Math Notes

John L. Manferdelli

These notes were written for my personal use, partly to learn tex.
They are clearly not written for third parties (second parties either)
and may be incomplete, inaccurate or even incoherent.
However, you are welcome to use them at your own risk.
I disclaim any and all liability for inaccuracy, infringement of any kind, or anything else.

Please send corrections to:
JohnManferdelli@hotmail.com, jlmUCB@yahoo.com,
jmanfer@microsoft.com, jlm@cs.washington.edu.

(©1997-2009, John L. Manferdelli

Last modified: 24 January 2009 14:43



Chapter 1

Math

1.1 Number Theory, Inequalities and Combinatorics

1.1.1 Basic Number Theory

7 is irrational: Lemma: Define f,(z) = M then (i) fn(z) = % S ety e € 2, (i) For 0 < z < 1,
0 < f(z) < &, (iii) the derivatives f(k)( ),fr(tk)( 1) € Z,k > 0. Now, assume r = 7 = ¢ is rational.
Let Fo(z) = b"(r"fu(z) — r" U2 (@) + ..+ ()" 2" (2)). For 0 < k < n, b = anFpF g0
F,(0),F,(1) € Z. f(2n+2)( ) =050 F)(z) +1F,(z) = ra" fu(z) and L (F'(z)sin(rz) — nF(z)cos(rz)) =
ra” fn(z)sin(rx). Use this to ShOW‘ Ta” fol fn(x)sin(rz)dx = F ( ) + F,(0). Thus for all integers n>1,
0 < ma™ fo fu(x)sin(nz)

Transcendence of e: If f(z) is a polynomial of degree 7, set F(z) = f(x) + f'(2)... + f(x). Then
F(i) — e'F(0) = —ie?A=%) £(i;) = ;. Suppose e satisfies g(e) = cpe™ 4+ ...+ ¢ =0. Then ¢, F(n) +... +
coF(0) = cre1+caea+. . .+cpe,. Put fx) = © 1),xp 1—2)P(2—z)P...(n—2)P. p| F(i),i > 0 but p{ F(0).
So, ¢, F(n)+...4+coF(0) is an integer not divisible by p but ¢, F(n)+...+coF(0) = c1€1 + 262+ .. . + cpén.
Now, let p — oo.

Wilson: (p — 1)! = (=1) (mod p). Proof: There are only 2 solutions to #2 = 1 (mod p), namely, +1
all other multiplicative elements can be paired with their inverses and cancel.
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22 = =1 (modp)iff p = 2o0rp =1 (mod4). Proof: (p—1)! = -1 = (-1)"= Hje{l’Q’_"’prl}jQ
(mod p), if p=1 (mod 4), first factor is 1 and thus ([[;c(yo ;%1}]‘)2 = -1 (mod p).

If p=1 (mod4):3a,b:a®+b* =p Proof: Iz : 2>+ 1 =rp. Set k = |\/pl.k < b <k+1
Set f(u,v) = uwx + v; consider S = {(u,v) : 0 < v < k,0 < v < k}. |S] = (k+1)2 > p, so
Juy, ug,v1,v2 ¢ f(ur,v1) = f(ug,v2) and @ = u; — ug,b = v1 — vy then a + bz = 0 (mod p). Now
a®+b*=a’>+a*z? =0 (mod p). |a] < /pand |b| < /pso 0 < a®+b* < 2p and a® + b* = p.

If ¢ | (a> + % and ¢ = 3 (mod 4) then ¢ | a and ¢ | b. Proof suppose (a,q) = 1, pick @ : aa = 1
(mod ¢). a®> = —b? (mod ¢) so —1 = (ba)?> (mod q).

0 =2"TT) (moaa)?’ [ly=s (mod 4)@” then n = a®+b? iff all v are even. Proof: Use (o +b%)(c* +d°) =
(ac — db)? + (ad — be)?.

Chinese Remainder Theorem: If (mj, my) = 1, for any a,b, there is an n such that n = a (mod my)
and n =b (mod msz). Further, if n’ is another such number, n =n' (mod myms).

Solving Linear Equations over Z: ax = b (mod m) has a solution iff (a,m) | b. If so there are
) solutions. If (m1,me) = 1 then ¢(mima) = ¢(my)d(ma). If Ng(m) is the number of solutions of

(
f(z) =0 (mod m) and (my,mg) =1 then N(mims) = N(mq)N(ms).




If R=Ri xRy x...x Ry, UR) = U(R1) x U(Rg) x ... x U(Ry); consequence: if (m;,m;) = 1 and
m=mims...my then Z/(m) =7Z/(m1) X Z/(ms3) X ... x Z/(my). Applying this to n = 2°°p“1py°2 .. . p, "
we find n has a primitive root iff n = 2,4,p°. p has ¢(p — 1) primitive roots. Lucas: If (a,m) = 1 and
aP~' =1 (mod m) and p — 1 is the smallest such exponent then m is prime.

Note that solutions of f(x) = 0 (mod p) are solutions of (f(x),2P — x). Chevalley: Suppose f,g €
Zy[z1, ...,y of degree 7, < n then (1) if f(z) =0 (mod p) has a solution, it has at least two; and (2) if
g is homogeneous, it has at least one non-trivial solution.

Hensel: Suppose f(z) € Z[z]. If f(a) = (mod p?) and f’(a) # 0 (mod p?) there is a unique
t: fla+tp)) =0 (modp'™t). If deg(f(x )) = n with leading coefficient 1 then f(z) has n solutions
iff f(x)| (2P —x). Ifd|(p—1) then 22 =1 (mod p) has d solutions.

Zd|n¢(d ) o(n) = Zd\nu(d)%' 0 = deﬂ(d)- Moebius: F(n) =

) = 6(n) = nll( -
de f(d) = f(n) = Zd\ u(d)F (). Proof Zd\ p(d)F (%)de 1(d) Zavf; f0) = Zé\n Zd|% u(d)f(6) =
25 f(6) Zd‘% w(8) = f(n). If (x,n) = 1 then 2% =1 (mod n). Counterexample to converse: (First
Carmichael Number): 561.

(¢) = a"7 . Quadratic Reciprocity: If p, ¢ are odd primes, (B)(L) = (71)%%, (%) = (71)%.

(p— 1)(q

Gauss’s first proof of the law of quadratic reciprocity: (2)(1) = (-1) . Proof: Let Dz = g.p + 7.
Set pgy = 1y, if 1y < % Pe =D — Ty, if 7 > %. Let n be the number of p, that are less than 0. Multiply

D,2D,3D...p%1D together, this yields: D T %! = (—1)7””771! or D' = (%) = (-1 )” Let D= q ;é P

then either z = p, —|—_gm (mod 2) or * = py + g +1 (mod 2). Z?w =n+ Z pm + Z
(mod 2). Son = Y57 g, (mod 2). But g, [£]. So (&) = (-1)Z 9% = (-] and (5)(5) =

(—1)ZLTIFELT] . Now use the fact that Z@ 1 LpJ + Zﬁt”’J = w. This can be derived by
X

qg—1

looking at the number of lattice points in a Z 2 45= rectangle with vertex at (0, 0).

Another Proof of QR using Gauss Sums: ¢,(¢) = Zf:_ol (t)s*. Set g(z) = g1(x). Number of solutions to
a? =t (mod p)is 1+ (7). ga(¢) =¢(a™")g(¢) if a # 0 (mod p) otherwise it’s 0. 35(7)s* = (%) 3o(7)s"

If ¢ is the principal character, g(¢) = \/p. If ¢ is real and ¢*(¢) = (g(¢))" then ¢*(¢) = (—1)%119.
Look at [g(Q)* =T =3, ga( )74(¢)- On one hand, it’s 3-,(£)(5)g” = (51)(p — 1)g°. On the other, it’s

> 2y 20 9a(C(@)g-a(C(y) = X0 30 22, (Clay))s "™ = (p — 1p.
Proof or QR: Set p* = (—1)FT_1p. gl = (g2)qT_1 = (%). So g¢ = (%)g. On the other hand,
9" = (Zu(£))? (mod q) = (,(£)%")  (mod q) = (£)g. So (&) = (£).

b™ + 1 is prime only if n is a power of 2. If M, = 2P — 1 is prime, Ay = %M(M + 1) is perfect. Beatty: If
iJr%: 1and A= {|ma]}, B={|mf]} then AUB=Z and AN B = 0.

There are no solutions to 2% + y?> = n if n = 3 (mod 4). There are solutions to 22 + y> = n if n = 1
(mod 4). If a has A divisors aq,...,a4 with a; = 1 (mod 4) and B divisors by,...,bp with b; = 3
(mod 4) then 22 + y? = n has 4(A — B) solutions in the integers.

Pell’s Equation: 22 — dy? = 1 is solvable (if d is not a perfect square) using continued fractions. Let
p < L be two rationals such that ps —rqg = —1 then VA o E D < i‘\f;iz; < L. Let % < &< Lwithps—rg=—1
thena—)\p—i—ur and b = \q + ps.

There are infinitely many primes of the form 4n + 3. Largest power of p dividing n! is 3,5, Lz%j
Erdos’ proof of Bertrand: (1) prove for n < 4000, (2) II,<,p < 471, (3) (2:) contains p ), LQ—ZJ -

2[5, (4) 37 < () < (T, ygmp) (1T vanepezP)Mzn peonp), (5) 4" < (2n)1HV21437 50 n < 4000.



Dirichlet: If a > 0 and (a,n) = 1, then there are infinitely many primes p, such that p =a (mod n).

The following moduli have primitive roots for p > 2, 2, 4, p*, 2pf“. Fact for Miller-Rabin: n—1 = 2%, #0
(mod 2), (a,n) = 1. If n is prime, either a” =1 (mod n) or a®" = —1 (mod n) forsome j : 0 < j < (s—1).
¢(s) = > -L which converges for Re(s) > 1. Note: ((2) = %2. Riemann Hypothesis: If s = a + bi,
all the zeros of ((s) have a = 1.

Prime Number Theorem: Let II(z) be the number of primes < z. II(z) ~ (:==).
Euler: 3, _, ., f(n) = f; ft)dt + f;(t = D f@®)dt + (x = [=])) f(x) = (y = [y]) f(y)-

Dirichlet: Let « be a real number and @) a positive integer. There is a rational number 2 with 1 <¢g<Q

such that |o — %\ <= q . Proof: Let B, = {qu <zr< Q} Let ¢; = g — |qor]. By the plgeon hole principle,

at least 2 ¢,’s must lie in a single Bk This completes the proof. It’s easy to extend this to show that if «

is irrational, there are infinitely many rational numbers % such that |a — 7| < .z which was bharpened by

Hurwitz. Hurwitz: If « is irrational, there are infinitely many rational numbers fl’ such that Jo—£| < \/5q2'

Liouville: Let a be an algebraic number of degree d > 2. There is a constant ¢(«) > 0 such that for all

%, |oe — p| > C(a). Roth: Let a be an algebraic number of degree d > 2 and € > 0. There is a constant

c(a,e) >0 such that for all £, |or — B > C(SJrf). Consequence: z =Y ;107" is transcendental.

(20 —1,2° —1) = 2@ — 1. Proof: Let a =bg+r, 2% —1 = (2* —1)(2* P + 22 .. 4 2°9®) 42" — 1.
This parallels the construction of (a,b) in the Euclidean algorithm.

p-adic valuation: = = p*%, (a,b) = (a,p) = (b,p) = 1 then v,(z) = k. If f(z,y, z) over Z is quadratic, then

f has a solution over Z iff it has a solution in the p-adics over for all p. Counterexample for higher order
equations: 3z% + 4y 4+ 52> =0 (mod p) is solvable for p but 3z* + 4y 4 522 = 0 has no solutions.

1.1.2 Inequalities

3=

Arithmetic-Geometric: 13 a; > ([], a;)w. Proof: A, = Yonti, Gn = (a1a2...ay) Put (1)

A= Wﬂ and (2) A, + A =2A,1. Now apply induction to equation (1) and (2).

Triangle: |z|+ |y| > |z +y|. Simple Cauchy: (a? +b%)(c® + d?) > (ac+ bd)? with equality iff bc — ad = 0.
Cauchy-Schwartz: |u - v| < ||u|[||[v]]. Proof: Look at 3 (a;z 4 b;)%. Get (3 a;2)z? + 2(3 aib)z + 3. bi°.
Complete square. Constant is always > 0.

Holder: If % + % = 1 then % + % > ab and (3, al-p)% (> biq)é > 3 .ab;. Proof: If f is mono-
tonically increasing, f(0) = 0, then [ f + fob f~' > ab. Another proof: You can prove first part using

and b= —"b—

Arithmetic-Geometric inequality. Apply this inequality repeatedly with a = T.
(i, bat) e

<zl,1 ain)?

Adding these we get (3, ai”)%(zzlzl b9)e > S aib;

Minkowski: (3 a:?)7 +(30:2)% > (X (ai+b;)P)¥. Proof: Write (z1+22)P + (y1 +y2)P = (w122~ o1+

(y1+y2)" 1]+ [(21+22)7 " oo+ (y1+y2)P o] Apply Holder to each term to get (7 +y7)» [(w1+22) ™17+
1 1

(1 + 1) D97 > 2y (21 + $2)p71 iy + )Pt and (2h 4+ yB) 7 (21 + 22) PV (y1 4 yo) P >

wo(x1 + 22)P " + ya(y1 + y2)P L. Since % + % =1, (p — 1)¢ = p. Adding the two inequalities and dividing

by [(2? + 28) + (¥ + %)) while noting that 1 — % = %, we get Minkowski.

Chebyshev: If a3 < ag...an, by < b2 (2> a)(E X b) < (%Z:az ;). Proof: Y. (a;b; — a;b;) =
24

P (L) ey — a5 A b s (0B 0 s () 30 —
3 2.(a; —a;)(bi — b;) < 0.



>, a;b; is max when a; and b; are in order, a,b; > 0. min(a,b) < ji% < ab < ot < /# < mazx(a,b).

Concave (convex cap): f(tz+ (1 —t)y) > tf(x) + (1 —¢)f(y). f is concave if f”( ) < 0. log is concave.
Convex (convex cup): f(tz + (1 —t)y) < tf(x) + (1 —t)f(y). f is convex if f”(x) > 0. z2,2 > 0 is
concave. Concave Jensen: E(f(X)) < f(E(X)). Convex Jensen: E(f(X)) > f(E(X)).

log(z) < (x — 1), equality iff x = 1. Hadamard inequality: |D(a1,as9,as,...,a,)| < ||la1]] - ||az]] ... ||an]]|-
a?+b%+c? > ab+ac+be and aiﬂ+ bic—k bj_c > % Weighted AM-GM: If Ay, ..., \, > 0 and ZZL:I A =1,

then >0 N > [, xf‘l

1.1.3 Combinatorics and Sets

Let f(x) = c;o¥ +...+¢co be a polynomial with coc # 0 which factors as f(z) = cp(z — 7)™ ... (2 — )™
then a sequence {a, } satisfies a linear recurrence with characteristic polynomial f(x) iff 3: g;(x),..., g (z)

such that a, = g1(n)r1™ + ... 4+ gi(n)r;"™ where deg(g;) < m;.

)

Linear congruential generator: z,;1 = (azx, + ¢) (mod m) has period n if (¢,m) = 1. b = a — 1,
b=0(p) if plm,b = 0(4) if m = 0(4).

Burnside: Let a permutation group G act on A inducing an equivalence relation S. Let n be the number
of equivalence classes. n = ﬁ > gec |Agl- Let D be a set of elements operated on by G and R be a set

of colors. A coloring is a map f : D — R. Two colorings, fi, f2, are equivalent if f(d) = f2(d9),Vd. Let
cyc(m) be the number of cycles in 7 and ¢ € C(D, R) be a coloring. To use Burnside to count colorings, show

that |[D®,| = |R|*°(™). Polya: Pg(xi,rs,...1,) = IG\ > gec T 2T @ M( ) 229 Example (Vertices on a
cube): Pg = 55 (2} + 923+ 623 +8x%x3). Example (Faces on cube): PG = (2§ + 623wy + 320} + 623 4 823).
For f € R, store: Y w(r), inventory: W (f) = [, f(d), pattern inventory of RP = > s W(f). Polya: pat-
tern inventory = Pg(X w(r), S w(r)?,... S w(r)™). Number of equivalence classes= Pg(|R|,|R|,...|R]).

(v,k,t,\) design: |X| = v, B is a set of k subsets of X is a design if each ¢ subset T of X, the num-
ber of blocks containing T is A and |B| = b. r, the incidence number, is the number of blocks incident with

one point. These designs are denoted t — (v, k, \) or Sy(t,k,v). b; = /\E g bp=0, by = (Ukr) < (})-

Hall’s Theorem: J(A) = {y € Y,(x,y) € E,z € A} and |J(A)| > |A] if and only if there is a com-
plete matching.

Inclusion-Exclusion: Let Ay, As,..., A, be a famﬂy of subsets of X. The elements of X that are
not in [J; Ai 18 30 cp(— 1) A where Ar = Nies Ai- (Note: Ag = X.) For classical statement, let

A; ={x: ¢i(x) is true}.

Ramsay: Let P.(S) be the r-subsets of S. Let P.(S) = A1 U...UA; and 1 <r <gqq,...q. AN(r,q1,...q)

such that for n > N, S contains a (g;, A;). R(m,n) < R(m —1,n) + R(m,n — 1) and R(s,t) < ((s(:':)g))

Generating Functions: Let 12 objects be distributed to A, B, C subject to: A gets at least 4, B and C
get at least 2 and C' gets no more that 5. The coefficient of x'2 in (z* +...28)(2? +...28)(2% +...25) is the

number of ways this can happen. For selections with repetitions note that: (ﬁ)" =3, ("+f_1)xi. For par-
titions, examine -2—(2-)?.... Exponential generating functions: f(z) = ap+ai1z+ a0z’ +... Faga®+.. ..
leference calculus: >, 3" = (1 4+ A)"uy
Dearrangements: n!(1— 4+ 4 — 4 ...+(—1)"-%). Menages (i isnot ini+1 (mod n)): Y1 (=1)"(n—
r)! ((2"T_T)) % Number of solutions of ny +ns+...+n, = ris (("+: 1)). Restricted permutation positions:
N(ay,ay, ... al,_1)=nl— ("_1) (n—2)I+ ("gl) (n=3)!—...+(-1)" (Z:}) (n—1)!. For permutations of a, b,
¢, d, e, f which don’t contain ace or fd: N(a17 a2) = 6!—4!—5!4+3!. Rook polynomials: R(z,C) = zR(x,C;)+
(x C.). Forbidden positions: N(al,ab,... =ey=nl—ri(n—1)+ry(n—2)1—... = > (=1)r;(n—j)

a,) =
Exactly m with property: e, = Z?:o(_D]( ;r ) Simtj-

Number of surjective maps from [n] — [k] is 5 (1) () (k — i)™ n! =", (=D () (n =)™

7



Multinomial coefficients: (“70T¢) and (z +y + 2z)2+0te. (7€) < (2€)k, (1) > (2)F. Identities: (}) =

a,b,c
PG () = (0D + G20 () = DT GO () = (0 G X (30 = (0. X () =
() mo (D () = (09) 0zt f (k) = fiZy f@)da+5270, 25 D @)+ Ry, an Ty = by Tya 0 —
$n0n Ty = SpbpTh—1 4 SpCn, Spbn = Sn—1an-1, Ry = $pan Ty, Ry = Ry—1 + spcp, (1) = (—1)T("+:71), 1+
)™ =14+ (et +...+ (7)z™™. S(n,k) (Stirling numbers of the first kind) is the number permu-
tations in S,, with exactly k-cycles. T'(n,k) (Stirling numbers of the second kind) is the number of ways
of grouping n objects into k groups. “Bell” numbers,(B,: the number of ways to divide n things into
groups. Bni1 = > o (1) Bn Yp_oS(n k) = by, S(n+1,k) = kS(n, k) + S(n,k — 1) Y)_(T(n,k) =
nl,T(n+1,k) = nT(n,k) + T(n,k — 1). Let B, denote the nth Bernoulli number. 37" ; (") B; = 0 and

J=0\ j
x 0 z" . _ 1 (2n _ n—1
By =1 255 = > o Bn 7. Catalan numbers: ¢, = n+1(n)7cn = o CkCn—k—1-

Let p(n) be the number of partitions of n. Then, p(n) = 4n1\/§e\/ % . The number of partitions of n

into k things is the number of partitions of n with largest partition k.

A sequence of (n — 1)(m — 1) + 1 different numbers has either increasing sub-sequence of length n or a
decreasing sub-sequence of length m. Proof: Let = € B, if the longest increasing sequence beginning with x
has length n. If any B,., with r > n is non empty, we’re done. Otherwise, there must be a By with k < n
containing at least m elements. These m elements form a decreasing sequence.

Similarly, if 1 < ay,...,ap <mand 1 < by,...,b, <m, Ip,q,r, s with app1+...+appqg =brp1+. ..+ bpgs.
Proof: Let j = j(k) be the smallest integer with a1 +...+a; > b1 +... +bi. Let ¢ = ZZ(:kl) a; — Zle b;.
At least two ¢;’s (say ¢, and ¢,, u > v) are equal. ¢, — ¢, provides the right sequence.

In permutation, ¢ < j and a; > a; is inversion. Inversion table is (b;) where b; = number of elements
left of j that are > j. For 59182647 3,it's236402210. Inversion table uniquely determines
permutation. Inverse has same number of inversions.
Generating permutations of {1,2,3,...,n}:

1. Set m = 123...n. Output .

2. If my > w41, Vi, stop.

3. Get largest i: m; < miq1.

4. Find smallest j: i < j such that m; < ;.
5. m > ;.
6. Reverse the order of the numbers following, 7;, denote this by 7. Output 7. Go to 2.

Another algorithm: Steinhaus weaving generator (by recursion).

Permanent: per(a;j), m x n matrix, is > a1;,G2, . .. Gm,,, Where o runs through m permutations of

[n]. ! = per(J) = 3275 () (=1 (n —r)™.

Let A, be the matrix obtained by replacing r specified columns of A by 0. Let S(A,) be the product
of row sums of A,. Let ., S(A,) over all choices of 1: per(4) = 3" S(Apn—m) — ("7 S(An_m1) +

(=) () S (A ).

G(V,E) a graph with vertex set V' and edge set E. g(G) - girth - length of minimum cycle. w(G)- clique

number. a(G) = w(G)- independence number. x(G) - chromatic number. §(G) - minimum degree. A(G) -
maximum degree. d(z,y) = number of edges between x and y. Dg(x,y) = maz, 4d(z,y).

A graph is bipartite iff it contains no cycles of odd length. Theorem: «(G)x(G) > n. Cayley graph.
Strongly regular graphs. Expander graphs and short paths (Todo).



There are n”~2 labeled trees with n nodes. Proof: Use Prufer Code for tree T: remove leaf with smallest
label, add the label of the vertex it’s connected to at end of sequence.

G(n,M),N = (3). Random graph selecting M of the N edges. Pr[G = H] = p*f¢N=cl) X (G) =
number of complete graphs of order s. E(X,) = Y ¢ E(Ya(G), where Yo (G) = 1, if Gla] = K4, 0

otherwise. Ey(Ya) = Pu(Gplal = K,) = p° = (N_S) (Aj\g)il. E,(X,) = (M)p*. If a is the order of the

M-S
n E (n)k

automorphism group of F' then K} has % subgraphs isomorphic to F'. Np = ( k) . . For cycles, a = 2k.

Erdos: There is a graph, G, with ¢(G) > n and x(G

) > n. Another formulation: Given natural num-
bers g > 3, k > 2, 3G, with |G|k39, g(G) > g and x(G) > k

Fact 1: If G € G(n,p), ¢ =1 — p then Pr[a(G) > k] < (V)q (2) Fact 2: Markov’s inequality. Fact 3: Let X
be a r.v. representing the number of k- cycleb E(X) = ")’“ p. Fact 4: If k > 3 and p(n) is a function with

p(n) > %(") then lim, ..o Prla > 2= =0: (7)q () < ( ) < (ne Pz ) inside expressmn is < /€ —0.

Argument: Fix 0 <e< ¢, p= nl_i X(G) is the number of cycles < k. E(X ) > (”)Z 1(k —2)(np)*.

PriX >3] = EX) < (k — 2)n*<=1. Pick n big enough so that Pr[X > 2] > 1 and Pr[a > 2] <1 So3@
2

with < & short cycles and a( ) < 55 delete up to % points to eliminate the short cycles producmg a graph
HCAG. X( ) > > k.

(H) = Ot(G‘)

e-regular: (A4, B) with X C Aand Y C B such that | X| > €|A| and |Y| > €| B| satisfy |d(X,Y)—d(A, B)| <e.
€ regular partition: (1) |Vo| < €|V, (2) |Vi| = V4|, for i > 1, (3) all but ek? of the pairs (V;, V;) are € regular.
Szemeredi Regularity Lemma: For every € > 0 and every m > 0, 3M such that every graph of order at least
m admits an e regular partition {Vp, Vi,..., Vi } with m <k < M.

Giant component in G(n,p) when p = % Sunflower Lemma: Let T = {S1,Ss,...,Sk} be a sys-
tem over a set U, such that (1) [S;] <1 and (2) k> (p—1)1l. Then IF C T, F = {Si,, Si S;, } such
that VA, Be€ F;,ANB=F.

25

Random function statistics: Tail, cycle, predecessor length: /%", Tree Size: 7, Number of compo-

nents: @, Component Size: %"

Sperner: A collection F' of non-empty subsets of a set X is called an antichain if no set in F' is prop-
erly contained in another set of F. If [ X| = n, |F| < (), where n’ = |2} |. If | X| is even there are exactly
2 maximal antichains, the collection of |25 | subsets of X and the collection of | 241 ] subsets of X. If n is
even, there is exactly one maximal antichain, namely, the collection of | % | subsets of X.

Posets, chains (totally ordered subset) and antichains (set in which all subsets are incomparable). Dil-
worth: The cardinality of a maximal antichain is equal to the minimum number of disjoint chains into
which a poset can be partitioned. In a chain of mn + 1 elements there is a chain of m 4 1 elements or there
are n + 1 incomparable elements. Rubik group: |Gg| = 227314537211.

If f(x) € Z — x € Z then |f(z)] = |f(lz])]. [2Em] = |lebbm] somoinsi] = p gt ki) =

n—1 L mk+x
k=0 .

