊆ {1, 2, . . . n}, ∑
i∈I T i

j . There should be some I of size about 3n
16 where all of the indexes have 1 in the

vector. This is the suggested key.

Another 3-Round Characteristic: L′0, R
′
0: 0x00200008, 0x00000400, L′1, R

′
1: 0x00000400, 0x00000000, p =

.25; L′2, R
′
2: 0x00000000, 0x00000400, p = 1; L′3, R

′
3: 0x00000400, 0x00200008, p = .25.

Linear cryptanalysis: α · P + β · C = γ · C with p = 1
2 + δ requires about cδ−2 plaintexts. Last

round estimation: L(P ) + M(C) + N(Pn−1,Kn) = P (K) then use MLE: T= # plain cipher pairs = 0 if
|Tmax − N

2 | > |N2 − Tmin| and p > .5, guess P (K) = 0. Best demonstrated effect on DES is 242.6.

3-round: PL[7, 18, 24, 29] + CL[7, 18, 24, 29] + PR[15] + CL[15] = K1[22] + K3[22].
8-round: PL[7, 18, 24]+PR[12, 16]+CR[7, 18, 24, 29]+CL[15]+F8(CR,K8) = K1[19, 23]+K3[22]+K4[44]+
K5[22] + K7[22].

Gradual exercises: Analyze 8 round RC5 with no rotation, 8 round RC5 with rotation equal to round
number, 12-round DES with no S-box, 4 round DES, 6 Round DES. Best Linear attack on DES uses a 14
round differential with bias 2−21.75 forward and reverse and uses 243 corresponding pairs with .85 probability
of success.

An encryption scheme, E, is semantically secure if ∀A, ∃B such that ∀f, h, f, h : {0, 1}∗ → {0, 1} and
all ensembles {Xn} where Xn {0, 1}n2

, Pr[A(E(Xn), h(Xn)) = f(Xn)] < Pr[B(h(Xn)) = f(Xn))] + µ(n)
where µ is negligible. A deterministic PT algorithm G is pseudo-random if ∃l : N → N , so that for any
probabilistic PT algorithm D, and any positive polynomial P and all sufficiently large k, |Pr[D[G(Uk)) =
1]− Pr[D(Ul(n)) = 1]| < 1

p(k) . (l is a stretching function.)

A linear trail is U = (u(0), u(1), . . . , u(r)) associated with a composite function β = ρ(r)ρ(r−1) . . . ρ(1)

with correlation contribution at each step of C((u(i))T ρ(i)(a), u(i−1)a) and overall correlation of Cp(U) =∏
i C

(ρ(i))

u(i),u(i−1) .

Theorem: C(uT β(a), wT a) =
∑

U,u(0)=u,u(r)=w Cp(U).

Some rules for Walsh transforms: Vf = {w : f(w) 6= 0} is called the support for f . Computing
Walsh transforms of composite functions is easier if the components have non-intersecting support (as they
do it they depend on different variables); in that case, Vf ∩Vg = ∅ trivially. If w ∈ Vf and h(x) = g(x)+wT x,
H(u) = G(w ⊕ u). If Vf ∩ Vg = ∅ then u ∈ Vg, H(u + w) = F (w)G(u).

“Bricklayer” functions: If

h(a(1), . . . , a(n)) = (h(1)(a(1), a(2), . . . , a(n)), h(2)(a(1), a(2), . . . , a(n)), . . . , h(n)(a(1), a(2), . . . , a(n))),
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then C
(h)
uv =

∏n
i=1 C

h(i)
u(i),v(i). Truncating Function: Let a′ = h(r)(a) taking GF (2)n−1 → GF (2)n be

defined by a′i = ai for i 6= s and a′s = ε ⊕ vta ⊕ as where vT a = ε defined the restriction. Then C
(hr)
w,w = 1,

C
(hr)
v⊕w,w = (−1)ε, ∀w : ws = 0; note there are two non-zero entries both of amplitude 1. If C ′ = CC(h(r)

,
C ′u,w = Cu,w ⊕ (−1)εCu,v⊕w if ws = 1 and 0 if ws = 0.

For key alternating ciphers, Cp(U) =
∏

i(−1)(u
(i))T k(i)

Cu(i),u(i−1) = (−1)dU⊕
L

i(u
(i))T k(i) |Cp(U)|. Put

si = UT K ⊕ dU , C(vT · β(a), wT a) =
∑

U,u(0)=u,u(r)=w(−1)dU⊕UT K |Cp(U)|. Cp(U) = (−1)siCi, averaging
over the round keys we get E(C2

t ) = 2−nK
∑

k(
∑

i(−1)siCi)2. After reduction, average correlation potential
is E(C2

t ) =
∑

i C2
i , note that CiCj = 2nK δ(i⊕ j).

For key schedule K = Mκk, E(C2
t ) = 2−nK

∑
i

∑
j(

∑
k(−1)(dUi

⊕dUj
)T Mκk⊕dUi

⊕dUj )CiCj . The inner sum
simplifies to (−1)dUi

⊕dUj 2nK δ(MT
κ (Ui ⊕ Uj)). If key schedule is not linear K = fκ(k), the coefficient of the

mixed term is (−1)(Ui⊕Uj)
T fκ(k)⊕dUi

⊕dUj .

Multiround linear expressions correspond to linear trails. Generally, |Cp(U)| is independent of round key
but this is not the case in DES because of the shared bits between S-boxes. 32 bit input parities before E
give rise to α 22l-48 bit patterns. If l is the number of pairwise neighboring S-boxes, we can do this in16l
multiplications and additions. The probability that a multiround expression holds is 1

2 (1 + Cp(U)) for the
associated trail.

Question: Is there an easy to compute function, TK , obviously non-linear, so that TKEKT−1
K has good

linear approximations? How do you find such TK? Finding the best approximation reduces to finding an
orthogonal transformation that maximizes the largest entry. Suppose T is such a matrix; if T has all bad
affine approximations is it possible that there is another orthogonal transformation, R with TR = R−1TR
such that maxij(|(TR)ij |) > maxij(|(T )ij |)? If ρ1, ρ2, . . . , ρn is a series of such transformations (like the
iterated components of a block cipher), note that R−1EK(x)R = R−1ρ1RR−1ρ2R . . . R−1ρnR thus raising
the possibility of better “per round” approximations on a related cipher.

Here is a motivating example in R3: R =




cos(ϕ) sin(ϕ) 0
−sin(ϕ) cos(ϕ) 0

0 0 1


, T =




1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)


 and

R−1TR =




cos2(ϕ) + cos(θ)sin2(ϕ) cos(ϕ)sin(ϕ)− cos(θ)cos(ϕ)sin(ϕ) −sin(ϕ)sin(θ)
−cos(ϕ)sin(ϕ) + cos(θ)cos(ϕ)sin(ϕ) sin2(ϕ) + cos(θ)cos2(ϕ) sin(ϕ)sin(θ)

sin(ϕ)sin(θ) −cos(ϕ)sin(θ) cos(θ)




NL(f) ≤ 2n−1 − 2
n
2−1, NL(f) ≤ 2n−1 +

√
2n + maxe 6=0(F (De(f))), where Def = f(x)⊕ f(x⊕ e).

Prolog to computing DES correlation matrix: Let f(x1, x2, x3, x4) = (x1+f1(x3, x4), x2+f2(x3, x4), x3, x4)
(first position most significant) then, with least significant positions indexing rows and columns, and Fi(w)
as the Walsh transform for fi(x3, x4) and H(w) the Walsh transform of h(x) = f1(x) + f2(x). Bit positions
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in this example are (x1, x2, x3, x4).

C(f) =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 F2(0) F2(1) F2(2) F2(3) 0 0 0 0 0 0 0 0
0 0 0 0 F2(1) F2(0) F2(3) F2(2) 0 0 0 0 0 0 0 0
0 0 0 0 F2(2) F2(3) F2(0) F2(1) 0 0 0 0 0 0 0 0
0 0 0 0 F2(3) F2(2) F2(1) F2(0) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 F1(0) F1(1) F1(2) F1(3) 0 0 0 0
0 0 0 0 0 0 0 0 F1(1) F1(0) F1(3) F1(2) 0 0 0 0
0 0 0 0 0 0 0 0 F1(2) F1(3) F1(0) F1(1) 0 0 0 0
0 0 0 0 0 0 0 0 F1(3) F1(2) F1(1) F1(0) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 H(0) H(1) H(2) H(3)
0 0 0 0 0 0 0 0 0 0 0 0 H(1) H(0) H(3) H(2)
0 0 0 0 0 0 0 0 0 0 0 0 H(2) H(3) H(0) H(1)
0 0 0 0 0 0 0 0 0 0 0 0 H(3) H(2) H(1) H(0)




Feistel: A typical round of DES consists of two involutions: τ and σk. σk(L,R) = (L ⊕ f(R, k), R),
f(x, k) = PS1S2 . . . S8(E(x) + k)). τ(L,R) = (R,L). First “line” of σk is y9 = x9 ⊕ S1

1(x64 + k1, x33 +
k2, x34 +k2, x35 +k2, x36 +k2, x37 +k2), y17 = x17⊕S2

1(x64 +k1, x33 +k2, x34 +k2, x35 +k2, x36 +k2, x37 +k2),
y23 = x23⊕S3

1(x64 +k1, x33 +k2, x34 +k2, x35 +k2, x36 +k2, x37 +k2), y31 = x31⊕S4
1(x64 +k1, x33 +k2, x34 +

k2, x35 + k2, x36 + k2, x37 + k2).

Suppose τ(x1, x2, x3, x4) = (x3, x4, x1, x2), with position (0001) representing x4, then

C(τ) =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




.

The column order from left to right in the forgoing is: 1, (x4), (x3), (x4, x3), (x2), (x4, x2), (x3, x2),
(x4, x3, x2), (x1), (x4, x1), (x3, x1), (x4, x3, x1), (x2, x1), (x4, x2, x1), (x3, x2, x1), (x4, x3, x2, x1) correspond-
ing to the ordered sequence 0000, 0001, 0010, . . .. The row order from top to bottom is 1, (x2), (x1), (x2, x1),
(x4), (x4, x2), (x4, x1), (x4, x2, x1), (x3), (x3, x1), (x3, x2), (x3, x2, x1), (x3, x4), (x3, x4, x2), (x3, x4, x2),
(x3, x4, x1), (x3, x4, x2, x1).

Todo: Best Approximation of degree two. Correlation of decomposed function (g(x1, x2, . . . , xk, h(xk+1, . . . , xn))).
Minimum distance.

Standard Functions: For h(x) = x ⊕ k, C
(h)
u,u = (−1)uT ·k. For h(x) = Mx ⊕ w, C

(h)
u,w = δ(MT u ⊕ w).

ĉfg = 2−n
∑

a(−1)f̂(a)ĝ(a+b), r̂f = ĉff .

Theorem: All correlation matrices are doubly stochastic and orthogonal. Correlation matrices for in-
volutions are symmetric.
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To calculate the round correlation for DES, decompose it into three involutions. The first, adds output from
odd numbered S-boxes but is otherwise the identity. The second, adds output from even numbered S-boxes
but is otherwise the identity. The third transposes L and R. The first and second involutions don’t overlap on
input variables to the SBoxes so the Walsh transforms of components of the S-Boxes are all that is needed. In
both the first and second transformations, each position affected by an S-box is multiplied by (−1)wT ·k (i.e. -
±1) for the relevant round keys. Thus, if σk(L,R) = (L⊕f(R, k), R), f(x, k) = PS1S2 . . . S8(E(x)+k)), the
first “line” is y9 = x9⊕S1

1(x64+k1, x33+k2, x34+k2, x35+k2, x36+k2, x37+k2), y17 = x17⊕S2
1(x64+k1, x33+

k2, x34 +k2, x35 +k2, x36 +k2, x37 +k2), y23 = x23⊕S3
1(x64 +k1, x33 +k2, x34 +k2, x35 +k2, x36 +k2, x37 +k2),

y31 = x31 ⊕ S4
1(x64 + k1, x33 + k2, x34 + k2, x35 + k2, x36 + k2, x37 + k2). Tr(C(AES)) is the number of fixed

points of AES. Since Tr(AB) = Tr(BA), Tr(C(AES)) = Tr(C(k14)C(k13) . . . C(k1)C(RS)(C(MRS))13).

The difference propagation probability denoted by Rp(a′ →h b′) is Probh(a′, b′) = 2−n
∑

a δ(b′ + h(a + a′) +
h(a)); we have 0 ≤ Rp(a′ →h b′) ≤ 1. The restriction weight is defined as wr(a′ →h b′) = −lg(Rp(a′ →h b′))
(restriction weight reflect loss of entropy). wc(U) = −lg(|Cp(U)|) (correlation weight). For bricklayer func-
tion, Probh(a′, b′) =

∏
i Probh(i)(a′(i), b

′
(i)) and wr(a′, b′) =

∑
i wr(a′(i), b

′
(i)).

Theorem: Probf (a′, 0) = 1
2 (1 +

∑
w(−1)wT a′F (w)2). The differential probability and correlation potential

table of a boolean function satisfy Prob(a′, b′) = 2−m
∑

u,w(−1)wT a′⊕uT b′C2
u,w.

A differential trail, Q = (q(0), q(1), . . . , q(r)) with steps (q(i−1), q(i)) having weight wρ(i)

r (q(i−1), q(i)) have
trail weight wr(Q) =

∑
i wρ(i)

r (q(i−1), q(i)). Prob(a′, b′) =
∑

q(0)=a′,q(r)=b′ Prob(Q). For a differential trail,
Q, with weight < (n− 1), Prob(Q) ≈ 2−wr(Q). For a differential trail, Q, with weight wr(Q) > (n− 1), for
expected proportion 2n−1−wr(Q) of keys, there will be a right pair.

∑
b′ Rp(a′ →h b′) = 1. Rp(a′ →h b′) =

2−n
∑

u,w(−1)wa′+ub′(Cu,w)2 and dually C2
u,w = 2−n

∑
a′,b′(−1)wa′+ub′Rp(a′ →h b′).

Block cipher design: To eliminate low weight trails, there are two strategies: (1) Choose S-boxes with
difference propagations that have high restriction weight and input-output correlations with high correla-
tion weights; or, (2) Design round transformations so that only trails with many S-boxes occur. Linear
cryptanalysis requires correlation > 2−

nb
2 over most rounds. This can’t happen if we choose the number of

rounds so that there are no such linear trails with correlation contribution > n−1
k 2−

nb
2 Each output parity

is correlated to an input parity since
∑

w F (w)2 = 1 but if it occurs by constructive interference over many
trails that share input/output selection then any such must be the result of at least nk linear trails which
are unlikely to be key dependent. Differential cryptanalysis requires input to output difference propagation
with probability > 21−nb . If there are no differential trails with low weight, difference propagation results
from multiple trails which again will not likely be key dependent.

Design strategy for Rijndael: Choose number of rounds so that there is no correlation over all but
a few rounds with amplitude significantly larger than 2−

nb
2 by insuring there are no linear trails with corre-

lation contribution above nk
−12−

nb
2 and no differential trails with weight below nb.

Examine round transformations ρ = λ ◦ γ, where λ is the mixing function and γ is a bricklayer func-
tion that acts on bundles of nt bits. Block size is nb = mnt. The correlation over γ is the product of
correlations over different S-box positions for given input and output patterns. Define weight of correlation
as −lg(Amplitude). If output selection pattern is 6= 0, the S-box is active. Looking for maximum amplitude
of correlations and maximum difference propagation probability. The weight of a trail is the sum of the
weights of the selection patterns or the sum of the active S-box positions it is greater than the number of
active S-boxes times the minimum correlation weight per S-box. Wide trail: design round transformations
so there are no trails with low bundle weight.

Define wb(a) as the bundle weight of a. Bd(φ) = mina,b 6=a(wb(a ⊕ b) + wb(φ(a) ⊕ φ(b))). Bl(φ, α) =
minα,β,C(αT x,βT φ(x))6=0(wb(α) + wb(β)). Theorem: In an alternating key block cipher with γλ round func-
tions, the number of active bundles in a two round trail is ≥ the bundle branch number of λ. If ψ = γΘγλ is
a four round function, B(ψ) ≥ B(λ)×Bc(Θ) where B can be either the linear or differential branch number.
The linear and differential branch numbers for an AES round is 5.
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Linearized polynomial: L(x) =
∑t

i=0 βix
2i

, β ∈ GF (2n). Discrete Fourier Transform: Ak =∑
[f(x) + f(0)]x−k, f(x) =

∑
Akxk. A2ik = A2i

k . Coset leaders: Cs = {s, 2s, 22s, . . . , 2ns−1s}, coset
leader s is smallest: s = s2ns−1 (mod 2n − 1). For any non-zero function f : GF (2n) → GF (2) can be
represented as f(x) =

∑
k∈Γ(n) Trnk

1 (Akxk) + A2n−1x
2n−1 where Γ(n) are the coset leaders (mod 2n − 1),

nk | n and Trnk
1 (x) is the trace function from GF (2nk) → GF (2). Let α be a primitive element of GF (2n)

and f(0) = 0 with at = f(αt), t = 0, 1, 2, . . . , 2n − 1, x = x0 + x1α + x2α
2 + . . . + xn−1α

n−1.

Any function f : GF (2nk) → GF (2) corresponds to a binary sequence with period N | 2n − 1; TBD—
what is k. Hadamard-Walsh: f̂(λ) =

∑
x∈GF (2n)(−1)Tr(λ·x)+f(x). Polynomials →eval Periodic sequences

↔trace Boolean Functions.

Low degree approximations ∃g 6= 0 : fg = 0 and fg has low degree deg(fg) ≥ deg(f). |Sd| =
∑d

i=0

(
n
i

)
.

Let f be a boolean function of n variables. The annihilator ideal of f , AN(f) = {g : g(x)f(x) = 0}, ∀x ∈
GF (2n), ANd(f) = {g ∈ AN(f) : deg(g(x)) ≤ d}. The algebraic immunity, AI(f) is the smallest degree
non-zero polynomial in AN(f) ∪AN(1 + f). AI(f) ≤ dn

2 e.

Suppose L is an n-bit NLFSR based filter generator with filter function f and that L takes the current n-bit
state to the next n-bit state. Suppose the initial state is ~x0. Then the generated keystream is st = f ◦Lt( ~x0).
st = 1 if ∃g ∈ ANd(f) : g ◦ Lt( ~x0) = 0, st = 0 if ∃h ∈ ANd(1 + f) : h ◦ Lt( ~x0) = 0. Collect all functions of
degree ≤ d for N known keystream bits; then, (1) g ◦ Lt(x1, x2, . . . , xn) : ∀g ∈ ANd(f),∀0 ≤ t < N : st = 1;
and, (2) h ◦ Lt(x1, x2, . . . , xn) : ∀g ∈ ANd(1 + f), ∀0 ≤ t < N : st = 0. Using linearization to solve these
equations, requires identifying the subset of monomials forming a linear system of up to

∑d
i=1

(
n
i

)
variables.

Gaussian reduction on this system takes time O((
∑d

i=1

(
n
i

)
)ω) ≈ nωd where ω ≈ 2.37 and the the number of

monomials is ≈ 2nd

d!(dim(ANd(f))+dim(ANd(1+f))) .

Akelarre: Akelare; Rounds 0 ≤ R < R. (B0, B1, B2, B3) = (A0, A1, A2, A3) <<< K13r+4[25, 26, . . . , 31].
Initial Prep: Ij = Xj = Kj . Round r: (I ′0, I

′
1, I

′
2, I

′
3) = (I0, I1, I2, I3) <<< K13r+4[25, 26, . . . , 31]. AR(I ′0 ⊕

I ′2, I
′
1⊕I ′3) = aL||aR. O0 = I ′0⊕aR, O1 = I ′1⊕aL, O2 = I ′2⊕aR, O3 = I ′3⊕aL. Final Out: Yj = I ′j+K13R+5+j .

Todo: describe AR.

FEAL-4: 32 bit blocks, 64 bit keys. Four round Feistel with input/output whitening. Key, K, is used
to generate 12 16-bit keys K0, K1, . . . , K11. To define the key schedule and the round function F put
G0(a, b) = (a + b (mod 256)) <<< 2, G1(a, b) = (a + b + 1 (mod 256)) <<< 2. Key Schedule: Define
fK : Z32

2 × Z32
2 → Z32

2 as follows: fK(a, b) = c, a = a0||a1||a2||a3, b = b0||b1||b2||b3, c = c0||c1||c2||c3, then
d1 = a0⊕a1, d2 = a2⊕a3, c1 = G1(d1, a2⊕b0), c2 = G0(d2, c1⊕b1), c0 = G0(a0, c1⊕b2), c3 = G1(a3, c2⊕b3).
Then put B−2 = 0, B−1 = KL, B0 = KR, and Bi+1 = fK(Bi−2, Bi−1 ⊕ Bi−3, K2(i−1) = (Bi)L, K2i−1 =
(Bi)R. Encryption: If PL, PR is the cipher input and CL, CR is the cipher output, L0 = PL ⊕ (K4||K5) and
R0 = L0 ⊕ PR ⊕ (K6||K7). Each round is defined as: Ri+1 = Li ⊕ F ((K2(i−1)||K2i−1)⊕Ri) and Li+1 = Ri.
F is defined by: F (x0, x1, x2, x3) = (y0, y1, y2, y3) where y1 = G1(x0 ⊕ x1, x2 ⊕ x3), y0 = G0(x0, y1),
y2 = G0(y1, x2 ⊕ x3), and y3 = G1(y2, x3). Finally, CL = L4 ⊕ (K8||K9), CR = R4 ⊕ L4 ⊕ (K10||K11). Note
that A0⊕A1 = 0x80800000 → F (A0)⊕F (A1) = 0x02000000. For differential attack, pick PL at random and
P1 = 0x8080000080800000. Suppose X ′ is the output differential of F in round 3, Y ′ is the input differential
to F in round 4 and Z ′ is the output differential in Round 4, then C ′L = 0x02000000⊕Z ′ and C ′R = C ′L⊕Y ′

and Y = CL ⊕ CR. Now we can solve for K3 with standard differential techniques. For linear analysis,
denote Si,j(X) = xi ⊕ xj , Si(X) = xi. Then, S5(G0(a, b)) = S7(a ⊕ b) and S5(G0(a, b)) = S7(a ⊕ b) ⊕ 1.
The following hold: S13(Y ) = S7,15,23,31(X) ⊕ 1, S5(Y ) = S15(Y ) ⊕ S7(X), S15(Y ) = S21(Y ) ⊕ S23,31(X),
S23(Y ) = S29(Y )⊕ S31(X)⊕ 1 and a = S23,29(PL ⊕ PR ⊕ CL)⊕ S31(PL ⊕ CL ⊕ CR)⊕ S30(PL ⊕ CL ⊕K0).

WEP Attack: WEP is data level encryption using a long term secret K and per message initial vec-
tor, IV which is 3 bytes which we call K0,K1,K3. The IV and the key bytes K3, ... form a single RC4
key K0,K1,K2,K3, . . .. Attack involve selecting IV = 3|255|V . The RC4 initialization at i = 0 step is
j = j + S0 + 255 = 3 (mod 256) then swap S[0], S[3]; this leaves S:

i 0 1 2 3 4 5 6 7 ...
S[i] 3 1 2 0 4 5 6 7 ...
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The i = 1 step is j = j + S1 + K1 = 3 + 1 + 255 (mod 256) = 3; this leaves S:

i 0 1 2 3 4 5 6 7 ...
S[i] 3 0 2 1 4 5 6 7 ...

The i = 2 step is j = j + S2 + K2 = 5 + V (mod 256) = 3; this leaves S:

i 0 1 2 3 4 ... 5+V ... ...
S[i] 3 0 5+V 1 4 ... 2 ... ...

Finally, at i = 3 step is j = j + S3 + K3 = 5 + V + S3 + k + 3 (mod 256) = 6 + V + K3; this leaves S:

i 0 1 2 3 4 ... 5+V ... 6+V+K[3] ...
S[i] 3 0 5+V 6+V+K[3] 4 ... 2 ... 1 ...

Stream[0] = S[3] = 6+V +K3 if initialization stops here. Attack works if S[0], S[1], S[2] don’t change. The
probability of this is 253

256

255 ≈ .0513.

∆⊗X = X ⊗X−1. r−round characteristic: sequence of differences < α0, α1, . . . , αr >. Definition (Lai): An
iterated cipher is called a Markov cipher if Pr(∆C1 = β|∆C0 = α,C0 = γ) is independent of γ, ∀α, β 6= e.
Homogeneous Markov Chain: Pr(vi+1|vi = α) is independent of i, ∀α, β.

If an r−round iterated cipher is a Markov and the r round keys are independent and uniformly distributed
then ∆P = ∆C0, ∆C1, . . . , ∆Cr is a homogeneous Markov chain and Pr(∆Cs = αs| . . . |∆C1 = α1|∆P =
α0) =

∏
Pr(∆Ci|∆Ci−1).

Differentials: Right pair follows differential. Assume m pairs of chosen text, p is probability of char-
acteristic, k is the number of keys, γ is number of suggested keys. There are about mp right pairs. If λ is the
ratio of non-discarded pairs to the number of discarded pairs, wrong key is suggested mγλ

k . S/N =
mp

mγλ

k = kp
γλ .

For DC to succeed, S/N > 1. ∆αf(x) = f(x + α)− f(x). ∆α1,...,αi = ∆αi(∆α1,...,αi−1). If ai is linear inde-
pendent of a1, . . . , ai−1, δa1,a2,...,aif(x) = 0. ord(∆a(f(x)) ≤ ord(f(x)) − 1. If δa1,a2,...,aif(x) 6= c then the
non-linear order of f(x) ≥ i.

Let P = (pij) be the transition probabilities of a homogeneous Markov chain and pij
s is the probability

that state j can be reached from state i in s steps. Ergodic: aperiodic and irreducible. If a random cipher
is selected from Σ2n , Pr(P is ergodic ) → 1.

Theorem (OConner): Most Feistel ciphers are resistant to differential attack. Let pg be the proba-
bility of the best linear approximation of g. |pg − 1

2 | = maxkmaxα 6=06=β |Prx(g(x, h) · β = x ·α)− 1
2 | and the

best s round linear approximation satisfies |pL − 1
2 |2 ≤ |pg − 1

2 |2. For DES, s ≥ 4, |pL − 1
2 |2 ≤ 8|pf − 1

2 |4.

An r−round iterated 2m bit block cipher with r-round keys each has n bits. A strong key schedule
is one in which (1) For any s bits of the r round keys derived from k where s < rn, it is “hard” to find any
of the remaining rn − s bits from the s bits, (2) given a relation between two different master keys, is it
“hard” to predict the relationship between any of the round keys. < RKl >= nMSB(Eki(IV ⊕ l)).
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3.7 New Ciphers

3.7.1 AES-Rijndael

Arithmetic in GF (28) with minimum polynomial m(x) = x8 + x4 + x3 + x + 1. If m(θ) = 0, matrix for
multiplication by θ over GF (2) is denoted by T and squaring by S, then

T =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0




, S =




1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0
1 0 0 1 0 1 0 0
1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 0
1 1 0 1 0 0 0 0
0 1 0 1 0 0 0 1




Tr(a) = a+ap +ap2
+ . . .+apd−1

and N(a) = aapap2
. . . apd−1

. Linearized polynomial: L(x) = a0x+a1x
p +

a2x
p2

+ . . . + ad−1x
pd−1

; linear functions can be expressed as linearized polynomials.

Rijndael input: p consisting of Nb words, k with Nk words. State: 4 rows, Nb columns. Key: 4 rows, Nk
columns. Both key rows are filled in the following order: Fill leftmost column si,0, i = 0, 1, 2, 3, then next
column, etc.

Nb/Nk 4 6 8
4 10 12 14
6 12 12 14
8 14 14 14

Rijndael(p, k, Nb, Nk) {
ComputeRoundKeys(K, W[i])
state= p
AddRoundKey(state)
for (i=0, i<Nr, i++) {

for each byte, b in state, ByteSub(b)
ShiftRow(state)
if(i<Nr-1)

MixCol(state)
AddRoundKey(state)
}

}

ByteSub(b) {
t= 0
if b!=0 {

t= 1/b;
// M= circ(1,0,0,0,1,1,1,1)
// [Shift right going down].
// a= (1,1,0,0,0,1,1,0)^T.
return(Mt + a);
}

ShiftRow(state) {
shift right row 1 by 0.
shift right row 2 by 1.
shift right row 3 by 2 if Nb<8,

3 otherwise.
shift right row 4 by 3 if Nb<8,

4 otherwise.
}

MixCol(state) {
multiply each col of state by

c(x) (mod x**4+1);
// c(x)= 0x03x**3+0x01x**2+0x01x+0x02
// d(x)= 0x0bx**3+0x0dx**2+0x09x+0x0e
}

AddRoundKey(state) {
state= state + W[i];
}

ComputeRoundKeys(K[4*Nk], W[Nb*(Nr+1)]) {
for(i=0; i<Nk; i++)

W[i]= (K[4i], K[4i+1],
K[4i+2], K[4i+3])

for(i=Nk; i<Nb*(Nr+1)); i++) {
t= W[i-1];
if((i mod Nk)==0)

t= SubByte(RotByte(t))^RCon(i/Nk);
if((i mod Nk)==4 and Nk>6)

t=SubByte(t);
W[i]= W[i-Nk] ^ t;
}

}

SubByte(w) {
w= ByteSub(w);
}

RotByte(w= (a,b,c,d)) {
w= (b,c,d,a);
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}

RCon[i]= (RC[i], 0x00, 0x00, 0x00);

RC[1]= 0x01;
RC[i+1]= RC[i]*x (x in poly over GF(2));

Note [ShiftRow,MixCol] = 1. Rounds Key: Kr,0,Kr,1, . . . , Kr,15. First Round is input key. For
s = r + 1, T0 = S[Kr,13] + θr, T1 = S[Kr,14], T2 = S[Kr,15], T3 = S[Kr,12] and Ks,i = Kr,i + Ti, 0 ≤ i ≤ 3,
Ks,i = Kr,i + Ks,i−4, 4 ≤ i ≤ 15. Note that key expansion is equivalent to: W [i] = W [i − 1] ⊕ W [i − 4],
if i 6= 0 (mod 4) W [i] = T (W [i − 1]) ⊕ W [i − 4], if i = 0 (mod 4) where T (a, b, c, d) = (SB(b) ⊕
r(i), SB(c), SB(d), SB(a)), r(i) = 0x02

i−4
4 in GF (28). Inverse provides linear/differential immunity, linear

diffusion provides algebraic complexity.

L =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




,




y7

y6

y5

y4

y3

y2

y1

y0




= L




x7

x6

x5

x4

x3

x2

x1

x0




S[w] = L[w(−1)] + 0x63. Combined RowShift, ColumnMix and Diffusion and AddRound is x 7→ Mx +
0x63 + ki where M is a 16× 16 matrix and minM (x) = (x + 1)15)|(x16 + 1) which can be transformed into
P−1MP = V1 ⊕ . . .⊕ V15 with dim(Vi) = (16, 143, 103, 82, 6, 4, 44, 2).

Motivation. Linear cryptanalysis resistance is provided if no linear trail has a correlation coefficient
> 2

n
2 . Differential cryptanalysis resistance is provided if there is no differential trail with prop ratio

> 21−n. The prop ratio of differential trail is approximately the product of the prop ratios of its active
S-boxes. The correlation of a linear trail is approximately the product of the I/O correlations of its ac-
tive S-boxes. The wide trail strategy is: (1) choose an S-box with maximum prop ratio and correlation
≈ 2−6, 2−3, respectively; (b) construct diffusion layer in such a way that there are no multiple round trails
with few active S-boxes. Theorem: The weight of a two round trail with Q active columns at the input
and output is ≥ 5Q; The minimum number of active S-boxes in a four round differential or linear trail is 25.

3.7.2 Tea, TwoFish

Tea(unsigned K[4], ref unsigned L, ref unsigned R) {
unsigned d= 0x9e3779b9;
unsigned s= 0;
for(int i=0; i<32;i++) {

s+= d;
L+= ((R<<4)+K[0])^(R+s)^((R>>5)+K[1]);
R+= ((L<<4)+K[2])^(L+s)^((L>>5)+K[3]);
}

}

(1) 4 different 8 × 8 bijective, key dependent S boxes. (2) MDS code. (3) PHT: a′ = a + b (mod 232),
b′ = a + 2b (mod 232). Basic algorithm: whiten, 16 rounds, whiten.

MDS =




0x01 0xef 0x5b 0x5b
0x5b 0xef 0x5b 0x01
0xef 0x5b 0x01 0xef
0xef 0x01 0xef 0x5b




Round(w1, w2, w3, w4, k1, k2) = (w′1, w
′
2, w1, w2): w′1 = w3 + F1(w1, w2, r) >>> 1; w′2 = (w4 <<< 1) +

F1(w1, w2, r); Fr(w, v) = PHT (g(w), g(v <<< 8)) + kr (mod 232); g(x, y, z, w) = MDS




S1(x)
S2(y)
S3(z)
S4(w)


. All

calculations over GF (28).
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3.7.3 Miscellaneous

Cramer-Shoup: G = Zp, G =< g >=< g′ >, H, a collision resistant hash whose image is Zp
∗.

PK = (G, g, g′, h, k, k′), s, t, t′, u, u′ randomly selected. h = sg, k = tg + t′g′, k′ = ug + u′g′. Encrypt
(m): Choose r, random, set n = H(rg|rg′|m + rnk′). E(m) = (x, y, z, w) = (rg, rg′,m + rh, rk + rnk′).
Decryption: D(x, y, z, w), check that (nu + t)x + (nu′ + t′))y = w. If so, compute z − sx.

Bit Commitment and coin flips: b, b′ ∈ {0, 1}. Alice sends Bob c = commit(b), Bob sends Alice b′,
Alice sends Bob reveal(c). Result is b⊕ b′.

Zero Knowledge using 3 color: For each round, Prover randomly permutes colors and commits color
at each vertex. For each round, Verifier asks to reveal color at the vertices of an edge. blob: commit with
equality.

Shalevi-Micali Commit: h is a one way function like SHA1. commit(m) = h(r||m), r, random. p a
161 bit prime. Pick a, b: ax + b = z (mod p), y = h(x), c = (y, a, b). reveal(c) = x,m.

Time memory tradeoff: Fix a plaintext block, P and pick SPi, i = 1, 2, . . . , m. For each i, set Ki
0 = SPi

and Ki
j+1 = F (E(Ki

j , P )), j = 0, 1, . . . , t−1 where F is a randomizing function to avoid short cycles and put
EPi = Ki

t . For each i, store (SPi, EPi). Phase 2: Get C = E(P, K) from oracle where K is unknown. Com-
pute X0 = C, Xi+1 = E(P,Xi) until Xi = EPj for some i, j. Then compute Y0 = EPj and Yj+1 = E(P, Yj)
until Yk = C then K = Yk−1. If m is the number of starting points for each F , t is the number of encryptions
per chain and r is the number of tables. Attack requires mr memory and tr time with the probability of
success 1− e−

trm
k .

Nostradamus (“herding”) attack: Let h be a Merkle-Damgard hash with compression function f and
initial value IV . Goal is to hash a prefix value (P) quickly by appending random suffixes (S). Procedure
Phase 1: Pick k and generate 2k random values d0i from each pair of the values f(IV ||di,i+1) find two mes-
sages M0,j ,M1,j which collide under f and call this value d1,j this takes effort 2n/2 for each pair. Keep doing
this (colliding di,j , di+1,j under Mi,j ,Mi+1,j to produce di,j+1 until you reach d2k,0. This is the diamond.
Publish y = w(d2k,0) where w is the final transformation in the hash as the hash (i.e. - claim y = h(P ||S).
The cost of phase 1 is (2k − 1)2n/2. In phase 2, guess S′ and compute T = f(IV ||P ||S′); keep guessing until
T is one of the dij . Once you get a collision, follow a path through the Mij to d2k,0, append these Mij to
P ||S′ and apply w to get right hash.