The following are equivalent: (1) [Axiom of choice] If I # () and Vi € I,A; # 0 then [[,.; A; # 0;
(2) [Zorn’s Lemma] If A # () is partially ordered and if every chain (including infinite chains!) has an
upper bound in A then A contains a maximal element; (3) [Well ordering] If A # () has a linear order, <,
then (A, <) is has a least element. Transfinite Induction: if B C A and A is well ordered under < and if
{ceA:c<a}CB—ac B then A=B.

|P(A)| > |A|l. Proof: f : a — {a} shows |P(A)| > |A|. Suppose |P(A)| = |A|, then there is a bijec-
tion f between P(A) and A. Let B = {a : a ¢ f(a)}. If b € B and b — f(b) then b ¢ B, this is a

contradiction.



Schroeder-Bernstein: If A, B are two sets and there are injections f : A — B and g : B — A then
there is a bijection h : A — B. Lemma: If there is a subset A’ C A satisfying the hypothesis of the theorem
with A’ = B then there is a bijection h : A — A’. The Lemma implies the theorem: Let A" = g(f(A)) then
by the lemma, 3k : A — A’ and g~ ' oh is the desired bijection. Proof of Lemma: Set X =, <, F(A\ A)
and define h(z) = f(x),z € X,h(x) = x,x ¢ X; this is a bijection. First note f(X) C X. If x,y € X
or z,y ¢ X it is clear that h(x) = h(y) — = = y and by construction, there is no z € X,y ¢ X with
h(z) = h(y). Ify € A’ and y € X, then y € f("(A\ A’) for some n in which case 3z € X : h(z) = y
otherwise y ¢ X and h(y) = y.



1.2 Algebra

1.2.1 General Algebra

For 22 + pz+q =0, (z, — 22) = VD,D = p> — 4q,z1 + x5 = p. For az® + b2 + cx + d = f(x), substi-
tute y = x + % and divide by a to get 23 + nax +p. Put y = (u +v), get p = 3uv, ¢ = u + v>. Note
S3 2 A1 D1, (21 —22)(z1—23) (22— 23) = VD, D = —4p*>—27¢%. Solutionis: y = (—& + — % + g—;)% For
az*+ba +cx?+dz+e = f(z), substitute y = z+ L and divide by a to get 2*+pa?+qz+7. Note Sq 2 Ag 2
Cy D 7y D 1and Oy = (z1+m2)(w3+24) is fixed by Cy but not A4. The 6; are solutions of O3 —b; ©2+b,O3—b3
with by = 2p, by = p? — 4r, by = —¢® and D = 16p*r — 4p3¢% — 128p%r? + 144pg®r — 27¢* + 25673, Look at
(y? 4+ p)? = py?> — qy — r and pick z to make RHS (y2 +p+2)2 = (p+22)y> —qy+ (P> — 7 +2pz + 2%) a
perfect square.

Fundamental Theorem of Algebra: Let f(z) = 2" + a,_ 12" ' + ... + ap and u = inf(|f(2)]). If
w =0, we're done (min must occur in bounded ball). So assume p # 0. Let the minimum occur at zo and
put £(20) = wo, w = f(z0 +C). 2 =1+ qC*(1+CE) = 1 — hyp? (1 + C€) where € — p(cos(6) + isin(8)) and
q = h(cos(\)+isin(X)). So we can find a point with smaller modulus than wy. This contradicts the assumes
minimality at zg.

Roots of Unity: Consider f(z) = 2" — 1 over F where (char(F),h) = 1 or char(F) = 0. The roots
of f form an abelian group, G. = € G — |z| | |G|. Since (f,f’) = 1 there are h distinct roots, set
h=T1I"q". {z:2"% =1} is a group of order h/q; so Vi,3z; € G : x"/% # 1. Setting b; = m?/qivl7
then y = []b; has order exactly h and is a primitive hth root of unity. Let the number of such roots be
p(h); if (r,s) = Lo(rs) = (r)p(s) so o([T; ") = I, w(@:*) = [1;(a:"" — "~") = h][;(1 = ). Set
n = ¢(h) and ®,(z) = [[;(z — ¢;) where 1; are the primitive roots. 2" — 1 = 145 ®a(z) and by Moebius
inversion, ¢, (z) = Hdlh(xd — 1)@, @y (z) is irreducible of degree ¢(h). Proof: Let ¢ € C be a primitive
root of ®;(x) with minimal polynomial f(z) and (p,h) = 1. Let g(x) be the minimal polynomial for ¢?
so g(¢P) = 0. 2" — 1 = f(x)g(x)h(x) and g(27) = f(2)k(z). g(z") = g(x)? (mod p). If ¢(z) | f(x) then
é(z) | g(z)? (mod p). So ¢(x)? | 2™ — 1 but this contradicts the fact that 2" — 1 does not have roots of
multiplicity 2. It follows the if (p;, h) = 1, (P*P2--Pk ig a primitive root and the degree of f(x) is ¢(h). Note
this shows that Aut(Q[¢]) = Z;. It also allows us to calculate the Galois group if h = ¢ = p™ (its cyclic)
and the subfields correspond to the cyclic subgroups of Z7. The gth roots of 1 are expressible as radicals if
char(F) = 0 or char(F) > ¢. If Np(d) = number of irreducible monic polynomials of degree d in GF(p)[z]

then p" = 321, ANp(d) and Np(d) = 3 3, p()p" @ = 2 = [Lpirreamonic geg(syjn f-

Eisenstein: If f(z) = Y. jan,2", a, # 0 (mod p), a; = 0 (mod p),i < n and ap # 0 (mod p?)
then f is irreducible. Factoring in finite number of steps: Let g(z) € Z[x] if f(z) | g(z) then f(n) | g(n)
deg(g)

for all n. deg(f) = s < |=5%|. Pick s integers i; and use the integer factors of g(i;) to get possible g(i;);

there are a finite number of ways to pick the factors. For each possibility, we can solve for the s coefficients

of f.

1.2.2 Free Groups, Rings and Modules

Every group is the homomorphic image of a free group. If G is a free abelian group generated by n elements
and H is a subgroup of G then H is generated by m < n elements.

Let F}, be a free abelian group generated by a1, as, ..., a., and define E; = rjya; +1i0a2 +. . .+ riman, where
r;; € Zand 1 <1 < n; further, put b; = F; and let K =< b; >. Suppose G is the free abelian group generated
by a; subject to E; = 0. Then G = F,,,/K. Let R represent the matrix (r;;) then (1) if the matrix S = (s;;)
is obtained from R by elementary row operations then ¢; = s;1a1 + ... + Siman, € K; and, (2) if the matrix
S = (s;5) is obtained from R by elementary column operations then Ja) € F, 1 by = spal + ...+ sima, (so
the a generate K). By applying elementary row and column operations we can transform R into the diagonal
matrix D = diag(dy,da,...,d.,0,...,0) where d; | d;y1 and G 2 Z/(d1) X Z/(da) X ... X Z/(dr) XZ %X ... X Z
where there are m — r copies of Z in the product.

Let D be a UFD and f(z) = agp + a1z + ... + apa™,a; € D. Let K be the field of fractions. If fi(z)



and fz(z) are primitive in R[z] and are associates in KJx] then they are associates in D[z]. Define
cont(f) = ged(ag,as,...,a,). Gauss’ Lemma: If D is a UFD and f,¢g € D[z]| then cont(f(x)g(z)) =
cont(f(z))cont(g(x)). If f(z) € Rlz],deg(f) > 0 and f(z) is irreducible in R[z] then it is irreducible in
K|[z]. Theorem: If D is a UFD then D] is a UFD. (Embed D in its field of quotients and apply Gauss).
Euclidean domains are principal ideal domains (PID) and all PIDs are UFDs.

Ring theoretic CRT: If I;,j =1,2,...,n are ideals of R and I; + I, = R for j # k, then Va1, 22,...,2, €
R,3z € Rsuch that z = z; (mod I;). Corollary: Under the same assumptions, 1) : R — R/I} x R/I3 x...x
R/I, givenby z — a  (mod I1)x...xz (mod I,) is surjective and R/((j=, [;) = R/Ii x R/Izx.. . xR/ I,.
Z)(mZ) = [[,Z/(pi"Z) and (m) = [[;¥(p;""). If R is cyclic of order n then End(R) = Z/(nZ) and
(Z)(nZ))* = Aut(R).

Groups with operators (M) and invariant subgroups. Projection commutes with all inner automorphisms;
such an endomorphism is called normal. An M —group G is decomposable iff there are projections. Any
M —group satisfying DCC is a direct product of a finite number of indecomposable M —groups. If n € End(G)
then \/n = {z € G : zn® = 1}. Fitting: Let G be an M —group that satisfies ACC and DCC and 7 is a normal
endomorphism of G' then G =/ x H and Hn = H. If GG is an indecomposable M —group satisfying ACC
and DCC then any normal M —endomorphism of G is either nilpotent or an automorphism. Suppose 71, 72
are normal nilpotent M —endomorphisms, if 1; + 72 is an endomorphism it is nilpotent. Krull-Schmidt
follows from this. Unitary: RM = M. Hilbert Basis Theorem: If R is a ring with identity such that
every ideal is finitely generated then R[x] has the same property.

If A, B are ideals, we say A | Bif B C A. @ is primary iff ab =0 (modI) - a =0 (mod Q) or
b e VI. If Q is primary then \/Q is prime. Every irreducible ideal in a Noetherian ring is primary. Every
ideal in a Noetherian ring is the finite intersection of primary ideals. If Q1, Q2 are primary and /Q1 = v/Q2
then @1 N Q2 is primary. If @1 NQ2N...NQ, = Q1 NQLN...NQY. are two irredundant representations into
primary ideals whose associated primes are distinct, then » = s and the set of associated primes is identical.
If R? = R is a commutative ring then every maximal ideal is prime. Let P be a prime ideal of R (1 € R)
then (1) There is a 1-1 correspondence between the set of prime ideals of R contained in P and (2) the
prime ideals of Rp given by Q — Qp. A local ring is a commutative ring with identity containing a unique
maximal ideal. If R is a commutative ring with identity, the following are equivalent: (1) R is a local ring;
(2) all non-units of R are contained in an ideal M # R; (3) the non-units form an ideal. Substitution from
a the polynomial ring to the ring of coefficients is a homomorphism.

If R is Noetherian and a € M is R—integral iff 3 a finitely generated submodule of M that contains
all powers of a. The totality G of elements of M that are R—integral is a subring of M containing R. The
ring G or R—integral elements is integrally closed in R.

If A,B,C,A’, B’,C’" are modules over a ring R with identity and we have the diagrams 0 — AL BE C =0
and 0 — A’ B'E, O — 0 with A% A B2 B’, and CL ', then (1) 3 is a monomorphism if a and 3
are and (2) § is a epimorphism if « and 3 are. P is projective if given A, B, g, f and morphism diagrams:
A% B —0and P5 B, 3h, P2 B which makes the diagram commute. J is injective if given A, B, g, f and

morphism diagrams: A% B — 0 and AL g , 3h, B J which makes the diagram commute. Every free mod-
ule F' over R with identity is projective. If R is a ring with identity, TFAE: (1) P is projective, (2) every short

exact sequence 0 — AL B& P 0 splits so B = P@® A and (3) 3F, free such that F = K@ P. If Ris a ring
with identity, TFAE: (1) J is injective, (2) every short exact sequence 0 — AL BEC >0 splitsso B = J&C
and (3) J is a direct summand. 0 — A% B% C'is exact if: 0 — Hom(D, A)% Hom(D, B)% Hom(D, C) is.

A% BS € = 0is exact if: 0 — Hom(A, D)i Hom(B, D)i Hom(C, D) is. The full short exact sequence
is split exact iff the corresponding dual (Hom) sequence is.

If A us a unique factorization domain, A is integrally closed. The integral closure in a number field K
is called the ring of algebraic integers. Algebraic integers form a free Z-module of rank [K : Q).

Let [E : F] = n and [F(x) : F] = d and x1,23,...,24 be the roots of minp(x) then Ng,p(z) =
(TT&, ) and Trg/r(z) = %(Zle x;). If E/F is separable then Ng,p(z) =[]}, 0i(z) and Trg p(z) =



Y i=1"%(x). If F C EC K then Ng/p(Ng/e(r)) = Ni/p(x) and Trg/p(Ng/p(r)) = Ng/p(x). If E/F
is a finite separable extension, 3z € E : Trg,p(x) = 0 and (x,y) — Trg/p(zy) is bilinear.

For this paragraph, L be a separable extension of K, A C K be a ring of integers and B C L be a
ring of algebraic integers. 7 is a basis for L/K iff A(F) #0. If L = K(x) and f is a minimal polynomial of
x over K then A(1,z,22,..., 2" ) = disc(f) = [Lic;(@i—z;) = (—1)(Z)NL/K(f’(x)). There is a basis for
L/K consisting of elements of B. If A is a PID then B is a free A-module of rank [L : K]. If a; € A then
(x1 —a1,x2 — aa, ..., &, — ay) is a maximal ideal.

Let M be an R module. The following are equivalent (1) M satisfies ACC (Noetherian), (2) Any non
empty collection of submodules of M has a maximal element. The following are equivalent (1) M satisfies
DCC (Artinian), (2) Any non empty collection of submodules of M has a minimal element. M is Noethe-
rian iff every submodule is finitely generated. M is Artinian iff every submodule is finitely co-generated.
Noetherian: PIDs, F[z]. F[z1,22,...] is neither Noetherian nor Artinian. I fN C M then M is Noetherian
iff N and M/N are. M has a composition series iff M is Noetherian and Artinian. L be a separable ex-
tension of K, A C K be a ring of integers B C L be a ring of algebraic integers, if A is integrally closed
in K and A is Noetherian, so is B. Let P be a prime ideal of R and P O I1I5...I, then 3k : P D I.
Let I be a non-zero ideal of a noetherian integral domain R then I O P P,... P, for P; prime. Let R
be a non-zero ideal of a noetherian integral domain and K its field of quotients, I is a fractional ideal if
I is an R-module and 3r € R : rI C R. If I is a finitely generated R submodule of K then [ is a frac-
tional ideal. If R is Noetherian and I is a fractional ideal of R then [ is a finitely generated R submodule of K.

A Dedekind Domain (“DD?”) is an integral domain, R, such that (1) R is Noetherian, (2) R is inte-
grally closed, and, (3) Every non-zero prime ideal of R is maximal. PIDs are DDs. Algebraic integers in a
number field is a DD. If P is a non-zero prime ideal in a DD, R and J = {x € K : 2 C R} then (1) RC J
and (2) J is a fractional ideal and PJ = R. If I is a fractional ideal in a DD, R then I = Hf\il P" (n; €Z
not just Z=%), np(I) = n;. The fractional ideals form a group. A non-zero fractional ideal is integral iff all
n; in the forgoing representation are > 0. Iy D Iz iff VP,np(I;) < np(lz). If I, I are integral ideals then
L | Lifly=J. I | I iff I; O I,. L be a separable extension of K, A C K be a ring of integers, if A is a
DD, B is a DD.

If0 — A5 B P — 0, B satisfies ACC (resp DCC) iff A and C do. A satisfies ACC on submodules
iff each submodule is finitely generated (same for rings). Jordan-Holder for modules (composition series
have unique refinements). A has a composition series iff A satisfies ACC and DCC. If D is a division ring
then Mat, «, (D) is both Noetherian and Artinian. An ideal P(# R) in a commutative ring R is prime iff
R — P is a multiplicative set. If S is multiplicative and S NI # (), 3P, prime that is maximal with respect
to the disjoint property. Rad(I) = {r € R:r™ € I}.

Every transcendental extension has a transcendence basis. If < x1,29,...,x, > spans E algebraically
and S C E is algebraically independent then |S| < n. (Use Steinmetz replacement.)

Noetherian Normalization Lemma: Let R be an integral domain which is a finitely generated ex-
tension of K and suppose r is the transcendence degree over K of the quotient field of R, then 3ty,... ¢,
algebraically independent elements such that R is integral over K[t1,...,t.].

Localization: Let S be a multiplicative subset of R and h : a — a/1 be the natural map. If J is an
ideal in ST'R then S='J = I is an ideal of R and I C h=1(S~1(I) with equality if INS = (). If I is a prime
ideal of R and I NS = () then S™'R is a prime ideal of S™'R. If P is a prime ideal of R and S = R — P
is a multiplicative set, denote S~'R as Rp. Rp has a unique maximal ideal consisting of non-units of Rp.
VI=P NPyN...N P, for some prime ideals P;.

1.2.3 Polynomials

Basic Symmetric polynomials: 01 = ) x;, 02 = Y x;xj, etc. Every symmetric function f(z1,...,2,) =
(z —x1)...(2 — x,) can be written as a polynomial with coefficients in the basic symmetric polyno-
mials. Proof 1: Let ax1®'z2...x,% be the leading coefficient of a symmetric form in lexicographic
order, subtracting ac1?'”*209%27% .. .g,%" leaves a symmetric form with leading coefficient smaller in
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lexicographic order. Proof 2: By induction on the weight. True for 1. If f(z1,...,2,) is symmet-

ric, so is f(xl’“'f"‘l’o). So f(ml"”’:"‘l’o) = ¢((01)0,---, (On_1)o0) Set fi(z1,---,2n) = f(T1,.-.,2n) —
d((1)0y -+ (On-1)0).- fi(z1,...,2,-1,0) = 0 so x, and hence o, divides f; thus f; = o,9 and g is
writable as a polynomial in the basic symmetric functions by induction so f(z1,...,2,) = on¥(01,...,00)+
¢(o1,...,0,_1). Further, the representation is essentially unique which you can show by proving ¢(y1, ..., yn) #

0— ¢(o1,...,00) # 0 (Prove).

Resultant: If f,(z) = v,2" + ...+ vg and gy (x) = W™ + ... + Wo, Py w (L), Yuw(T) : Ppw(@) folx) +
Yy (®)gu(x) = R(v,w) = vwk i<j(ti — uj), where t;,u; are roots of f,g respectively. Resultant is 0 iff
equations have common solution. Consider the equations written in matrix notation:

™ 1f, (1) Uy Un—1 . vg O 0 ... 0 gntm=1
am=2f, () 0 Up, Up_1 ... g 0 ... 0 T2
fo(z) _ 0 0 .. 0 v, Up_1 ... U
(@) | T | wm wmo1 ... wg O 0 ... 0
2" 2g,(x) 0 Wy Wm—1 ... Wy 0 ... 0
z
9w () 0 0 . 0 Wm Wme1 ... W 1

Proof: Let the column vectors be Cppyp_1 ...Co. C = (2™ Lf,(2),...,90(x)T. C=Cmin-1 Tmin_1+

...+ 1-Cy. Now solve for 1. 1 = fff((g;"j;‘_’fg'_'c(? ’CCO)). Get Py () fu (@) + Yy 0 () gw(x) = R(v,w).

Theorem: Let f1,...,fs be polynomials of one variable with indeterminate coefficients. 3dy,ds,...,dp
of integral polynomials in the coefficients of f; such that if the coefficients are assigned values (“special-
ized”) from k, d; = 0 iff either the f; = 0 have a common solution or the leading coefficients vanish. Proof:
Set fu=uifi+...+usfs, fo =vifi+... +vsfs. (fu,fo) =1iff (fi,fo. .., fs) = 1. R(fu,fo) =0iff fo
and f, have a non-trivial common factor. But R(fy, f,) is a polynomial in u;, v; with coefficients which are
integral in the coeflicients of f;. Arrange these in the order of powers of u;v;. These are the d;. The proof
also shows that d; =0 (mod (f1, f2,... fr)) and (d1,d2...d;) =0 (mod (f1, fa,... fr))-

Theorem: If fi,...,f, € Flz1,...,2,] has no common zeros, 3A4;,...A, such that >, A;f; = 1. Proof
by the induction on number of variables. True for n = 1 by usual theory of polynomials over fields. Assume
it’s true for n — 1. Let f.(z) = fi(z,22,...,2,) = Z;'Lio gij(w2,...,2y)2?. The f; have no common solution
or the f; would; thus by the previous result, regarding the coefficients of 27 as indeterminants, 3d;;, which
are not simultaneously 0 [or again, the f; would have a common solution], such that ), Bjxdi, = 1. After
substitution, ). C;;gi;; = 1. Further, g;; =) j A; f;, again by the previous result. After substituting again,
we get Ej D;fi(x,x2,...,x,) which is what we want.

Nullstellensatz: If f(z1,...,z,) € F vanishes at all the common zeros of fi(x1,...,%n), ., fr(T1,- ., Zn)
in every extension of F, then f*(z1,...,2,) € (fi(x1,...,%0),..., fr(21,...,2,)) for some k. Look at
fieoos fr, 1 —2f, put z = % and clear denominators. Note that if hq,..., h,, are zero for all common zeros

of the fi, (hl, .. .,hm)p = O(fhfg, .. -7f7")~

Note that an algebraic condition for solvability is not always possible: Consider ajx; + asze + ag = 0,
bix1 + baxa + by = 0; they have a solution in general if a1be — byas # 0 and the d; (the resultant system)
would have to vanish for indeterminant a,b and the equation would always have a solution but it doesn’t.
However, this does work for homogeneous equations (forms).

General idea of elimination for forms relies on three lemmas: Lemma 1: We can assume x; appears

with non-zero constant coefficient. Proof: if not, substitute 1 = uia), o = 2 + wea}, ..., T = x}, + uy .
Lemma 2: If F has a non-trivial common solution, the d; do too. Proof: If the coefficients do not vanish,
the d; give rise to a solution (&, ...,&,) in (z2,...,2,) which can be extended to x1; if not, the d; vanish

identically and have a solution, say (1,1,...,1) and the f; have a solution (1,0, ...,0) with the coefficients of
the z; terms 0. Lemma 3: The system F has a resultant system of integral polynomials b; in the coefficients
of the f; such that for a specialization of the coefficients of the f;, F has a non-trivial common solution iff the
b; = 0; further, the b; are homogeneous in the coefficients of the forms. Elimination procedure: Successively
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eliminate x1, xs,...,x,. At each step, the d; obtained by eliminating previous x; are forms, we can continue

the elimination procedure until only x,, remains and the resultant system becomes: x,,°'b1, x,,°2bo, ..., T, * by
and by the above x,%b; =0 (mod (fi,..., fn)). If elimination results in a non-zero constant, there is no
common solution and we get 1 =0 (mod (f1, fo2,..., fr))-

Observe that not all solutions can be obtained by specialization. Consider f; = xf + x120, fo = ;122 +
x% + 21 + @2, (x1 + x2) is a common factor so the resultant vanishes. & = —&; is a solution; however, if
& = —1,& = 0 is also solution which does not fit the specialization solution.

For the next few paragraphs, the system F consists of r forms, fi,..., fr in n variables with indetermi-
nant coefficients. The indeterminants in f; are ay,...,a,, the indeterminants in fo are by,...,b, and the
indeterminants in f. are ep,...,e,. When r = n the resultant system is generated by a single polynomial,
R, called the resultant.

Let F be a system of forms as above with deg(f;) = Iy and [y = «a,ls = 8,...,l, = e. By the above,
T € Zlay,...,e,] such that ;T = 0 (mod (f1,...,fn)). T is called an inertial form. Set f; =

i+ avzn®, fo = f5 + boZn?, . fu = fo 4+ ewxy®, substituting a, = fg—ﬁ, vy € = fi—g, we get
T(ay,. .., —;;5, cee —i—g) = 0 (Condition “A”) and this actually holds for all ¢ if it holds for any x;. Con-
versely, if Condition “A” is satisfied, x,”T = 0 (mod (f1,...,f.)). Proof: We can use Condition A to
rearrange 1" in powers of a,, + i—;, ey T+ f = and the term independent of the powers vanishes so T = 0
(mod (ay, + %, N QJ;—’;)), multiplying through by the largest power of z,, in the denominators, we get

2IT =0 (mod (f1, f2,...,fr)). The inertial forms form and ideal Z which is prime and a basis for Z thus
forms a resultant system.

Theorem: If the number of forms, f;, is less than the number of variables, n, then there is no inertial form
distinct from 0; if » = n, there is no inertial form independent of e,, and distinct from 0. The proof uses the
following Lemma: When a sequence of polynomials fi,..., fs in indeterminants a1, as,...,ap, T1,T2,...,2q
is algebraically dependent in k[ai,...,ap), this dependence is valid for every specialization a, = «. Proof
of Lemma: Since F(a1,...,ap, f1,--.,fs) = 0 and F(as,...,ap,21,...,2s) # 0, F(a,z) is not divisible by
(ap—a) or we could reduce the relations. So F(aq,...,ap—1,, f1,..., fs) # 0. Proof of theorem: If r < n, by

Condition “A”, —%7 ey — g]:: would be algebraically dependent relative to k[aq,...,aw—1,€1,...,€,-1] and
this continues to be true if z,, = 1. If r = n and the hypothesis is false, — ;%, ceey —% would be algebraically
dependent relative and we can set x,, = 1. In both cases, the lemma applies and we can specialize over any
of the indeterminantes without losing dependency. Choose a specialization so fi,..., f — z¢,...,2%. This

is a contradiction since these terms are algebraically independent.

Theorem: If r = n, there is a non-vanishing inertial form D., homogeneous in the indeterminantes and of
degree L, = lily...1,_1 in the ¢;. Proof: Put [ =1+ Z:L (li — 1) and consider, P, the monomials of degree
[ in the z;. P is a disjoint union of the following sets: monomials of degree [ containing x;'*, monomials
of degree [ containing x5/ but not ;" ..., monomials of degree [ containing z,' but not x;", z5', etc.
Suppose H, l(:nl)l are the complementary monomials of the elements of the disjoint sets, i.e. - 1/ H l(:nl)l are

in the disjoint sets. Hl(f;l has Iyl ...l,,_1 power products (z,0 < k < Iy, etc). Now form HI(Z?ifi. Since
there are as many of these as power products, the matrix is square. Denote its determinant as D, which
has the value 1 under the specialization f; = x;%. Multiplying the equations H l(i )l fi = amiH, l(k) by the
subdeterminants of a column of D, and adding, the left hand side becomes linear in the f; and the right
hand side, DeHl(k). Letting Hl(k) =zl we get D2l =0 (mod (f1, f2,..., fr)) and D, is homogeneous in
each form, f; and has degree L,, in the coefficients of f,.

Now, let fi1, f2,..., fn be forms in x1, xs, ..., x, with indeterminate coefficients and Z the ideal generated by
the inertial forms. Theorem: If R is a polynomial of minimal degree in e, every element of 7 is divisible
by R. R is the resultant. Proof: Arrange R in powers of ey, R = Se,* 4+ .... If T is in Z, we can get a
polynomial, 7" = ST — QR of lower degree which is also in Z but then 77 = 0 and R | T. Note if R vanishes
for a specialization, every element of Z does also and the f; have a common 0; conversely, if the f; have a
common zero, since ;"R = A1 f1 + ...+ A, fn, substitution makes the right side of the equation 0 but at
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least one z; # 0 so R = 0. We have: Theorem: R(gh, fo,..., fn) = R(g, f2,.- -, fn)R(h, fo, ..., fn), R is
homogeneous of degree L in the coefficients of F7, homogeneous of degree Lo in the coefficients of Fy, ...,
and homogeneous of degree L, in the coefficients of F,,, R = (Dg, Dy, ..., D,) is a principal ideal and the
resultant contains a principal term a1%? ... e Ln.

Bezout: Suppose the system F,r = n has a finite number of non-trivial solutions (55”‘), e ,(f“))7 a =
1,2,...,q. Add the form | = wjz1 + ... + u,z, and form the resultant system by (u),ba(u),...,bi(u). The
resultant system has a solution iff [, = ulfl(a) + ..+ unfn(a) = 0. By the Nullstellensatz: (b;(u))™ = 0
(mod (], la)) and ([[,%a)” =0 (mod D(u)) where D(u) = (bi(u),...,b(u)). So D(u) =[], la"* (the
Palpha’s are the multiplicities). If we consider n — 1 forms f; and add the form [ = wizy + ... + upz,, we
get Bezout’s theorem, namely: If n — 1 homogeneous equations have a finite number of solutions then sum
of the multiplicities (defined above) equals the product of the degrees of the equations.

Berlekamp polynomial factorization: f(z) square free. Compute z°¢ (mod f(z)) = 3 ¢;;27. Find
null space of @ — I with basis v1(z),...,v:(z). Compute (f(x),v(z) — ).

_ (z™ —1)
Hd|n,d<n fd(l')

Submodules of finitely generated free modules over a PID: Let D be a PID and D be a free

module of rank n over D. Then any submodule, K of D) is free with base m < n elements. Proof: By

induction. For n = 1, submodule is isomorphic to a principal ideal. Inductive step: examine ﬁ(n) = %.

fn(z)

Fix a monomial order (<) for terms in 1, x2, . . . ©,,. Denote leading term of f under this order as in<(f). The
division algorithm for f with respect to the monomial order produces f(x) = a1 (x) f1(x)+...+am(x) fin(x)+
r(z) where r = 0 or r is a linear combination of monomials none of which are divisible by in<(f;). This is
written as r = f¥'. Procedure for multi-variable division algorithm: Set r « f(z),a;(x) < 0. Pick or-

in<(r)

dering of f1(z), fa(x), ..., fm(x). Ifin<(f;)|in<(r) for any j, pick first such j, set ¢ < o) S s—tfi(z),

a;j(xz) < a;(x) + t; repeat this step until if condition fails. r < s. In general, the result depends on the
ordering of the f;(z).

Grobner Basis: A finite subset G = {g1, g2, ..., gs} is a Grobner basis for an ideal I with respect to the
monomial order < if < in<(g1),in<(g2),...,in<(gs) >=< in<(I) >. Equivalently, if f € I, in<(g;)|in<(f)
for some i. If G is a Grobner basis f¢ is independent of the order of the f;(x). If G is a Grobner basis and
I=<G>, feliff f¢=0.

Dickson’s Lemma: If S C N™ then Juy, vy, ... v, such that S C (v + N*)U (va+ N™)U... U (v, + N™).
Consequence: Every ideal has a Grobner basis. Proof: Let S = {v : z¥ = in<(f),f € I}. By Dickson,
SCU;(wi+N"),i=1,2,...m. If f(z) €I, az" =in<(f), w = v; + v for some i, v then z* = 2"z hence

in<(fi)lin<(f).

Buchberger reduction: f € R reduces to 0 with respect to f =< fi,fa,...,fm >C R — {0} iff
dai,az,...,am € R f = a1fi +asfo+ ... + amfm and in<(a;f;) < in<(f) if a;f; # 0. This is de-
noted by f —r 0. Let G = (91,92,.--,9m), L =< G >. If f — 0 for all f € I then G is a Grobner
basis. If G is a Grobner basis for I, f¢ = 0 iff f —¢ 0,Yf € I. S(f,g) = %f — %g, where
27 = LOM(in<(f),in<(g)). If S(fi,f;) —F 0,¥i,j then f —p 0,Yf € I. F is a Grobner basis iff
S(fi fj) —F 0,Vi, 5 iff S(fi, f;)F =0,Vi, j.

Buchberger Algorithm: Test S(f;, f;) # 0, F = FU{S(fi, f;)}- Do this until all S(f;, f;)¥ = 0.
This procedure terminates.

Minimal Grobner: in<(f;) does not divide in<(f;) and coefficients are 1. Reduced Grobner: Min-
imal Grobner where in<(f;) does not divide any term of in<(f;). Example: F = (2 + y,2%y + 1).
S@? +y,2?y+1) = y2 -1, (22 + y,2%y + 1,y%> — 1) is a Grobner basis. Elimination ideals: [, =
INklxig1, ... T

More on Resultants. Condition 1: Fy(xg, Z1,...,2,) = Fi(xo,21,...,2,) = ... = Fy(x0,21,...,2,) =0,
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with each F; homogeneous of degree d; in the x;. Let F;(zq,x1,...,2,) = Z|a\=d,- U; ox%. Theorem
1: Fix do,dy,...,d,, there is a unique polynomial Res € Z[u; ] such that if u; o are replaced by the
corresponding ¢; , € C and F; is homogeneous of degree d; then ( ) the equations of condition 1 have
a non-trivial solution in C iff Res(Fy, Fi,...,F,) = 0, (b) Res(mo ,xfl,...,xﬁ") = 1, (¢) Res is irre-
ducible. Sometimes we write Resq, q,,....d, to emphasize degrees. Note that Res; .1 is just the de-
terminant. Theorem 2: For fixed 5,0 < j < n, Res is homogeneous in u;, of degree do - dy - d;— -
dji1 - dn; further, Res(Fy,...,Fj_1,A\Fj, Fjq1,..., Fy) o dvdi-vdivvdn Reg(Fy Fy, ..., F,) and the total
degree of Res is Z?:o do - dy - dj—1 - dj41 - dn. Res is alternating in the F; and Res(gh, Fs, ..., F,) =
Res(g, Fa, ..., F,)Res(h, Fy, ..., F,). Example: Ress s o(Fp, F1,Fs) has 18 variables of total degree 12 and
21,894 terms. If f(z) = qz' +...+ag and g(z) = byz™ +... + by then Res(f,g,z) = a"t!,, Hl (€ -

n;) = aj” Hz 19(&) =L TT%, f(m). Put Ay = k[z]/(f(x)) and let [h]; be the natural map from k[z] — Ay,
further let mgy : [h]f — [gh]; then my is a linear map and Res(f, g, x) = det(myg).

1.2.4 Linear Algebra

Homomorphisms on modules: Left module M over R with RM C M, 1m = m, (r + s)m = rm + sm,
etc. Notation: Endr(X) = Hompr(X,X). Homr(U, V) ={f,f: U =V, f(riu+ rov) = r1 f(u) + rof (v)}
where 7; € R.

If V is a vector space (or module) then V*, the set of linear functions over V', is the dual space. If
V is finite dimensional, dim(V) = dim(V*). V =~ V**. Solution space as kernel of linear map, L.
colRank + dim(ker(L)) = n. rowRank + dim(ker(L)) = n.

Theorem: The row rank equals column rank. Proof: Let A = (a;;) be and m X n matrix. R; = (r4;)
are rows, C; are columns. Let row rank be r and Si,...,S, be a basis. Put S; = (sj;). R; = Zj ki S;.
So rj; = >, kjisji. So the column vectors (kij, k2, - .., Emi)T span the column space. Thus the row rank <
column rank. The same holds for AT .

Artin’s proof that row rank equals column rank. Lemma: If W C V are vector spaces over k
and W+ C V* then dim(W) + dim(W+) = dim(V). Proof of result: Let T : k" — k™ be the linear
transformation represented by the matrix M with rows ri,73,...,7, and columns ci,...,c, and let the
row space of M be R and the column space, C; finally, let r = dim(R), ¢ = dim(C) and W = ker(T).
Since dim(Im(T)) + dim(W) = n = dim(V), r = n — dim(W) and dim(W) + dim(W+) = n, it suffices
to show dim(W+) = r. Note that r; -w = 0 for w € W so, if \; is the usual dual basis of V* with re-
spect to < ey, eg,...,e, > where < eq,ez,...,e >= W. Let A; be the natural dual basis and note that
R C<epq1,€pt2,-..,6n >since r; - A; =0 for j < k. Now let bppi A1 +...+bp Ay =X € WL, Consider
@A bpgpierit + ...+ bpen. I (X)) =0, A = 0 so dim(R) = dim(W=) and the result holds.

Change of basis for matrix: Let [¢] = {e;,...,e,} be a basis for V,, and let L be a linear transformation
on V,,. Let vy = [c1,¢2, ..., )T denote the coordinates of v with respect to [e]: V] = €161 + ... + Cpep. Let
Ly denote the matrix for L with respect to [e]: L) = >; ajiej. Then Ligv = (Lv) CEfi =305 bjiey
is another basis, P = (b;;) is called the transition matrix from [f] to [e¢] and P~' is the transition matrix
from [e] to [f] (note the sum over the first index). Pujs] = v} and vy = P~ o). Finally, Ly =P~ 'Ly P.
The same holds over free modules. Alternate notation: L : V — W, V has basis B and W has basis B’ with
L(w;) = 3, aijvj then ME/(F) = AT. If B and B’ are over the same space, Mf (F) = N~'ME(F)N where
N = ME (id).

The group of affine transformations is isomorphic to the subgroup of the matrices with last column (0,0, ...,0,1).
The translations form a normal subgroup.

Cayley-Hamilton: Any matrix over an algebraically closed field is similar to a triangular one. The mini-
mum polynomial divides the characteristic polynomial.

Let A* denote the adjoint (conjugate transpose). (Az,y) = (x,A*y). Hermitian: Self adjoint over

complex numbers. Symmetric: self adjoint over reals. Unitary: AA* = I; equivalently: A is length
preserving: (Ax, Ay) = (z,y). If A is symmetric and X is orthogonal then X AX ~! is symmetric. If A4 is
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symmetric there is a P such that P*AP is diagonal. All the eigenvalues are real.

Suppose V is a vector space with a non-degenerate bilinear form and T a linear transformation on V, if
W is T-invariant, so is W+ and V = W @ W+. Witt’s Theorem: Let Q be a non-degenerate quadratic
form on V over F of char(F) # 2, U; and U, non-degenerate sub-spaces which are isometric. Then U1l
and Us- are isometric. Isometries over subspaces can be extended to the whole space. If V is a vector space
with over R with a positive definite form (resp. C with a hermitian form) and W is a subspace of V' then
V=WaoW:. VoV — L(V,V) via Lyg,(w) = ¢p(w)v.

Extreme point in convex set: P with no @1, Q2 such that P = tQ; + (1 — t)Q>. Krien Millman: If
S is a closed, bounded convex set, then S is the convex closure of its extreme points.

A is orthogonal iff it takes orthonormal basis into orthonormal basis which happens iff AAT = I. Ev-
ery real quadratic form is equivalent to a diagonal one with a signature of positive and negative coefficients.
Two forms are equivalent iff they have the same rank and signature.

Principal Axis Theorem: Any real quadratic form is equivalent to one with Q(n) = Aiz12 + ... + A2, 2
with A1 > Xy > ... > \,. Proof: Find eigenvector v, V =<v > @ < v >*.

If T is any linear transform on V,,, 3Mo, My,...,M,: (i) AM, C My, (ii) dim(M;) = j, (i) {0} =
My C My C...C M, =V,

Nilpotent: Jq: A? = 0, smallest ¢ is degree of nilpotence. If A is nilpotent of degree ¢, 3z: A9 12 # 0 and
x, Az, A%x,... A% 1z are linearly independent. Every linear transform is the direct sum of a nilpotent and
an invertible transform.

If A is a linear transform on V,, with proper values A1, As, ..., A, having multiplicity mq,ma, ..., mp then
Vo=M &...® M, with AM; C M;, dim(M;) =m; and A — A\;I is nilpotent on M;.

An n x n matrix is diagonalizable iff it has n linearly independent eigenvectors. A matrix is diago-
nalizable iff its minimal polynomial is a product of different linear factors. Two matrices are simultaneously
diagonalizable iff they are diagonalizable and commute.

Spectral Theorem: If 7' is normal (I'T* = T*T), 3E4,... E, such that T =Y M, E; with T =" E; = I,
E;F; =0 and transforming matrix, A, unitary (Zt =AY,

Let f: A — A’ be surjective. A, A" abelian, A’ free. 3C C A such that A = ker(f) & C.

Structure Theorem for Finitely Generated Modules over Principal Ideal Domains: If M (# 0) isa
finitely generated module over a PID, D, M = Dz1 ® Dz, ®...® Dz, such that: (z1) D 22 D ...(z2s), 21 # D.
Proof: 7 : D™ — M canonically (base of D is e;) by Yo aie; — y a;x;. M = D"/K. K has base f;,i =
L,2,...,mand f; =, aje;. Let ¢ = Pe, f' = Qf. Relations matrix is QAP~! = {d;,ds, ....d,,0,0, ...0}
and d; | di1 f; = die;. Then y = Pz is another set of generators and the y; are linearly independent over
D. ann(y;) = (d;) if d; is a unit, drop it from the list of generators. If the first ¢ are units, put 21 = yy1....
s =n —t in the statement of the theorem.

Application to an endomorphism, Tw; = >_; azie;. M = D™ /K, with D = F[\. f; = Xe; — > ij€;
are generators of K. After diagonalization by elementary row and column operations, P(Al — A)Q =
diag(1l,...,1,di(N),...,ds(\)). K is generated by f/ = d;el. f Q7! = (g75), vi = Zj qijUj, Zi = Un—sti and
V=F[Nzn®... &F[Nz. Example:

-1 -2 6 0 1 0 1 3 A3
A= -1 0o 3 |,B=l 0 -1 1 |,Cc=|l00 -1
-1 -1 4 -1 2—-X -3 01 -1

1 0 0 1 A -3

BM—-A)C=| 0 (A-1) 0 o l=0 -1 1

0 0 (A —1)2 0 -1 0



V1 = up + )\Ug — 3U3, Vg = —U2 + U3, V3 = —Ug. 21 = Vg = —Ug + U3, 29 = VU3 = —U2, 23 = /\’Ug = Uy — 3U3.

So,

-1

0 -1 1 -1 -2 6 0 -1 1 1 0 O
0 -1 0 -1 0 3 0 -1 0 =10 0 1
1 0 =3 -1 -1 4 1 0 =3 0 -1 2

Let Oij = (5il5jk)1§l§n,1§k§n and Jij(a) =1+ OéOij. Jij(a)A: add o times row j to row i. AJW(Q)A add
« times column ¢ to column j.

Rational Canonical Form and Jordan Canonical Form are the same over an algebraically closed
field. A finite group of transformations over R? has fixed points. |G| = vpn,, 2(|G| —=1) = 37 (v, — 1).

Py = A(AT A)~' AT where the rank of A is the number of columns, is the symmetric projector; Py = I —Pj.
P? = Py, PXL = Py, PT = Py, P};L = Pyi. S = AAT is invertible. P;(w) is the projection
of w along d. The linear system A f = P4b has solution f = A~1P4b the least squares approxima-
tion of data points (z;,y;) can be calculated from this too. Example, fit f(z) = fo + xf1 to the data

1 -1
(-1,1),(0,0), (1,2) by solving | 1 0 (fo, f1)T = (1,0,2)T. In general, the least squares approximation
1 1

arises from the symmetric projection in the sample space R® where s is the number of data points. f(A)7 =
(fot+ fiA+.. .+ [RLA™)T = (U, AU, ..., A™). Vandermonde determinant and Fourier V (xo, z1, ..., x,) where
the z; are roots of "' —1 = 0. Z(z) = (z — ;) Z;(x) solves for coefficients fo, f1,..., f, using Lagrange

interpolants A;(z) = 27(%)). For PCA, pa(z) = (x — A\)™ (2 — A2)™2 ... (x — A\y)™. There are polyno-
mials in A, denoted Ay, Ay, ...Ax, such that (A — N\I)™Ax, = 0and A = Ay, Ay, ... Ay,. The A, are
called components. The list of basic eigenvectors of A form the columns of the diagonalizing matrix, P and

AP = PD; A is diagonalizable when P is invertible.

Approximating a rank r nxn matrix requires 2nr terms. Mean clustering: replace M with D = diag(aq, ..., a;)
where a; = / W How closely can a scatterplot be approximated by a line A with direction @? Find the
vector @ that maximizes |Pz(m1)|? + |Pz(ma)|? + |Pa(n7s)|? = (@Fmi1)? + (@' mia)? + . .. (@Tmy)?. Maximize
al MM7Ta,va € R®,|d] = 1. C = MMT is a correlation matrix with ¢;; is the correlation of 4, j; if u; L u;
they are uncorrelated. 3P : CP = PD, MMT = C = PDP~! and maximize ! D, |i| = 1, @ = PTa € R®.
C is diagonalized by P : PPT = 1.

1.2.5 Bilinear Forms and Classical Groups

A pairing, (W,V) — k is a bilinear map. If Vo C V, V = {w € W : (@, vy) = 0,Vv) € Vp}, vo C (V5)*. V*
is called the left kernel. Same holds mutatis mutandis for Wy C W provided W* = 0 is the right kernel. If
(W, V) — k is a pairing with left kernel 0 and @ € W, define ¢5(7) = (@, 7). pg € V and the map @ — @
is an injection from W — V. Similarly, if the right kernel is 0, there is an injection V — W.

If Wy C W, codimw (Wy) = dim(W) — dim(Wp). If Wy € W, Vo € V and V* = 0, there are nat-
ural injective morphisms V/Wg — Wy and Vg — V/%. Thus, dim(V/Wg) < dim(Wy) = dim(Wy)
and dim(Wg*) < codim(Wg) < dim(Wo). If W = V, both kernels are 0. If (W, V) is a pairing, (a)
dim(W/V*) = dim(V/W*), (b) if V* =0, dim(W§*) = codim(W) = dim(Wy) and if Wy is finite dimen-
sional, W§* = Wy and Wy and V/W} are naturally dual, (¢) If V* =0 and W* =0, and V and W are finite
dimensional, V and W are naturally dual and there is a 1-1, inclusion reversing correspondence of subgroups
of V and W under the * operator: Wy < W{.

Let A = (a;;) be an m x n matrix with entries in k and & = (z1,...,2,)7. Let b= (by,...,by)7T then AZ =b
is a system of linear equations. Set z = Fi1x1+ Esxo+...+ E,x,, B; € V = k™. Suppose V is dual to V with
basis ¢1,...,¢n: ©jEr = k. Let ¥i(z) = (@11 + ... + @inon) (E121 + ... + Epzy) = @21+ ... + GinTn.
W C V, W =< tj(z) > and dim(W) = row rank. S,, is the m—tuple column vectors with entries

in k. Note that if A; are column vectors forming A, they are in the column space of A as is b and
Az + ...+ Apzy, = 0,0 = (W1(z),. ., m(2). TE f 0V — S, f(2) = (Y, ... ), ker(f) = W
If Im(f) = U, U =2 V/W* and dim(U) = codim(W*) = dim(W). This shows the row rank equals the
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column rank.

Let Bi;(A) = I + Xéadjr)ie. If A € GLy(k),A = BD(\) where B € SL,(k) and D()) is the same as
the identity except for A in the lower rightmost position. Put Z = Z(k), S =< 22,2 € k > (as an additive
group). If 22 € Z,Vx then k is commutative; further, unless k is commutative and char(k) =2, S = k.

7 € GL, (k) is a transvection if 3H = {h : o(h) = 0,9 € V} with 7(h) = h,h € H and 7(z)—z € H,¥z € V.
If 7 is a transvection with hyperplane H, pick b : ¢(b) = a # 0, set t(x) = 2 — ba~Lo(z) then T(t(x)) = t(z),
thus 7(z) = & + dp(x) with @ = 7(ba~") — ba~". So all transvections are of this form. B;;()) is a transvec-

1

tion. If @b € H then 7a(15(w)) = 7;,5(®). If 0 € GL,(k) and 7 is a transvection, so is 7/ = o70 ™" and

7' (x) = x4 (6(A))p(0~(x)); conversely, if 7/ () = x + a’1h(z) is another transvection with hyperplane H’,
we show Jo: o(H) = H' and o(@) = @’ and thus that all transvections are conjugate and hence have the
same determinant. Proof: Pick b, with ¢(b) = (/) = 1. 3o : 0(@) = a/,0(H) = H',0(b = b/. Then
(z) = x4+ dplo (), 3 : ¢(x) = p(o(z), setting z = b,0~(x) = b we get ¢ = 1 and 7" = 7.
If H has at least three vectors then 3a,b,& with @ = @ + b and Ta(13(7)) = 7z(w) and since they all have
the same determinant, it must be 1. In that case, f : GL, (k) — GL,(k)/GL,(k), f(oro=t) = f(7) so all
transvections have the same image under f and 7 € GL,, (k) = SL, (k). If n > 3 H and H’ have independent
vectors and we can choose o : det(o) = 1 so the transvections are conjugate in SL, (k). Finally, the center
of SL, (k) consists of the matrices a with o™ = 1. We can conclude: If G is a normal subgroup of GL, (k)

containing a transvection and n > 3 or n = 2 and |k| > 4 then SL, (k) C G if G > Z(GL,(k)).

Pairings and isometries: Let V x V — k be a pairing with trivial left and right kernels. o is an isometry if
(x,y) = (ox,0y),Vo,y € V. det(c)? = 1 for all isometries; if det(c) = 1, o is a rotation, if det(c) = —1, o is a
reflection. A quadratic map, @ satisfies Q(az) = a?Q(z) and (z,y) = Q(z+y)—Q(z)—Q(y) = (y, z) is a pair-
ing. If char(F) # 2, Q(z) = 3(z, z). Pairings arising from quadratic maps are symmetric. @ L b (a,b) = 0.
If <wvy,vg,...,0, >span V and (v;,7;) = ¢;; and if < wy,us,. .., u, > is another basis related to the original
by u; = Zj aj;vj then g;; = ATGA, where G = (g;;). The form is symmetric if a;; = a;;, antisymmetric if
Qi5 = —0jj-

Let V¥ = rad(V) = VNV+t and V = rad(V) @ U, U = V/rad(V). Suppose V is non-singular and
U C V then U** = U,dim(U) + dim(U*) = dim(V) and rad(U) = rad(U*) = U NU*. The subspace U is
non-singular iff U* is non-singular and then V.=U L U*. A vector ¥ is isotropic if (¥, ?) = 0. U is isotropic
if (u1,u2) = 0,Vug,us € U. There are two geometries for symmetric metric spaces: (1) Symplectic if
(0,7) =0,V0 € V and (z,y) = —(y,z); (2) Orthogonal if (x,y) = (y,z),Vx,y € V. If V is orthogonal and
every vector is isotropic then V' is isotropic.

Suppose dim(V) = 2 and V is non-singular but has an isotropic vector, 7 then 3m : 72 = m? = 0,7m =
LV =<d,m > (V =<,d > for some d. Set m = xii + yda; if id = 0, V is singular so we can find
y : yi@ = 1. Can also find 2 : m? = 0.) < 7, > is a hyperbolic plane. A non-singular space, V, with
orthogonal geometry is an orthogonal sum of lines. A non-singular space, V', with symplectic geometry is an
orthogonal sum of hyperbolic planes. Witt’s Theorem: Let V and W be isometric via p. Let o : Vi — Wy
be an isometry for Vo C V and Wy C W, then o can be extended to an isometry of V. O,,: isometries. O;:
rotations, O : reflections. Q,, = O),.

If nis odd, 1y = Z(O)}). If n is even, +1y = Z(O}). If n = 2 over F,, the plane contains q + 1
lines: < A+ xB >,< B >; if V is isotropic, € = 1, otherwise V' contains no isotropic vectors and € = —1.
There are g — € non-isotropic lines. O(V) has ¢ — € elements. Let ¢,, be the number of isotropic vectors in
V and A, the number of hyperbolic pairs. If < N, M > is a hyperbolic plane, < NM > & < N, M >*=V.
< N* > contains ¢, _» isotropic vectors. A type I form: TBD. Type I, II form: ¢, = ¢"~'. Type III, IV
form: ¢, = q¢" ' +cq?, n > 1. If &, = |0F(q)| or |[PSpn(q)], ®r = \n®p_o.

Classical Groups Summary: SL,(F) =< T;;(b) >, T;;(b) = 1+ be;j. SL,(F) = SL,(F), n > 1.
IPSLy(g)| = (¢" = 1)(¢" —q)---(¢" — ¢" )" /(d(g — 1)), d = (n — 1,q). Tuc(z) =z + cB(z,u)u. Every
orthogonal transform is the product of < n reflections. If U is defined by (z,u) = 0 and 7 is a transvection,
Ja € U,z™ = 2 — (u,a)a. < transvections >= SL(V). If G is one of SL(V), Sp(V), SO(V) or SQ(V),
G = BW B, where B is the Borel subgroup (upper triangular matrices) and W is the Weyl subgroup
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(the permutation matrices).

1.2.6 Fields

Field extensions: If « is the root of an irreducible polynomial p(x) € F[z] then F(«) = Fla] = Flz]/(p(z)).
Isomorphisms between fields can be extended to isomorphisms of extensions over associated (under the iso-
morphism) polynomials.

Any two splitting fields of the same polynomial over F' are isomorphic. Proof: Let o and  be two roots of
and irreducible polynomial which divides a f(z); let E be the splitting field of f(z). There is an isomorphism
from F(«) into F() which can be extended to an automorphism of E.

Definitions: F is a Galois over F' if Eg = F. FE is normal over F if an irreducible polynomial over
F with one root in F, splits.

Artin: Distinct automorphisms are linearly independent. Proof: Suppose not. Let c¢1¢1(x) + cada(x) +
...+ ¢-¢r(2) = 0 be a minimal relation. Since the automorphisms are distinct, 308 : ¢1(8) # ¢,-(5). Obtain
two equations from the minimal relation, the first by substituting Sz into the equation for beta, the second
by multiplying the equation by ¢,.(3), then subtract them. This is a shorter relation.

If G is a finite set of automorphisms fixing F', then r = |E : F| > |G| = n. Proof: Suppose not. Let
{wi,...,w,} be a basis for E over F. Consider the r equations: ¢(wr)x1 + ... + ¢n(wg)z, = 0 for
k=1,2,...r. Since n > r there is a non trivial solution ¢y, ¢z, .., ¢,. Let @ = Y, a;w;. Multiply the first
equation by aq, the second by as and so on then add them to get ¢1¢1(x) + coppa() + ... + cndn(x) = 0 for
all z. This contradicts the Artin’s result.