3.8 Cryptographic Hashes

Weak collision resistance: Given x, it is computationally infeasible to find x′ 6= x with h(x) = h(x′).
Strong collision resistance: It is computationally infeasible to find x′ 6= x with h(x) = h(x′) for any x,
x′. One-way: Given a digest z, it is computationally infeasible to find x with h(x) = z. Strongly collision
resistant implies one-way.

Merkle Damgard construction: z0 = IV, zi+1 = f(zi,mi), h(m) = g(zr), where f is a compression
function, r is the number of rounds and m = m1||m2|| . . . ||mr. If f is collision resistant then so is h.
Hash from Block Cipher: gi = egi−1(xi) + xi, gi = egi−1(xi) + xi + gi−1, gi = egi−1(gi−1 + xi) + xi,
gi = egi−1(gi−1 + xi) + gi−1 + xi.

Chaum Hash: α, β two primitive elements of Zp, h(x, y) = αxβy (mod p). If there’s a collision, logα(β)
can be computed efficiently. h(0t+1||y1), gi+1 = h(gi||1||yi+1). Todo: do reduction proof.

Iterative construction is vulnerable to multi-collision (Joux): Suppose M1,M1′; M2,M2′; . . . ; Mt, Mt′

all collide. From these we get 2t collisions. If r people each have one of N possible birthdays, there is a
greater than .5 chance of k collisions if r > N

k−1
k . Todo: prove this fact.

Random Oracle Model: Let f be a OWF with trapdoor, (y1, y2) = (f(r), h(r)+m) is used as encryption.
An oracle with l requests L, Pr(guess right) = P (r ∈ L) + 1

2P (¬r ∈ L). Set p = 1
2 + e, e ≤ Pr(r ∈ L).

Canetti, Goldreich, Halevi constructed a cryptosystem that is secure in Random Oracle Model but insecure
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for any concrete hash.

MD-4: In description below, K[0]= 0, K[1]= 0x5a827999, K[2]= 0x6ed9eba1. F (A, B,C) = (A ∧ B) ∨
(¬A∧C), G(A,B,C) = (A∧B)∨ (A∧B)∨ (B∧C), H(A, B,C) = (A⊕B)⊕C. Wi = Xσ(i), i = 0, 1, . . . , 47.
Q−4 = A, Q−3 = D, Q−2 = C, Q−1 = B. Qi(A, B,C) = (Qi−4 + F (Qi−1, Qi−2, Qi−3) + Wi + K0) <<<
si, 0 ≤ i ≤ 15, Qi(A, B,C) = (Qi−4 + G(Qi−1, Qi−2, Qi−3) + Wi + K1) <<< si, 16 ≤ i ≤ 31, Qi(A,B, C) =
(Qi−4 + H(Qi−1, Qi−2, Qi−3) + Wi + K2) <<< si, 32 ≤ i ≤ 47.

MD-4(Y[0] , ..., Y[N-1])
K[0]= 0; K[1]= 0x5a827999; K[2]= 0x6ed9eba1;
(A, B, C, D)= (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476);
for(i=0; i<(N/16); i++) {

X[j]= Y[16i+j], j= 0, 1, ..., 15;
W[j]= X[SIGMA(j)], j= 0, 1, ..., 47;

Q[-4]= A;
Q[-3]= D;
Q[-2]= C;
Q[-1]= B;
// Calculate Q[i] recursively according to formula above

(A, B, C, D)+= (Q[44], Q[45], Q[46], Q[47]);
(A, B, C, D)= (A, D, C, B);

}
return (A, B, C, D);

Dobbertin attack on MD4: Let M and M ′ be 512 bit messages consisting of 16, 32-bit works X0, X1, . . . , X15

with Xi = X ′
i for all i except i− 12 and let X ′

12 = X12 + 1 (mod 232). We want to find a collision. X12 is
first used in step 12 and last used in step 35. ∆i = (Q′j −Qj , Q

′
j−1−Qj−1, Q

′
j−2−Qj−2, Q

′
j−3−Qj−3) after

step i. Dobbertin attack consists of three steps: (1) Show that if ∆19 = (0, 225,−25, 0) then ∆35 = (0, 0, 0, 0)
with probability p > 2−30 (actually, p > 2−22); (2) get conditions on M (i.e. on the Xi) based on round
12, that guarantee ∆19 = (0, 225,−25, 0); (3) find X0, X1, . . . , X11 that produce candidates that present the
desired conditions at step 12, after about 222 of these, you’ll get a collision. The work factor is about 220.
1. Steps 19-35. Suppose ∆19 = (0, 225,−25, 0) and G(Q19, Q18, Q17) = G(Q′19, Q

′
18, Q

′
17), then the following

table holds:

j ∆(Qj) ∆(Qj−1) ∆(Qj−2) ∆(Qj−3) i sj p In
19 225 −25 0 0 ∗ ∗ ∗ ∗
20 0 225 −25 0 1 3 1 X1

21 0 0 225 −25 1 5 1
9 X5

22 −214 0 0 225 1 9 1
3 X9

23 26 −214 0 0 1 13 1
3 X13

24 0 26 −214 0 1 3 1
9 X2

25 0 0 26 −214 1 5 1
9 X6

26 −223 0 0 26 1 9 1
3 X10

27 219 −223 0 0 1 13 1
3 X14

28 0 219 −223 0 1 3 1
9 X3

29 0 0 219 −223 1 5 1
9 X7

30 −1 0 0 219 1 9 1
3 X11

31 1 −1 0 0 1 13 1
3 X15

32 0 1 −1 0 2 3 1
3 X0

33 0 0 1 −1 2 9 1
3 X8

34 0 0 0 1 2 11 1
3 X4

35 0 0 0 0 2 15 1 X12, X12 + 1

Steps 12 to 19. To get ∆19 = (0, 225,−25, 0), Q16 = Q′16, Q19 = Q′19 + 225, Q18 + 25 = Q′
18, Q17 = Q′17

and Qi = Q′i, 8 ≤ i ≤ 11.
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j i M In M’ In
12 0 X12 X12 + 1
13 0 X13 X13

14 0 X14 X14

15 0 X15 X15

16 1 X0 X0

17 1 X4 X4

18 1 X1 X8

19 1 X12 X12 + 1

These yield the following conditions: (Q′
12 <<< 29)−(Q12 <<< 29) = 1, F (Q′

12, Q11, Q10)−F (Q12, Q11, Q10) =
(Q′

13 <<< 25) − (Q13 <<< 25), F (Q′13, Q12, Q11) − F (Q13, Q12, Q11) = (Q′14 <<< 21) − (Q14 <<< 21),
F (Q′

14, Q13, Q12)−F (Q14, Q13, Q12) = (Q′15 <<< 13)−(Q15 <<< 13), G(Q′15, Q
′
14, Q13)−G(Q15, Q14, Q13) =

Q12−(Q′12, G(Q′
16, Q

′
15, Q14)−G(Q16, Q15, Q13) = Q13−(Q′13, G(Q′17, Q

′
16, Q15)−G(Q17, Q16, Q14) = Q12−

Q′12 +(Q18 <<< 23)− (Q18 <<< 23)′, G(Q′18, Q
′
17, Q16)−G(Q18, Q17, Q15) = Q15−Q′

15 +(Q19 <<< 19)−
(Q19 <<< 19)′). For the solutions, (Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q

′
12, Q

′
13, Q

′
14, Q

′
15),

∆19 will hold if X13 = anything, X14 = (Q14 <<< 21) − Q10 − F (Q13, Q12, Q11), X15 = (Q15 <<<
13) − Q11 − F (Q14, Q13, Q12), X0 = (Q16 <<< 29) − Q12 − G(Q15, Q14, Q13) − K1, X4 = (Q17 <<<
27)−Q13 −G(Q16, Q15, Q14)−K1, X8 = (Q18 <<< 23)−Q14 −G(Q17, Q16, Q15)−K1, X12 = (Q19 <<<
19) − Q15 − G(Q18, Q17, Q16) − K1, Q9 = (Q13 <<< 25) − F (Q12, Q11, Q10) − X13, Q8 = (Q12 <<<
19) − F (Q11, Q10, Q09) − X12. Can choose Q12 = −1, Q′12 = 0, Q11 = 0 to simplify. This means
we can pick Q14, Q15, Q16, Q17, Q18, Q19 arbitrarily and determine Q10, Q13, Q

′
13, Q

′
14, Q

′
15 subject to the

checks G(Q15, Q14, Q13) − G(Q′15, Q
′
14, Q

′
13) = 1 and F (Q′14, Q

′
13, 0) − F (Q14, Q13,−1) − (Q′

15 <<< 13) +
(Q15 <<< 13) = 0. Finally, we must insure the solutions is admissible by checking that G(Q′

19, Q
′
18, Q17) =

G(Q19, Q18, Q17). Under these circumstances the solution is a candidate for the differential. Once one candi-
date is found use the “continuity” of F and G by modifying one bit of the candidate at a time, the continuity
makes it likely this will work.
Steps 0 to 11. Having found Q8, Q9, Q10, Q11 such that

MD412,...,47(Q8, Q9, Q10, Q11, X) = MD412,...,47(Q8, Q9, Q10, Q11, X
′)

we need to find MD40,...,11(IV, X) = (Q11, Q10, Q9, Q8). We are free to choose Xj , j = 1, 2, 5, 6, 7, 9, 10, 11.
We pick X1, X2, X3, X5 at random and compute X6, X7, X9, X10, X11 such that MD46,...,11(Q2, Q3, Q4, Q5, X) =
(Q11, Q10, Q9, Q8). Since Q11 = (Q7 + F (Q10, Q9, Q8) + X11) <<< 19, if can do this by making X11 =
(Q11 <<< 13) − Q7 − F (Q10, Q9, Q8) and similarly for X10, X9. We can’t do this for X9 but since
Q8 = (Q4 + F (Q7, Q6, Q5) + X8) <<< 3, if Q7 = −1, Q6 = (Q8 <<< 29) − Q4 − X8 the desired
equation holds for all such X8; in particular, by picking X6 = (Q6 <<< 21) − Q2 − F (Q5, Q4, Q3) and
X7 = (Q7 <<< 13)−Q3 − F (Q6, Q5, Q4). These guarantee ∆35 = 0.

SHA1(M ,n)
// M is message, n is number of 512 bit blocks

M= SHA1Pad(M)
fi(B,C, D) = (B ∧ C) ∨ (B ∧D), 0 ≤ i ≤ 19
fi(B,C, D) = (B ⊕ C ⊕D), 20 ≤ i ≤ 39
fi(B,C, D) = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D), 40 ≤ i ≤ 59
fi(B,C, D) = (B ⊕ C ⊕D), 60 ≤ i ≤ 79

Ki = 0x5a827999, 0 ≤ i ≤ 19; Ki = 0x6ed9eba1, 20 ≤ i ≤ 39
Ki = 0x8f1bbcdc, 40 ≤ i ≤ 59; Ki = 0x6a62c1d6, 60 ≤ i ≤ 79

H0 = 0x67452301,H1 = 0xefcdab89,H2 = 0x98badcfe, H3 = 0x10324576,H4 = 0xc3d2e1f0

for (i=0, i < n, i++) {
Mi = W0||W1|| . . . ||W15

for(j = 16, j < 80, j + +) {
// ROTL1 below is difference between SHA-0 and SHA-1
Wj = ROTL1(Wj−3 ⊕Wj−8 ⊕Wj−14 ⊕Wj−16)
}

86



A = H0, B = H1, C = H2, D = H3, E = H4

for(j = 0, j < 80; j++) {
ROTL5 below is correlated to lowest wt differential
t = ROTL5(A) + fj(B,C, D) + E + Wj + Kj

E = D, D = C,C = ROTL30(B), B = A,A = t
}

H0+ = A, H1+ = B, H2+ = C, H3+ = D, H4+ = E
}

SHA-1Pad(x) // with MD strengthening
Append 1 and enough 0’s until there are 64 bits remaining
Append size hashed in 64 bit format
return(x)

Shamir’s non-linear functions with maximal period: x → x2 ∧ c, x → x + 4h(x) + 1, Example:
x → (x + 1)(2x + 1).

Changes from MD4 to MD5: (1) 64 steps, function for final 16 rounds is I(A,B, C) = B⊕ (A∨¬C), (2)
G(A, B,C) = (A∧C)∨ (B ∧¬C), (3) each round uses different constant, (4) each step adds result of previ-
ous step, (5) the order of input words to the steps is different,(6) shift values are different. Chinese attack
uses “precise” differential (signed difference) where 0 indicates no difference, + indicates 1 → 0 difference
and − indicates 0 → 1 difference. This is different from both xor and modular difference; for example, if
z′ = 10100101, z = 10010101, ∇(z′, z) = 00 +−0000.

Chinese attack on MD5. Attack proceeds in four phases: (1) specify input differential patters via
modular difference (hard and “done by hand” according to Wang), (2) specify output differential pattern
(only 1 known) that is easily satisfied in earlier rounds, (3) derive sufficient conditions propagation; (4) gen-
erate pairs of 1024 bit numbers that satisfy 3 (deterministically when possible). To do step 4: (a) generate
M0 at random; (b) use single step modification to M0 to satisfy sufficient conditions; (c) use multi-step
modifications to insure conditions hold in middle rounds; (d) check conditions for all remaining steps; (e-f)
do the same for M1; compute M ′

0 = M0 + ∆M0 and M ′
1 = M1 + ∆M1 according to the input differential.

Conditions: Tj = F (Qj−1, Qj−2, Qj−3) + Qj−4 + Kj + Wj , Rj = Tj <<< sj , Qj = Qj−1 + Rj , now apply
modular difference and derive conditions on ∆Tj and ∆Qj for differential (below) to hold.

∆X = X ′ − X. ∆H0 →(M0,M ′
0)

∆H1 →(M1,M ′
1)

∆H2 . . . →(Mi−1,M ′
i−1)

∆Hi = H with each composed
of ∆Hi →P2 ∆Ri+1,1 →P2 ∆Ri+1,2 →P3 ∆Ri+1,3 →P4 ∆Ri+1,4 = ∆Hi+1. Let ∆i, j = x′i,j − xi,j =
±1 and ∆xi[j1, j2, . . . , jl] = xi[j1, j2, . . . , jl] − xi. Collision is caused by 1024 bit input: (M0,M1) with
∆M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0) and ∆M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0).
Sufficient conditions insure that differential holds with high probability. At 8th iteration, b2 = c2 + (b1 +
F (c2, d2, a2) + m7 + t7) <<< 22, we try to control (∆c2, ∆d2,∆a2,∆b1) → ∆b2 with the following (A)
non-zero bits of ∆b2: d2,11 = 1, b2,1 = 0, d2,26 = a2,26 = 1, b2,16 = 0, d2,28 = a2,28 = 0, b2,i = 0,
d2,11 = 1, b2,24 = 0; (B) zero bits of ∆b2: c2,i = 0, d2,i = a2,i, c2,1 = 1, d2,6 = a2,6 = 0, d2,i = 0,
d2,12 = 1, a2,24 = 0, 7th bit of c2, d2, a2 result in no change in b2. Algorithm 1: Repeat until first block is
found (a) Select random M0, (b) Modify M0, (c) M0,M

′
0 = M0 + ∆M0 produce ∆M0 → (∆H1, ∆M1) with

probability 2−37, (d) Test characteristics. 2: Repeat until first block is found (a) Select random M1, (b)
Modify M1, (c) M1,M

′
1 = M1 + ∆M1 produce ∆M1 → 0 with probability 2−30, (d) Test characteristics.

Comments from NIST: Randomization (prevent offline computation for herding): RMX(r,M1| . . . |ML) =
(r|m1 ⊕ r| . . . |mL ⊕ r). Hr(M1| . . . |ML) = H(r|m1 ⊕ r| . . . |mL ⊕ r). Transmit r. Herding attack: first
committing to an output h, then mapping messages with arbitrary starting values to h. Joux: If H1,H2 are
n bit hashes; H1(M)||H2(M) can be broken in O(n2

n
2 ). Haifa: hi+1 = CF (hi,Mi, bitlength, salt).

Joux attack on SHA-0: For SHA-0, change bit 1 which shifts to bit 31 and because of no carry: it is
linear in ⊕. Disturbance bit vector: (m(0)

0 ,m
(1)
0 , . . . , m

(79)
0 ). Perturbation mask: −5 ≤ i ≤ −1,M

(i)
0 = 0, 0 ≤

i ≤ 79,M
(i)
0,k = 0, if k 6= 1 0 ≤ i ≤ 79,M

(i)
0,1 = M

(i)
0 . Corrective masks: −4 ≤ i ≤ 79, M

(i)
1 = ROL5(M

(i−1)
1 ),

−3 ≤ i ≤ 79,M
(i)
2 = M

(i−2)
1 , −2 ≤ i ≤ 79,M

(i)
3 = ROL30(M

(i−3)
1 ), −1 ≤ i ≤ 79, M

(i)
3 = ROL30(M

(i−4)
1 ),

0 ≤ i ≤ 79,M
(i)
3 = ROL30(M

(i−5)
1 ). Early round differentials are prescribed and later round differentials
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hold with non-negligible probability (2−61, 2−56 using neutral bits — A bit is neutral if flipping it doesn’t
change differential pattern). Multi-block: patch final round errors in next block. Early rounds are non-linear
and prescribed. Late rounds linear and probabilistic. Final rounds can be “patched”. Procedure: Fix lin-
ear characteristic, fix non-linear characteristic, modify message (keeping differential) if conflict in mid round.

SHA-256 definitions: Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z), Maj(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).
ψi,j,k

256 (x) = ROTRi(x)⊕ROTRj(x)⊕ROTRk(x), φi,j,k
256 (x) = ROTRi(x)⊕ROTRj(x)⊕ SHRk(x).

Σ256
0 (x) = ψ2,13,22

256 (x), Σ256
1 (x) = ψ6,11,25

256 (x).
σ256

0 (x) = φ7,18,3
256 (x), σ256

1 (x) = φ17,19,10
256 (x).

SHA-512 definitions: Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z), Maj(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).
ψi,j,k

512 (x) = ROTRi(x)⊕ROTRj(x)⊕ROTRk(x), φi,j,k
512 (x) = ROTRi(x)⊕ROTRj(x)⊕ SHRk(x).