Let G = {¢1,2,...,6n} be a finite group of Aut(E), F = Eg, then r = [E : F] = |G| = n. Proof: Suppose
r >mn. Let {w1,...,w,} be a basis for E over F. Consider the n equations: ¢y(w1)z1 + ...+ ¢(wr)z, =0
for k = 1,2,...n. This has a non trivial solution with » — n more unknowns than equations. Set
a; = Z?’Zl ¢j(c;); we can choose ¢1,...,Cr—p SO @1,...,Gr—yn are not 0. The a; are fixed by G so they
are in Fl. 37 qw; = 351 Z?:l oj(ci)w; = Z;’L:I D i1 Gjlci)wi = Z?:l ¢j(3i_y ¢y 'wi) = 0. But
then >0, CZ‘(ZSj_lWi = 0 which contradicts the linear independence of the w;’s. So 7 < n. Now r > n by the
previous result so n = r.

Primitive Element Theorem: If £ = Flay,...,a,] with as,...,a, separable then F = F|a], some
a. Every separable finite extension is primitive. Proof: Assume F is not finite, F = F[a, 5] with f, g the
minimal polynomials for &« = oy and § = [3; respectively, a; the roots of f and §; the roots of g. Let E be the
splitting field of f(x)g(x). a;+xFr = a1+ 201 has one root for each i, k; pick ¢ such that o; + ¢Sk # a1+ ¢
and set 0 = o+ ¢f. Claim: E = F[0]. f(0 —c¢8) = g(B) =0) so (f(0 — cx),g9(z)) = (x — B) € F[0][z].

Let E be a splitting field for f(x) over Flx]. If p(x) is irreducible and has one zero in E, then p(z)
splits in E. Proof: Let L be the splitting field of f(x)p(z). Set E = F(a1,as,...,a,) where aj,azs,...,a,
are the roots of f(x). Suppose p(a) = 0, € E and p(f) = 0. Let 0 : F(a) — F(8) be an isomorphism
with o(a) = 8. Extend o to 7 : L — L. 7 permutes the roots of f(z) so 7(E) = E. q = D{@1:02:mm0n) - g,

n(ai,az,...,an)
B=r1(a) = T(w) c E.

n(ai,az,...,an)
Let E be a finite extension of F', char(F) = 0. If E is a splitting field of f(z) € F|x] then |G(E/F)| = [E : F].
Proof: E = F(w), p(w) = 0 and p splits by foregoing. deg(p) = [E : F] = |G].

Let FF C E, char(F) = 0. If G = G(E/F) fixes F then F is a normal extension iff F is the fixed field
of G. Proof: F=F(w), |G|=[E:F]. Let K ={a:0(a) =a,Yo € G}. FC K CF and F = K(w). STS
if g is irred over F and g(w) = 0 then g is irreducible over K. Let p be an irreducible polynomial for w over
K. Applying elements of G, each root of p is a root of g.

Let E be a normal extension of F. E D K D F. If G(E/F) > S has K as a fixed field then G(E/K) = S.
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E is Galois over F' iff (i) every irreducible polynomial in F'[z] with one root in E splits and (ii) E = F(0).
GF(p™) C GF(p") iff m|n. The following are equivalent: (1) E is a splitting field over F' of a separable
polynomial f(z). (2) F = Eg. (3) F is finite dimensional, normal and separable. Lemma: Let K be the
splitting field of f(z) over k and let p(x) an irreducible factor of f(z), if the roots of p(x) are ay,...,ap,
there is a o; € G(K/k) such that o;(a;) = «;.

Galois: Let K be a normal, separable extension of k. Let G = G(K/k), H < G, K D F D k. There
is a bijective pairing of H, F, such that (i) H; D Hs < Inv(Hs2) D Inv(Hy), (ii) |H| = [K : Inv(H)],
[G: H] = [Inv(H) : k] and (iii) H < G < Inv(H) is normal over F and G(Inv(H)/k) = G/H.

If f(x) is solvable by radicals, the Galois group of its splitting field is solvable. Galois group of an equation
is a permutation group on its roots. Splitting field of 22° — 10z + 5 is S5.

Compute Galois group for arbitrary polynomial: f(t) = t" — s;t" 1 + sot" 2 — ... (=1)". Let
a1, 2, ...,0p be the roots. For o in Sy, set 3 = z1a1 + ...+ 2p0p and put 04 (8) = oy01 +. .. + Tom)an
and 04(8) = T10501) + -+ + TpQom). 02(8) = T(B) iff 0 = 7 (since the roots are distinct). Set

Q = [l,es, (t — 0a(B)) then Q = Z?':O(Zl gi(s1, 89, ..., 8,)x 22 i )tI. Factor Q into irreducible
factors: Q = Q1Qz - Qi with (¢~ 5@ Q5 = [per, (¢ — 02(9)) and U; Ty = 8. Now @ = 0,(@) =
(0:Q1) ... (0,Qk), i.e. 0, permutes the irreducible factors of Q. Define G = {o € S, : 0,Q1 = @1}

Theorem: G = G(E/K). Hint: If g € G(K/k) then g transforms (3 into a conjugate; so does the . This
lets us prove the following: Let R be a UFD and p a prime. Set R = R/(p) and let Qg and Qz be their

fields of quotients. Let f (z) and f(x) be corresponding polynomials with no double roots with corresponding
splitting fields K and K respectively. Then G(K/Qx) < G(K/QRr).

Valuation: ¢ : K — F2° where F is an ordered field such that ¢(ab) = p(a)p(b), ©(0) = 0, o(z) > 0
if x # 0and p(a+b) < @(a)+¢(b). If a = $p", p(a) = p~" is a valuation. Ostowski: A non trivial valuation
of Q is either (i) ¢(a) = |a|?,0 < p <1 (the Archemedean valuation) or (ii) ¢(a) = ¢p(a) (the p—adic valu-
ation. w(a) = log(y(a)) is the exponential valuation. Set ¢ = {a : w(a) > 0}. Hensel: Let K be complete in
the exponential valuation w and f(x) a primitive polynomial in K[z] with integral coefficients. Let go, ho be
polynomials with integral coefficients such that f(z) = go(x)ho(z) (p) then there are polynomials f(x), h(x)
with integral coefficients in K such that (1) f(z) = g(x)h(x), (2) g(x) = go(x) (p), (3) h(z) = ho(z) (p)
provided (go(x), ho(x)) = 1 further deg(g) = deg(go) ().

F is perfect iff every irreducible polynomial is separable. F' is perfect if (1) char(F) =0, (2) char(F) =p
and every element is a pth root, (3) F = GF(q), (4) F is algebraically closed.

Let £ = F[f] and p = ao+a10+. . .+an—1p""1. T(p) = 3 ycg(p/r) p? i the trace and N(p) = [[,eq(5/r) P
is the norm; both are in F.

For every ¢ = p™ there is, up to isomorphism, only one field ¥ = GF(q) and the multiplicative group
is cyclic. Consider f(x) = 2" — 1, h = ¢ — 1 whose roots are roots of 1. The automorphisms of F are exactly
o; : x — P, If char(F) = p, every irreducible polynomial f(x) of degree n either has distinct roots or
is of the form ¢(z?) in which case all roots have the same multiplicity p' for some [ > 0 with n = n/p’
in which case there are n’ relative automorphisms. Thus in successive extensions there are [[, n) relative
automorphisms which have cardinality [E : F] if E is a separable extension and < [E : F] if not.

If G is solvable, G™ =1 for some n. If n > 4, then S5™) contains every 3 cycle for every m.

Suppose f € klz],deg(f) = n and let Gs(k) denote G(K/k) where K is the slitting field for f over k.
Then G¢(k) is isomorphic to some subgroup of S,, and if f is irreducible, the group is transitive on n sym-
bols. Set A = [],_;(ui —u;) and Disc(f) = AZ then if f is irreducible, the Galois group is A3 or S3
according to whether Discy(f) = A? is a square in k. If f is a quartic with separated roots uy, ug, us, u4
and a = ujug + ugug, B = uius + ugug, ¥ = urug + ugus; setting K = k(a, 8,7) and [K : k] = m, then
Gr(k)is Saif m=6, Gp(k)is Ay if m =3, Gy(k) isZx Zif m =1, and Gy(k) is Zs or Dy if m = 2.

Let Kk ¢ K C k and 01,09,...,0, be the distinct k-monomorphisms from K — k, for u € K, define
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NE(w) = ([1; 04 (w)E*i and Tri(u) = (K : k]; 3, 0i(u). Note that distinct automorphisms are linearly
independent. From now on, assume all extensions are separable (even Galois). N (uv) = N (u) N (v) and
Tr&(u+v) = Tri(u) + Tri (v); if u € k, NK(u) = ulf*¥ and Tri (u) = [K : k]u; if E is an intermediate
field, N5 (u) = NE(NE(u)) and TrE (v) = TrE(TrE (u)). If K is a cyclic extension of k of degree n with
generator o then Tri(u) = 0iff v € K : w = v —0(v) and NE(u) = 1iff v € K : u = v(o(v))~t If
n = mp', (p,n) = 1 where char(k) = p # 0, there are intermediate cyclic fields, all of which, except the
last have degree p and each of which is the splitting field of f(z) = 2P —xz + a. If char(k) =p#0, K is a
cyclic extension of degree p iff K is the splitting field of an irreducible polynomial f(z) = 2P — « — a and
K = k(u), f(u) = 0. Suppose ( is a primitive nth root of unity over k and K = k(¢), if d | n, ("/ is a prim-
itive d-th root of unity and, K is the splitting field over k of an irreducible polynomial f(z) = 2% —a,a € k.
If k& contain a primitive n-th root of unity, ¢, TFAE: (1) K is cyclic of degree d d | n, (2) K is the split-
ting field over k of f(z) = 2™ — a,a € k, (3) K is the splitting field over k of an irreducible polynomial
f(z)=2%—a,a €k

Let (n,char(k)) = 1, and K a cyclotomic extension of k, then, (1) K = k(¢) where ¢ is a primitive
n-th root of unity; (2) K is an abelian extension of k of dimension d,d | ¢(n); (3) |G(K/k)| = d and is a
subgroup of Z .

Radical extensions: K = k(u,us,...,u,) where Ingy : uy™ € k and Ing, : up™™ € k(ut, ..., Upm—1).
f is said to be solvable by radicals if there is a radical extension containing the splitting field of f. If K is
a radical extension of k and E is an intermediate field then G(E/k) is solvable. If E is a finite dimensional
extension of degree n, char(k) t [E : k] and G(E/k) is solvable then there is a radical extension K of k
containing E. If char(k) t n! and f € k[z],deg(f) = n then f(z) = 0 is solvable by radicals iff G; is solvable.

1.2.7 Boolean Functions

For boolean functions, f : GF(2)" — GF(2) and g : GF(2)" — GF(2), define C(f,g) = 2Prob(f(z) =
g(x)) — 1. Consider two real vectors, in R?",

@ = (-1, (1D, (-1 D)

and
b= ((—=1)9© (=1)9M . (=1)9C"~1)

We denote < f,g >=< @,b > and ||f|| = < J,f >. With this notation, C(f,g) = H?ﬁ%lgl;l\‘ The vec-

tors W = (—1)""* as x varies over GF'(2)" are called the linear parities and form an orthogonal basis for
R?". The correlation matrix, C, for a boolean function f, is a row matrix (indexed by w) defined by
C(f(x),w” - x) =< (=1)7®)] (fl)wT"’” > and hence consists of the projections of the “reified” version of f
on each of the parities. The definition of a correlation matrix can be extended to a vector boolean function
h:GF(2)" — GF(2)™ (or m boolean functions) and, in this case, the correlation matrix, C, is a 2™ x 2"
matrix. This matrix has entries Cy,, = C(u”l - h(a),w” - a) where u indexes the rows and w indexes the

n

columns; thus the u row is represented as (—1)* (@) = Y ow Cﬁ%(—l)wT'“. To emphasize the association
with h, we sometimes write the correlation matrix as C'%).

Hadamard-Walsh Transform and correlation: For boolean function, f : GF(2)" — GF(2), define
F(w) =273 (-1)f@+ve = O(f(a),w"a) and we say W(f) = F and call W the Walsh or Hadamard
transform. Actually, owing to the factor 27" in front of the sum this is the normalized Walsh transform, the
term “Walsh Transform” is also used for the operation without the 27" and to distinguish, we will describe
this as the “un-normalized” Walsh transform. Basic results: Y. F(w)? =1 (Parseval). If f(z) = g(Mz+b),
M, invertible, the absolute value of the spectrums of F' and G are the same. dist(f(v),u-v) = %(2”72”}?'(1;))
dist(f(v),u-v+1) = (2" + 2"F(u)). Define A® B = (a;; B). The operation is associative but not commu-
tative. W(f @ g) = W(f)@W(g) = 3, Flv®w)G(v). Also, W(fg) = 5(8(w) +W(f) +W(g) = W(f @ g)).
All correlation matrices are doubly stochastic. Involutions have symmetric correlation matrices. Fast
Hadamard Transform: Hym = Hy ® Hym-1. Hym = M) MSZ M MSD = Ty @ Hy ® i

W(f)(t) = ﬁ(t) =>. f(m)(—l)” If f is boolean, f(m) = (—1)/@). Convolution: fxg(a) = Yo fl@)g(z+
a). Theorem: W=Y(F)(z) = f(z) = 27" Y, F(t)(-1)**. W(f *g) = W(f)W(g). For Boolean f,
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fiva, o vm) = [laeym 9(@v1® 0222 vy, * where g(a) = >0, f(b1,b2,...,bm) (subset means po-
sitions of 1’s in a is a subset of b positions of 1’s in b.) The “correlation coefficients” are ér4(b) =

C(f(a),gla®b)) = 27" 35, (-1)/ (W29 = W(FG).

A balanced boolean function is uncorrelated with either constant function. Overall Question: What
is the best affine approximation of a balanced function? The question is important because if E(k,z) is a
block cipher on blocks of n bits, each F;(k,z) is a balanced boolean function. How many inputs satisfy
all approximations? Fail on all approximations? For the correct input, what are the expected number of
equations that agree with it? Variance, etc.

Theorem: If f is balanced, >_, F(w) = £2". Proof: 3, F(w) =", > (-1)f@+wz =5~ (_1)/@(3 (~1)»=) =
S (=DFf@ang, oso S (~1)wrte = (=1)°2",w = 0,0,w # 0. Let F(w,c) = > (—1)/@+twate) then
Zw,c F(w,c) =0.

All Hadamard transform values of bent functions are equal to +2% and hence the distance to any affine
function is 2" +2% ~1. If f(x1, 22, ..., Ty, ) is bent and m > 6 then f is indecomposable. f(tuy, ..., Um,V1,...,Vm) =
g1, 0m) + Do, uv s bent. I fuy, ... um,v1, .0 vn) = >0, uvg, then f+ ugug, us, f+ uiug, uguy,

o f —|— U1U, U3 . . . Uy are all inequivalent bent functions.

In this paragraph, F' denotes the unnormalized Walsh transform of f. A function z = f(x1,...,2,) on
n variables x1,...,x, is m-th order correlation immune if for every subset of these variables or size
m, I(z;24,,...,2;,) = 0. If f has correlation immunity m and non-linear order k&, m + k < n. Let
Nup(w) = {z : 2z = f(z) = a,w -z = b}| then F(w) = Nijg(w) — N11(w). Denote p, = P(z = a) then
P(w cx =blz =a) = % = p, 127" N, (w). We obtain the following: P(w -z = 0|z = 1) =
s +pr2iR(w), P(w r=1z=1)=3-p;'27" F(w), Pw-z =0z =0) = 5 +p; 27" 1F(w),
Plw-x=1lz=0) =% —p; 27" 1F(w). Let h(t) = —tig(t) — (1—t)lg(1 —t). Theorem 1: Let x0, ..., 2y 1
be independent and unlformly distributed arguments of the boolean function f whose output is the random
variable z; then Vw # 0, 1(z;w ) = 1—poh(3 25&20) —p1h(3— 25&21 ). Moreover, when z is uniformly dis-
tributed then I(z;w-z) = 1—h(3—2""F(w)). F thus describes the best affine approximation of f (pick w with
largest coefficient, the coefficients of the best affine approximation has coefficients of 1 for the corresponding
variables). This generalizes to Theorem 2: Let zg,...,z,_1 be independent and uniformly distributed
arguments of the boolean function f; € F where F = {f1,..., fm}, ps = %n and the outputs of the randomly
selected f; is the random variable z; then Vw # 0,I(z;w - x) = 1 — poh(5 — 22%1171;’;?) —pih(3 - 22%117512;))
Moreover, when z is uniformly distributed then I(z;w-z) =1—h(3 —27""m=1 3" F;(w)). Again, this
provides the best affine approximation for the set of functions. Finally, this implies Theorem 3: A boolean
function f is correlation immune of order m if F(w) =0,Vw : 1 < wt(w) < m.

Counting Results: Let N = 2" and BF(n) denotes the set of boolean functions on n-bit values then
|BF(n)| = 2V. Let BBF(n) be the balanced functions on n bits then |BBF (n)| = (ﬁ), IGA(n)| = 2m°+m.
2

The natural isomorphism: £ : GF(2)" — R?" by a — (=1)* . E(a +b) = L(a)L(b) by pointwise
multiplication. Almost directly from the definitions, we get Theorem: C") (L(a)) = L(h(a)).

If h(z) = f(g(z)) then CM = C(NC©) because (—1)*" (@) = > CqS{g(—l)UT‘g(“) =>, ng Y ow C(g) (1)@ ey,
If b is invertible, (CM)~1 = (C")T . (For a bijection, C(u”h=*(a), wTa) = C(uTb,wT h(b)) = C’(wTh(b),uTb)T,
so, C(h™) = (c(M)-1))

Theorem: A boolean transformation is invertible iff its correlation matrix is mvertlble. The — direc-
T

tion follows from the inverse formula above. The proof of «—: (—1)“ u"h(a) =>.,C u ( nw e If O™ s
invertible, (—1)* @ = Zu(C(h));}u(—l)“Th(“). If 3z # y : h(z) = h(y), substituting into the equation above,
(,1)wa = (fl)wTy and that is just wrong.

Correlation matrices for standard functions: If h(z) = z + k, Cy, = (=1)"*. If h(z) = Ma,
Cuw = 5(MTUEB’LU) If hiz) = (b(l), b(g), ceey b(n)), b(l) = h(z) (a(z)) and CY) = C") then Cuw = H Ou(l wl(i)
(uses disjunct support). If h(z) = g(z) + wlz, Hu) = Gud w); f V; NV, =0, w € Vy, u € V,
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H(u+w) = F(w)G(u).

Theorem: Cl(jivm >w Cu U’i?, Proof: W((u @ v)Th(a)) = W(uTh(a)) @ W(vTh(a)); note that

first transform on right is CQ(L W and second is 05"3) One consequence is: Cygu,0 = Zw CuwCo-

Theorem: A Boolean transformation is invertible iff every output parity is a balanced binary boolean
function of the input bits. Proof of —: If h is invertible, CCT = I, Cyo = 1 and the norm of every row and
column is 1. C(uTh(a),0) = &(u); all rows except row 0 are correlated to 0 hence the function is balanced
for u # 0. For «: The condition on output parities being balanced is Cy 9 = 0,u # 0. i.e.- C' is orthogonal.
CCT =1« Y ow CuwCow = d(u@v) (““) also Y, CuwCow = Cugo,o but Cyo = 0,u # 0 and Cyp = 1 so
“*” holds Vu, v hence C is orthogonal. Let f and ¢ be two surjective boolean transformations on n variables
and define C( f, g) in the obvious way. C( f, g) is invertible but not necessarily invertible. If u and w are
parities then and F* denotes the normalized Walsh transform of w7 f(#) while G* denotes the normalized
Walsh transform of w? §(Z) then (C(f, 9w = 2, F*“(v)G¥(v).

Theorem: The correlation coefficients and spectrum values for a boolean function over GF'(2) are inte-
ger multiples of 2!=". Proof: The values are of the form k + (2" — k)(—1) = 2k — 2" which is even.

Theorem: The elements of a correlation matrix corresponds to an invertible transform of n-bit vectors
are integer multiples of 227", The proof uses the restriction map and the fact that > (F(w)+F(w+v))? = 2.

For Fy,q=2",Trp, /p,(x) = Tr(z) = 3/~ 01 x* . Theorem: Tr(z) # 0 for some z. Tr(x+y) = Tr(z)+Tr(y).
Tr(z?) = Tr(z). Tr(z) € Fy. Tr(wz) is linear in z. Tr(wiz) = Tr(waz) — wy = wy. Tr(wz) are exactly
the linear functions.

F : Fon — Fym is differentially § uniform if Vo, 5,a0 # 0: [{z : F(x + ) + F(z) = } < J§. Theo-
rem: F(z) = 22 s = (k,n) then F is differentially 2°-uniform. N(F) = 2"~! — 2"3*~1_ Theorem: Let

G(z) =271 2 #0;0,2 = 0. F is differentially 4 uniform. N(G) > 2"~ —23.

aVb=a®b® ab as a boolean function. Let & = (:1:4, T3, T2, x1) with z1 the least significant bit. F(Z) =
(Fy(Z), F3(Z), F»(Z), F1(Z)). If p = (0000,0001) then Fp( 7) = 2i,i > 1and FP(Z) = (12 Vs VEa) (2, ©1) &
(gcg VazVag)e =10z Drg®rs®ay®rexs @ roxy @ T34 © T3y If & = (0000, 0001, ...,1111), then
Fr(@) =21 @1, F§(T) = a1(x2 ® 1) © Tize = 11 @ 2o, FY(T) = (2122) (23 1) @ (1‘13?2)333 = z172 D T3,
F{ (%) = (v122w3) (24 © 1) @ (F1@aT3)24 = 217273 © T4,

Discrete Fourier Transform and FFT: Let ¢(z) = a(m)b( ) which correbpondb to the convolution & = @xb.
Define the DFT as F(a@) = Ad, A = v with inverse A~ = Lw=%. Note that F(b¢) = F(b)-F() (pointwise
multiplication). Tukey-Cooley Idea: Suppose n = pq, set j = j(j1,j2) = j1q+7Jo, k = k(k1, k2) = kop+k1,0 <

J1<P0< o <q0< ki <p0< ks <q Then flhy k) = Y01 e 2020 Zh—o £, da).
This requires p?q and ¢?p operations respectively or pq(p + ¢) rather than (pg)?. Now do this recur-
sively if p,q factor further. Strassen and FFT: For matrix multiply, Strassen found 7 products that
do the trick: m; = (a12 — a22)(bar — ba2), ma = (a11 + ag2)(b11 + ba2), m3 = (a11 — ao1)(b11 + b12),
my = (a11+a12)baz, ms = a11(bar —b22), me = aga (b1 +b11), mr = (az1+az2)bi1. c11 = my+mo—my+me,
cl2 = My + M5, Co1 = Mg + My, 22 = Mp —m3 +ms —myg. T(n) = TT(5) + 18"2, which is O(2!9().
F;j = w". F evaluates, F~!, interpolates. g, = H?jm_l

Rem(; p(w 3), VU2 1f g = q'q", Rem( ,((g;))) = Rem(r’q’,"gx)), Qo = 22" = w/27) | For algorithm, crucial

step is rlym( ) =Y (a; +wiajiom)z? and ripom () =Y (a; + w T Eajqm)ad.

(x —¢j) and q,;m = arm—1qi+2m,m—1. What is

Theorem: RM (r,m) has minimum distance 2™~ ". R(1,5) has 48 inequivalent affine classes.

Each possible Boolean transformation on n bits is a permutaion on the 2", n-bit values and so listing them
in order, the columns are the possible f vectors representing the component functions. If we label these
as points in GF (2)2n and draw an edge between allowable co-components with the edges labeled by the
correlation between these vectors, any allowable n boolean functions form a complete graph with the label
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0 on each edge. C(f,g9) =1— %. Generalized Balance Theorem: For each n < 128 and each

1<by <by<...<by <128 and fixed k, (Ey, (k,Z), By, (K, Z), ..., Ey, (k,T)) takes each value in Z2 as &
varies over Z%. So does any non-trivial sum of any of these functions. Theorem: If f : GF(2)"~! — GF(2)
is any boolean function, g(x1,...,2,) = f(21,...,Zn_1) + x, is balanced.

Write € = Ex and € = Ex/. What does [ei7e’j] reveal about K for known K’. Let P = {p1,p2,...,Dm}
and let | be given put N = pl...pl, and denote the set of n-bit elements of the block by S; what is
Cs(eM)? How do you characterize the x : g(x) = x where, say, g represents N applications of e. In

general, € is complicated but €™ = 1 for some m and ¢ many be much simpler for some m < t. Let
98))) (1, @2, o T 1, Tig 155 Tn) = f(T1,22,. ., 0i-1,0,%i11,...,7,). Idea: Suppose € and ¢ are rel-
atively easy to determine (low degree, good approximation whatever) and (i,5) = 1 then we can find

a,b: ai+bj =1 and calculate € = (¢/)%(¢/)® = €. Let B, (r,0) = {¥ : wt(T® &) = r}. |Bn(v,7)] = 277",
Motivation for idea is while there are lots of “far away” approximations of € there aren’t many near ones.
However, there may be close approximations of €.

Let f is a Boolean Function define SJQ = {z : f(z) = 0} and Sf {z : f(x) = 1}. If e;(z) = E;(k,x)
then [S2 NS, N...NSY | =2""% What are the permutations that fix such a set?

Let f,g : GF(2)" — GF(2) and N =2". Let f,¢g: GF(2)" — GF(2) and N = 2". C(f,g) = 2Pr[f(z) =
g(x)] — 1. Let a be the number of positions where f and g agree and d be the number of positions where f
and g disagree, then Pr([(f(z) = g(x)] = 5. Note that wt(f®g) = d = dist(f,g). Now suppose g(z) = w-x,
the linear function. F(w) = 55 3 (—=1)f@=9) = L(a — d) Since a +d = 2", F(w) = 24 — 1 and thus
C(f,w) = F(w). These yield dist(f(z),w-z) = 2"(1 — F(w)). Thus the best affine approximation is the

one which maximizes |F(w)| for some w.

Now let f: GF(2)™ — GF(2) be a bijective boolean transformation with component functions f1, fa,..., fu.
All such transformations represent permutations in Sy~ and the correlation matrices of these transformations
is orthogonal (CCT = I). A block cipher gives rise to such transformations by setting f(z) = Eg(z) for
fixed K. Note that all balanced boolean functions can be obtained by applying a permutation in Sy~ to a
sequence of N , I’s and N , 0’s.