Σ512
0 (x) = ψ28,34,39

512 (x), Σ512
1 (x) = ψ14,18,41

512 (x).
σ512

0 (x) = φ1,8,7
512 (x), σ512

1 (x) = φ19,61,6
512 (x).

SHA-256(M1||M2|| . . . ||MN):
for(i = 1; i ≤ N ; i + +) {

Wt = M
(i)
t , 0 ≤ t ≤ 15,

Wt = σ256
1 (Wt−2)⊕Wt−7 ⊕ σ256

0 (Wt−15)⊕Wt−16, 16 ≤ t ≤ 63;
a = H

(i−1)
0 ; b = H

(i−1)
1 ; c = H

(i−1)
2 ; d = H

(i−1)
3 ;

e = H
(i−1)
4 ; f = H

(i−1)
5 ; g = H

(i−1)
6 ; e = H

(i−1)
7 ;

for(t = 0; t < 64; t + +) {
T1 = h + Σ256

1 (e) + Ch(e, f, g) + K256
t + Wt; T2 = Σ256

0 (a) + Maj(e, f, g);
h = g; g = f ; f = e; e = d + T1; d = c;
c = b; b = a; a = T1 + T2;
}

H
(i)
0 = a + H

(i−1)
0 ; H

(i)
1 = b + H

(i−1)
1 ; H

(i)
2 = c + H

(i−1)
2 ; H

(i)
3 = d + H

(i−1)
3 ;

H
(i)
4 = e + H

(i−1)
4 ; H

(i)
5 = f + H

(i−1)
5 ; H

(i)
6 = g + H

(i−1)
6 ; H

(i)
7 = h + H

(i−1)
7 ;

}
SHA-512 is the same except there are 79 rounds and the words are 64 bits long.

3.9 Elliptic Curve Crypto

EF (a, b) : y2 = x3+ax+b where a, b ∈ F and char(F ) 6= 2, 3; we sometimes write Eq(a, b) if F = GF (q). For
ECC, also require smooth; namely, 4a3+27b2 6= 0 (mod p), p = char(F ). For P = (x1, y1) and Q = (x2, y2)
define P+Q = (x3, y3) with x3 = λ2−x1−x2, y3 = λ(x1−x3)−y1 where λ = (y1−y2)

(x1−x2)
if P 6= Q and λ = (3x2

1+a)
(2y1)

if P = Q. For char(F ) = 2, EF (a, b) : y2+xy = x3+ax+b and x3 = λ2+λ+a+x1+x2, y3 = λ(x1+x3)+x3+y1

where λ = (y1−y2)
(x1−x2)

, P 6= Q and λ = x1 + y1
x1

, P = Q. For an ECC system, the public key parameters are
q, a, b, P (P is called the base point); pick 1 < x < p, x is the private key. Public key is Q = xP . ECDLP:
Find x knowing Q. ECC Encrypt: To encrypt m (already an integer in the right range), map it to a
point on the curve PM , pick 1 < k < p, send (kP, kQ + PM ). ECC Decrypt: Receive (L,M) calculate
M−xL = PM and map it back to the integer message. Here is a way to embed integers in curves: For q = pr,
odd, select parameter κ so that the probability of failure is 2−κ; m is message and 0 ≤ m < M, q > κM
and x = mκ + j ∈ Fq now for the first j for which x3 + ax + b is a square, use the corresponding point
P = (x,

√
x). ECDSA sign: Select k at random, compute kP, r = fE(kP ), s = k−1(H(M)+xr). Signature

is (r, s). Verify: u1 = s−1H(M), u2 = s−1r, accept if fE(u1P + u2Q) = r. Note: (k, #E) = 1.

Curve selection: Avoid anomalous curves (Definition: char(F ) | #EF (a, b)), and supersingular
curves (Definition: #Eq(a, b) = q + 1 − t, q | t — t is Frobenius trace satisfying (φq)2 − tφq + q = 0;
also t is Tr(φq)), CM 3 (a = 0, p = 3 (mod 4), MOV-vulnerable (Frey-Ruck) For comparison, attacks
on DLP: L(v, c, n) = exp(c(ln(p)v(ln(ln(p))1−v), NFS discrete log is Ln[ 13 , ( 64

9 )
1
3 ]. Best known ECDLP is

EC(n) =
√

n. In comparisons, usually put n = lg(dqe), N = lg(dpe) and put EEC

ECONV
= 2

n
2

exp(cN
1
3 (log(N(log(2))

2
3
.
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NIST Curves: Use prime fields Fp with p = 2192−264−1, 2224−296+1, 2256−2224+2192+296−1, 2384−2128−
296 + 232 − 1, 2521 − 1 or binary fields Fq with q = 2163, 2233, 2283, 2409, 2571. #Ep(a, b) = q + 1− t, |t| ≤ 2

√
q

and t is called the trace of E. Eq(a, b) has rank 1 or 2, that is: Eq(a, b) ∼= Zn1 ×Zn2 and n2 | n1, n2 | (q− 1).
If n2 = 1, Eq(a, b) ∼= Zn1 = {kP : 0 < k < n1} and P is a generator. Eq(a1, b1) ∼= Eq(a2, b2) if a1 = u4a2

and b1 = u4b2. Eq, q = pn is supersingular if p | t. Field represented as polynomial or normal basis. Hyper-
elliptic: higher genus. Weil-Deligne: Set ζ(t, E/Fq) = exp(

∑
r

Nrtr

r ), where Nr is the number of solutions
of E/Fqr . ζ(t, E) = a−at+qt2

(1−t)(1−qt) , N1 = q + 1− a,Nr = qr + 1− αr − βr where α, β are reciprocal roots of the
numerator. Random selection of (E, B): Generate x, y, a at random and compute b = y2 − (x3 + ax), check
there are not multiple roots. To compute |E|, use Schoof.

MOV Attack: Eq(a, b) 7→ F ∗qk if n, the curve order, satisfies n | (qk − 1) then use index calculus, small
probability of supersingular or k ≤ log2(q). Attack fails if k > log2(q) (Frey and Ruck extended the attack).

IBE: Suppose p = 6q − 1, Ep : y2 = x3 + 1 (mod p) and suppose #E = 6q. ∃P0 6= ∞ and qP0 = ∞.
Finally, suppose there is a bilinear map, ẽ(P, Q), from points into q-th roots of unity that is easy to com-
pute with ẽ(aP0, bP0) = ẽ(P0, P0)ab. ẽ(P0, P0) 6= 0 and two hash functions: H1 :< 2∞ >→ kP0 and
H2 : {ωi} →< 2n >. Pick a secret s : P1 = sP0. To encrypt to ID: set DU = sH1((ID), g = ẽ(H1(ID), P1),
choose r 6= 0 (mod q) and compute t = m⊕H2(gr), A → B : c = (rP0, t). To decrypt: Get (u, v), compute
h = ẽ(H1(Du, u), m = v ⊕H2(h). Note h = gr.

ECC Point Operation Costs: I = inverse cost /GF (p). S = square cost /GF (p). M = multiply
cost /GF (p).

Operation Cost Modular Op Cost
2P I + 2S + 2M Add, Sub O(lg(n))
P + Q I + S + 2M Multiply O(lg(n)2)
2P + Q 2I + 2S + 2M Invert O(lg(n)2)
P + Q, P −Q I + 2S + 4M Exp O(lg(n)3)

If X =< X1, X2, . . . , Xn > and Y =< Y1, Y2, . . . , Yn > then Pr(∆X, ∆Y ) = 1
2n for perfect differential

resistance. (∆X, ∆Y ) is a differential characteristic. ND = c
pD

and pD =
∏γ

i βi where γ is the number of
active boxes.

Tr(x) = x + xp + . . . + xpn−1
. e, d is a dual basis if Tr(d(i)e(j)) = δ(i⊕ j).

3.10 Algebraic and other attacks

Hadamard-Walsh: Wf (w), measures distance to affine and completely determines f . Autocorrelation:
rf (w) measures differential and does not determine f .

Balanced: weight is 2n−1. CIf (t): output is statistically independent on any t input bits. Resilient:
Rf (t) is CIf (t) and balanced. Non-linearity: Nf is distance to affine. Nf = ming∈RM(1,n)d(f, g) =
2n−1 − 1

2maxw|Wf (w)|. ε = Nf

2n − 1
2 Linearity: Lf = maxw|Wf (w)|. Dw(f(x)) = f(x)⊕ f(w + x)

Theorem: rf (w) = 2−n
∑

u Wf (u)2(−1)u·w. For iterated ciphers, once the number of rounds is high enough
to generate G (usually An), more rounds don’t help.

AES: 8j + m component is v(j,m). 0 = w0,(j,m) + p(j,m) + k0,(j,m), 0 = xi,(j,m)wi,(j,m) + 1, i = 1, 2, . . . , 9.
0 = wi,(j,m) +(Mxi−1)(j,m) + ki,(j,m), i = 1, 2, . . . , 9, 0 = c(j,m) +(M∗x9)(j,m) + k10,(j,m). M is the combined
effect of ShiftRow, MixColumn and the Linear diffusion. 5248 equations, 3840 sparse quadratic, 1408 linear
diffusion, 7808 terms, 2560 state variables, 1408 key variables. 1280 + 1408 = 2588 state/key variables
eliminated, 4288 − 2688 = 1600 unknown. 2688 equations, 1280 sparse quadratic, 5248 terms, 2560 state,
1408 linear diffusion, 1408 key variables.

For AES: M : x 7→ CRLx + 63 (Everything but subByte). Minimal polynomials: C : (x4 + 1), R : (x4 + 1),
L : (x+1)3, C : (x+1)15. BES: b → MBb−1+kB . w0 = p+k0, xi = w−1

i , wi = MBxi−1+ki, c = M∗
Bx9+k10.

AESk(P ) = C ↔ BESφ(k)(φ(P )) = φ(C), φ(a) = (a20
, a21

, a22
, a23

, a24
, a25

, a26
, a27

).
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Circulant as linearized polynomial: x 7→ 0x05x20
+0x09x21

+0xf9x22
+0x25x23

+0xf4x24
+0x01x25

+
0xb5x26

+ 0x8fx27
, S : w 7→ ∑7

i=0 λiw
255−2i

+ 0x63, modified: S : w 7→ ∑7
i=0 λiw

−2i

. Rank of system is
equations

monomials .

Equation Solving: If n =number of equations, M = number of variables. Solution takes 2n, if n = m, n,
if n = m + 1 and

√
n if m >> n.

Buchberger:
Input: F = {f1, f2, . . . , fm}. Output: Grobner G = {g1, g2, . . . , gs}.
G ← F ;
Do {

G′ ← G;
for(p, q ∈ G′, p 6= q) {

Compute S(p, q);
r ← REM(S(p, q), G′);
if(r 6= 0) {

G′ ← G′ ∪ {r};
}

}
} while(G! = G′)

Theorem: Foregoing algorithm yields Grobner Basis.

F4/F5: Grobner by matrix reduction. Example: f1 = 3x3yz − 5xy, f2 = 5x2z2 + 3xy + 1, g1 = xy − 2z,
g2 = x2z − 3yz.

x3yz x2z2 yz2 xy z 1
f1 3 0 0 −5 0 0
f2 0 5 0 3 0 1

x2zg1 1 −2 0 0 0 0
1g1 0 0 0 1 −2 0
zg2 0 1 −3 0 0 0

Complexity of F5 is ND
ω where ND is the size of the largest matrix containing polynomials of degree D. If

m = n, D ≈ .09n.

Condition Complexity
m = an exponential in n

n << m << n2 subexponential in n
m = an2 polynomial in n

AES Design Criteria: Invertibility, minimize largest non-trivial correlation between input and output,
minimize largest non-trivial xor, complexity of algebraic expressions, Simplicity of expression. Estimation
of linearly independent equations for XSL on AES-128.

XL: The Extended Linearization.
Input: F = {f1, f2, . . . , fm}.
Output: univariates.
S ← ∅;
Pick D = d + 1;
G ← F ;
for(i = 1; i ≤ n + 1; i + +) {

Generate pβj = xβfj , fj ∈ F ;
Do Gaussian reduction.
If there is a univariate f(x) {

Solve;
S ← S ∪ {(x− ai)};
Substitute.
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}
else

D ← D + 1;
}

For each round (0 ≤ i ≤ 9) and each S-box (0 ≤ j ≤ 15), we get r = 8×3 = 24 quadratics. S: Total S-boxes,
P − 1: passive S-Boxes, Highest degree: 2P . R: Equations. B: S-boxes/round. |R| =

(
S
P

)
(tP − (t − r)P ),

|R′| = (
S

P−1

)
SB(Nr +1)(t−r)P−1, |R′′| = (

S
P−1

)
(Sk−Lk)(Nr +1)(t−r)P−1, Lk: independent key variables,

Sk: key variables. Total terms: T =
(

S
P

)
tP . For P = 2, (R + R′ + R′′) = 33, 665, 888, T = 33, 788, 100. For

P = 3, (R + R′ + R′′) = 95.18× 109, T = 91.9× 109.

Saturation Attack: Λ-set has 256 states which are either all the same in a byte position or all differ-
ent. In either case

⊕
x∈Λ xi,j = 0. Mixcolumn is the only operation that changes this condition and only if

there is more than one active byte in the column. To capitalize on this at final round (where mixing disrupts
condition), guess key byte. If condition holds, it’s right; otherwise it isn’t.

Boomerang: E = E1E0. E0 : α → β, p, E1 : γ → δ, q. (1) Pick P1 ⊕ P2 = α; (2) Ask for C1 =
E(P1), C2 = E(P2); (3) Compute C3 = C1 ⊕ γ, C4 = C2 ⊕ γ; (4) Request P4 = E−1(C4), P3 = E−1(C3).
E0(P1) = I1, E0(P2) = I2, E0(P3) = I3, E0(P4) = I4. E1(I1) = C1, E1(I2) = C2, E1(I3) = C3, E1(I4) = C4.
What is probability that P3 + P4 = α. e1 : Pr[I1 + I3 = γ] = q, e2 : Pr[I2 + I4 = δ] = q. Pr[e1 ∧ e2] = q2.
Pr[I3 + I4 = β] = q2, Pr[P3 + P4 = α] = p2q2. If (pq)2 > 2−n, pq > 2

−n
2 .

Amplified Boomerang: Use two short differentials instead of one differential. Start with quartet P1⊕P2 =
P3⊕P4 = α, each has α → β with probability p. E0(P1)⊕E0(P2) = E0(P3)⊕E0(P4) = β. E0(P1)⊕E0(P3) =
E0(P2) ⊕ E0(P4) = γ. C2 ⊕ C4 = C1 ⊕ C3 = δ and we want to use γ → δ. Probability that quartet be-
comes right is

(
Np
2

)
2−nq2. Distinguishers count quartets ((P1, P2), (P3, P4)) satisfying C1⊕C3 = C2⊕C4 = δ.

Bilinear Attack: Notation: Lr[0, 1, 2, . . . , n − 1], Rr[0, 1, 2, . . . , n − 1] are the input to round r and
Ir[0, 1, 2, . . . , n− 1], Or[0, 1, 2, . . . , n− 1] are the input (without key) and output to the round functions. If
α ⊆ {0, 1, 2, . . . , n− 1}, define Lr[α] =

⊕
s∈α Lr[s]. Consider the bilinear Lr+1[β] ·Rr+1[α]⊕Rr[β] ·Lr[α] =

Ir[β] ·Or[α].

Square/Integral: Gives one linear combination of 4 key bits in round 4. Properties of sets of texts pre-
served by encryption. Example: 256 plaintexts that agree on 15 input bytes. θ - linear map, γ - non-linear
transform, π - byte transposition, σ - key addition, Λ - 256 active states, λ - set of indices of active bytes.
Then

⊕
b=θ(a),a∈Λ bi,j = 0. ∀x, y ∈ Λ, xi,j 6= bi,j if (i, j) ∈ λ, xi,j = bi,j if (i, j) /∈ λ. ai,j = bi,j ⊕ Sλ[bi,j ]⊕4

i,j ;
if the result is not balanced, key is wrong. (See saturation attack earlier.)

Truncated differentials: Suppose g : GF (2)n ×GF (2)n ×GF (2)m → GF (2)n ×GF (2)n× implements a
Feistel cipher round that is g(X, Y, Z) = (Y, f(Y, Z)⊕X). The S/N ratio is |K|p

γλ where p is the differential
probability, γ is the number of suggested keys and λ is the ratio of non-discarded keys to all keys. A full
differential a′ → b′ specifies all n bits, a truncated differential specifies a subset of bits. Here is an example of
its usefulness. Let f(x) = x−1. It has non-linear order n− 1. If n is odd the map is differentially 2-uniform
p = 21−n; if n is even the map is differentially 4-uniform p = 22−n. For 3 rounds, the differential probability
is 23−2n and the S/N is 23−n. For r > 3 the attack can’t succeed. For 2 rounds, p = 21−n and the S/N is
2n+1 so the attack requires 2n texts and is O(23n) but for a′ 6= 0, there are only 2n−1 possible b′ and we get
one bit of information — the S/N is 22n

22n−1 = 2. Let f(x, k) be the non-linear function in a 5 round Feistel
cipher with block size 2n. Let α 6= 0 be an input differential for which only a fraction, W , of all output
differences are possible. Then a truncated differential attack requires 2L chosen plain-cipher pairs and is
O(L22n) where L is the smallest integer: WL < 2−2n.

Higher order differentials: Define

∆(1)
a (f(x)) = f(x + a)− f(x),∆(i)

a1,a2,...,ai
(f(x)) = ∆(1)

ai
(∆(i−1)

a1,a2,...,ai−1
(f(x))).

Let L[a1, a2, . . . , ai] is the set of all linear combinations of < a1, a2, . . . , ai >. Then ∆(i)
a1,a2,...,ai(f(x)) =∑

γ∈L[a1,a2,...,ai]
f(P + γ) and ord(∆(1)

a (f(x))) ≤ ord(f(x)) − 1. Here is an example application. Let

91



f(x, k) = (x+k)2 (mod p) be the Feistel round function with size is lg(p). f is differentially 1-uniform and
the round differential has probability 1

p , f ′′(x) is constant. The first order differential attack on a 5 round
cipher requires 2p texts and is O(p3); a second order differential attack requires 8 texts and is O(p2). [Use
∆α,β(f(x)), α = a||0, b = b||0, S/N = r2]. For a 5 round Feistel with f non-linear of degree r using an rth
order differential requires 2r+1 texts and is O(22n+r).