With the foregoing notation: Theorem 1: C(f;,1) = C(fi,0) =0, C(f;, f;) = 0,i # j, wt(fi) = 271, Vi,
wt(flfj) = 271—272’ #] and in general, wt(filfiz e fzk) = 2n—k. Further, C(flf]afk) = % ) C(fwfyfkfl) =
C(fififr, f1) and in general C(fi, fi, --- fir, f1) = 2" %71 Let f be a boolean function. Theorem 2: Let
f be a boolean function. The N functions f;, fi, ... fi, form a basis for the space of boolean functions;

that is, for any boolean function g, 3a? iy Such that g(z) = 37 ;oo al? . firfin oo fip-

11,22,...,% 11,2255k

In particular, there are such coefficients such that :EZ = D l<iy<in<.. <ip=n 5?7)2 Liglinfis -+ fi. Define
Appzi(f) = {g : dist(f,g) < i}, then |Appa;(f)] = 325, (7).

NL(f) <2n=' = 2571 NL(f) < 2" ' 4+ /2" + maxero(F(De(f))), where D.f = f(z) @ f(z @ e).

Theorem (Rothaus): Let n > 4 of even algebraic degree then any bent function on GF(2)" has de-

gree < Z. An n-Boolean function, f, is m-resilient iff f is balanced and F(u) = 0,Vu : wt(u) < m.
Maiorana—MacFarland class M = {f : f(z,y) = on(y) ® g(y)} where 7 is a permutation on GF(2)? and g
is affine. |[M| = (2%)!2%. For Bent Quadratics: D1<ij<n aijriz; ® h(z), h, affine.

For this section, f : GF(2)™ — GF(2). The sensitivity of v is defined by S(v) = |[{v' : f(v) # f(v'),dist(v,v") =
1}|. The average sensitivity aS(f) = 5 Z S(v). The “influence” of x; is defined by

I(z;) = Prob(f(z1,...,2i-1,Y,Zit1,.--,Tm), the probability that the function is determined no matter
what y is.

Theorem: Let f be a boolean function of n variables with average sensitivity aS(f) = k. Let ¢ > 0
and M = £ then (1) 3h depending on exp((2 + / %M)M) variables such that Prob(f # h) < € and,
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(2) Jg of degree at most exp((2 + W)M) such that Prob(f # g) < 5.

Basic Question: Let F' be a family of m binary n-vectors. How densely packed is F'7. Given b < n,
|F'|, what is the largest possible number of pairs of vectors in F whose Hamming distance is less than b?

Trace and correlation in GF(2"): Cf , = 27" (—1)Tr(wa)(—1)T"(uf(@) 5o the terms are determined
by the condition Tr(wa +uf(a)) = 0, if this is satisfied by r values the entry is 727", If a function is linear
over GF(2"), it is linear over GF(2) but not vice versa.

Theorem: Let r, be the ratio of the number of invertible n x n matrices over GF(2) to the num-
ber of n X n matrices over GF(2), then lim,_o(r,) ~ 0.288. Proof: The number of invertible n x n
boolean matrices is ¢, = (2" — 1)(2" — 2)...(2" —2"~1). The number of n x n boolean matrices is o’
ty =255 (20 —1)(27"1—1) ... (2—1). Define s, = (2°—1)(2""1—1) ... (2—1). Now tpq1 = 2"5 25,1 =
9" gt (9 o yomtl 1) — 9n(2n+1 _ 1)1, Dividing both sides of this by 2(**D°| we get
Tnal = 2(’5::11)2 = 22271%2’5%(2”“ —1) = 7, (1 — 27(F1)). Using this recurrence, we get 7, = [[_ (1 —27").
The product approaches ~ 0.288 as n — oo.

1.2.8 Computational Algebra

Hensel: If I C R, f = gh (mod I) such that the pseudo GCD(g,h) = 1 then 3g*, h* such that (1)
f=gh* (mod I?), (2) g=g¢* (modI), (3) h="h* (mod I), and pseudo GCD(g*,h*) =1 (mod I?).
If ¢’, b’ satisfy the conditions also, ¢’ = ¢*(1 +u) (mod i?) and A’/ = h*(1 —u) (mod i?).

Bivariate Factoring: If |F| > 4d?, f € F, deg.(f) < d, 3 € F: f3(x,0) € F[z] has no repeated fac-
tors.

e la Obtain square free factorization

1b Find g € F such that f(x, ) is squarefree.

le fz = f(z,y+B).

2a f(z,y) = g(z,y)h(z,y) (mod y)

2b Lift f(z,y) = gr(z,y)he(z,y) (mod y*)

3a Find g” and Iy: g" = gl (mod y2"), dega(g”) < dega(f), degy(g") < degy(f), g" # 0.

e 3b Find ged(f, g) as polynomials in F(y)[z].

[Res(f,g,2)| < (m+1)%(n+1)% A% B3.

Extension Theorem: Let I =< f1,..., fs >€ C(x1,x2,...,x,) and I is the first elimination ideal of I.
For each 1 < i < s write f; = g(z2, ..., )21 + .... Suppose ¢ = (ca,...,cn) € V(I1). If ¢ ¢ V(g1, 92, .-, 95),
Je; such that (c1,¢) € V(I).

Linear Programming: max(cz) subject to Az < b, z > 0. Quadratic Programming: max(}_ p;joi0;x;z;),
subject to > x; =1, 2; > 0, > xu; > R.

1.2.9 Algebraic Number Theory

Gaussian Integers: Z[i]. Let «, 3,7, 6 represent gaussian integers. N(z + yi) = 22 + y%. Va, 3,3y, such
that @ = By + ¢ with 0 < N(0) < N(8). « is a unit iff N(«) = 1. Units are 1, —1,4, —i. Let S = {an+ (v},
¢ with minimal norm is the ged. If 7 is a Gaussian integer with N(7) = p then 7 is prime. If 7 is a Gaussian
prime and 7|af then 7|a or 7|3. Gaussian integers form a UFD. Let m be a Gaussian prime, there is one
and only one p such that 7|p. Note that 7 = x + yi, N(7) = 22 + y? divides p or p? so = 0,1,2 (mod 4).
Characterization of Gaussian primes: p = 2: p = —in?2. p=3 (mod4),p=m p=1 (mod4), p= 77
and 7 and 7 are non-associated primes. If p=1 (mod 4) then p | (224+1). If 7 | p, 7|(2+i)(2—1) so 7|(z—1).
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x is integral over A if x is a root of a monic polynomial f with coefficients in A. If A is a subring of
R, the integral closure of A in R is the set A, of elements of R that are integral over A. Note that A C A..
We say A is integrally closed in R if A. = A. If A is an integral domain with quotient field K, and A is
integrally closed in K we simply say that A is integrally closed without reference to R.

Integral Ring Extensions: Let M be an A-module. M is faithful if aM =0 — a = 0. Let A C B,
a € B. The following are equivalent: (1) v is a root of f(z) = 2" + ap—12" "1 +... + ag; (2) Ala] is a finitely
generated A module; (3) 3 a faithful module over A[a] which is a finitely generated A-module.

If A is an entire ring and a UFD then it is integrally closed. If B is integral over A and ¢ is an em-
bedding of A into its algebraic closure, L, ¢ extends to B.

Ng/p(x) = det(m(z)), Trg/p(x) = trace(m(z)). If a =z +yi, Tr(a) =2z, N(a) = aa. S(a) =), a7 is
an integer, so is N(a) = [[, a®. a is a unit iff [N(@)| = 1. a is an integer of Q(V/d) iff T(«) and N(a) are
integers.

Quadratic integers: I; = {x + ywa, 7,y € Z}, wqg = Vd if d = 2,3 (mod 4), 1+2\/E, ifd=1 (mod 4).
Ideal Theory: P = (2,1++/=5), Q = (3,14++/=5). P2 = (2) and QQ = (3). Fermat analogue: o™ (™~1 =1

(mod 7).

Rational algebraic integers are integers. If 6 is an algebraic number, there is an integer n such that nf
is an algebraic integer. Every basis for R(f) has n elements. A(ay,ao,...,q,) = det(a;%7)%. Alterna-
tively, Ao, oo, ..., ap) = det(S(a;)). Alar,ao,...,ap,) is an integer. If {o;} and {3;} are basis with
a; =y a0k then Aoy, o, ..., ap) = det(aij)zA(,Bl, Bay..oyBn). {a;}isabasisiff A(ag, e, ..., an) # 0.
If {o;} is an integral basis for R(#) then A(ay,as,...,a,) is minimal, in which case it is called the dis-
criminant of R(0) and written Disc(R(6)). All integral basis have the same discriminant.

Every ideal contains a basis. If A is an ideal of Q(f) then Z N A # (. If A, B are ideals in R(9),
ABiff A= BC ift BC A. If A is an ideal in R(6), 3B such that AB = (a) for some a in R(#). If A,B
are ideals in R(6),with AC = BC then A = B. If P|AB and P does not divide A then P|B. Every ideal
has finitely many distinct divisors. Every prime ideal must divide the principal ideal of a rational prime.
Every ideal can be written as a product of prime ideals. The factorization is unique apart from order. Every
rational integer belongs to finitely many ideals. Rational prime is ramified if its principal ideal factors into
prime ideals in which one prime ideal is repeated. If this happens, p|A(aq,...,ay).

An ideal has finitely many divisors. If A is an ideal with basis a; = a;;w; then N(A) = det(a;;).
A ~ B iff Ja, § such that (o)A = (6)B. each equivalence class is called an ideal class. There are finitely many
ideal classes h of R(f) and A" ~ (1). Proof: For K = R(f), 3C(K) : YA,30 # a € a : [N(a)| < C(N(A).
Use this to show 3B : N(B) < C so there are a finite number of ideals containing B. Ja : (o) = AD.
AN ~ AD.

The ring of integers Dk in the number field, K, has the following properties: Dk is a domain with field of
fractions K. Dk is noetherian (Use the fact that Dk is a free abelian group of degree n = K : Q.) A D,
a is a fractional ideal if 3¢ € D: ca C D. Every non zero prime ideal p of D is maximal. ( D/a is a finite
integral domain.) Fractional ideals form an abelian group. Every non-zero ideal of D can be factored into
prime ideals (D is noetherian).

Norm of an ideal: N(a) = |D/a|; if a =< a > is principal N(a) = N(a). N(ab) = N(a)N(b).
Agjglar, as, ... a,) = [det(oi(a;))]>. Every non-zero ideal of D has a finite number of divisors. A non-
zero rational integer belongs to a finite number of ideals of D. Only a finite number of ideals of D have
a given norm. If a # b are ideals of D then Ja € a : aa™! +b = D. Let a # 0 be an ideal of D and
0#£f€a,dacaa=<a,f >.

Minkowski: X is convex if z,y € X — Az + (1 -y € X,VA € [0,1]. X is symmetricifx € X — —x € X.

Let L be an n-dimensional lattice in R™ with fundamental region 7" and let X be a bounded, convex, sym-
metric subset of R™; if v(X) > 2"v(T), 3o € X N L,x # 0. Let L be a lattice then R"/L = T™ (a torus).
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Let T be a fundamental region of L, ¢ : T — T" then v(X) = v(¢~1(X)). If v : R® — T™ is the natural
homomorphism with ker(v) = L. If X is a bounded subset of R", v exists and v(¥(X)) # v(X) then
v|x is not injective. Four squares: If p = 4k + 1 then p = a4+ b (< g >= Z, is cyclic g* = u and
u? = —1. Let L = {(a,b) : b=wa (mod p)}, Z*: L = p?, vol(T) = p. C, : {z : ||z|| < r} and 7r? > 4p,
r? = 371’,075@24—1)2 <r?<2p.

Examples in algebraic fields: In R = Z[/—3]: _1%‘/_73 is a unit note that 2 x 2 = —1 4+ /=3 x —1 — /=3.
In R = Z[y/—5] ideals are not all principal; note that 2 x 3 = —1+ /=5 x —1 — y/=5. Pell related: There
are two equivalence classes of forms of determinant 5: 22 + 5y? and 222 + 2zy + 3y? and the class number
of Z[/=5] is 2. If p is a rational prime and K/Q is a Galois extension then G = G(K/Q) acts transitively
on the ideal divisors of (p), the exponent of the ideal divisors are called the ramification index. The ideal

generated by a rational ideal (p) factors into indecomposable factors in an algebraic number field, O, in
one of three ways: (a) (p), (b) (p) = Pa(P) (“p splits”), or (c) (p) = P? (“p ramifies”).

Analytic formulas: fxg(n) =3_,, f(d)g(7). Thisis commutative, associative and has an inverse. A(n) =
In(n), if n = p™, A(n) = 0, otherwise. Note: In(n) = >, A(d). ga(n) =>4, d*. () =3, ., Aln),
I(x) =32 ,<. In(p). @ — @ < 2%5”73(22). L(l,x)=>,", @, X, a non-principal character. Dirichlet:
Ifk>0and (hk) =1,V >1 mod k) T = dsin(@) + O(1). 7a(®) = X pcapma  (mod k) 1

p<z,p=h D

ma(w) m 5, @ — 0, Ya, (a,k) = 1 and 7, (2) ~ m(z) when (a, k) = (b, k) = 1.
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1.2.10 Group Theory

Isomorphism Theorems: (1) If ¢ : G — H is a homomorphism, G/ker(¢) = Im(p), (2) If G> H and
G> N and N C H C G then G/H = (G/N)/(H/N), (3) If G=HN, G> N then HN/N 2 H/(HN N).

Derived series: Gl = G, Gl = [G,Gl]. G is solvable iff derived series terminates at 1. Subnor-
mal Series: G = Gy > Gy > ... > Gy = H, if this happens, we say G > >H. Normal series: Subnormal
series where G > G;,Vi. Chief series: Normal series with no repeated terms and no normal subgroup
properly lying between two series elements. Zassenhaus. If A< A* and B < B* then A(A* N B) < A(A* N B*)
and B(B*NA)<B(B*NA*); further, 13(1?4**%33*)) = %(1139**%‘4*))' The following are equivalent: (1) G is solvable,
(2) G has a normal series terminating at the identity whose factor groups are cyclic of prime order, (3) G
has a subnormal series with abelian quotients.

Schreier: Two normal series for G have equivalent refinements. Two compositions series for G are
equivalent. Proof: By induction on length (I) of shortest such series. If [ = 1, G is simple. Suppose
G=Gy>G1>...>G,=1land H=Hy> H; >...> H; =1 and assume | = r > ¢ and that the theorem
is true for all series of length less than [. If H; = G; then we are done by induction on the shortened series.
Assume Gy # Hq, Hy < G,G1 < G then G1H, = G and G/G1 = H,/K,K = G N H;. Consider the two
series G1 > Gy... > G, =1and Gy > K > K;... > Ky = 1. By induction, r — 1 =t + 1 and they are
equivalent. Thus, H; > Hs...> Hi=1and Hy > K > K;... > K,_5 = 1 sor = s and they are equivalent.

¢ is a normal endomorphism iff ¢p(a"tza) = a~'¢(x)a, Vo,a € G. Lemma 1: If G satisfies ACC or
DCC then G is the direct product of indecomposable groups. Lemma 2: If G satisfies ACC (resp. DCC) on
normal subgroups and f is a normal endomorphism of G, then f is an automorphism iff f is an epimorphism
(resp automorphism). Lemma 3 (Fitting) Let G satisfy both chain conditions. If ¢ is a normal endomor-
phism of G then G = Ker(f™) x Im(f™), some n > 1. If G is an indecomposable group satisfying ACC
and DCC on normal subgroups and if f is a normal endomorphism then f is nilpotent or an automorphism.
Krull-Schmidt: If G has both chain conditions on normal subgroups and G = Hy X...x H; = K1 X...x K,
are two decompositions into indecomposable factors then s = ¢ and, after reindexing, H; = K, and for each
r<t,G=G1 xGyXx...xGr X H.1 x Hy. Proof: Let P(0) be the statement G = G; x G2 x ... x G5 and
for 1 < r < min(s,t) let P(i) be the statement G = G; X G2 X ... X G X Hy41 % ... Hy. P(0) is true by
assumption, assume P(r —1). Let m; (resp pi} be the canonical epimorphisms from G; x G X ... x G (resp.
G1xGax ... X Gy X Heyy X Hy and Ay (resp Aj) be the inclusion maps, ¢; = A\jm; and ¢; = A\im;. 0.¢; = 0
fori <rand ¢i1(ljg) = @ro1+... +©r0s = Qrdr + ...+ 9rd; 50 (¢rdj)| is an automorphism of G... @;d,
must be an automorphism of H; and ¢; : G, — H; is and isomorphism and so is ¢, : H; — G, reindexing
we have the first half of P(r). Let ¢ = g192...gr—1hrhpg1 ... by define 0(g) = g1g2 . .- gr—19(hp) g1 ... By
G=Im(0) =G* =Gy x Gy X...x G x H-41 x Hy which completes the argument.

Lower Central Series: Li(G) = G, L,11(G) = [L,(G),G]. G is nilpotent if L,(G) = 1 for some
n. Note L,(G)/L,4+1(G) C Z(G/Lpnt+1(G)). Upper Central series: Zy(G) = 1; Let H* = H/Z,(G),
define Z,,11(G)* = Z(G/Z,(G)). Upper and Lower central series have same length. Finite nilpotent groups
are direct products of their Sylow subgroups.

G is an extension of K by Q if G> K and G/K = Q. If 1 - N —; G —, Q — 1, the following are
equivalent (1) 3Q* C G : Q* — @ and (2) s : @ — G such that ¢ - s =id. (3) G is a semi-direct product
of N by @ written NV x @Q; in this case, we say G is a split extension of N by Q.

G is complete if it is centerless and every automorphism is inner. in which case G = Aut(G). S, is
complete if n # 2,3. Proof: Let T}, be the set of k disjoint transpostions so x € Ty, — x? = 1; note that if
0 € Aut(S,),0(T1) = T} for some k. Also observe that 6 preserves transpositions iff § € Inn(S,). Now we
can show |T| = "(RT_l) and |Ty| = % Comparing the two |T1| = |T}| is possible only if ¥ = 2,3 and
in fact, only if k = 3. If # € Out(Ss) and 7 is a transposition, 6(7) must be a product of three transpositions
and such an automorphism exists. If G is a non-abelian simple group, then Aut(G) is complete. If K <G
and K is complete, G = K x Q. Hol(K) C Sk is < K', Aut(K) >, K! <t Hol(K), Hol(K)/K' = Aut(K)
and Croi(r) (K Iy = K". If K is a direct factor whenever K is a normal subgroup then K is complete.

Suppose G is an extension of N by H and let ¢ : H — G/N. Pick s : G — H such that s(1) = 1
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and ¢(h) = NS(h), then E'f : Hx H — N : S(hlhg) = f(hl,hg)s(hlhg) and f(hl,hg)f(hlhg,hg) =
f(ha, h3)*M) f(hy, hohs). Note that ), : n+— s(h)ns(h)~! is in Aut(N) and 5, (05, (n)) = Op,n, (n)F R1:h2),
Given N, H with 6, € Aut(N) and §; = 1 and a map f : H x H — N with f(1,h) = f(h,1) = 1 and
f(h1,ha)f(h1ha, hs) = O, (f(h2, hs))f(h1, hahs), suppose f is compatible in the sense that Oy, (05, (n) =
On,hy (n)f("1:72) then the operation (ny,hy) - (ng, he) = (n160n, (n2) f(h1, ha), hihs) defines a group G which
is an extension of N by H.

Suppose T is a subset consisting of a representative of each coset of an G/K which is called a transver-
sal. If 7 : G — Q is a surjective homomorphism with kernel K, I : Q@ — G is a lifting if 7n(l(z)) = «.
G realizes (Q,K,0) with K' = 1,0 : Q@ — Aut(K) and | : Q — G if G is an extension of K by @ and
every transversal [ : @ — G satisfies za = 0,(a) = l(z) + a — I(z). Note additive notation for non-abelian
operation. If 7 : Q — G is a surjective homomorphism with kernel K and [ : Q — G is a transversal with
[(1) =0 then f: Q@ x @ — K defined by I(z) + I(y) = f(x,y) + I(zy) is called a factor set. Cocycle
identity: zf(y,z) — f(zy, 2) + f(z,y2) — f(z,y) = 0. Note zf(y,z) = l(z)f(y,2)l(x)". Given “data,”
(Q,K,0), f: @xQ — K is afactor set iff it satisfies the cocycle identity and f(1,y) =0 = f(x,1). Proof: Let
G={(a,z) :a € K,z € Q}. With (a,z)+(b,y) = (a+zb+ f(z,y), zy). This is a group if the conditions hold.

Let G realize (Q, K,0) and | and I’ be transversals with [(1) = I’(1) = 0 giving rise to factor sets f and f
then there is an h : Q — K with k(1) = 0 such that f'(z,y) — f(z,y) = zh(y) — h(zy) + h(z),Vx, h € Q and
g is called a coboundary. The set of all coboundaries is B%(Q, K, 0). Z?(Q,K,0) is the set of all factor
sets. H2(Q,K,0) = Z2(Q,K, 0)/B?(Q, K, ). Two extensions are equivalent if the difference of their two
factor sets is in B?(Q, K,6). There is a bijection from H?(Q, K,f) and the set of equivalence classes of
extensions realizing (Q, K, 0) taking 0 to the class of the semidirect product. See proof of Schur-Zassenhaus.

G, an extension of K by @, is a central extension if K < Z(G). Functorially, a central extension G
is a pair (H, ) satisfying 7 : H — G, ker(r) C Z(H). A cyclic extension G of N is one where G/N is
cyclic. Solvable groups are built from cyclic extensions. « : (Hy,m) — (Hz,72) is a morphism in this
category. If (G, 7) is universal if V(H, o), 3l : (G, %) — (H,o). G possesses a universal central extension
iff G is perfect. If (G, ) is a universal central extension then ker(r) is the Schur multiplier. Homological
version: If G > N and H > K are normal subgroups isomorphic under ¢, the pullback is (g, h) where
gN = ¢(hK). (Q,K,0) is trivial iff every extension realizing (Q, K, ) is a central extension. There’s a
bijection between H?(Q, K, ) and central extensions. Schur multiplier: M (Q) = H?(Q,C*) (0 is trivial).
Here f(1,y) = f(z.1) = 1, f(z,9)f(@9,2)*fz,52) f(,5) " = 1, g: Q x @ — C* is a coboundary iff
Jh : Q — C* with h(1) = 1 such that g(z,y) = h(y)(h(zy))~*h(z). Assume G is perfect then a central
extension (E, ¢) of G is universal iff (a) E is perfect and (b) all central extensions of E are trivial. In that
case, |l > R— F —- G — 1, F, free and F = [F, F|[F,R] — [F,F]/R = G.

Central Product: G =< G; >, [G;,G;] =1 for i # j. Equivalently, p : (z1,22,...,2y) — T122... 2, 1S
a surjective homomorphism from (G; X G2 x ... X G,,) to G with p(D;) = G; where 7;(G1,...,Gy,) = D;
and ker(p) N D; = 1, ker(p) C Z(G). Let Z < Z(A)) N Z(B), A x B/Z is a central product. Both
Dg and Qg are central products of Zs by Zs x Zy. Let G;,1 < i < n be a family of groups with
Z(g1) = Z(G;) and Autg,(Z(G;)) = Aut(Z(G;)). Then up to isomorphism there is a unique central product

Wreath Product: G* = G¥ - maps from X to G. fg(x) = f(x)g(x). Let H act on X: f'(x) = f(xh™1).
Let ¢ be the natural action of H induced on G!#! then Gt H = H XNg G If Gy ={f: fly)=1if v #y}.
G* =[]y Gz Put g, (y) = g(y) if z = y, 1 otherwise. Note that g," = g,p. If H is finite and G/K = H, G
can be embedded in the regular wreath product K H: Universal Embedding Theorem: Let G> N and
K =G/N,3¢:G — N ! K such that ¢ maps N onto im(¢) N, N. exp(G) = min{e : x° = 1,Vx € G}.
If @ is finite then M (Q) is a finite abelian group and exp(M(Q)) | |Q|.

Representations (1): M is a simple R-module if it has no non-trivial submodules. Let M be a non-
zero R-module. The following are equivalent (“semisimple”): (1) M is a sum of simple modules, (2) M is
a direct sum of simple modules, (3) if N C M is a submodule, there is another submodule N': M = N@® N'.
Schur: If f € Homg(M,N) and M, N are simple then f = 0 or is an isomorphism. If M is simple,
A = Endr(M) is a division ring. Let M be a semi-simple R-module, A = Endr(M) and f € Enda(M), if
méeM,Ir e R: f(m)=rm. Endg(V") =2 M, (Endr(V)). Jacobson: Let M be a semi-simple R-module,
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A = Endr(M) and f € Enda(M), mi,ma,...,m, € M,3r € R: f(m;) = rm;. Corollary: Let M be a
faithful simple R-module, D = Endgr(M), if M is finite dimensional over D then Endp(M) = R. If R is
a ring and [ is an ideal, say I is simple if it is simple as a left module of R; say I is semi simple if it is
semi-simple if it is semi-simple as a module and all simple left ideals are isomorphic. If R is a semi-simple
ring then all non-zero R modules are semi-simple. Let I be a simple left ideal in a semi-simple ring R and
let M be a simple R-module; either IM = M and I = M or IM = 0.

From now on let R be a semisimple ring. B; = ZlcRngi I. If I; is not isomorphic to I) then B;Bj = 0;
R =) B; and each B; is a two-sided ideal. There are only finitely many isomorphism classes of left ideals.
IfR= @2:1 B; and 1 = 22:1 e;. If b; € B; then e;b; = b; = b;e; and B; = Re;. Each B; is a simple ring.
If M is a simple module it is isomorphic to some Iy so there are only finitely many isomorphism classes of
simple R-modules. Let M be a non-zero R-module, define M; as the sum of all simple R modules isomorphic
to M;, then @§=1 B;M,M; = e;M. A semi-simple ring, R is ring isomorphic to the direct product of simple
rings. Let R be a simple ring and V' a simple R-module with D = Endp(V), then V is a finite dimensional
vector space over D, R 2 Endp (V) = M,(D°). Let B =0, & ...® B, be a direct sum of simple algebras
then two sided ideals of B are of the form J; & ... ® J, where the J;’s are 2 sided simple ideals of the
B;’s. Let S1,8s,...,5, be distinct simple A-modules; for each ¢, let U; be a direct sum of copies of S; and
U=U,0U:®...¢U, then Enda(U) = Enda(U1)® Enda(Us2)®...@Enda(U,). If S is a simple A-module
then Enda(nS) = M, (Enda(5)) and if F' is algebraically closed then Enda(S) = F. Wedderburn: Let
R be a semi-simple ring then (1) R is isomorphic to the direct sum of simple rings By, Ba, ..., B, (2) there
are t isomorphism classes of simpleR-modules; if V4, Va, ..., V; are representatives, let D; = Endg(V;) then
B; = Endp,(V;) = M, (D;°), and (3) B;V; = 0,i # j, B;V; = V;. Maschke: If G is a finite group and k
is a field with char(k) 1 |G| then kG is semi-simple. Let K = Endgr(E) with E semi-simple over R and
f € Endg(FE); further, let * € F then Ja € R: f(x) = ax. Proof: E = Rx @ F let m € Endg(FE) be
the projection on the first factor. f(z) = nf(z) = f(nz) € Rx. Jacobson: Let K = Endgr(E) with E
semi-simple over R and f € Endk (F) let z; € E,i =1,2,...,n then Ja € R: f(z;) = az;. Let R be a ring,
¥ € Endr(R), Ja € R: ¢(x) = za. ¢P(z) = ¢(z1) = x(1). Rieffel: Let R be a ring without non-trivial
two sided ideals. Let L be a non zero left ideal and R’ = Endg(L), R” = Endg:/ (L), then there is a natural
map A : R — R”. Definition: R is simple iff it has no non-trivial two sided ideals. If R is semi-simple,
R=Ri®Rx®... Ry with each R; simple. The decomposition is unique apart from order. Proof: Let R; be
a minimal 2 sided ideal, R = R; ® Ry, R1 = Re, Ry = R(1—e). Both are idempotent so sums and products
act on each summand separately. Regularity is inherited by the summands. Now you can decompose Ry
into a further sum. Weget R=R,®...®R,ande=e; +ex+...+e,, 2 =e1, e;e; = 0 and each e; is in
r; and is in the center of R;.

Two FG modules afford equivalent representations iff they are isomorphic. Every irreducible ordinary
representation of G occurs as a component of the regular representation R(G). The number of inequivalent
irreducible representations is the number of conjugacy classes of G. If p1, ps, ..., p, are inequivalent repre-
sentations and deg(p;) = n; then dim(p;) = n;? and p; occurs n; times in R(G). |G| = >_!_, n;%. Proof:
Extend F' to a suitable algebraic extension so that the center of Rg is the direct sum of 7 matrix rings:
R1,Rs,... R.. if dim(r;) = n;?, deg(p;) = n;. Since dim(R¢) = |G|, dim(Rg) = Y_;_, ni®>. Each R; is the
direct sum of the n; right ideals: ej1R,...,en,n, R. So p; occurs n; times in Rg. Z(G) has an irreducible
faithful representation iff it is cyclic.

Representations (2): Let V be an CG module, V = U @Us ®...®U, with U; irreducible. If V, W are CG-
modules and 6 : V — W is a CG module homomorphism, 3U, a submodule of V' such that V' = ker(0) @ U.
Homea(V, W) is a vector space over C. If VW are irreducible CG modules, dimc(Homeg(V,W)) is 1 if
V =2 W and 0 otherwise. dimc(Homeg(V,W)) # 0 if V and W have a common composition factor. Let V
be an CG module, V =U; & Us & ... ® U, with U; irreducible; (a) if W is an irreducible CG module then
dimc(Homeg(V,W)) = dimc(Homeg(W,V)) is the number of U; 2 W (b) each Uj; is a composition factor
in the Jordan Holder series. CG = U, @ Uy & ... ® U, with U; irreducible; if G is finite, there are finitely
many irreducible CG modules. dim(Homcg(Vi®...®U,, W1 ®...0W,) = 2221,3':1 dim(Homee(Vi, W5)).
dim(Homeg(CG,U)) = dim(U). [Proof: Let d = dim(U) and wy,us,...,uq be a basis for U. Define
r¢; = u;r. The ¢; are a basis for Homeg(CG,U)|. If V1, Vs, ..., V, are a complete set of irreducible CG-
modules then |G| = >"1_, dim(V;)?. [Proof: V =U; ®Us @ ... ® Uy, of these, dim(V;) are isomorphic to V;
and each of these had dimension dim(V;)].

IfGCS,, a:G— Chby a(g) =|fiz(g)|—1, then « is a character of G. Define ker(p) = {g : x,(9) = x,(1);
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p is faithful iff ker(p) = 1. N = {n: [x(n)] = x(1)} <G. If N < G,3x; : i_, ker(x;) = N. g ~ hiff
x(g9) = x(h),Vx. Let x € A,; if there is an odd permutation that commutes with z, ccla, (z) = cclg, (x)
otherwise cclg, (x) splits into two conjugacy classes in A4,,. Let C; = Zmeccl (y)  then the Cj form a basis for

Z(FG).

Suppose x is a character of a CG-module, V, and g € G has order m then (1) x(1) dim(V), (2) x(g9)

is a sum of m-th roots of unity, (3) x(¢~!) = x(g) and (4) x(g) is real iff g ~ g=1. If x is an irreducible

|G| [If g; is in the ith conjugacy class, | Ccl;c(;;)‘ i((gf)) and x(g) are algebraic integers so

character, x(1)

k el xe) T _ Gl -
2i=1 Tos e x0 X(9) = 3@y 18]

Burnside’s Theorem: |X(Q)| < 1if |X(1)\ # 1 it is not an algebraic integer. Let p be a prime and G

a finite group with conjugacy class of size p”,r > 1, then G is not simple. Every group of order p%q® is
solvable. Let x be an irreducible character and C a conjugacy class. If(x(1),|C|) =1 then either C C Z(x)
or x(C) =0. If G is a non-abelian simple group {1} is the only class with prime power order.

Xreg = X1(1)x1(9) + x2()x2(9) + ... + xr(1)xr(g9). Let U,V be non-isomorphic irreducible CG modules
with characters x,, then < x,x >= 1 and < x,v >= 0. x(g) is real iff x(9) = x(¢7'),Vx. N <G iff
Ixi,t = 1,...,k such that ﬂle ker(x;) = N. G is not simple iff Ix,g # 1 : x(9) = x(1). G has |G/G’|
linear characters. If all irreducible representations of G have dimension 1, G is abelian.

Feit’s moduleless treatment. Maschke: If char(F') does not divide |G|, then F-representations of G
are completely reducible. For ¢ irreducible, if 35 : Vg, S¢(g) = ¢(g)S then S is non-singular. If A(g), B(g)
are k-irreducible then (i) if A is not similar to B, and, }_/ a;s(9)bt; (g~1) = 0; or, (ii) A, B are absolutely

irreducible and 3, ais(g7Hai(g) = ‘%@jést, where n X n is the dimension of (a;s(g)). If A® is absolutely
irreducible then aj;(g) are linearly independent and Zl;:l n? <|G|.

Define (6,7) = GI >4 0(9)n(g n(g). U = U, ®...@U,, the number of these similar to Uj i 1s( . (Q,pg) =6(1),
(x> X5) = 0ij» g x(9) = |Gloin, 32, X7 (1) = |G| wi(Ry) = Irj|xi(9)/xi(1), wi(Ri)wr(R ) 225 ijswr(Rs).

> xe(9i)xe(g5) = ”5“ di;. The number of conjugacy classes = number of irreducible representations. w;(R;)
is an algebraic integer. x;||G|, (|R|,x(1)) = 1,x""*? — |x(g9)] = 1 or x(9) = 0. Let H be the kernel of 6

then (i) |0(g)] < 6(1), (ii) 0(g) = 6(1), iff g € H, (iii) |6(g)| = O(1), iff gH is in the center if G/H.

Induced representations: If H < G and ¢ a class function on H, define ¢ (g) = \Tlﬂ Yveq (@ ga).
Frobenius Reciprocity: (¢%,0) = (¢,0,5).

Brauer’s Characterization of Characters: p-elementary groups are the products of a cyclic p’ group
and p group. Every irreducible character is an induced character of a linear character of a p elementary
subgroup for some p.

RSK correspondence for representations of the symmetric group: 3 bijection between S,, and the set
of ordered tableau of the same shape g « (S,T), further g=! < (7,5). Young’s dlagram D()\)

n=ny+ns+...+nk N > ng > ... > ng. Number of tableaus with shape \: f) = m
i,jED (X

where h(i, j) = number of cells in hook H; ;.

Let G be a transitive permutation group on X and 1 # g € G fixes no more than one element then
N ={g: X, = 0} is a normal subgroup of G. Thompson showed any finite group having a fixed point free
automorphism is nilpotent.

Characters and group structure: The character table determines the normal subgroups and the nilpo-
tent groups. General procedure for calculating characters: (1) Derive a faithful representation, (2) generate
group elements, (3) determine conjugacy classes, (4) determine structure constants (|C;||C;| = >, @ijr|Crl),

(5) get characters from structure constants.

Schrier and coset enumeration: Let G =< ¢1,92,...,9m >. Let ki,koa,..., ks be a group of coset
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representatives for a subgroup H < G. 7 is the coset representative for ¢ in G/H and k1 = 1 then
H =< (kig;)(kigj)~t > fori=1,2,3,...,sand j = 1,2,3,..., m. Maintain following tables: Coset, relation
table for each relation, subset table. Column headers are generators, rows are right coset labels. To calculate
|G|, calculate orbit of point. Calculate point stabilizer by completing paths in Schrier tree and using the
resulting relations.

B =< Bi,..., 3, > is a base for G < Sym(Q) if Gg = 1. If G} =G, 5 and G =GN > .. > GIm+ll =1
then S is a strong generating set relative to B if it is a generating set and S N Gl = GM Can use this
to get orbit sizes. Schrier-Sims calculates base and strong generating set.

Coxeter groups: M = (my;),1 < 4,5 < n,m;; =1, my; € Z,m;; > 2. Associate to each such matrix
a graph with nodes 4,1 <1i < n, (¢,) is an edge if m;; > 0 if m;; > 2, label it with m;; — 2. The Coxeter
group is G generated by S = {s;},1 < i <n with (s;5;)™% = 1. Note the s;’s must be involutions, § = T

Geometrically: If A = {ry,...,r,},||ri]] = 1 is a root system with each r; defining a reflection along 1ch
associated hyperplane by S, (z) = z—2(r,z)r and o;; = —cos(p%) = (r;,7;). Associate a marked graph with
edges labeled by p;; (unmarked edged have p;; = 3) and associated quadratic form Q(Z) = > ayjz;x;. The
Coxeter group is generated by the involutions S, and S, S;, has order p;;. The quadratic forms are positive
definite and the associated forms are irreducible iff the graphs are connected. The root system is effective
iff the roots generate the underlying vector space. Union of the fundamental region under each element of
G is the vector space.

Classical Groups: Every transvection in SL,(F) is conjugate if n > 2. Group orders: PSL q) =
(¢~

(
m(qm—1)(qm—q)(qm—q2)...(qm—qm_1)7 simpleifn > 2or g > 3. PSpy(q) = (Zq;l ( —1)(¢*~
. n(n 1)
1)...(g*" — 1), simple unless (21, q) = (2,2), (2,3), (4,2). PSU,(¢?) = (nTlJrl)(q - D(-D(F+1)(q* -
1)...(¢"™ — (=1)™), simple unless (21,q) = (2,4),(2,9),(3,4). For next two, set Q,(q) = (On(q))" C SO,(q).
2 . .
PQoi1(q) = mql (¢>~1)(¢*~1)...(¢* —1), simple if | > 1. Note PQ2.1(q) is not isomorphic to PSpa;(q)
despite having the same order. For |¢] = 1, PQ¢y(q) = @ q}_s) @V =D (g = 1) (P2 = 1) (¢ — o), if
q = 2k, simple if [ > 2.

Finite Simple Group Families: Z,, Schur Multiplier: 1. ¥/ simple if n > 4, Schur Multiplier: 6
ifn=26,7,2ifn=>5n>7 A,(q = PSLyt+1(q) simple if n > 1, Schur Multiplier: (n+ 1,q — 1) except
A1(4)[2], A1(9)[6], Aa(4 )[ 8], A5(2)[2]. Bn(q) = PQapy1(q) simple if n > 1, Schur Multiplier: (2,¢q — 1)

except B2(2), B3(2)[2], B2(2)[6]; Cn(q) = PSpan(q) simple if n > 2, Schur Multiplier: (2,¢ — 1) except
C3(2)[2 } D ( ) = PQ (q) simple if n > 4, Schur Multiplier: (2,q — 1) except D4(2)[4]. Egs(q) of order
@@ = (¢ = D(¢® - 1)(¢° - 1)(¢° — 1)(¢? — 1), Schur Multiplier: (3,q — 1). Ex(q) of order
(3,q171)q (¢ — 1)(¢* — 1)(¢*? — 1)(¢'° = 1)(¢® — 1)(¢® — 1)(¢*> — 1), Schur Multiplier: (2,q — 1). Es(q) of
order ¢*?°(¢° — 1)(¢** — )( 20 1)(q —1)(¢** = 1)(¢*2 — 1)(¢® — 1)(¢* — 1), Schur Multiplier: 1. Fy(q) of

order q24(ql2 - 1)( —1)(¢% = 1)(¢® — 1), Schur Multiplier: 1 except Fy(2)[4]. G2(g) simple except G2(2)
of order ¢%(¢° — 1)(¢* — 1), Schur Multiplier: 1 except G2(3)[3], G2(4)[2]. 2A4,(¢*) = PSU,11(q) simple if
n > 2, Schur Multiplier: (n+1,¢+1) except 2A3(22)[2], 2A3(32)[36], 245(22)[12] . 2D, (q) = PQ5,,(q) simple
if n > 4, Schur Multiplier: (4,¢™ + 1). 3D4(q?) of order ¢*2(¢® + ¢* +1)(¢® — 1)(¢* — 1), Schur Multiplier: 1
. 2E¢(q) of order ¢35(¢*2 —1)(¢° +1)(¢® —1)(¢® — 1)(¢® — 1), Schur Multiplier: (3,q + 1) except 2FEg(22)[12].
2By(22m L) = §2(22m*+1) simple if m > 1 of order ¢%(¢> + 1)(¢ — 1), Schur Multiplier: 1,n > 2. 2Fy(22m+1)
(Ree) simple if m > 1 of order ¢'?(¢® + 1)(¢* — 1)(¢® + 1)(¢ — 1), Schur Multiplier: 1,m > 1. 2Go(3*™*1)
(Ree) simple if m > 1 of order ¢®>(¢® + 1)(¢ — 1), Schur Multiplier: 1,m > 1.

Sporadic Groups: M;; (2*-32-5-11), Schur: 1. My, (26-3%.7-11), Schur: 2. My (27-32.5-7-11), Schur: 12.
Mas (27-32.5-7-11-23), Schur: 1. Myy (21°-33-5.7-11-23), Schur: 1. J; (23-3-5-7-11-19), Schur: 1. Jo = HJ
(27-33.52.7), Schur: 2. J3 = HJM (27-35.5-17-19), Schur: 3. Jy (221-33.5-7-11%.23-29-31-37-43), Schur:
1. Coy (22*-3%-5%.72.11-13-23), Schur: 2. Coq (218-35.5%.7-11-23), Schur: 1. Cog (21°-37-5%.7-11-23),
Schur: 1. HS (2°-32-5%.7-11), Schur: 2. Mc¢ (27-35-5%-7-11), Schur: 3. Sz (213.37.52.7.11-13), Schur: 1.
Ly (28.37.5%.7.11-31-37-57), Schur: 1. He (21°.33.52.73.17), Schur: 1. Ru (2'4.33.53.7.13-29), Schur: 1.
O'N—S (2°-3%.5.73.11-19-31), Schur: 3. Fay (217-3%-52.7-11-13), Schur: 6. Fg (218-313.52.7.11.13.17-23),
Schur: 1. Fpy (221-316.52.73.11-13-17-23-29), Schur: 3. F3 (Thompson) (215-319.53.72.13.19-31), Schur:
2. F5 (Harada) (2'4-3%-5%.7-11-19), Schur: 1. F, (Baby Monster) (24!.313.56.72.11.13-17-19-23-31-47),
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Schur: 2. Fy (Monster) (246 .320.59.76.112.13%.17.19-23-29 .31 -41-47-59 - 71), Schur: 1.

Let A be an orbit of G and let § € A. For each v € A let v(y) € G be such that § — . Finally,
suppose S generates G. Then G5 =< v(y)sv(y*) "ty e A, s € S >.

System of imprimitivity for permutation group G: B = {A;} |A;| > 1 with the property that
for A € B,g € G either ANAY = ¢ or A = AY. Primitive: No set of imprimitivity. I" is G invariant if
I'Y =T so I' is a union of G orbits. G/Gr = G'. If A CT and a € Q then ¢ = [, cas AY is a block
of a transitive group G C Sym(Q). A transitive group is imprimitive iff 37: G, < Z < G. G is primitive
iff G, is maximal. Let G act transitively on 2, H < G then (1) The orbits of H are blocks of G, (2) If A
and A’ are two H orbits then they are permutation isomorphic, (3) If any point lies is fixed by all elements
of H then H lies in the kernel of the action on €2, (4) The group H has at most |G : H| orbits, if finite,
it divides |G : H|, (5) If G acts primitively on §2 then either H is transitive or it lies in the kernel of the action.

Define G(G, Q) as the graph of G acting on  as follows: G acts on Q x Q. Diagonal orbital is A; = {(«a, &)}
IfA={(e,3)}, A* = {(8,a)}. Self paired if A* = A. A(a) = {8 : (o, 3) € A} — corresponds to orbits
of G,. The rank of the permutation group is number of orbitals. On a self-paired orbit A, the graph
G = (G, X,A) is symmetric and G is transitive on edges. Let G be a transitive permutation group of even or-
der and rank 3 with two necessarily self-paired non-diagonal orbits A and I'. G is primitive iff G is connected.

A transitive permutation group is regular if |X| = |GX| or, equivalently |G,| = 1,Vz € X and G¥,
transitive. Let X be a faithful primitive G — set with G, simple. The either G is simple or every non-trivial
normal subgroup H of G is a regular normal subgroup. Iwasawa: Let G = G’ and X be a faithful prim-
itive G — set. If there is an € X and an Abelian normal subgroup K < G, whose conjugates generate
G then G is simple. Permutation representation: Let H < G and Hg, ..., Hg, be the cosets; the map
w(g) :< Hg1,...,Hgn >—< Hg19,..., Hgng > is a map from G to %,, whose kernel is the largest normal
subgroup of G in H. Corollary: If H < G and G is simple then |G| | |G : H|!. If G¥ is primitive and
1 # N < G¥ then NX is transitive. If G¥ is primitive and G, is simple then either (1) G is simple, or (2)
IN <G : N¥ is regular. If N is a regular normal subgroup of GX then G, acts on N#. If A is transitive
on H# then H = (Z,)", if 2-transitive, H = (Z2)" or Zs, if 3-transitive, H = (Z3)?.

Frobenius group: Transitive permutation group with non-trivial stabilizers but only the identity fixes
more than one letter. If G is a Frobenius group then the set S of elements which fix no points together with
e form a normal subgroup of order |G : G,|; Thompson showed this normal subgroup is nilpotent.

Metacyclic: 3H <G : G/H, H are cyclic. Coreg(H) = (1, H? (Can use this to show |G : Coreg(H)| <
|G : H|)). OAG) = Naac.c/aca A Oa(G) = [laqg aea A Socle: soc(G) =< M > where M is a
non-trivial minimal normal subgroup of G. O,(G) = maximal normal T—subgroup of G. O™(G) = smallest
normal subgroup of G such that G/O7(G) is a m-group. G is p—closed if O,(G) € S,(G). SCN(P) =
set of self centralizing normal subgroups of P. SCN(p) = SCN(P) where P € SCN(P). Ng(A, ) = set
of all A— invariant = subgroups of G. Ng(A,n) = maximal subgroups in Ng(A, ). For a p—group, P,
Qu(P) =<z €P:2" =1>and 5,(P) =<2 :x € P> H C G and S an H-invariant subset of
G, H is said to control fusion in S if for s € S, s NS =sH. Let X < H<G. X is weakly closed in
H with respect to G if X9 N H = {X}. G is p—solvable if it has a normal series whose factors are either
p—groups or p’-groups. G is p-constrained if P € S,(0, ,(G)) implies C(P) C Oy ,(G). G is p-stable if
p # 2 and if A € p(N(P)) with [P, A, A] = 1 implies AC(P)/C(P) C Op(N(P)/C(P)). my(P) is the rank
of the largest elementary abelian p-group in P. O (G) = largest solvable normal subgroup of G. F(G) is
the unique maximal normal, nilpotent subgroup of G and F(G) = [[, Op(G) . Epn denotes the elementary
abelian p—group of rank n. ms ,(G) = max{m,(H)}, where H is 2-local. e(G) = maz{ms,(G),p # 2}
(e(G) is a good approximation of the Lie rank.).

Modular Property: If A,B,C < G and A < C then ABNC = A(BNC). [ab,c] = [a,c]’[b,c] and
[a,bc] = [a,d][a,b]¢. Jacobi: [x,y~1, 2]y, 271, z][z,27,y] = 1. If 2,y € C(2), 2 = [z,y] then [z, y™] = 2™
and (yx)" = y”sr:"sz1 Three Subgroups: A,B,C C G and N < G with [4,B,C] C N and
[B,C,A] C N then [C,A,B] C N.
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Let G be a group with G/Z(G) finite, then G(!) is finite. Proof: Let n = |G/Z(G)|. For z € Z(G)
and g,h € G: [g,hz] = [g,h] = [g2, h] so the set of commutators, A, is of order at most n?. Claim: g € GV
then ¢ = 122 ... %m, ©; € A and m < n>.

Critical subgroup of a p-group: H char G with ®(H) < Z(H) > [G,H]. Cg(H) = Z(H). Every
p—group has a critical subgroup. A p—group P is special if ®(G) = Z(G) = G’ and extra-special
if Z(G) is cyclic. Let G be a non-abelian group of order p™ with cyclic subgroup H of index p then
G =< pn >, D27L7SD2n,Q2n.

O-Nan-Scott: Let G be a finite primitive permutation group of degree n and H = soc(G). Then either (1)
H is a regular elementary abelian p group for some p and G is isomorphic to a subgroup of AGL,,(P) ; or,
(2) H is isomorphic to T™ where T is a non-abelian simple group with a bunch of conditions.

Mathieu Groups: Mj;: m = (123)(456)(789),m = (147)(258)(369), < mi,me >= Z3 X Z3, p1 =
(2437)(5698), p2 = (2539)(4876), < p1,p2 >= Q = Qs. Set My =< 7,2, p1,p2 >, |My| = 72. Now set
o= (1,10)(4,5)(6,8)(7,9), u = (4,7)(5,8)(6,9)(10,11), 8 = (4,9)(5,7)(6,8)(11,12). Mo = Mg U Mgc My,
(Myo)e = My, M1y = MioUMyouMio, (Mi1), = Mg, Mia = MyyUM10Myy, (Mi2), = My, |[Mii| = 7920.
|Moy| =24 -23-22-21-20-48. Mj; is simple: Let N be a non-trivial normal subgroup, it is regular and all
Sylow 11 subgroups are contained in it (there are 144 by sylow) and G : N= 5. All Sylow 3 subgroups of
Mj; are in N and ¢ = myom50 ! has order 5 which is a contradiction. Note symmetries of S(4,5,11) also
generate it. Note that (Mi1), = PSL2(9) and (Ma2), = PSL3(4).

Schur-Zassenhaus: Let G be a finite group, H < G and (|H|,|G : H|) = 1 and either are solvable
then G splits over H and G is transitive on H complements.

Proof of existence by induction: Suppose it holds for all groups of order < G and that |G| = nm; (m,n) =
I;N < G;|N| = n. If 3K < G : |K| = m then the theorem is true. Let P € S,(N). (1) We may as-
sume P < N: If not G = Ng(P)N,Ny(P) = Ng(P) NN < Ng(P) and m = |G/N| = |N(P)N/N| =
INa(P)/(Na(P) N N| = |Ng(P)/Nn(P)| and Ng(P) has a normal Hall group Ny(P) so by induction
JK C Ng(P) with |K| = m and Ny(P)K = Ng(P), so NK = G. (2) We may assume P = N: If
not, |(G/P)/(N/P)| = m so 3L/P : (N/P)(L/P) = G/P and |L| = m|P|, |[L N N| | (|L|,|N]); but
(m,IN|) =1s0o LNN C Pand L < G and 3K C L : |K| = m. (3) May assume N = P is abelian:
If not 1 # Z = Z(N) char; N <G and |(G/Z2)/(N/Z)| = m so 3L/Z : (L/Z)(N/Z) = (G/Z) and
LNN=Z1L < G and (|Z|,|L/Z]) = 1 and L and hence G has a desired subgroup K. (4) So it suf-
fices to show the theorem if N is a normal abelian Hall p—group. Let H = G/N. If h € H and t,u
are two elements of h then t~'u € N so tnt~! = unu~!. Define "z = txt=',t € h. H acts on N - i.ec.
H C Aut(N). Select a transversal {t,|h € H}. t;11h2N = (th,nyN) "t = (h1ha)™ " = hy ‘hy ', Vhy, hy € H,
SO th1th2t}:11h2 € N. Define f :HxH — N by f(hl, hg)th1h2 = thlth2~ Since thl (thzth_g) = (thlth2)th3, we get
" f(ha, ha) + (R, hahs) = f(hi,he) + f(hiha, hg). 1 3c: H — N @ f(ha, ha) = c(hihe) — c(hr) = "1e(hy),
then c(h1ho)tn, hy, = c(t1)th, c(t2)th,, this would be an isomorphism whose image would satisfy the require-
ments of K. Define: e : H — N by e(h) =Y, i f(h, k). mf(h1,hs) = —e(h1hs) + e(h1) + "e(hs). Since
(m,|N|) =1, £ is well defined for € N and c(z) = —*e(z) satisfies the desired properties.

Proof of conjugacy: Suppose G/N is solvable and r is the set of primes dividing m = |G : N| and H, K < G
and |H| = |K| =m, put R = O;(G) so Or(G/R =1. Let L/N be a minimal normal subgroup of G/N then
L/N is an elementary abelian p—group for some p. HNL € Sp(L)and S=(HNL)=(KNL)Y=KNL.
SA< HKI>=J If J=G,S<J and S C R =1; thus L is a p’—group which is a contradiction. So
J # G and by induction K, K9 are J-conjugate. This concludes this case. Suppose N is solvable and again
|H|=|K|=m=|G:N|. HN'/N' =2 KN'/N' so h¢ C KN’ and again by induction, H9* = K.

Philip Hall’s Theorem: Let G be a solvable group and 7 a set of primes then (i) G has a m-Hall subgroup,
(ii) G acts transitively on its Hall m-subgroups via conjugation, (3) any m subgroup is contained in a Hall
7 subgroup. Proof: By induction on |G|. Let N be a minimal normal subgroup of G then 1 # N < G.
N is elementary abelian for some p and p | mn. If p | m,|G/N| = " and 3L : [L/N| = “},|L| = m and
we're done. If p | n,3H : |H/N| = m,|H| = |[Njm. If |H| < |G|, we’re done by induction. Otherwise
H=G,NG,|N|=n,|G:N|=m and (m,n) =1 so by Schur Zassenhaus, 3K : |K| = m.