SFLASH attack: The idea of SFLASH is to hide an easy-to-invert quadratic map, F (x) with two “secret”
invertible linear transformations U, T . If e = qi + qj , F (x) = xe is quadratic; in particular, if e = qθ + 1
(and from now on, it is) and P = T ◦ F ◦ U , F is (easily) invertible if (qθ + 1, qn − 1) = 1 (so q = 2k) but
without knowledge of U, T , P isn’t. This is the C∗ scheme Patarin broke. If we remove r of n quadratic
equations in the base field that represent P , Patarin’s attack doesn’t work and the new scheme C∗− can
be used for signatures. Let Π : (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn−r). P is public key; to sign m, choose r
coordinates at random. Signer recovers s: PΠ(s) = ~r. Signature is (m, s). The idea of Shamir’s attack is to
use a multiplicative property of the linear transformation induced by a field element, ξ, on the differential to
obtain a different set of linear combinations of the F quadratics and then apply Patarin’s attack. Define the
differential DF (a, x) = F (x + a)− F (x)− F (a)− F (0). For F (x) = xe, e = qθ + 1 in field of characteristic
q, DF (ξ · a, x) + DF (a, ξ · x) = (ξ + ξqθ

)DF (a, x). Denote Mξ as the matrix for the linear transformation
induced by multiplying by ξ, L(ξ) as the matrix induced by ξ + ξqθ

and Λ(L(ξ)) = TΠML(ξ)T
−1. Let

Q be the space of quadratic forms, V the subspace generated by TFU and VΠ the space generated by
TΠFU . VΠ ⊆ V ⊆ Q. There is a corresponding set of bilinear forms B, and sets W and WΠ and set-
ting Nξ = U−1MξU , the relation DP (Nξ(a), x)) + DP (Na,ξ(x)) = Λ(L(ξ))DP (a, x) holds. This equation
relates unknown coefficients of Nξ on the left with unknown coefficients of Λ(L(ξ)) on the right. Setting
SM (a, x) = DPΠ(Nξ(a), x)) + DPΠ(Na,ξ(x)) we note the LHS is in WΠ with probability q−r if M repre-
sents a matrix for some ξ induced value and probability qn2/2 if not. These identify transforms that can
produce other P equations to fill out the r unknown quadratics to apply Patarin. SFLASH-1 parameters:
q = 27, n = 37, θ = 11, r = 11; SFLASH-2 parameters: q = 27, n = 67, θ = 33, r = 11.

Impossible differentials: Suppose α → β for E1 is impossible and E = E2 ◦ E1 ◦ E0. Encrypt many
plaintexts with possible output α after E0 and decrypt pairs with all possible subkeys through E2. If these
suggest α → β the keys are impossible.

Related Key Attacks: If K → (K1,K2, . . . , Kr) and K∗ → (K2, . . . , Kr,K1) and F (X, Ki) is the round
function then n − 1 of the rounds are identical. If P ∗ = F (P, K1) and we know 2n/2 P/C pairs (P, C)K

and 2n/2 P/C pairs (P ∗, C∗)K∗ try to solve F (P, K ′) = P ∗ and F (C,K ′) = C∗; this gives K1. Related key
differential: α → β for E0 with p > 2−n then PrX,K [E0

K(X)⊕ E0
K⊕∆K(X ⊕ α) = β] = p > 2−n.

Structural: Prior to MixCol (xi
0, x

i
1, x

i
2, x

i
3)

T and after (yi
0, y

i
1, y

i
2, y

i
3)

T then y0
0 ⊕ y0

1 ⊕ . . .⊕ y0
255 = 00.

Slide Attack: Let F be a per-round function. If C = E(P ) = Fn(P ) and P ′ = F (P ) then C ′ = E(P ′) =
F (C). Effective against rounds which implement weak permutations.

Wiedemann: Solve A~x = ~b in O(nω) time over F = GF (q) where ω is the number of non-zero ele-
ments of A. Let S =< Aib >, det(A) 6= 0 and suppose f(z) =

∑d
j=0 is the minimal polynomial normalized

so the trailing coefficient (f0) is 1. Let x = −∑d
i=1 fiA

i−1b. Then Ax = (1− f(A))b = b so x is a solution,
this requires 2n(ω + 1) field operations. To find f , look at the linear recurrent sequence si = (u,Aib),
the associated polynomial fu|f and can be computed from the first 2n terms is O(n2).

Let F = GF (q). Every kth order linear recurrent sequence is ultimately periodic with period r sat-
isfying r ≤ qk (r ≤ qk − 1 if homogeneous). If sn+k = ak−1sn+k−1 + . . . + a0sn the associated ma-

trix is A =




0 0 0 . . . 0 0 a0

1 0 0 . . . 0 0 a1

0 1 0 . . . 0 0 a2

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 an−1




and the least period divides Ak − 1. If D
(r)
n =
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j gj(x) hj(x) mj bj

0 1 x 0 0
1 1 x2 1 2
2 1 + x2 2x −1 1
3 1 + x + x2 2x2 0 0
4 1 + x + x2 2x3 1 2
5 1 + x + x2 + 2x3 2x + 2x2 + 2x3 −1 2
6 1 + x3 2x2 + 2x3 + 2x4 0 1
7 1 + x2 + 2x3 + x4 x + x4 0 1
8 1 + 2x + x2 + 2x3 - 0 -

Figure 3.1: Berlekamp-Massey for G(x) = 1 + x + x4 + x6 + x7 ∈ F2[x]




sn sn+1 sn+2 . . . sn+r−1

sn+1 sn+2 sn+3 . . . sn+r−1

. . . . . . . . . . . . . . .
sn+r−1 sn+r sn+r+1 . . . sn+2r−1


 then s0, s1, . . . is a linear recurrent sequence iff D

(r)
n = 0 for

all but finitely many n ≥ 0. If a linear recurrent sequence has minimal polynomial m(x) of degree ≤ k and
r = bk + 1

2 − 1
2m2kc then m(x) = xrg2k( 1

x ) and m(x) depends only on the first 2k terms.

Wiedemann’s Algorithm
1. Set b[0]= b, k=0, y[0]= 0, d[0]= 0
2. If b[k]=0, x= -y[k]. Terminate.
3. Select u[k+1] at random
4. Compute first 2(n-d[k]) terms of (u[k+1], A**i b[k])= s[0,..]
5. Set f[k+1](z)= minimum poly in 4
6. Set y[k+1]= y[k]+f[k+1](z) b[k], b[k+1]= b[0]+A[y[k+1]), d[k+1]= d[k]+deg(f[k])
7. k= k+1, go to 2

Berlekamp’s Algorithm
Given s[0], s[1], ... with generating function G(x)= s[0] + s[1]x + ... + s[i] x**i + ... in
F=GF(q)

1. g[0](x) = 1, h[0](x)=x, m[0]= 0
2. b[j]= coefficient of x**j in G(x) g[j](x)

g[j+1]= g[j](x)- b[j] g[j](x),
h[j+1] = 1/b[j] x g[j(x), if b[j] !=0 and m[j] >=0; x h[j](x), otherwise
m[j+1]= -m[j], if b[j] !=0 and m[j] >=0; m[j+1]+1, otherwise

Version 2
Input: F=GF(q), 2n coefficients of a Linear recurrence <a[0], a[1], ..., a[2n-1]>
Output: Minimal polynomial P

R0=x**(2n); R1= a[0]+a[1]x+ ... + a[2n-1] x**(2n-1); V0=0; V1=1;
while(n<=deg(R1) {

R0= QR1+R; // Division Algorithm
V= V0-Q V1;
V0= V1; V1= V; R0= R1; R1= R;
}

d= max(deg(V1), 1+deg(R1));
P= x**d V1(1/x);
return(P/leading-coeff(P));
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3.11 Quantum Crypto

Key Distribution: Choose two basis: B1 = (|0 >, |1 >) and B2 = (| 12 >, | − 1
2 >). Alice chooses a random

sequence of basis βi from {B1, B2} and a random sequence of bits bi and encodes biwithβi. Bob chooses a
random sequence of basis βi from {B1, B2} and obtains sequence ci = βibi. Bob reveals his sequence of basis
choices and then Alice reveals hers. Each confirms subset of bits for which the sequences agree using some
classical system.

Consider three polarizers A,B, C which have phases 0, 45, 90. If A and C are placed in series, no light
comes through but if A, B and C are placed in series, some light gets through. Let |0 >, |1 > be two
orthogonal vectors in a complex 2−dimensional space. A qubit is a unit vector in this space. It can have
many basis. Shor: Choose m : n2 ≤ 2m < 2n2 and let v = 1√

2m
(|0 > +|1 > + . . . + |2m − 1 >. Let f be

a function and x = 1
C

∑ |x >. System computes t = 1
C

∑ |x, f(x) >. If f(x) = ax (mod n), measurement
of last m

2 bits fixes sequence t = 1
C

∑ |x, u = f(x) > for fixed u measuring the Fourier transform identifies
period, that is m : ai = ai+r so that ar = 1 (mod n) but that means r is a universal exponent and we
can (probably) factor n. Universal exponent method: Suppose ar = 1 (mod n),∀a : (a, n) = 1. Put
r = 2km, m odd. Choose a at random if (a, n) 6= 1, we have a factor; otherwise, put b0 = am (mod n)
and bn+1 = b2

n (mod n). If b0 = 1 or bj = −1 (mod n), 0 ≤ j < k or bj+1 = 1 (mod n) and bj = −1
(mod n), stop and pick a new a. If bj+1 = 1 (mod n) but bj 6= ±1 (mod n) then (bj − 1, n) is a factor.

3.12 Protocols, Models

Bell-Lapadula (BLP): Subjects and Objects labeled. Simple Security property: S can read O iff L(O) ≤
L(S). *-Property: S can write O iff L(S) ≥ L(O). Tranquility: Labels never change. Biba: S can write O
iff I(O) ≤ I(S). S can read O iff I(S) ≤ I(O).

Perfect Forward Security and ephemeral Diffie-Hellman with authentication. Both Alice and Bob agree
on modulus p and base g. Alice picks secret a and Bob b for signing; signing public keys have been previously
exchanged. To for session key, Alice picks random x and Bob picks random y. In the protocol below, rA = gx

(mod p), rB = gy (mod p) and K = gxy (mod p). (1) A → B : “Alice”, rA. (2) B → A : “Bob”, rB ,
EK(sigB(rA, rB)) (3) A → B : EK(sigA(rA, rB)). Throwing away rA, rB , x, y yields perfect forward secrecy.

Kerberos: L is lifetime. TX is the timestamp from X.

1. A → S: A,B

2. S → A: {TS , L, KAB , B, {TA, L, KAB , A}KBS
}KAS

.

3. A → B: {TS , L, KAB , A}KBS
, {A, TA}KAB

.

4. B → A: {TA + 1}.
Protocol layers: Application (DNS, TLS, HTTP, SSH), Transport (TCP), Network (IPv4), Link (ethernet,
Wi-Fi).

TLS: Three phases: (1) Peer negotiation, (2) PK based key exchange (including certificate exchange),
(3) encrypted traffic. TLS exchanges records each record has a content-type and MAC; all records are
numbered. Content type 22 is handshake. Results in 2 encryption keys, 2 integrity keys and 2 IV’s.

M1: (C → S) ClientHello(Client-random[28], cipher-suites, compression methods, highest protocol version),

M2: (S → C) ServerHello(ServerRandom[28], cipher-suite, certificates),

M3: (C → S) ClientKeyExchange(E(PkS, Pre-Master Secret), MD5-SHA1(M1 —— M2—— M3A)), [Mas-
ter Secret is PRF(Pre-master secret, “master secret”, ClientRandom —— ServerRandom)],

M4: (S → C) Finish MD5-SHA1(M1 —— M2 —— M3A —— M3C).
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IPSEC: Two protocols: securing packets and key negotiation. Two modes: transport and tunnel. In
transport mode only payload is encrypted. Packets can be secured for authentication and integrity only
(AH) or authentication, confidentiality and integrity. IKE Phase1: CP (crypto proposed), CS (crypto se-
lected), IC (initiation cookie), RL (response cookie), K = h(IC, RC, gab (mod p), RA, RB). SKEY ID =
h(RA, RB , gab (mod p)). ProofA : [h(SKEY ID, ga (mod p), gb (mod p), IC,RC, CP, “Alice′′]Alice. Pub-
lic Key: (1) A → B : IC, CP. (2) B → A : IC, RC, CS. (3) A → B : IC, CP ga (mod p), {RA}Bob, {“Alice′′}Bob.
(4) B → A : IC, CP gb (mod p), {RB}Alice, {“Bob′′}Alice. (5) A → B : IC, CP E(ProofA; K). (6) B → A :
IC, CP E(ProofB ; K).

Fiat-Shamir: Prove knowledge of a secret, s, where v = s2 (mod n), n = pq; v, n, public. A proves
she knows s: (1) A picks r at random and computes x = r2 (mod n) — commitment, (2) B chooses
e ∈ {0, 1} at random and sends e to A — challenge, (3) A computes y = rse (mod n) and sends it to Bob
— response, (4) finally, B verifies y2 = r2s2e = xve (mod n) — verify this.

S/Mime: Todo.

DSig:
<Signature>

<SignedInfo>
<CanonicalizationMethod/>
<Reference URI=?>
<Transforms/>
<DigestMethod/>
<DigestValue/>

</SignedInfo>
<SignatureValue/>
<KeyInfo/>
<Object>

</Signature>

XML Encryption:
<EncryptedData>

<EncryptionMethod/>
<KeyInfo>

<AgreementMethod/>
<KeyName/>
<RetrievalMethod/>

</KeyInfo>
<CipherData/>

</EncryptedData>

SAML: Authn/AuthZ Request/Response over SOAP.
Assertion, conditions, advice.

XACML: Authorization Rules:
Subjects, Resources, Actions.

REL: Grant, Principal, Right, Resource, Condition.
WS-Policy: security policy
WS Trust: Trust
WS-Privacy including WS-Secure

Conversation, Federation.
WS-Authorization: Principal, Claim, Token.

More Timings: P4, 2.1 GHz. AES: 44 operations/round.

Algorithm Key Size Speed(MB/sec) Algorithm Key Size Speed(MB/sec)
DES 56 21 3DES 168 9.8

SHA-1 NA 68 SHA-256 NA 44
TEA 64 23 AES 128 61

Reestimation: Rotor modeled by S(rj , R) = CrRC−r and represented by a q×q permutation matrix. Key
space is D1×D2×. . .×Dk, Di is all q! permutation matrices. χcs = χ1

cs×χ2
cs×. . .×χk

cs, χi
cs is all possible

q × q stochastic matrices. Suppose ~p is plaintext distribution. d(r, x) = S(r, x)~p. Likelihood L(X|{c, r}) =
Pr(ciphertext = {c1}N |{r1}N ;X) =

∏N
n=1 ec(n)

′d(r(n); X). Want to maximize L by adjusting X. The MLE
of X exists and is strongly consistent. Use the following result: Let P (z) be a polynomial with non-negative

coefficients homogeneous of degree d in zij , Z = {zij : zij ≥ 0,
∑qj

i zij = 1}. T (z)ij = zij

∂P
∂zijPqj

i zij(
∂P

∂zij
)z

.

Computations requires is ≈ kq2N and a 2 rotor machine with N = 1024 ciphertext letters requires about 60
iterations.

3.13 Random Number Quality

Traditional approach for getting n bit value: (1) Get large sample. (2) Calculate the relative frequency, rw,
of each word w in b-bit block. (3) Estimate H = −∑2r−1

w=0 rwlg(rw). Repeat n
H times. Total bits checked:

dnb
H e Concern: small set of possible values and deterministic mixing reduces entropy. Entropy is not the best
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measure of security. Consider the following Theorem. The entropy of a source P =< p1, p2, . . . , pN > which
is mixed by F : [1..N ] → [1..m] is greater than the entropy of the mixed sequence. Let Prob(O = j) = qj

and Q =< q1, q2, . . . , qm >. Hout = HQ = −∑m
j=1 qj lg(qj) = −∑m

j=1[
∑

f(i)=j pi]lg([
∑

f(i)=j pi]) =

−∑N
i=1 pilg(pi + Si) < Hp = Hin, where Si =

∑
j 6=i,F (i)=F (j) pj for the standard Shannon entropy HQ =

−∑N
i=1 pilg(pi). Suppose T values are required in cryptoperiod; if Q =< q1, q2, . . . , qm > is the distribution

and qi1 ≥ qi2 ≥ . . . ≥ qim
, adversary’s best strategy is to guess < i1, i2, . . . > until success. This moti-

vates a different entropy measure. Define Hα(Q) = 1
1−α

∑M
j=1 qj

2. H2(Q) is a good measure for collision

resistance (not secrecy) since
∑m

j=1 qj
2 = 2−H2(Q); the waiting time for repeats is

√
π2H2(Q)−1. H∞(Q) is

a good measure for the quality of resulting key generation, since the expected cost of the guessing attack
is 1

2qmax
= 2H∞(Q)−1. As an example, consider the distribution, Q over 128 bit quantities consisting of one

value that occurs with probability 2−80 and is otherwise flat. H2(Q) ≈ 128, H∞(Q) ≈ 80.

If X is a event with n possible outcomes having respective probabilities p1, p2, . . . , pn the min-entropy of X
is H∞(X) = min1≤i≤n − lg(pi) = −lg(maxi(pi)). To get an estimate of the min-entropy or W (Q), we need
S(Q). Suppose randomizer produces m = 2n outputs with probability distribution Q =< q1, q2, . . . , qm >.
Quality of Q is S(Q) =

∑m
j=1 q2

j ≥ 1
m which is the probability of repeated output. W (Q) =

∑m
j=1 jqj ≤ m+1

2
which is the adversary’s work factor. Estimating either H2(Q) or H∞(Q) consists of four steps. (1) Form
Markov model of input source data (over L consecutive samples), (2) Compute source data repeat probabil-
ity, (3) Estimate S(Q), (4) Use S(Q) to estimate lower bound on W (Q) and/or H∞(Q).

Entropy Order Paradox: Consider Q1 =< 0.258, 0.116, 0.146, 0.032, 0.140, 0.266, 0.038, 0.004 > and Q2 =<
0.256, 0.232, 0.076, 0.130, 0.006, 0.157, 0.005, 0.129 >. H(Q1) = 2.54542 and H(Q2) = 2.54495 but S(Q1) =
0.194176 and S(Q2) = 0.188076 while W (Q1) = 2.844 and W (Q2) = 2.903.

Step 1 - Markov Model: The model consists of Θ =< θ1, θ2, . . . , θL > states where where ρ is the initial

probability distribution, and T =




τ1,1 τ1,2 ... τ1,s

τ2,1 τ2,2 ... τ2,s

... ... ... ...
τs,1 τs,2 ... τs,s


 is the transition matrix. The procedure is to (1)

Model source as sequence of states < s1, s2, . . . , ss >, (2) Get ρ (use steady state estimate), (3) Determine
state defining bits. For multiple sources, Θ(k) =< θ1, θ2, . . . , θik

> and
∑N

i=1 pi
2 =

∑N1
i1=1(p

(1)
i1

p
(2)
i2

. . . p
(k)
ik

)2.
Step 2 - Compute source data repeat probability:

∑N
j=1 pj

2 = [ρ1, ρ2, . . . ρs]T [1, 1, . . . , 1]T . Step

3 - Estimate S(Q): S(Q) =
∑m

j=1 q2
j = 1

m (1 + εs) where (1 + εs) = (m − 1)
∑N

i=1 p2
i . Step 4 (for

H2) - Estimate W (Q) using S(Q) for L source inputs: To get the best possible bound on W (Q)

given S(Q) (qj unknown): Let m′ = min(m,
3S(Q)+4+

√
9S(Q)2+16

6S(Q) ) ≈ min(m, 4
3S(Q) ) then W (Q) ≥ B

where B = 1
6 (3m′ + 3 −

√
3(m′2 − 1)(m′S(Q)− 1)). To obtain this result use Lagrange multipliers to

minimize W (Q) subject to
∑m

j=1 qj
2 = S(Q) and

∑m
j=1 qj = 1. Step 4 (for H∞): Use Dynamic Pro-

gramming compute pmax or proceed as follows: Set y1 = F (x1), q1 = Pr[y1] = pmax +
∑N

i=2 piIi,1 and
qj =

∑N
i=2 piIi,j . µ1 = E[q1] = 1

M [1 + (M − 1)pmax], µ2 = E[qj ] = 1
M [1− pmax], σ2

1 =
∑N

i=2 pi
2V ar(Ii,1) =

( 1
M − 1

M2 )
∑N

i=2 pi
2 and for j ≥ 2, σ2

j = M−1
M

∑N
i=2 pi

2. −lg(µ1) is a good estimate for H∞(Q). Want
| − lg(µ1) − H∞(Q)| ≤ 1

210s−d+1, whereas s is largest integer: 10s ≤ H∞(Q). If Y is the number of qj

exceeding B, Pr[qmax ≤ B] = 1 − Pr[Y > 0] ≥ 1 − E[Y ] > 1 − ε. Pr[Ej ] = Pr[z >
µ

1− 1
2 10−d

1
σ , j > 1. Put

B = max(µ1 + T1σ, µ2 + T2σ), where z is normally distributed and Pr(z > T1) = ε
3 while Pr(z > T2) =

ε
3(M−1) then Pr(µ1+ 1

2 10−d

1 ≤ pmax ≤ µ
1− 1

210−d

1 ) ≥ (1− ε).

Example (L = 3): Let bt, bt+1, bt+2 be three successive states and Prob(bt+2 = bt+1 ⊕ bt) = .8 with s = 4

states then T =




.8 .2 0 0
0 0 .2 .8
.2 .8 0 0
0 0 .8 .2


 and the initial distribution ρ = (.25, .25, .25, .25). The state distribu-

tion is Θ =< θ1, θ2, θ3 >. In SHA-1 mixing example,
∑N

i=1 p2
i = 4.87 × 10−44, L = 256 and we compute

S(Q) =
∑m

i=1 q2
j ≈ 1

m [1 + (m− 1)
∑N

i=1 p2
i ]. m = 2160. m = 2160, m′ = 2.74× 1043, W (Q) ≥ 9.1× 1042.
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Parameter Estimate: N = αΓL−1U , α is initial ρ, Γ is initial T . U = [1, 1, . . . , 1]T . Ii,j is 1 if F (i) = j

and 0 if F (i) 6= j. qj =
∑N

i=1 Ii,jpi, E(qj) =
∑N

i=1 piE(Ii,j) = 1
m . V ar(qj) =

∑N
i=1 p2

i V ar(Ii,j). V ar(Ii,j) =
1
m − 1

m2 . V ar(qj) =
∑N

i=1 p2
i V ar(Ii,j) = m−1

m2

∑
p2

i . E(
∑m

j=1)q
2
j ) =

∑N
i=1 E(q2

j ) =
∑N

j=1 E(q2
j ) + V ar(qj) =

1
m (1 + (m− 1)

∑N
i=1 p2

i .

Extension to HMM: Transition matrix T = τi,j , s states, ~ρ initial distribution, θt ∈ {1, 2, . . . , r}
is the output at time t, C(n) = (c(n)

i,j ), c
(n)
i,j =

∑
θ1,...,θn

Pr(θ1, . . . , θn, σn = i)Pr(θ1, . . . , θn, σn = j).∑
i,j c

(n)
i,j =

∑N
i=1 p2

i =
∑

θ1,...,θn
Pr(θ1, . . . , θn)2 and C(n) = (BBT ) · (TT C(n−1)T ) where · means ele-

mentwise multiplication. Recursion step requires 2s3 multiplications. ≈ 7 minuses for 400 outputs without
eigenvalue.

f : G → C, g : G → C, E(f) = E(g) = 0, E(|f |2) = E(|g|2) == 1. Sfg = f(x) · g(y), Lab(X, Y ) =
χa(x)χ−b(y). Imbalance of S: I(S) = |E(S)|2, I(S) = 1

K

∑
k∈K I(S|K = k). C = (cab), cab = I(Lab(X, Y )),

a, b ∈ G \ {0}. Let y = ek(x) = x + k, cab = δ(a ⊕ b). cab = 1
|K|

∑
k |F(χb · ek)(a)|2, I(S) = f̂T Cĝ.

f̂a = |F(f)(a)|2, ĝb = |F(g)(b)|2. Likelihood estimate of correlation: Ĩ(S) = | 1
N

∑
x,y f(x)g(ỹ)|2.

ξ(x, J,N) is the imbalance distribution with imbalance parameter J . ξ(x, J,N) 2N
1−J h( 2N

1−J x, 2N
1−J J) where

h(·, s) is the probability density of χ2 with 2 degrees of freedom and skewness parameter s. ξ(x, J,N) =
N

(1−J)
√

π
e−

N(x+J)
1−J

∑∞
r=0 σr where σr = 1

(2r)! ((
2N
1−J )2Jx)r Γ(r+ 1

2 )

Γ(r+1) . If J << ( 1
2N )2, ξ(x, J,N) ≈ h(x, J,N),

h(x, J,N) = N
1−J e−

N(x+J)
−1J with accumulated error ε = 1− e−

JN
1−J .

Let S be an I/O product and S1, . . . , SN samples, Ĩ(S) = | 1
N

∑N
j=1 Sj |2. Let E be an n− 1× n− 1 matrix

with Eij = 1
n−1 and C the truncated correlation matrix. Cr −E = (C −E)r and σ2(C) = σ1(C −E) where

σk(M) is the k-th largest singular value of M . Let D = CT C = V −1ΛV , Λ = diag(1, σ2(C), . . .). Theorem:
Let each of the r rounds of an interactive cipher have correlation matrix C then I(S) ≤ 1

n−1 + ||C − E||r;
also, I(S) ≤ 1

n−1 + σ2(C)r, σ2(C) ≤ min < (1−∑
b mina(CT C)ab)

1
2 , (1−∑

a minb(CT C)ab)
1
2 >.

Let ⊗ be the Kroneker product. Φ(M, N) =
∑

a,b gabM
a ⊗ N b, φ(x, y) =

∑
a,b gabx

ayb. The eigenval-
ues of Φ(M, N) are φ(λr(M), λs(N)). if C = A ⊗ B, the singular values of C are products of the singular
values of A and B. The correlation of a non-keyed permutation R = G → G is C = (F ∗PF )(F ∗PF ) where
F = (fab)), fab = 1√

n
χ−a(b), P = (pab), pab = δ(a⊕φ(b)). C = U ·U where U is unitary. Theorem: The cor-

relation matrix of a keyed permutation ek : G → G is C = 1
|K|

∑
k C(k), C(k) = U (k)U

(k)
, U (k) = FP (k)F ∗,

P (k) = δ(a⊕ ek(b)).
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Chapter 4

Physics

4.1 Basic Laws

Classical Mechanics: ~F = d~p
dt , ~p = m~v, m = m0

√
1− ( v

c )2, F = −Gm1m2
r122 . ~F = q( ~E + ~v × ~B). Special

Relativity: If primed (’) coordinate system moving at constant velocity u in the x direction with respect to
the unprimed system, x′ = x−utq

1−u2

c2

, y′ = y, z′ = z, t′ =
t−ux

c2q
1−u2

c2

.

Maxwell’s Equations: ∇ · ~j = −∂ρ
∂t , ∇ · ~E = ρ

ε0
, ∇ × ~E = −∂ ~B

∂t , ∇ · ~B = 0, c2∇ × ~B = j
ε0

+ ∂ ~E
∂t ,

c = 1√
µ0ε0

.

Solution to Maxwell Equations: E = −∇φ− ∂A
∂t , B = ∇×A. Gauge Transformation: A′ = A+∇ψ,

φ′ = φ − ∂ψ
∂t . Choosing gauge ∇ · A = − 1

c2
∂φ
∂t in Maxwell’s equations yields: ∇2φ − 1

c2
∂φ
∂t = −ρ

ε0
and

∇2A − 1
c2

∂A
∂t = −j

ε0c2 . Solving these produces φ(1, t) =
∫ ρ(2,t−(r/c))

4πε0r12
dV , and A(1, t) =

∫ j(2,t−(r/c))
4πε0c2r12

dV .
Lenart-Weichart: φ(1, t) = q

4πε0(r− v·r
c )retarded

.

Fundamental constants: G = 6.671 × 10−11 Nm2

kg2 , c = 2.99725 × 1010 cm
s , k = 1.38 × 10−16 ergs

mol−deg ,

h = 6.6262× 10−27erg− sec, qe = 1.60219× 10−19C, ε0 = 107

4πc2 = 8.854× 10−12 C
N−m2 , STP: 22.4× 103 cm3

mol ,
R = 8.3143 J

mol−deg N0 = 6.022× 1023mol−1.

EMF: total accumulated force through wire. Some consequences: E = −q
4πε0

( er′
r′2 + r′

c
d
dt

er′
r′2 + 1

c2
d2

dt2
er′
r′2 ),

E = cB. E2 − (pc)2 = (mc2)2, ED = 1
8π (E2 + B2), S = 1

µ0
E ×B, E = cB for EM waves. For conservative

electric field: ∆φ = − ∫ b

a
qEds, ∆V = ∆φ

q . E = −∇φ.

Gauss (always): ΦE =
∫

S
E · dA = qin

ε0
, S, closed. ΦB =

∫
S

B · dA = 0, S, closed. B = µ0
2π

qv×er

r2 .
Ampere:

∫
C

B · dl = µ0(Ienclosed + ε0
dΦE

dt ), Faraday: E =
∫

C
E · dl = −dΦB

dt . Biot-Savart (steady currents
only): dB = µ0

2π
I×dl
r2 . E = 0 for conductor in electrostatics. C = κ0C0, Steady current in conductor:

J = nqVd = σE, E = ρJ . Wire (steady current): B = µ0I
2πr . AC: V = IZ.

Devices and circuits. E = −L di
dt . Iz = V . ZC = 1

iωC , ZL = iωL, ZR = R. Low-pass (Inductance in
series, capacitance across EMF), high-pass (switch capacitance and inductance). Reactive: no real term.
Dissipative: real term > 0. Propagation factor: α = Vn+1

Vn
. Transmission line: ∂2I

∂x2 = L0C0
∂2I
∂t2

impedance is z0 =
√

L0
C0

. Mutual Inductance: E2 = −M di1
dt , E1 = −M di2

dt . UL = 1
2LI2, UC = 1

2CV 2.
Kirchoff:

∑
k vk = 0, k covers loop;

∑
k ik = 0, k covers node. Thevinen equivalence: Two terminal

linear network is equivalent to voltage source VTh and impedance in series. Norton equivalence: Two ter-
minal linear network is equivalent to current source VN and conductance GN in parallel. Resistor: R = ρL

A .
Battery: E − Irinternal = Vab. Op Amp: vo = AOLvd. Transfer and two terminal input and output.

Reflection on string: ∂2ψ
∂t2 = T

ρ
∂2ψ
∂x2 , vφ = ω

k , vg = dω
dk , Z =

√
Tρ. Power: P (t) = F ∂ψ

∂t , For travel-
ling wave: P (t) = Z(∂ψ

∂t )2. Consider a wave train on a string from the left (L) with a change at x = 0
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of medium (i.e. a denser string) to a string on the right (R). For perfect termination: Fterm(“R on
L”) = −ZL

∂ψinc

∂t (0, t). For excess force: Fterm(“R on L”) = ZL
∂ψref

∂t (0, t). −ZL
∂ψinc

∂t (0, t)+ZL
∂ψref

∂t (0, t) =
−ZR(∂ψinc

∂t (0, t) + ∂ψref

∂t (0, t)). So, ∂ψref

∂t (0, t) = ZL−ZR

ZL+ZR

∂ψinc

∂t (0, t).

R = ZL−ZR

ZL+ZR
is called the reflection coefficient. Wave Transmission: String: v =

√
F
µ , Fluid: v =

√
B
ρ ,

Solid: v =
√

Y
ρ , Adiabatic Gas: v =

√
γp
ρ . Standing wave transmits no energy. Oscillating Dipole (An-

tenna): E = p0k2

4πε0

sin(θ)
r sin(ωt− kr).

Early Quantum Mechanics: ∆p∆x ≥ h
4π , λ = h

p , ν = E
h , p = hk

2π , E = hω
2π , pav = nkT . Black-

body radiation: E(λ, T ) = 8πhc
(λ5) (e(hc)/(λkT ) − 1)−1. Photoelectric Effect: hf = KE + φ. Bohr

hydrogen atom: En = − 13.6ev
n2 , rn = n2a0, a0 = h2

2πkmc2 = .0529nm. Time Independent Schrodinger:
d2ψ
dt2 + 4πm

h (E − U(x))ψ = 0. Schrodinger: ih
2π

∂ψ
∂t = − h2

8π2m∇2ψ + V ψ.

Relativity: Proper Interval: I(x, y, z, t) = x2 + y2 + z2 − c2t2, I(x, y, z, t) = I(x′y′z′t′). ds2 = gijdxidxj ,
gij = gji, δ

∫
ds = 0. Action: S =

∫ t2
t1

L(x, x′, t)dt, δS = 0 → ∂L
∂x − d

dx
∂L
∂x′ = 0. L(x, x′, t) =

−m0c
2
√

1− v2

c2 − q(φ + v · A). Rexcess =
√

A
4π − rmeas = G

3c2 M , G
3c2 = 2.5 × 10−29 cm

gm . From principle

of equivalence, ω = ω0(1 + gH
c2 ) - doppler shift measured by Pound and Rebka.

4.2 Physical Constants

1 in = 2.54 cm. 1 meter = 39.370 in. 1 AU = 1.496 × 1011 m. 1 lb = 4.448 N . 1 Pa = 1 N
m2 .

1 Atm = 1.013 × 105 Pa. 1 hp = 745.7 W . 1 J = 107 erg. 1 ev = 1.602 × 10−19 J . 1 BTU = 1055 J .
1 cal = 4.186 J . 1 L = 1000 cm3. 1 Gal = 3.785× 10−3 m3.

Atomic constants: Me = .510998Mev = 9.10939 × 10−31kg, Mp = 938.256Mev(= 1836Me) = 1.67262 ×
10−27kg, Mn = 939.55Mev = 1.67493 × 10−27kg, σSB = 5.67 × 10−8Wm−2K−4, 1ev = 1.6 × 10−12erg =
1.6× 10−19J , 1curie = 3.7× 1012decays, cs = 3.32× 104cm/s, 1cal = 4.1855J , 1BTU = 252cal, 1kgTNT =
4.2MJ , 1A = 10−8cm. HDNA: 2,900,000 kilobases.

Astronomical constants: H0 = 100km(s−Mpc)−1, 1 pc= 3.26 l-y, 1080nucleons, 1028cm − diam, 1011

galaxies.
Milky Way: εecliptic/MW = 62.5, 1.6× 1011stars, 1023cm− diam, 8× 1044gm.
Sun: Esun = 4× 1033ergs/sec, RSun = 3.5× 1010cm, 1.99× 1033gm, λsun = 30days.
Earth: εearth = 23.5, 50% clouds, Rmoon = 2160mi, εmoon = 5, λsider = 27d7h43m12s, λsynod =
29d12h44m3s, RAGreenwich(1986.0) : 6.6245, 0 Jan 1986 = 2, 446, 430.5JD.

Geological: For seismic wave, vP =
√

(k+ 4
3 µ)

ρ , vS =
√

µ
ρ .

µgranite = 1.6× 1010dynes/cm, kgranite = 27× 1010dynes/cm, kwater = 2.0× 1010dynes/cm, µwater = 0.
vP−granite = 5.5km/sec, vS−granite = 3.0km/sec, vP−water = 1.5km/sec, vS−water = 0.