Theorem: Let G be a finite group possessing a Hall 7’ subgroup for each p, then G is solvable. (Proof
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requires Burnside p®¢® theorem.)

|Al, |H| < oo, (JAl,|H|) = 1. Suppose A — Aut(H) and either are solvable then (1) 3A—invariant Sy-
low p—group of H, (2) Cy(A) is transitive on the A—invariant sylow p—subgroups of G, (3) If K is an
A—invariant normal subgroup of H and H* = H/K then Cgx+(A) = Ng-«(A) = (Cy(A))*. (5) Every
A—invariant p—subgroup of H is contained in an A—invariant Sylow p—group of H.

Frattini subgroup: ®(G) is the intersection of all maximal subgroups of G. ®(G) char G. If H =<
X,®(H) > then H =< X >. If P is a p—group P/®(P) is elementary abelian. Frattini Argument: H < G,
P € S,(H) then G = HNg(P).

If A is a maximal abelian normal subgroup of P and Z = Q;(A). Then (1) (Cp(A/Z) N C(Z))M) < A,
(3) if p is odd Q1(Cp(Z)) < Cp(A/Z). If p is odd and Z is a maximal elementary abelian subgroup of P
then Z\Ql(Cp(Z))

Co-prime action 1: In this paragraph A acts on G and (|4]|,|G|) = 1 with either A or G solvable. If
U < G is A—invariant and g satisfies (Ug)? = Ug then 3¢ € Cg(A): Ug = Uc. If N is an A—invariant
normal subgroup of G then (1) Cg/n(A) = Cq(A)N/N (This shows G = [G, A]Cq(A).) and (2) if A acts
trivially on N and G/N then G acts trivially on G. If p | |G| (the analogous results hold for ) then (1)
3S € S,(G) : 4 = S, (2) all such A—invariant Sylow p—groups are conjugate under Cg(A), (3) every
A—invariant p-group of G is contained in an A—invariant Sylow p—group. If T' = msesp(c),SA:S S, the T
is the largest A—invariant p—subgroup of G normalized by Cg(A). If P is an A—invariant Sylow p—group
and H < G with HA = H,HY¢(G) = H then PN H € S,(H). If A = P x Q acts on M and P, M are
p—groups and @ is a p'—group with Cj;(P) < Cp(Q) then [M,Q] = 1. If A acts trivially on G/®(G) then
A acts trivially on G and if ®(G) is a p—group then so is A/C4(G). Applying P x Q: If p € 7(G) and
G = G/0y(G) with C5(0,(G)) < O,(G) then VP € p(G), Oy (Ng(P)) = Oy (G) N Ne(P).

Co-prime action 2: If P is a p—group and @Q a p’— group with @ — Aut(P) then @ is faithful on
P/®(P). A group of automorphisms A of a group P stabilizes a chain 1 =P, C P, 1 C...C P =Pif
[A, P;] C Py1. If P is a 7 group stabilized by A then A is a 7w group. Proof: a € A is a 7’ automorphism.
% = xy,y € P;. Similarly, 22 = zyl*l = 2,50 y =1 and [a, P] = 1. If A is a 7’ group of automorphisms
on a m group P with [P, A, A] = 1 then [P, A] = 1. Proof: A stabilizes [P,A,A] C [P,A] C P. Let A
be a 7’ group of automorphisms of a 7w group P. Let @ be an A—invariant normal subgroup of P. Then
Cp/o(A) = (Cp(A)Q)/Q. Proof uses Schur-Zassenhaus. P is a 7 group, A is a 7’ group. P = [P, A]Cp(A).
Proof: [P, A] C P and A centralizes P/[P, A]. P is an abelian 7 group, A is a 7’ group. P = [P, A]® Cp(A).
Proof: 6 = I%H PO

If G is solvable, (1) C(F(Q)) C F(G), (2) if P is a p—group of G then O,/ (C(P)) C O, (G) and O,y (Ng(P)) C
Oy (G). If P € p(G) with Ng(P) p—constrained then Cg(P) is also p—constrained.

Transfer: |G| < oco,H < G . |G : H| = n and {l1,ls,...,1,} be a left traversal and suppose gl; = l;x;
then V(g) = [[1_, z:H'. 3h1,hay... hy € H and ny,na, ... ;0. (1) by € {l1,1l2, ..., 1}, (2) hitg™ih; € H,
(3) 0 i = |G : H|, (4) V(g) = [1(h; g™ h;H'. If Q is an abelian subgroup of finite order n in G and
it @ C Z(G) then V(g) = g",Vg € G. Let Q € S,(G); if g,h € C(Q) and ¢g and H are G conjugate then
they are N(Q) conjugate. Let Hx;g’,1 < i < 7,0 < j < ny, cycles of g on G/H. X = {x;g°} then (a)
()" € Hfor 1<i<r, (b) Zi_yni =G : H| and (c) V(g) =TTy ((9")" )

Let G be a finite group H < G, (p,|G : H|) = 1,K < H, H/K abelian, g a p—element in H \ K:
g™ € g™ K,¥m, all a € G such that ¢™® € H then g ¢ GU).

Fusion: Let p be a prime, T' € S,(G), W < T with W weakly closed in T' with respect to G and D = Cg(W).
Then Ng(W) controls fusion in D. P € S,(G). X € p(G) is a tame intersection of Q, R € S,(G) if X = QNR
and Ng(X), Nr(X) € S,(N(X)). Alperin’s Fusion Theorem: If P € S,(G),g € G and < A, A9 >C P.
Then for 1 < ¢ < n, 3Q; € Sp(G) and z; € N(P N Q;) such that (1) g = z122...2, (2) PNQ; is a
tame intersection of P and @; for each i, (3) A C PN @y and A***2% C PN Q;y1. Supporting lem-
mas: R,Q € Sp(G). Say R — Q if 3Q; € Sp(G), X; € Ng(P N Q;) such that (1) PN Q; is tame, (2)
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PNR<PNQE, and PN R)*%2% < PNQ; and (3) R* = Q,x = x122...2,. Sometimes say R —, Q.
(1) @ — PVQ € Sp(G). (2) P — P. (3) — is transitive. (4) S —, P, @ — P and PNQ = PN S then
Q@ — P. (5) Assume PN Q is tame and S — P,VS € S,(G) with |[SNP| > |QNP| and S — P then Q — P.

Gaschutz: Let K be a normal abelian p-subgroup of a finite group G and let P € S,(G). Then K
has a complement in G iff K has a complement in P. If K is an abelian normal subgroup of G with
(K| |g : K[) =1 then K has a complement. Proof: Set o(z) =3, o f(2,y).

Focal Subgroup Theorem: S € S,(G) then SN G =< z7ly|z,y € S,z ~¢ y >. Suppose P € S,(G)
and Ay, A2 < G, if A = As, then Jy € Ng(P) : A = A;. Burnside Normal p-complement: (proved
using transfer): If P € S,(G) and P C Z(N(P)) then P has a normal p-complement. If P € S,(G), P’ =
then PNG’ = PN Ng(P)'. Frobenius Normal p—complement: The following are equivalent: (1) G has
a normal p—complement, (2) Each p—local subgroup of G has a normal p—complement, (3) Autg(P) is a
p—group VP € p(G). f H < Gand HNHY=1,Vge€ (G\ H) then G=NH,N <G.

Thompson: Let a be a 7’/ automorphism of a 7 group P and suppose X <1 <lP such that [a,X] = 1 =
[a,Cp(X)] then a = 1. P x Q Lemma: Let A = P x @, P a p—group, @ a p/-group. Suppose M is a
p-group and Cjs(P) < Cy(Q). Then Q acts trivially on M.

Thompson subgroup: A(P): abelian subgroups of P of maximal order. J(P) =< {A4|4A € A(P)} >. If
0,(G) # 1, G is p-stable and p-constrained, p # 2. If P € S,(G) then G = O, (G)N(Z(J(P))). Thompson
Factorization: Let G be solvable with F(G) = O,(G), P € S,(G), Z = W (Z(P)),V =< Z% >, G* =2 G/Z.
The either (i) G = Ng(J(P))C(Z); or (ii) p < 3 and J(G)* is a direct product of copies of SLy(p) permuted
by G and J(P)* € S,(J(G)*). Note if p = 3 and G has an abelian Sylow 2—subgroup, so (i) holds. Thomp-
son Normal p—Complement: Let p # 2 and P € S,(G). Assume Ng(J(P)) and C(©1(Z(P))) have a
normal p—complement then so does G. By Burnside transfer, A € SCN(p) — Cq(A) = Ax Q,Q € p'(G).
Property PC: If G is a group in which the normalizer of every p group is p-constrained we say PC(G)..
Thompson Transitivity Theorem: If PC(G) and if A € SCN;3(p) then Cg(A) permutes all maximal
A-invariant ¢ groups of G, ¢ # p. Consequence: Under the TTT conditions, if P € S,(G),A € SCN3(P)
and Vg # p, P normalizes some A—invariant g—subgroup of G; so if P normalizes no p’ subgroup of G,
neither does A. Used to show the Maximal Subgroup Theorem: If P € S,(G),SCN3(P) # 0,p # 2
and every element of N*(P) is p—constrained and p—stable and 31 # H < P: [Q,P] =11if H € p'(G) and
HP = H then N*(P) has a unique maximal element.

Baer-Suzuki: X € p(G) then either X < O,(G) or g € G with < X, X9 > not a p—group. Thomp-
son (from N-group paper): G is not solvable iff 3z,y,z € G\ {1} with (||, ly]) = (Jy|,|2]) = (|=|,]2]) = 1
such that zy = z. If G is a non-abelian simple group all of whose p—locals are solvable then G is isomorphic
to one of the following: (1) PSLa(q),q > 3, (2) Sz(q),q = 22" m > 1 or (3) A7, PSL(2(3), Us(3), or
M11~

Quadratic action: If V is an abelian p—group then a acts quadratically on V' if [V, a,a] = 1 or v@=1* =,
If G acts quadratically on V then (a) [v",a] = [v,a"] = [v,a]", (b) |V]| < |Cv(a)|?, (¢) G/Cg(V) is an
elementary abelian p—group. If G acts on an F, vector space W # 0, ¢ = p™. Suppose G =< a,b > and
a,b act quadratically on W, G/Cqg(W) is not a p—group, |ab| = p¢k,k | (p — 1) then Jp : G — SLa(q). G
is p—stable if Ya € G,[V,a,a] = 1 implies aCq(V) € O,(G/Cq(V)). Let p # 2 and G be faithful on V.
Suppose (1) G =< a,b > where a and b act quadratically on V and (2) G is not a p—group then (1) the
Sylow 2 subgroups of G are not abelian and (2) If @ is a normal p’-subgroup of G and [Q,a] # 1 then p = 3
and there is a section of G isomorphic to SLy(3). If p # 2. Suppose the action of G on V' is faithful and not
p—stable then (1) the Sylow 2-subgroups of G are non-Abelian and (2) if G is p—separable (G is said to be
p-separable if two non conjugate elements of G remain non-conjugate in some finite p-group endomorphic
image of G.) then p = 3 and there is a section of G isomorphic to SLy(3). Suppose G acts faithfully on
V and E4, Ey are two subnormal subgroups of G such that [V, Eq, Es] = 1 then [Eq, Es] < O,(G). Let G
be a group and Cg(0,(G)) < O,(G) then V =< Q(Z(9))|S € Sp(G) > is an elementary abelian normal
subgroup of G and O,(G/Cq(V)) = 1.

Qs =< ( ol )( O ) >. Let m = maz{|A], A € £(@)}, AG) = {A € EQ)||A| = m}
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and J(G) =< A|A € A(G)}. Let A € A(G) acts quadratically on V and Ay = [V, A]Ca([V, A]) then A,
is in A(G) and acts quadratically on V' and if [V, A] # 1 then [V, A¢] # 1. Thompson factorizable with
respect to p if G = Oy (G)Cqa(2Z(S)))Na(J(S)). Let Op(G) =1 and V =< Q(Z(95))|S € S,(G) > then
G is Thompson factorizable iff J(G) < Cg(V).

Weilandt: If A < <G and B < <G then < A;B > 1< G; if A< < A A9 >, Vg € G then A < «G.
Quasi-simple: L'’ = L and L/Z(L) is simple. L is a component of H if L < <H and L is quasi-simple.
Let Comp(G) = {H : H is a component of G}. E(G) =< Comp(G) > where H is a component of G.
If K € Comp(G),U <« <G then K C U or [K,U] = 1. F*(G) =F(G)E(G). Cg(F*) C F*(G). G is
of characteristic p—type if F*(H) = O,(H) for every p—local, H (Groups of Lie type over character-
istic p are, for example.). G is of characteristic p—type if P € p(G),N = Ng(P) — F*(N) = Op(N).
PSL, (p™) is of characteristic p—type. Let G be a non-abelian simple group, G is of characteristic p—type iff
F*(N(P)) = Op(N(P)) for every maximal p—local. If F*(G) is a p—group then so is F*(N(P)),VP € p(G)
(use P x Q).

Amalgams: P, P, < G, |P;|] < co. Construct a graph I'(G, Py, P;) = T as follows: ' has verticies
consisting of right cosets of P, and P»; the verticies P;g; and P,g,, are joined by an edge if P;g; # Pngm
and P;g; N P,gm # 0. A(«) denotes the verticies adjacent to c. G act on graph by right multiplication
on cosets. G — Aut(T"). T'is connected iff G =< P;, P, >. Theorem: (a) G has 2 orbits. Every vertex
stabilizer G,, is a G—conjugate of P; or P5. (b) G acts transitively on edges of T'; every edge stabilizer in
G-conjugate of Py N P,. (c) G acts transitively on A(a). |[A(a) : Aa, ) = |Go : Gagl, 8 € Ale). (d)
(P1 N Py)¢ (the largest normal subgroup of G in P; N Py) is the kernal of the action of G on I'. Condition
A: Let G be a finite group generated by Py, P», T = P; N P, satisfying: Cp,(02(FP;)) < O2(F;), T € So(P;),
T =1, P;/O2(P;) = S3 and [Q(Z(T)), P;] # 1. Goldschmidt: If A holds either (i) P, = P, = Sy or (ii)
P1%P2¢Q102XS4.

Some examples motivating components and classification by centralizers of involutions: Brauer proved
it G = PSL3(q),q = 3 (mod 4) and z € Inv(G) then Cq(t) = GL2(g) and that the converse is true
for ¢ > 3; if ¢ = 3 other possibilities are PSL3(3) and M;j;. Classifications fall into two steps: (I) Given
H = Cg(t),t € Inv(G), find |G| and its structure and (II) find C(¢) for simple groups. Note that all simple
groups are determined by their character table. Step (I) consists of two steps: (A) Vv € Inv(H), determine
C¢(v) and the fusion patterns of Inv(Cg(v)), (B) if G has more than one conjugacy class, this determines
the order, if not we must examine all if H using characters. Let L = SL,(q),G = PSL,(q) = L/Z(L),
t € Inv(G) corresponds to T € L with T? = M, putting Z = {A,,,\" = 1},d = |Z| = (n,q — 1) and
C={XeL:XT=uTX}, Ca(t)=C/Z. Let p # 2 and the eigenvalues of T be p, —p then T is conjugate
to ( Pér _g 7 ), or [ ;\) I Ién , depending on whether the minimum polynomial is (z + p)(z — p)
or (z2 — A) which depends on whether the eigenvalue is in GF(q) or GF(¢*) \ GF(q). Let X € C with
X = §1 ;2 ), so either Xo = X3 = 0 and det(X;1)det(Xy) = 1l or r = s and X3 = X4 = 0 and
3 X4

det(Xo)det(—X3) = 1; let § : X — det(X;), K = ker(d) then K = SL,.(q) x SLs(¢q). Put E = KZ/Z,
E<C/Z and E=K/(KNZ)and E is a central product.

Here are a bunch of results on the centralizers of the classical groups: Let G = PSL,(q), ¢ odd, t € Inv(G),
(1) if n is odd AN < C(t) with N the minimal central product of SL,(q) and SLs(q), r +s = n (type *) and
both C(t)/N and Z(N) are cyclic groups with orders dividing ¢ — 1; (2) if n is even there is a centralizer
as above and centralizers of two additional types: (A) 3Cp : |C(t) : Co| = 2 and E < C(t) of type * with
r = s and C(t)/E is dihedral and Cy/Z and Z(E) are cyclic — there is an element of order 2 outside
Cy that interchanges the factors of E, (B) 3Cy : |C(¢t) : Co| = 2 and E < C(¢t) of type * with r = s and
E/Z(E) = PSL,(¢*) and Z(E) is cyclic with order dividing ¢ + 1 and C(t)/E is dihedral of order ¢ + 1 or
2(q + 1); further, there is an element of order two in C(t) \ Cy which transforms elements in E/Z(E) like
the element of order 2 in the Galois group of GF(¢?)/GF(q). If G = PSpam,(q) with ¢ odd and t € Inv(G)
then either (1) C(¢) is a minimal central product of Spa,-(¢) and Spas(q) with r + s = m,r # s, or (2)
3C; < C(t) with C; a minimal central product of two copies of Spgi(¢),2] = m and there is an element of
order two in C(t) \ C; that interchanges the two, or (3) 3C; < C(¢) with C1 = GL,,(q)/{£I} and there is an
element of order two in C(t)\ C; that corresponds to A —! A=l and ¢ =1 (mod 4), or (4) 3C; < C(t) with
C1 2 U, (q)/{£I} and there is an element of order two in C(¢) \ C that corresponds to A +— A" and ¢ = 3
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(mod 4), 7 the generator of the Galois group. If G = PSU,(q) with ¢ odd and ¢t € Inv(G) then either (1)
IN < C(t) with N a minimal central product of SU,(q) and SUs(q) with r+s = m,r # s, both C(t)/N and
Z(N) are cyclic with orders dividing g + 1, (2) if n is even there is a centralizer as above and centralizers of
two additional types: (A) 3Cy : |C(¢) : Co| = 2 and E QC(t) of type * with r = s and C(t)/F is dihedral and
Co/Z and Z(FE) are cyclic — there is an element of order 2 outside Cy that interchanges the factors of E, (B)
3Cy : |C(t) : Co| =2 and E < C(t) with r = s, Z(E) cyclic of order dividing ¢ — 1 and E/Z(E) = PSL,(¢?)
and there is an element of order two in C(¢) \ C; that corresponds to A —! (A7)~1 7 the generator of the
Galois group. If G = PQ,,(q) with ¢ odd and ¢ € Inv(G) then either (1) IE < C(t) with C(t)/E solvable,
E' = FE and F is either SL,,(q)/{£I} and SU,,(q)/{£I} (2m = n in both cases) or a central product of ,.(q)
and Qg (q). For G = A,,, let H = Xy, Hy = Z51%; and C(t) = Hy x Hy with (o, p) € C(t), sign(c) = sign(p).

Since C(F*(G)) C F*(G), G — Aut(G) has kernel Z(F*(G)); further, F*(G) is uncomplicated and its
embedding in G is well behaved. Want to study relationship of F*(G) and its p—locals. Hard when F*(G)
is a p — group but then we can use Thompson factorization. Thompson p—complement — nilpotence of
Frobenius kernel.

Let X/Z(X) be a non-abelian simple group then X = X’'Z(X) and X’ is quasi-simple. Let X be quasi-simple
and H < <X, then X = H or H < Z(X). H< <X — Comp(H) = Comp(x) NH. L € Comp(G), H < <G,
then L € Comp(H) or [L, H] = 1. Distinct components commute. Let L € Comp(G), H and L— invariant
subgroup, then (a) L € Comp(H) or [L,H] =1, (b) If H is solvable, [L, H] = 1. E* = E(G)/Z(E(G)) then
(a)Z =Z(L) : L € Comp(G) >, (b) E* is a direct product of < L : L € Comp(G) >, E is a central product
of its components.

Signalizers: r, prime, G finite and A an abelian r—subgroup of G. An A—signalizer is a map 6 : A# — S
where S is a set of 7/ A—invariant subgroups such that a,b € A% and 6(a) < Cg(a) and 6(a)NC(b) < O(b). 0
is complete if 39(G) an r’, A—invariant subgroup such that 6(a) = Cy()(a) for each a € A#. 6(a) = Cx(a)
is one such function; if m(A) > 3 then every A—signalizer functor is complete. Under these conditions, for a
solvable A—signalizer, Mp(A) has a unique maximal element. Goldschmidt proved this for solvable signalizer
functors.

O, (G) is called the p-core of G. Oy (QG) is often called the core of G. Walter: Let G be a group with 2
rank > 5 and Oy (G) = 1 with the property that the centralizer of every involution is 2—constrained then
02 (C(x)) =1 for every involution z.

Semi-regular action: Cg(a) = 1,Ya € A¥. Suppose A acts semi-regularly on G. Then (1) |G| = 1
(mod |A4]), (2) A is semi-regular on each A—invariant subgroups factor group of G, (3) Vp € 7 (G), I A—invariant
Sylow p—subgroup of G, (4) Va € A, g — [g,a] is a permutation of G, (5) if 2||A|, 3t : [t| =2,t € A: g' =

g ', g€ Gand GV =1.

Let p,q € w(A) then for S C A. (1) p # 2, Sp(4) — S is cyclic. (2) S € S3(A) is cyclic or quater-
nion. (3) |S| =pg — S is cyclic. (4) |[S]=1 (mod 2) — S is metacyclic.

If z, y are two involutions in G then < z,y > is dihedral of order 2|zy|. Let G be even order with Z(G) = 1,
let m be the number of involutions in G and n = |G|/m. Then G possesses a proper group of order at most
2n2.

Let G be a simple group of even order, ¢ and involution and n = |Cg(t)|. Then |G| < (2n?)!. From
this we get: Brauer-Fowler: Let H be a finite group. There are at most a finite number of finite simple
groups with H = Cg(t).

Feit-Thompson: The only finite simple groups or odd order are Z,,p # 2. The proof follows the CN
classification.

Thompson Order Formula: Assume G has more than two congugacy classes of involutions {x;%}
and let n; be the number of ordered pairs (u,v) with u € 1% v € 2,% and z; €< wv > then |G| =

C(21)]|C(2)| Ty 158y
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Let Q be a collection of subgroups. Define D(2) as the graph formed by joining A,B € Qif [A,B] =1. If
k > 0 let, £ (G) be the elementary abelian subgroups of p-rank at least k. G is said to be k — connected for
prime p if D(EF(G)) is connected.

If G is a non-abelian finite simple group with mo(G) < 2 then either (1) a Sylow 2-group is either di-
hedral, semi-dihedral or Zon wr Zy and G = Ly(q), G = L3(q), G = Us(q) g,0dd, or Mjy; or, (2) G = Us(4).

Note that Qg € S2(SL2(3)) and ( (2) (2) > is the unique involution.
If G is a non-abelian finite simple group with ms2(G) > 2 and assume G has a proper 2-generated 2-core,

then either G is a group of Lie type of characteristic 2 and Lie rank 1 or G = J;.

Glauberman ZJ: If Cq(0,(G)) < O,(G) and the action of G on its chief factors of G is p—stable then
G = N¢g(Z(J(S))). Every group admitting a fixed-point-free automorphism of prime order is nilpotent.

Glauberman’s Z* Theorem: Let G be a finite group and ¢ and involution in G which is weakly closed in
C(t). Then t* € Z(G*) where G* = G/ (G).

B, property: Suppose Oy (G) =1and z € G, |z| = p then Op g(C(x)) = Op (C(x))E(C(x)). A standard
subgroup for the prime p is a group H = Cg(x),|X| = p such that H has a unique component, L, and
C¢(L) has a cyclic Sylow p—group. Component Theorem: Let G be a finite group with F*(G) satisfying
the By property and with in involution, ¢ such that Oy g(C(t)) # Oz (C(t)) then G possesses a standard
subgroup for the prime 2. Standard Form problem for (L, r): Determine all finite groups, G, possessing a
standard subgroup H for the prime r with E(H) = L.

Let G be a minimal counter-example to the classification theorem and assume G is generic of even charac-
teristic. Then one of the following holds: (1) G possesses a standard subgroup for some p € o(G); (2) there
is an involution ¢ € G such that F*(C(t)) is a 2-group of symplectic type; or, (3) G is in the uniqueness case.

In real simple groups O« (C(t)) is cyclic and almost central. Bender’s Theorem: For any group X,
we have Cx (F*(X)) < F*(X) and if W < X and Cx(W) < W then E(X) < W. If Oy (X) = 1 then
F(X) = 0,(X) and every component of X has order divisible by p so X is p-constrained iff E(X) =1 or,
equivalently, C'x (O,(X)) < O,(X). Let X = E(X/O,(X)), L is a minimal normal subgroup subject to
L = E(X), L; is a component of E(X), L; = or’ (L;), [Li, L;) = L; and [L;, L] < Op(X), L is called the
p-layer. F*(X) controls embedding of X of p’-cores and the p-layer of every p-local. O,((X/0,(X))) = 1.
If O, (X) =1 then F(X) is divisible by p € m and every component is divisible by some p € 7.

Recall signalizers. The idea is that A—invariant p’ subgroups of G' can be glued into a single p’ sub-
group 6(G, A) which is either normal or strongly p—embedded in G. M C G is strongly p—embedded
if p||M| but p does not divide |M N M9| for g € G — M. Tightly embedded: p = 2. If M is strongly
embedded, G fixes one point when acting on the cosets of M. Bender identified all simple groups with
strongly 2-embedded subgroups, namely, SL2(2"), SZ(2"), PSUs(2"™). No simple group of p — rank > 3 has
a strongly 2—embedded 2’ local subgroup.

Let G be a finite simple group and S € S3(G) then one of the following holds: (a) S is dihedral, (b)
S is semidihedral, (¢) G has a strongly embedded subgroup, (d) S has a non-cyclic characteristic elementary
abelian subgroup, A, and E = Ng(A) has conjugacy classes, < ZZG >, that do not fuse in G such that
G =< E,Cg(z;) >. If G is a finite simple group and H < G with Z(H) of even order and h = Cp(z)
then G is said to be of H-type. Note we can construct a faithful transitive permutation representation of
G given a presentation of H. A group has an H-satellite if there are non-isomorphic groups of h-type. A
finite simpe group, G, is uniquely determined by C'y(z) for a 2—central involution, z, if G does not have any
non-isomorphic H-satellites.