Materials: Dry (static, sliding) Friction: Steel (.78,.42), Teflon; (.04,-). Expansion: αl = l−1 ∂l
∂t × 106,

C: (Al, 24), (Cu, 17), (Granite, 8.3), (Ice, 50), (Fe, 12), (Water, 207). Heat Capacity: cv = m−1 ∂Q
∂T : (He,

12.5), (O2, 21.1), (N2, 20.6), (C2H6 , 39.3), MFP N2 = 10−5 cm, Cv,solid = 3R. Melting/Boiling: MP/BP
(K): Au, 1336, 3081; O2, 54, 90; Cu, 1356, 2839. Heat Conduction: Q′ = −κA∂T

∂l W (cmK)−1 : (Cu, 4),
(Fe, 0.80), (Si, 1.5), (H2,.00024-.0018), (Rock, 2.8 kc/mhK). Dielectric: ε = Kε0: (Glass, 6.7), (Water, 78),
(Nylon, 3.6).
Resistivity: R = ρ L

A × 10−8: (Ag, 1.4), (Cu, 1.7), (Al, 2.8), (Fe, 9.8).
Density: ρ/ρwater: Al, 2.7; Cu, 8; Rock, 5.5; Au, 19; Fe, 8; Gas, .68; air, .0012; wood, .75.
Moduli: B = ∆P

∆V
V

: Al, 70; Cu, 140; Fe, 100; Water, 200.

Y =
∆F
A
∆l
l

× 1012dy/cm2: Al, 70; Cu, 110; Fe, 190.

Ms =
∆F
A
∆x

l

: Al, 30; Cu, 42; Fe, 100.
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Name RA Dec Vmag Dist Name RA Dec Vmag Dist
Polaris 01 23 88 46 2.06 200 Mizar 13 20 55 27 2.12 26
Aldeberan 04 30 16 19 .8 21 Capella 05 09 45 54 .09 14
Rigel 05 10 -08 19 .11 270 Bellatrix 05 20 06 16 1.63 140
Betelgeuse 05 50 07 23 .4 180 Sirius 06 41 -16 35 -1.44 2.7
Canopus 06 22 -52 38 -.72 ? Castor 07 28 32 06 1.56 14
Procyon 07 34 05 29 .36 3.5 Pollux 07 39 28 16 1.15 10.7
Regulus 10 03 12 27 1.34 26 Merak 10 56 56 55 2.36 23
Spica 13 20 -10 38 .97 65 Arcturus 14 11 19 42 -.05 11
Antares 16 23 -26 13 .94 130 Vega 18 34 38 41 .03 8.1
Altair 19 46 08 36 .77 4.9 Deneb 20 38 44 55 1.25 500

Figure 4.1: Stars

Planet Dav(km× 106) λ(rev) e i Lnode LPer Pepoch M(gm) R(km) Rot
Mercury 57.9 87.97d .2 7 47.9 76.8 222.6 3.3e26 2439 58.7d
Venus 108.2 224.7d .007 3.4 76.3 131.0 174.3 4.9e27 6050 243d
Earth 149.6 365.26 .017 0 0 102.3 100.2 6e27 6378 23h56m
Mars 227.9 686.98 .093 1.8 49.2 335.3 258.8 6.4e26 3394 24h37m
Jupiter 778.3 11.8yr .048 1.3 100.0 13,7 259.8 1.9e30 71880 9.8h
Saturn 1427.0 29.46 .056 2.5 113.3 92.3 280.7 5.7e29 60400 10.66h
Uranus 2869 84 .047 .8 73.8 170.0 141.3 8.8e28 23540 17.24h
Neptune 4496 164.79 .009 1.8 131.3 44.3 216.9 1e29 24600 16h
Pluto 5900 247.7 .250 17.2 109.9 224.2 181.6 - - -

Figure 4.2: Planetary data - Epoch: 1960 Jan 1.5UT, Orbit: a = b
√

1− e2.

Air: 28.96 m-w, cp = 1005 J/kg-K, cv = 718J/kg − K. 1 atm = 1.013 × 105Pa, Pa = 106dyne/cm2 =
1N/m2 = 760mm − Hg. ρ : 1.293mg/cm3, κ : 2.4 × 10−2W/m − K, visc@20 : .00018g/cm − s. Water:
273.15K, 18 m-w, 540 cal/gm (vaporization), 80 cal/gm (fusion), ρice = 917kg/m3, κ : .19W/m−K, visc@20 :
.01gm/cm− s, ST : @20 : 73d/cm.
Sound Strength: g = 10log( I

I0
) in db. I0 = 10−12W/m2. Normal Conversation: 60 db, Jet: 130 db.

Speed of Sound: ≈ 330m/s at normal conditions, vav =
√

3kT/m.

Misc units: 1 in = 2.54 cm, 1 kg = 2.2046 lbs, 1 fluid− oz = 0.0338 ml, 1 gal = 3.3785 liters.

Stellar Evolution (′: means differentiate wrt r): P ′ = −ρGM(r)
r2 , M ′ = 4πr2ρ, L′ = 4πr2ε,

L′ = (−3χρ)
(4acT 3(4πr2)) (rad), L′ = (1− γ−1)Tρ−1P ′ (conv), P = RT ρ

µ , χ = CρT−3.5, α = 106

T 1/3 .

Optics: nglass = 1.52, nwater = 1.33, ndiamond = 2.42. Lensmaker’s law (air to glass, one surface):
1
s + n

s′ = 1
f .

Lensmaker’s law (double surface): n1
s + n2

s′ = 1
f , 1

f = (n2 − n1) 1
R1
− 1

R2
. hi

ho
= di

f = f
do

. Resolving Power:

4.54/Dinches arc-seconds, fratio = Lfocus

Rdiameter
, 3 ≤ fratio ≤ 6, Mag = Lfocus−objective

Lfocus−eyepiece
.

Chemical bonds: covalent: 80-200 kcal/mole (C=C is 200), ionic: 4-7 kcal/mole, hydrogen 5kcal/mole,
vanderWaal < 1kcal/mole (methane). Thermal: .6 kcal/mole. Acid added to H2O increases H+, pH =
−log[H+], acid < 7.

Fluids: P + φ + 1
2ρv2 = const, ∇ρv = −ρ′, ∇v = 0, ∇× v = 0.

Interference: R = A[cos(ωt) + cos(ωt + φ) + . . . + cos(ωt + (n − 1)φ)]. AR = A
sin( nφ

2 )

sin( φ
2 )

. I = I0
sin2( nφ

2 )

sin2( φ
2 )

.

For f(t) = A1e
iω1t + A2e

iω2t, I = A2
1 + A2

2 + 2cos((ω1 − ω2)t). Group velocity and modulation.
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Place Lat Long Place Lat Long Place Lat Long
Beijing 40.1 116.33 SF 37.45 -122.33 NY 41.44 -73.8
Boston 42.35 -71.05 Chicago 41.87 -87.63 Dallas 32.78 -96.78
Madison, Wi 43.07 -89.38 Santa Fe 35.68 -105.93 Seattle 47.61 -122.33
Tucson 32.22 -110.97 DC 38.88 -77.0 Denver 39.75 -104.99
Atlanta 33.75 -84.39 London 51.5 0.0 Paris 48.83 2.3
Berlin 52.5 13.42 Rome 41.88 12.5 Moscow 55.75 37.7
Athens 37.97 23.75 Jerusalem 31.75 35.22 Tokyo 35.75 139.75
Sidney -33.87 151.2 MKea 19.826 -155.47 CTlo -70.82 -30.17
New Orleans 29.93 -90.07 Redmond,OR 44.27 -121.15 Portland 45.52 -122.68
LA, CA 34.05 -118.24 San Diego 32.7 -117.15 Orlando 28.52 -81.38
Milan 45.45 9.28 Amsterdam 52.3 4.77 Auckland -36.92 138.58
Bombay 18.93 74.58 Delhi 28.67 77.23 Perth -31.93 -115.83
Toronto 43.65 -79.38 Bagdad 33.3 44.43 Cairo 30.03 31.35

Figure 4.3: Places on Earth

Spectrum: 30cps audio 30K 500K AM 1500K 3M HF 30M 88M FM VHF 210M 400M UHF 800M 1.5G
H2 S-band 3G 7600A IR 6300 Visible 3900A UV 100A X-ray .1A gamma 67 Mev.
Red: 650nm, Yellow: 580 nm, Green: 500nm, Blue: 475nm, Violet: 400Nm.

Middle C: 256Hz. Octave has 12 notes in uniformly divided log scale. Octave is factor of 2.

Central Forces: ~F (r) = f(r)r̂. m(r̈−rθ̇2) = f(r) and (conservation of angular momentum) m(rθ̈+2ṙθ̇) = 0.
r2θ̇ = h, r̈− h2

r3 = f(r)
m . If V (r) = − ∫

f(r)dr, 1
2m(ṙ2 + r2θ̇2)+V (r) = E; ellipse if E < 0, parabola if E = 0,

hyperbola if E > 0. Force from path: f(r) = mh2

r4 [d2r
dθ2 − 2

r ( dr
dθ )2 − r].

Rotating frames: Suppose XY Z(F ) is inertial system and xyz(M) is rotating frame with a common
origin O. (d ~A

dt )|F = (dA
dt )|M + ω × ~A. DF

2~r = DF
2~r + DM (~ω) × ~r + 2~ω × DM~r + ~ω × (~ω × ~r). Last

two terms are Coriolis and Centripetal. If O is moving too, DF (~r) = Ṙ + DM~r + ~ω × ~r and DF
2~r =

R̈ + DM
2~r + DM (~ω)× ~r + 2~ω ×DM~r + ~ω × (~ω × ~r). Object dropped from rotating sphere from a height h

is deflected by 1
3ωgt3sin(λ), where λ is the colatitude.

Foucault (constrained to horizontal plane): mẍ = −T (x
l ) + 2mωẏcos(λ), mÿ = −T (y

l ) − 2mω(ẋcos(λ) −
żsin(λ)), mz̈ = −T ( l−z

l )−mg + 2mωẏsin(λ), n̂ = isin(ωcos(λ)t) + jcos(ωcos(λ)t).

Rotation in plane: I =
∫

r2dm. ~Ω = I~ω, T = 1
2Iω2 ~Λ = I~̇ω. Parallel axis theorem: IA = ICM + mb2.

Perpendicular axis theorem: Ix = Iy + Iz. Isphere = 2
5ma2. Icylinder = 1

2ma2. Iplate = 1
12m(a2 + b2).

Rotation in space: Ω =
∑

mµ(rµ × (ω × rµ), [(rµ × (ω × rµ)]x = ωx
2(yµ

2 + zµ
2) − ωyxµyµ − ωzxµzµ,

Ixx =
∫

(y2 + z2)dm, Ixy = − ∫
(xy)dm, I =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 is the inertia tensor. T = 1

2ω · Ω is

kinetic energy. Principal Axis Theorem: If ω1, ω2, ω3 and Ω1, Ω2, Ω3 are the angular velocities and
momenta about the principal axis, Ωi = Iiωi and T = 1

2 (I1ω
2
1 + I2ω

2
2 + I3ω

3
1). Ellipsoid of rotation:

Let n̂ be a unit vector in the direction of ω̂, ~ω = n̂ω = ω(icos(α) + jcos(β) + kcos(γ)). T = 1
2Iω2

where I = Ixxcos2(α) + Iyycos2(β) + Izzcos
2(γ) + 2Ixycos(α)cos(β) + 2Ixzcos(α)cos(γ) + 2Iyzcos(β)cos(γ).

ρ = n̂√
I

is ellipsoid of revolution. Rotational symmetry about s = z axis: Is = Iz, I = Ix = Iy.

Iω̇x + ωyωz(Is − I) = 0, Iω̇y + ωxωz(I − Is) = 0, Isω̇z = 0. ~Js = const, put γ = Is−I
I ωs; then ω̇x + γωy =,

ω̇y − γωx =, so ω̈x + γ2ωx = 0 and Tp = 2π
γ . Precession of Earth: Tp = 2πI

ωz(Is−I) ≈ 305days. Precession

of Disc: Tp = 2π
ωz

. Gyroscope: Jx′ = Ix′ωx′ = Iθ̇, Jy′ = Iϕsin(θ), Jz′ = IsS. S = ϕ̇cos(θ) + φ̇, IsṠ = 0.

Euler’s Equations: Let O be a principal axis coordinate system fixed in a body, the external torque
is ~Λ. I1ω̇1 + (I3 − I2)ω2ω3 = Λ1, I2ω̇2 + (I1 − I3)ω1ω3 = Λ2, I3ω̇3 + (I2 − I1)ω1ω2 = Λ3 along the
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principal axes. ω · Ω = c is invariant plane. The angular velocity and momentum in terms of the Eu-
ler angles φ, θ, ψ, from Oxyz fixed in space to Ox′y′z′ , principal axis, is: ωx′ = φ̇sin(θ)sin(ψ) + θ̇sin(ψ),
ωy′ = φ̇sin(θ)cos(ψ) − θ̇sin(ψ), ωz′ = φ̇cos(θ) + ψ̇, φ is from x to line of nodes, θ is from z to z′ axis,
and, ψ is from line of nodes to x′;. T = 1

2 (I1ω1
2 + I2ω2

2 + I3ω3
2). Top: Suppose ~e3 is the axis of top’s

line of symmetry. ~s = s~e3 = ψ̇ ~e3 . Ω = I1ω1e1 + I2ω2e2 + I3(ω3 + s)e3, Λ = le3 ×mg = (dΩ
dt )F , I1 = I2.

(dΩ
dt )F = (dΩ

dt )B +ω×Ω. I1ω̇1 +(I3− I2)ω2ω3 = mglsin(θ), I2ω̇2 +(I1− I3)ω1ω3− I3ω1s = 0, I3(ω̇3 + ṡ) = 0.
In Euler angles, with ψ = 0, this is ω1 = θ̇, ω2 = ψ̇sin(θ), ω3 = ψ̇cos(θ). θ̇, ψ̇, s are angular velocity of
precession, nutation and spin.

Holonomic constraint: φ(q1, q2, ..., qn, t) = 0. Generalized coordinates: δW =
∑

α Φαδqα, Φα =∑ ~f · ∂r
∂qα

. Lagrange equations: ( d
dt )

∂T
∂q̇α

− ∂T
∂qα

= Φα. If the forces are all conservative and L = T −V then
( d

dt )
∂L
∂q̇α

− ∂L
∂qα

= 0. Generalized momentum: pα = ∂T
∂q̇α

. Hamilton: H(p1, ..., p,q1, ..., qn, t) =
∑

pαq̇α−L.

ṗα = − ∂H
∂qα

, q̇α = ∂H
∂pα

. Hamilton Principal: For conservative forces (H = T + V ), L = T − V , δ
∫ t2

t1
Ldt = 0.

Note: H =
∑

pαq̇α − L.

4.3 Quantum Mechanics

Formalism: Let |i > denote base states < i|j >= δij . |ψ >=
∑

i |i >< i|ψ >, < ψ|φ >=
∑

i < φ|i ><

i|ψ >. |ψ >=
∑

i |i >< i|ψ > evolves under Â so |φ >= Â|ψ > and < i|φ >=
∑

j < i|Â|j >< j|ψ >,
Aij =< i|Â|j >.

Free particle: Ψ(x, t) = 1√
2π

∫∞
−∞ φ(k)ei(kx− ~k2

2m t)dk and φ(k) = 1√
2π

∫∞
−∞ ψ(x, 0)e−ikxdx. For free par-

ticle, ~ω = ~2k2

2m .

∫
R3 |ψ(~x)|d~x = 1. Spatial operators: Xψ = xψ, Y ψ = yψ, Zψ = zψ, ~R = (X,Y, Z). Momentum oper-

ators: pxψ = ~
i

∂
∂xψ, pyψ = ~

i
∂
∂y ψ, pyψ = ~

i
∂
∂z ψ, ~P = (px, py, pz). Angular Momentum: Lx = ypz − zpy,

etc. < A >=
∫

ψ∗(~r)Aψ(~r)d~r, ∆A =
√

< A2 > − < A >2.

Elements of state space are denoted: | > and (φ, ψ) =< φ|ψ >, physically observable quantities are de-
scribed by hermitian operators acting on state space: A|ψ >, each observable quantity is an eigenvalue of
the hermitian operator.

Postulate 1: Associated with any isolated physical system is a complex vector space, V with an inner
product called a state space. The system is completely described by v ∈ V .

Postulate 2: The evolution of a closed quantum system is described by a unitary transformation on
the state: |ψ(t2) >= U |ψ(t1) >. Postulate 2’: The evolution of a closed quantum system is described by
Schroedinger’s equation i~∂|ψ>

∂t = H|ψ >.

Postulate 3: Quantum measurements are described by a collection of measurement operators, {Mm}
that act on the state space. If |ψ > is the state immediately before the measurement, the probability that
the event m occurs is < ψ|M†

mMm|ψ > and the state after the measurement is given by Mm|ψ>√
<ψ|M†

mMm|ψ>
and

Mm satisfies
∑

m M†
mMm = I. A projective measurement on an observable with spectral decomposition,

M =
∑

m mPm, results in one of the m values as possible outcomes. ∆(C)∆(D) ≥ <ψ|[C,D]|ψ>
2 .

Postulate 4: The state space of a composite system is the tensor product of the state spaces of the
component systems. If we number the systems 1, 2, . . . , n, and system i is in the prepared state |ψi > then
the joint state is |ψ1 > ⊗|ψ2 > ⊗ . . .⊗ |ψn >.

A set of gates is said to be a set of universal quantum gates if any unitary operator can be approx-
imated to arbitrary accuracy by a quantum circuit involving only those gates. The Hadamard, CNOT,
phase and π

8 gates form a universal set.
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For harmonic oscillator: H = p2

2m + k x2

2 . Another hamiltonian: H = 1
2m (p − q

cA)2 + V (R) + qφ −
q

mcS · B, B = ∇ × A. Simultaneously observable quantities commute. Independence and uncertainty:
[Rj , Pk] = i~δjk, [Rj , Rk] = 0.

Feynman Postulates: If there is no spin or polarization: (1) < x|s >= a + bi. Pr( particle arrives at x|
particle leaves s) = | < x|s > |2. (2) < x|s >both=< x|s >1 + < x|s >2. (3) < x|s >via 1=< x|1 >< 1|s >.
a is probability light scattered at 1 arrives at D1 and b that it arrives at D2 (a >> b). < ~r2|~r1 >= A

r12
ei

~p· ~r12
~ ;

get p relativistically by (pc)2 = E2 − (m0c
2)2 or non-relativistically as E = p2

2m . Rules for outcomes:
(1)If final states are distinguishable, add probabilities not amplitudes for indistiguisible processes leading
to the same final state add amplitudes; (2) use complete description of isolates system. Outcomes of scat-
tering with indistinuishable particles always interfere: add amplitudes for Bosons, subtract for Fermions.
Pn(Bose) = n!Pn(different). Treat metal conduction as noninteracting Fermion gas.

For H, V (r) = − q2

r . i~∂ψ
∂t = − ~2

2m∇2ψ−V (r). ψ(r, t) = e
i
h Et. If f(x, u, z) = g(r(x, y, z), θ(x, y, z), ψ(x, y, z)),

fxx = grr(rx)2 + gθθ(θx)2 + gψψ(ψx)2 + 2(grθrxθx + grψrxψx + gψθψxθx) + grrxx + gθθxx + gψψxx. ∇2f =
1
r2 (r2gr)r + 1

rsin(θ) (sin(θ)fθ)θ + 1
r2sin2(θ)fψψ. Use this to solve Schrodinger Equation for Hydrogen.

4.4 Thermodynamics and Statistical Mechanics

First law: ∆Q: heat into system, If ∆W : work on system, ∆E: increase in energy of system then
∆Q + ∆W = ∆E. For ideal gas, PV = E = 2

3N < mv2

2 >= nRT = NkT . In general, PV = (γ − 1)U
(γ = 5

3 for ideal gas). (∂U
∂T )V = Cv = 3

2R, (∂U
∂T )p = Cp = Cv + R, for adiabatic process: pV γ = c, γ = CP

CV
.

Second Law: It is impossible to build a cyclic engine that converts thermal energy completely into me-
chanical work. Carnot Process: 1 → 2: isothermal at TH , 2 → 3: adiabatic add QH , 3 → 4: isothermal
at TC , 4 → 1: adiabatic add QC . e = 1 − TC

TH
. S =

∫
dQ
T ≥ 0. S = NkBln(Ω). In irreversible process,

entropy increases, at T = 0, S = 0. For reversible process, S = Q1
T1

= Q2
T2

, W = Q1 − Q2 = Q1(1 − T2
T1

);
eff = W

Q1
= T2−T1

T1
. S = kln(W ).

For monatomic gas, P = 2
3U = γ − 1 = 2

3 < mv2 >= 3
2kT . In a mixture at constant temperature

with two species 1 and 2, n1 < m1v1
2 >= n2 < m2v2

2 > but considering two particles with relative velocity
w with velocity of enter of mass vCM we can argue at equilibrium that < w · VCM >= 0 so n1 = n2 (Avo-
gadro’s hypothesis. For photon gas, PV = N < p · v > /3 so γ = 4

3 . For diatomic gas: γ = 9
7 .

Atmosphere: dn
dh = −mg

kT , n = n0e
−PE/kT and n>u

n<u = e−KE/kt. Evaporation model: W is binding
energy of liquid, n is density of vapor, 1/Va is density of liquid then nVa = e−W/kT . Chemical kinetics:
nAnB

nAB
= ceW/kt. Diffusion: Average time to collision is 1

n0

∫∞
0

tN(t)dt
τ , N = N0e

t/τ . Mean Free Path:
l = τv. Thermal conductivity: 1

A
dQ
dt = −κdT

dz , κ = knlv
γ−1 if MFP << container.

Maxwell Distribution: FMB = N( m
2πkT )

3
2 e−m(v2

x+v2
y+v2

z)/(2kT ), the frequency of a particle around v;

dnν = FMBg(q)dq. vrms =
√

3kT
m .

Bose-Einstein Distribution (Bosons): FBE = (eαeEi/kT − 1)−1, α is type specific 0 for photon.
Fermi-Dirac Distributions (Fermions): FFD = (e(Ei−Ef )/kT + 1)−1, Ef is the Fermi energy. CV =
1
N (∂E

∂T )V approximately 3R for many solids.

Conductor: half filled conduction band. Insulator: filled conduction band large gap ≈ 5ev. Semicon-
ductor: filled conduction band small gap ≈ 1ev which can be overcome by thermal excitation. Electron
mobility: µ = vd

E , vd is drift velocity. Fine constant: ke2

~c ≈ 1
137 . Josephson junction is two supercon-

ductors separated by thin ≈ 1nm insulator; if there is no potential difference, electrons tunnel and we get
dc, if dc potential is applied, we get ac with f ≈ 2eV

h .

103



Type Family 1 Family 2 Family 3
Quark Up (u) Charm (c) Top (t)
Quark Down (d) Strange (s) Bottom (b)
Lepton electron neutrino (νe) muon neutrino (νµ) Tau neutrino (ντ )
Lepton electron (e) muon (µ) Tau (τ)

Figure 4.4: Matter Particles - Fermions - not including antiparticles

4.5 More Quantum

Polar Decomposition: Let A be a linear operator on V . Then there is a unitary operator U and positive
operators J,K: A = UJ = KU . J =

√
AT A, K =

√
AAT .

Singular Value Decomposition: Let A be a square matrix the ∃U, V and a diagonal matrix D with
non-negative entries such that A = UDV . Entries of D are called singular values.

Standard Model: Quantized force fields materialize as particles. Matter particles: Fermions (half-integral
spins). Force particles: Bosons (integral spins). u: q = + 2

3 , m = 2Mev; d: q = − 1
3 , m = 5Mev; c: q = + 2

3 ,
m = 1.25Gev; s: q = − 1

3 , m = 95Mev; t: q = + 2
3 , m = 171Mev; b: q = − 1

3 , m = 4.2Gev.
νe: q = 0; νµ: q = 0; ντ : q = 0. e: −1, m = .511Mev; µ: −1, m = 106Mev; τ : 0, m = 1.78Gev. Bosons:
Photon γ - EM Force: q = 0, m = 0; Gluons - Strong Force: q = 0, m = 0; Z - weak force: q = 0, m = 91Gev;
W+,W− - weak force: q = 0, m = 80.4Gev; Higgs (H): q = 0, 114Gev < m < 192Gev; Graviton - gravity:
q = 0, m = 0.

Hall Effect: In metal or semiconductor, imagine a thin (2D) slab, z-up, x-across, y-back, with an electric
field, ~Ey, back, current ~jx across. Turn on a magnetic field ~Bz, and the charges move to the back until equi-
librium caused by electrostatic build-up when Bzvx = Ey, then Hall resistance is RH = Ey

Bz
jx, jx = vxNq. At

low temperature (< 30mK), a quantum effect appears: RH grows monotonically with Bz and is quantized
by 1

n
h
e2 ; this IQHE is evident in a GaAs-GaAlAs hetero-juncture. The magnetic field shifts the Landau

Levels. The diagonal resistance Rxx is at times 0 when the Fermi energy of the electrons lies between the
Landau Levels freezing out scattering. (The Fermi energy, EF , is the energy of the fermion composite at
0K.) When the mobility of the electrons is high, additional plateaus (corresponding to Rxx = 0) appear; this
is due to electron interaction giving rise to fractional charge like quasi-particles; this is the FQHE. Unlike
IQHE, the FQHE gives rise to non-Abelian statistics in the gapped degenerate states.

Laughlin wave function: Φm(z1, . . . , zn) =
∏

i<j(zi − zj)me−
1

4l2
P |zi|2 . Moore-Reed: Φm(z1, . . . , zn) =

∏
i<j(zi−zj)me−

1
4l2
P |zi|2Pf( 1

zi−zj
). Energy spectrum of 2DEG breaks into allowed states En = (n+ 1

2 )~ωc

in B field (Landau levels). When chemical potential lies in Landau bands, material is metallic. Otherwise
localized states materialize adding electrons only add and subtract localized states, no currents flow and

system is incompressible. Magnetic Length: lB =
√

~
eB ; within lB of the edge, they form quasi-1D

channels. Because there is no back-scattering, Rxx = 0. Hidden subgroup: Gabelian ≥ H, f : G → X
hides H if f : G/H ↔ X.

A set of gates is said to be a set of Universal Quantum gates if any unitary operator can be approximated
to arbitrary accuracy by a quantum circuit involving only those gates. The Hadamard, CNOT, phase and
π
8 gates form a universal set.

Quantum Ion Trap System. The qubits are representations of the hyperfine nuclear spin states at
the lowest vibrational modes (phonons) of trapped atoms. Arbitrary transforms are constructed with laser
pulses using Jaynes Cummings. Qubits interact via shared phonon state. Initial state preparation involves
cooling atoms by trapping and optical pumping to their lowest motional ground and hyperfine state. The
measurement is the measurement of the population of hyperfine states. The phonon lifetimes are short and
the atoms are difficult to prepare. For NMR, the coupling is weak and difficult to control.
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Spintronics: Spintronics exploits the intrinsic spin of electrons and its associated magnetic moment, in
addition to its fundamental electronic charge, in solid-state devices. Electrons are spin-1/2 fermions and
constitute a two-state system with spin “up” and spin “down”. To make a spintronic device, the primary
requirements are to have a system that can generate a current of spin polarized electrons comprising more of
one spin species – up or down – than the other (called a spin injector), and a separate system that is sensitive
to the spin polarization of the electrons (spin detector). Manipulation of the electron spin during transport
between injector and detector (especially in semiconductors) via spin precession can be accomplished us-
ing real external magnetic fields or effective fields caused by spin-orbit interaction. Spin polarization in
non-magnetic materials can be achieved either through the Zeeman effect in large magnetic fields and low
temperatures, or by non-equilibrium methods. In the latter case, the non-equilibrium polarization will decay
over a timescale called the “spin lifetime”. Spin lifetimes of conduction electrons in metals are relatively
short (typically less than 1 nanosecond) but in semiconductors the lifetimes can be very long (microseconds
at low temperatures), especially when the electrons are isolated in local trapping potentials (for instance, at
impurities, where lifetimes can be milliseconds).

Quantum error correcting conditions: Suppose C is a quantum code and P is a projection opera-
tor onto C. Suppose E is a quantum operator with measurements Ei. A necessary and sufficient condition
for the existence of an error correction operator R is PE†

i + EjP = αij .

A qubit is a two dimensional space |ψ >= a|0 > +b|1 > such that |a|2 + |b|2 = 1.

Let R1, R2, . . . , RN be trajectories in 3 + 1 dimensional space from ti to tf . ψ(~r1, ~r2) → eiθ. Normally,
θ can either be 0 or π, if θ is arbitrary, this describes an anyon. Non-abelian anyons are associated with
higher dimensional representations of the braid group. This can occur when there is a set of g degenerate
states with particles are fixed R1, . . . , RN . If {ψα} is an orthonormal basis and ψα → [ρ(σ1)]αβψβ . It is
non-abelian if [ρ(σ1)]αβ [ρ(σ2)]βγ 6= [ρ(σ2)]αβ [ρ(σ1)]βγ .

Filling factor: Ratio of electrons to magnetic flux quanta. For FQHE: ν = 1
RH

h
e2 or σH = ν e2

h . For
composite fermions with p-filled Landau levels, ν = p

2p+1 . 1
3 state is fully spin polarized. Luttinger Liq-

uid: Interacting electrons in a one dimensional conductor. Fermi Energy: The Fermi energy is the energy
of the highest occupied quantum state in a system of fermions at absolute zero temperature. A quantum
dot is a semiconductor whose excitons are confined in all three spatial dimensions. A quantum well is a
semiconductor whose excitons are confined in two spatial dimensions. A quantum wire is a semiconductor
whose excitons are confined in one spatial dimension. Spin Polarization is the degree to which the intrinsic
angular momentum of elementary particles, is aligned with a given direction. This property is related to
the magnetic moment, of conduction electrons in ferromagnetic metals giving rise to spin polarized currents.
It may also apply to beams of particles, produced for particular aims, such as polarized neutron scattering
or muon spin spectroscopy. Spin polarization of electrons or of nuclei, often called simply magnetization, is
also produced by the application of a magnetic field is used to produce an induction signal in electron spin
resonance (ESR or EPR) and in nuclear magnetic resonance (NMR).

Aharonov-Bohm: The AharonovBohm effect is a quantum mechanical phenomenon by which a charged
particle is affected by electromagnetic fields in regions from which the particle is excluded. Such effects are
predicted to arise from both magnetic fields and electric fields, but the magnetic version has been easier to
observe. According to AharonovBohm, the knowledge of the classical electromagnetic field acting locally on
a particle is not sufficient to predict its quantum-mechanical behavior. In the case of the AharonovBohm
solenoid effect, the wave function of a charged particle passing around a long solenoid experiences a phase
shift as a result of the enclosed magnetic field, despite the magnetic field being zero in the region through
which the particle passes. This phase shift has been observed experimentally by its effect on interference
fringes. There are also magnetic AharonovBohm effects on bound energies and scattering cross sections, but
these cases have not been experimentally tested. If ~B = ∇ × ~A = 0, ϕ = q

~
∫

P
~A · dx. ∆ϕ is determined

by Φ through the area between two paths; ∆ϕ = 2πk for superconductor through closed loop. Existance
of monopole forces E, B to be quantized. The Coulomb Blockade is the increased resistance at small
bias voltages of an electronic device comprising at least one low-capacitance tunnel junction. Magnetic
quantization: Φ0 = h

2e ≈ 2 × 10−15Wb; measured by Josephson effect. Berry Phase: Phase acquired in
cyclic adiabatic process; measured through interference experiment.
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Ising Model: Spin coupling: E = −∑
i,j JijSiSj . One dimensional: E =

∑
i SiSi+1. Two dimensional:

E = −∑
i,j Si,jSi,j+1 +Si,jSi+1,j . Magnetic field breaks the symmetry. Computational model: (1) Pick ran-

dom site, (2) flip spin and calculate ∆E, (3) if ∆E < 0, accept, (4) if ∆E > 0 accept with probability e−β∆E .

Cauchy-Schwartz: < φ|ψ >≤< φ|φ >< ψ|ψ >. Tij =< ui|T |uj > then T =
∑

ij Tij |ui >< uj |.
Continuous version of inner product: < φ|ψ >=

∫
φ∗ψdx. If |φ >=

∑
i ci|ui > then ψ >→



c1

c2

. . .
cn


 =




< u1|ψ >
< u2|ψ >

. . .
< un|ψ >


. If |ψ >= α|0 > +β|1 > then | < 0|ψ > |2 = |α|2. Projection opera-

tor: Pm =
∑m

i=1 |ui >< ui|. Observables: Hermitian operators on state vectors.

|ψ(t) >= (α(t), β(t))T . H|ψ >=
(

ω1 ω2

ω2 ω1

)(
α(t)
β(t)

)
= i~∂|ψ>

∂t =

(
dα(t)

dt
dβ(t)

dt

)
, α(t) = ei

ω1t
~ cos(iω2t

~ )).

< w|T †|v >=< v|T |w >∗, [X, P ] = i~. Finding similarity: (1) find eigenvalues/eigenvectors, (2) nor-
malize eigenvectors, vi, (3) S−1 = (v1, . . . , vn).

Hadamard Gate: 1√
2

(
1 1
1 −1

)
. Pauli matricies: X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. ~L = ~r × ~p, Lx = ypz − zpy, [Lx, Ly] = i~Lz. (∆A)2(∆B)2 ≥ (<A,B>

2i )2.

Degeneracy (duplicate eigenvalues): Suppose A has gm degenerate states then Prob(λm) =
∑gm

i=1 | <
ai

m|ψ > |2.

Tensor:
(

a
b

)
⊗

(
c
d

)
=




ac
ad
bc
bd


.

Density Operator: ρ =
∑

i pi|ψi >< ψi|. If system is in a pure stare Tr(ρ) = 1; if system is in a
mixed state Tr(ρ) < 1. Klein Gordon and Dirac: 1

c2
∂2ϕ
∂t2

− ∂2ϕ
∂x2 = (mc)2

~2 ϕ, i~∂ϕ
∂t = −i~cα · ∇ψ + βmc2ψ.

Canonical momentum density: π(x) = ∂L
∂ϕ̇ .

L = T − V , S =
∫

Ldt, H(p, q) =
∑

i piq̇i − L. p = ∂L
∂q̇ , F = ∂L

∂q and ṗ = F .

Symmetries: EM (U(2)), Weak (SU(2)), Strong (SU(3)). A Lie group (1) depends on parameters
θ1, . . . , θn and (2) derivatives with respect to group parameters exist. The diffeomorphism group of a Lie
group acts transitively on the Lie group. g(θ)θ=0 = e, ∂g(θ1,...,θn)

∂θi θj=0
= iXj are the generators. [Xi, Xj ] =

ifijkXk is group algebra. Consider Rx(ζ) =




1 0 0
0 cos(ζ) sin(ζ)
0 −sin(ζ) cos(ζ)


, Ry(φ) =




cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)


,

and Rz(θ) =




cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1


. Unitary: [U,H] = 0. SU(2) has 3 generators and SU(3) has 8.

Noether: If T (s) is a transformation T (s) : q 7→ q(s) and ∂L(q(s)
q̇(s) = 0, then C = p∂q(s)

∂s is a conserved
quantity.

Model for electron flow in crystal: Let Cn be the wave function at site n in a linear array of molecules
in a lattice each separated by a distance b. i~∂Cn−1

∂t = E0Cn−1 − ACn − ACn−2. Cn = an(x)e−i(e/~)t and
an(x) = eikx. Substituting,E = E0 + A(e−ikx + eikx). Using E0 = 2A and cos(t) ≈ 1− t2/2 for small t, we
get E = ~ω = Ab2k2

2 so dω
dk = 2Ab2

~ k. If E is different, say E0 +F at site 0, we get backscattering or trapping
depending on the sign of F .

Energy in conduction band ≈ E0 + αk2. NnNp = ceEgap/(kT ). Egap,Ger ≈ .72ev, Egap,Si ≈ 1.1ev; at
room temperature, kT ≈ 1

40ev.
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Semiconductor junctions: Np(p−side)
Np(n−side) = e−

qpV

kT .

vdrift = qnEτn

mn
, yielding the Ohm law: ~j = Nq2

nτn

mn

~E . For Hall effect, ~Etr = −~vdrift × ~B = − 1
qN B~j,

RH = 1
qN .
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