Netto: Let z,y € S, be selected randomly. Pr[< z,y >= S,] = %. Irreducible characters of the
symmetric group S,: n = n —m,f1,..., 1, dn(p) is the dimension of the irreducible character deter-

mined by: L1 =p;, i=pj1+1, i =pj2+2,..., L =n—m+j. dn(p) = Hs>r(l7“ —1y).
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1.3 Algebraic Geometry

1.3.1 Basics

Every conic in the affine space over R is equivalent under an affine transformation to one of the following:
(1) X2+ Y2+ P = 0 (ellipse, point, empty set), (2) X? — Y2+ P = 0 (hyperbola, intersecting lines), (3)
X?2+Y + P =0 (parabola), (4) X2+ P = 0 (parallel lines, point empty). In projective space (1), (2), (3) are
equivalent. In the projective space over C, they are all projectively equivalent. f(z,y) is rational if 3¢, :
f(o(t),4(t)) = 0. Any conic (2nd order equation) in 2 variables has either infinitely many rational solutions
or none.

rad(I) = VI = {a : a® € I}. Radical ideals « varieties, prime ideals < subvarieties, maximal ideals
— points. T[V] = kl[z1,22,...,2,]/I(V). T(V) is the quotient field of T'[V]. Op(V) denotes the ratio-
nal functions on V defined on P. k C I'(V) C Op(V) C I'(V). Mp(F) denotes the maximal ideal of
Op(F). 0 — Mmr/mrtl — o/mntt — O/M* — 0. x(n) = dim(O/M") = Hilbert polynomial. Pull-
back: ¢ : A™(k) — A™(k), f € k[y1,...,ym]; the pullback ¢* : ¢* o f = f o . DVR: Noetherian,
local, maximal ideal is principal. If a form, F, does not vanish on an irreducible projective variety X then
dim(Xp) = dim(X) — 1. Mp is the maximal ideal associated with (T'— P).

Intersection multiplicity: Multiplicity of root of f(t) = gcd(Fi(ta),..., Fin(ta)). L touches X at O if
its intersection multiplicity is greater than 1. Locus of points touching X at x is the tangent space, ©, x.

Let k be algebraically closed. An affine irreducible algebraic set is an algebraic variety. There is a one
to one correspondance between polynomial maps ¢ : V' — W. and the homomorphisms ¢I'[W] — T'[V]. Let
TWVE)={f:f:VoW}LIte:V->W,¢: T(W, k) — T(V,k). Two affine varieties V, W are isomorphic
if 3,1 : ¢ o1 = idw. The following are equivalent: (1) The set of non-units in R form an ideal; (2) R
has a unique maximal ideal. The following are equivalent and define a discrete valuation ring (DVR): (1)
R is Noetherian and its maximal ideal is principal; (2) 3t € R : V0 # z € R : z = ut™, where u is a unit.
Reimann Roch: Let X be a non-singular projective plane curve. 3g > 0 : VD, dimy(L(D)) > deg(D)+1—g.
The minimum such g is called the genus. A variety is rational if it is birationally equivalent to A™ for some n.

A closed set is union of solutions of polynomial equations. Every closed set is the union of finitely many
irreducible ones. Every irreducible closed set is birationally isomorphic to a hypersurface in A™. Two curves
are birationally equivalent iff their fields of functions are isomorphic. k[X] = k[T]/Ux. Every irreducible
curve of degree 2 is rational. " +y"™ = 1 is not rational for n > 2. Let C be a plane curve with only ordinary
multiple points, rp = mp(C) and n = deg(C') then g = W - pec %

Weak Bezout: If two curves of dimension m and n meet at more than mn points (counting multiplic-

ity) then they have a common component. Strategy of Proof: (S-1) #(C1NCyNA?) < dim(r%) < ning,

(S-2) first inequality is an equality, (S-3) first inequality can be strengthened to I(C1NCsy, P) < dim(wp}g)),
(S-4) inequality in 4 is an equality, (S-5) I is invariant under projective transformations — transform so the
line at infinity does not intersect Cy; N Csy. Notation: Let fi(z,y), and fa(x,y), defining curves Cy and Cs,
have dimension m,n respectively. R = k[z,y], (f1(z,v), f2(z,y)) = Rf1 + Rfa.

S-1: C1NCy < dimk(ﬁ) < mn. [Argument: If P;, Ps,... P, are distinct, 3h;(x,y) with h;(P;) = d;;, so
if there are r common root of f1 and fa, >._; ¢;hi(z,y) = r1fi(z,y) + r2fo(z,y) implies ¢; = 0.]
Let R4 be polynomials of degree < d then dimy(Ry) = ¢(d) = W. Let Wy = Rg_mf1 + Ra—nfa, for

d>(m+n). RiemfiNRi—nfo = Ri—m—nf1fo. dimg(Rg)—dimp(Wy) = mn. g = Zi ¢jg; has a non-trivial
dependency for [ > mn with g € Wy.

S-2: Second inequality is equality if C; N Cy don’t meet at infinity. Let f* be the homogeneous polynomial
consisting of the highest degree terms in f. If co ¢ Cy N Cy then f;, f5 have no common factor. If f;
and f5 have no common factor then (fi, f2) N Rqg = W4. Under the conclusion of the previous sentence, if
d > ny + no then dim(ﬁ) > nino which proves the result.

Define Op = {F € K(x,y) : F(P) exists }, Mp = {f € Op : f(P) = 0}. Mp is a unique maximal ideal of

Op. (f1,f2)p = f10p + f20p. Now define I(C; N Cy; P) = dzm((floif;)lg)

S-3: (fl?% < ﬁ <o00. Op = (fl,fg)P—f—R. IfP¢01m02 then I(ClﬂCQ,P) =0;If P e C;NCy then

39



(f1,f2)p C Mp; I(C1NCy; P) = 1+dim(ﬁ) iff (f1,f2)=Mp. f PeCiNCsandr > dz’m((ffiz)ip)
then M5 C (f1, f2)p. U P,Q e CiNCanN A% ¢ € Op then 3g € R: g =+ (mod (f1, f2)p) and g = 0
(mod (f1, f2)q) if P # Q. o

S-4: Kernel of natural map R — [[pec(c,ncunaz) T foye 18 Just (f1, f2) where the natural map is: f +—
(..o f (mod (f1, f2)),...). dim(Z) =3, dim(%) = > p1(Ci NCy, P). The last equality holds iff
J C (f1,f2). Define L = {g € R:gf € (fi,f2)} and 1 € L. L is an ideal (f1,f2) C L C R. P € A?,
JgeL:g(P)=0,PeL. Jack:1¢L+R(x—a)and Ibek:1¢ L+ R(x—a)+ R(y—»).

S-5: Properties of intersection multiplicity. I((y —z™),y;0) = m. Show the definitions make sense and that
there is a line L which does not contain any of the intersection points. The proof requires knowing there are
only a finite number of points in the intersection.

Genus for non-singular curve: gy = W—d. L(D)={f:K(C)*:div(f) > —D}. (D) = dim(L(D)).
Riemann-Roch: [(d) = I(K — D) + deg(D) — g+ 1.

The r forms f1, fo, ..., f with indeterminate coefficients possess a resultant system of integral polynomials by,
such that for special values of the coefficients in K (algebraically closed). The vanishing of all resultants is a
necessary and sufficient condition for f; = fo = ... = f. = 0 to have a solution # 0. The by are homogeneous
in the coefficients of every form f; and satisfy z; b, =0 (mod (f1, fa, ..., fr))-

Bezout’s Theorem. If f,g are two curves of degree n, m respectively that have no common component
then they intersect in mn points counting multiplicity. Notes: A homogeneous system f; = fo =...= f. =0
has solutions ( ga), é“), ,(La)),a =1,2,3,...,q. Set l, = uywy + uawo + ... + upx,. Form resultant system
bi(u),...,b¢(u). The common zeros of by, ... are [[l,. By Nullstellensatz, (][], l.)™ = 0(b1(u), ba(u), ..., by (u))
— D(u) = [[1" and (b;(u))" = 0([[la) — D(u) = (f1,..., fr,1). R(u) is the same as the u-resultant so

> pa is the degree of R(u) = [[deg(f;).

Example: Fi(z,y,2) = 22 + y? — 1022 = 0, Fa(x,y,2) = 22 + 2y + 2% — 1622 = 0, add F3(z,y,2) =
U2 +UIT + U2Y. R68172_’2(F0, Fl, FQ) = (Uo +u; — SUQ)(UO + 2\/§U1 + \ﬁUQ)(UO — 2\/§’UJ1 — \/§U2) Solutions
are (1,-3,1), (=1,3,1), (2v/2,2v2,1), (—2v2,—2V/2,1).

Proofs with Generics. Example: F(X,Y,7) = X — Y2 K(X,Y,Z) = XY — Z, (X,Y,Z) — (£2,t,13)
is generic because it is a solution for any specialization of ¢ and any solution is obtainable this way.

Let D be a domain and Q = Qp = D(t1,ta,...) is called a universal field. Note that {2 <> prime ideals
over D[X7,...].

Theorem: zi,..x, € Q. I = {f: f(z1,...,2,) = 0} is a prime ideal. If I is a prime ideal and 1 ¢ I
then I has a generic 0. Any extension K (a1, ..., a,,) can be embedded in Q.
Hints: look at £ = D[X]/I. Under this homomorphism the image of (X1, ...X,,) is generic.

Theorem: If &, ...,&, are elements of an arbitrary extension of K then If ® = K[Xy,...,X,,] and p =
{f:f(&,.,&) =0} 1¢ R and p is a prime ideal. Every prime ideal has a generic element.

Theorem: Any ideal g = (f1, ..., f) which has no zeros in Q is the unit ideal. Proof: Otherwise a maximal
ideal would correspond to a non-zero generic point.

Extension of Nullstellensatz: If p,...,ps all vanish at the common zeros of (f1,..., fn), then g such
that powers of the p;’s of degree g are in (fi, ..., fn). Proof: For s = 1, this is the simple Nullstellensatz. Let
the exponent for each ¢ be g;. Set ¢ = ¢1 + g2 + ... + ¢, — n + 1. Nullstellensatz bound: p < 13d™ where d is
the degree and n is the number of variables.

Let Ny be the number of products X; of degree g. Theorem: Suppose F, Fs, ..., F, are forms. (0,...,0)
is the only common zero iff all products X; can be expressed as linear combinations of the Xy, F; with
coefficients in K. Note: This means they are linearly independent. So there are other common zeros is there
are fewer than N,. Note that Xi,..., X, satisfy the Extension conditions. If the X, F; = ) ax;; X; are not
linearly independent, the determinant families, R;(a), form a resultant set.
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Multivariate resultants: If we fix degrees dy,ds,...d, then there is a unique polynomial Res € Z[u;, o]
such that (a) if Fy, Fy,..., F, are homogeneous polynomials of degrees dy,dy,...d, then Ffy =...=F, =0
has a nontrivial solution over C iff Res(Fy, ..., F,) = 0, (b) Res(zd, ... zdn) =1, (b), (c) Res is irreducible
in Clu;,o]. If PP = PP(z1,2,...,%,) is a set of power products in the z;, there are Ny, = ("""!) PP’s
d

of degree m. Example: A; = azx?bsy® + c322, Ay = agx + boy + 22, A1 = ayx + by + c12. S; = PI%,
S =< 22,2y, 22 >, =< 3%, yz >, S3 =< 22 >.

22 xy xz y? yz 22

J]Al aq bl C1 0 0 0

yA1 0 a1 0 by ¢ 0

zAq 0 0 aj 0 b o

yAQ 0 a2 0 bg 0 0

zA2 1 0 0 as 0 by ¢

A3 as 0 0 b3 0 C3

1.3.2 Elliptic Curves

Elliptic Curves: Y27 = X3 +aXZ +bZ3, P; = (v;,;), O = (0: 1:0). We want to calculate R = P| + P.
If Py or Py is O, result is obvious. If 1 = 25 and y; = —y2, R = O. If 21 # x4, set A = % If 21 = 29
and y; # —ya, set A = (3z12 + a)(y1 + y2)~*. In either case, x3 = A2 — 21 — 22, y3 = AM(x1 — 23) — 91 and
R = (z3:y3:1). |e| < 2y/p. Multiple roots iff —(4a® 4 27b%) = 0. Usually pick Z axis tangent to O, or
(0,1,0) as the point at oo, If this intersects C at P, pick X axis tangent to C at P.

Mordell: If a non-singular cubic curve has a rational point then the rational points are finitely generated
as a k-module. Use H(™') = max(|m|, |n|). Let P = (2,y). Define H(P) = H(x) and h(P) = log(H (P)).
From now on assume C is given by y? = 23 + ax? + bz + c.

To prove it, need four lemmas: Lemma 1: There are a finite number of points P: h(P) < M. Lemma
2: Fix Py on C, 3Ko(Py,a,b,c) : h(P + Py) < 2h(P) + ko. Show that if P is on C(Q), P = (%, %).
Then show n < KH(P)%. Use this to get ko. Lemma 3: Fix 3K (a,b,c) : h(2P) > 4h(P) — K. Lemma 4:
{C(Q) : 20(Q)}] < oo

For lemma 4, assume y? = 23 + ax? + bz (so the curve always has a rational point), and use I' = C(Q)
and A = 2. Define the map ¢(z,y) = (x + a + %,y”z_b). Define v similarly. Note that ¥ (¢(P)) = 2P

)
and ker(¢) = {0,(0,0)}. Q*? a(zx,y) = = (mod Q**). im(p) C ker(a). Let p;ilb, i = 1,2,...t then
T : ()] < 207 T : ()| < 20+, Use the following lemma: If A and B are abelian A — B — A and

r)
1B : ¢(A)| < 0o, |A: ¢(B)| < 0o, then |A: 24| < |B : p(A)||A : 6(B).

Proof given lemmas: Let Qo,...,Qm—1 be the coset representatives. P — @;; = 2P; is in the subgroup,
Py — Q;, = 2P, repeatedly doing this yields: P = Q;, +2Qis + ... +2m71Q;  + 2P, h(P;) < %h(Pj_l).
Since there are a finite number of @; there’s a k' so that h(P — Q;) < 2h(P) + k' for all P. Using the
inequalities h(P;) < @ + k"'Tk/. So the group is generated by the @; and the (finite number of) points
of ht < £k

Let C be a non-singular cubic curve C : 23 + az? + bz + ¢. Set D = —4a3c + a?b? + 18abc — 4b> — 27¢%. Let
® be the set of points of finite order. Let ¢ be the reduction map mod p. If (p,2D) = 1 then ¢ is an in-
jection into C(F,). Nagel-Lutz: Same as above with P(z,y) as a rational point of finite order y = 0 or y|d?.

General Weierstrauss Form: E(F) : y? +arzy +as = 2% + asx? + agx + ag. If E, is an eliptic curve
over a finite field of characteristic p, E, is said to be supersingular if E,[p| = {oco}. (1) char(F) # 2,3,

(z,y) — (If‘o’a;gu”, y’flcé” — a?+4a“2‘12712a3 ), sends the general equation go qua, b):y? =23 +tar+bA =
—16(4a® + 276%). (2) char(F) = 2,a1 # 0, (z,y) — (aiz + Gy + B2, sends the general equa-
1

tion to Ey(a,b) : y* + 2y = 2® + ax + b,A = b. This is non-supersingular. (3) char(F) = 2,a; = 0,
(z,y) — (z+az,y), sends the general equation to E,(a,b) : y*+cy = 23+ax+b, A = ¢*. This is supersingular.

41



(4) char(F) = 3,a3 # —aa, (v,y) — (z+ %,y+a1x+alg—;‘+a3), dy = a?+ay,dy = a4 —ayas, sends the gen-
eral equation to E,(a,b) : y* = 23 +ax+b, A = —a3b. This is non-supersingular. (5) char(F) = 3,a? = —as,
(z,y) — (z,y+ a1z + a3), sends the general equation to E,(a,b) : y* = 2® + ax + b, A = —a®. This is super-
singular.

Suppose E = E,,(K),char(K) # 2,3. Let 1 = p?z and y; = p3y then (z1,y1) € Eup(K) with
a' = pta and b = pbb. Define the j-invariant: j(E) = 1728@%. Theorem: If j(Ey) = j(Es)
then 3u € K,u # 0 : ag = p*ai, by = uSbs. A homomorphism « : E — E is an endomorphism if « is
a rational map. E[n] = {P € E(K) : nP = oo}. Theorem: (1) If char(K) # 2 E[2] = Za ® Zs; if
char(K) =2 E[2] = Zy or 0. (2) If char(K)tn oris 0, E[n] = Z, ® Zy,. (3) If char(K) =p | n,n =p™n/
then E[n| = Z,, ® Z, or E[n] = Z,s ® Z,s. Proof uses division polynomials. Let E be an elliptic curve over
F,. Then E(F,) = Zy, ot Zy, ® Zyp, with n; | nao. Proof uses the above theorem.

Hasse: Let E, be an elliptic curve then ¢ +1 -2/ < #E; < ¢+ 1+2./q, #E;, = q+1—1t, tis
the Frobenius trace. Theorem: q = p™, 3B, : #E, = q+ 1 — t iff (i) ¢t # 0(p),t* < 4q; or, (ii) m = 1(2)
and either (a) ¢t = 0 or (b) t> = 2¢,p = 2, or (c) t? = 3¢,p = 3; or, (iii) m = 0(2) and either (a) t? = 4q
or (b) t* = ¢,p # 1(3) or (¢c) t = 0,p # 1(4). E,m is supersingular iff p | t. E, = Z,, & Z,, and
ny | n1 | (¢ —1). Proof of Hasse: Let ¢ be the Frobenius map. #E, = |ker([1] — v)|. First note that
deg([1]) = 1 (in fact, deg([n]) = n?) deg(y)) = p. Also note that deg(a + b) — deg(a) — deg(b) = B(a,b) is
bilinear. 0 < deg([t] + [2]1) = t? — 4p — 2t B[1, —¢] = 4p — t; so (deg([1] — ) — deg([1]) — deg(1)))? < 4p but
the first term is #E(F)).

Functions on Elliptic Curves: If F(a,b) is non-singular, E is irreducible and we can embed k[x,y]/(E)
in the field of fractions K(F) with § =g % iff su —ut = 0 (mod E) and we can define a map from

K(R) — K U {0}

If K = Fpm,p # 2,3 and ES)(a,b) ™~ Eﬁ?)(a,g) iff 3u € K* such that u*@ = a and u®h = b under the
map (z,y) — (u?z,udy). j-invariant: j(E) = 1728&%. Then j is invariant under the transforma-
tion above (i.e. - two curves related by the transformation have the same j value) and, conversely, two
curves with the same j value are related in this way (and are thus isomorphic in the elliptic curve defined
over the algebraic closure). The number of equivalence classes of elliptic curves over K is 2q + 6, 2q + 2,
2q + 4, 2q according to ¢ = 1,5,7,11 (mod 12). If K = Fym and Ex(a,b) : y?> + 2y = 23 + az? + b then
Eg)(a, b) = Eg)(ﬁ, b) iff b = b, Tr(a) = Tr(a) and if so Is : @ = 5%+ s+a under the map (z,y) — (x,y+s2).
Projective coordinates: (X1,Y1,21) ~ (X2,Ys, Z2), X1 = X°Xo, Y1 = \Ys, Z) = \Zs, ¢,d € Z7°. Jacobian
projective coordinates: oo = (1:1:0) and —(X :Y : Z) = (X : =Y : Z). Standard projective coordinates:
co=(0:1:0)and —(X:Y:2)=(X:-Y:2).

Note: the decision ECDLP problem is in NP Nco — NP. Attacks (1) Exhaustive Search - to avoid, make
sure #E, = nh, n a large prime > 2160 h small; (2) Pohlig-Hellman/Pollard-p use Pohlig to reduce from
n = pi'..pf* to p, since this step is easy, want p large, Pollard costs O(,/p) [For Pollard, “random” function
is f(X) =X+ a;P+b;Q (mod p).]; (3) Isomorphism attack; (4) MOV for anomalous curves - to avoid
make sure ¢ = p™ and p { #E,; (5) Weil-Tate pairing - to avoid make sure n { (¢* — 1),k < C and that the
DLP problem for Fc is intractable; (6) Weil descent - to avoid, if ¢ = 2™, make sure m is prime. Index
calculus attack is unlikely because the lifting required from F,(a,b) to Eg(a,b) is unknown and the number
of points of small height in elliptic curves over Q is small. Let E(K) be an elliptic curve m € Z, P = (z,y),

I (2, ), wm (2, Y), 0m(z,y) € K|x,y] such that [m]P = ((15:((;”3)))2, (gmm((;’yy)))g). En]={P e E(K:[n]P=
oo}, 1 =0, 1Py = 2, ¥y = 2y, Y3 = 32* +6ax%+12bx —a?, 1y = 4y(z8+52* +20b2® — 5022 — 4abx —8b> —a?),
w2m+1 = ¢m+21/]§n - 1/)m711/f§n+1 Yom = (22/)71¢m(%/1m+21/)31_1 - ¢m72w72n+1)7 Om = 5“/)1271 - merl'lz/}m*l?
Wm = (4y)_1(wm+2¢72n—1 - ¢m72¢72n+1)'

An endomorphism is a homomorphic map between and an elliptic curve and itself that is expressible
as a rational function i.e.- If « is an endomorphism and P = (z,y),a(X +Y) = a(X) + a(Y), a(z,y) =
(r1(x,y),r2(z,y)). Because y? = 23 +ax+b, we may assume a(z,y) = (r1(z),yra(x)); if r1(2) = %, the de-
gree of endomorphism is maz(deg(p(x)), deg(q(z))). This endomorphism « is a separable endomorphism
if r{(x) #£ 0. If o # 0 is a separable endomorphism of E, deg(a) = #ker(a) otherwise deg(a) > #ker(a).
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The endomorphism [n]P +— @Q has degree n%. If char(K) { n then E[n] = Z, ® Z,. If E[n] C E(K) then
pn € K. Given Ey(a,b),n > 1, (1) ker(¢g —1) = #E¢n (a,b) and ¢y —1 is separable # Eyn (a,b) = deg(dg —1).
If « is separable, then deg(«) = #ker(a). For all isogony’s v, there is a dual transformation, ¢, such that
¢ = [2]. Let E(Fy) be an elliptic curve E(Fy) &~ Zy, or Zy, X Zy,,n1 | na. The Frobenius endomorphism of
degree ¢ and is not separable. #FE,(a,b) =1+ Zmqu(l + (%ﬁ)) If E,(a,b) = Z, ®Zy, then ¢ =n?+1
org=n?+n+1lorqg=(n+1)>2

Given E(K), P € E(K), define D = >-;a;[Pjl,a; € Z and deg(D) = ), a;. Div®(E) are the divi-
sors of degree 0. If f is a function on E, div(f) = Y pordp(f)[P] € div(E). If D is a divisor of E with
deg(D) =0, 3f on E: div(f) = D iff sum(D) = oco. D =), npP is the divisor of an elliptic curve function
on Eiff (1) " pnp =0and (2) ®peg[np]P =0. fon(P) = f(nP). If T € E[n],3T" € E[n? : nT' =T and
9= fon,div(g) =X pepp [T’ + B — [R]. g(P+5)" = g(P)" so (9259 )n — 1 Define the Weil pairing

e 9(P)
as e, (S, T) = g(g(;) ),

Counting points by Baby-step Giant-step is (O(q%“)). Set N = #E, then ¢ +1-2,/g < N <
q+1+2g if [m]P = oo then N = m, probably. Put m = ¢+ 1—2,/g+k,l = [V4,/q],k = al +b,
then [m]P = [c|P + [a]S + [b]P,c = ¢ +1 —2,/q,5 = [l]P or [c|P + [a]S = —[b]P. Baby step computes
LHS and stores it. Giant step computes RHS and does a lookup. Schoof: Let ¢ be the Frobenius auto-
morphism ¢(z,y) = (2,y?). Schoof calculates ¢ (mod I) for a set of primes [ € P with [[,c»! > 4,/
and then reconstructs ¢ using CRT finally returning ¢ + 1 — ¢. Here’s how: (1) For I =2,¢ =0 (mod l)
iff (23 + ax + b,29 — x) # 1. ( ) ifl is odd, set ¢ = ¢ (mod 1), |q| < £; find (2',y') = ¢(z,9)? + a(z,y)
(mod ¥y(x,y))); for j =1,2,. L: (i) Compute (z;,y;) = j(x,y); (ii) if 2’ —2§ =0 (mod ¢y), go to iii, if
not, try next j, if all such j’s have been tried, go to (iv); (iii) Compute y’,y;, if y/% =0 (mod v;) then
t =7 (mod ) otherwise t = —j (mod [); (iv) Let w? = ¢ (mod 1), if no buch w exists, t =0 (mod 1);
(v) if (27 — 2y, ¥y) = 1 then t = 0 (mod [), otherwise, set g = numerator(¥X=4= y“’ ), if g # 1,6t =2w
(mod ) otherwise t = —2w (mod ).

Lenstra Elliptic Curve Factoring Method:
1. (n,6) =1,n#m".
2. Choose random b, x1,y; between 1 and n.

c=y?+ 2% —bx; (mod n).

=~ W

(n,4b® +27¢%) =1
5. k=1lem(1,2,...,K).
6. Compute KP = (<, i)

de ) dk3

7. D= (dg,n) If D=1, go to5 and bump K or go to 2 and select new curve.

1.3.3 Elliptic curves and Fermat

Regular point: unique tangent. Singular point: no tangent. Non-singular curve: no singular points.
Two curves C, D are projectively equivalent if there is a projective transformation ¢ with ¢(C) = D.
Every nonsingular cubic is equivalent to a curve which in affine coordinates is y? = 423 — gy — g3 = 0. This
is the Weierstauss Normal Form. Note: To prove show that every non-singular curve has an inflexion
point (triple tangent). Map inflexion to (0,0, 1).

Elliptic Functions from Trigonometry: S(z) = [ \/7 =c(u), s(u)?+c(u)? = 1. s'(u) = c(u),
¢(u) = —S(u), s(—u) = —s(u) and c(—u) = c(u) e 4 1) = s@ely) + s(w)e(@) and ofz + 1) =
c(z)e(y) — s(y)s(x). Q : R — St (S! is the l-sphere - circle) by u ~— (c(u),s(u)) is a morphism:
Qz +y) = Qz) ® Qy). Q has a non-trivial kernel K since S* is compact but R isn’t. K = 27Z.
These functions are periodic, satisfy the given derivatives, parameterize S' under the indicated morphism
and provide the integration property.
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By analogy, set F(k,v) = f\/ﬁ and define sn by F(k,sn(u)) = u. cn(u) = /1 — sn?(u),
dn(u) = /1 — k%2sn2?(u). sn,cn,dn are doubly periodic with periods wi,ws. Lo w, = Zwy + Zws. Now set
p(2) = % +2 (0} ﬁ — & then ¢/(2)) = —2% +2 {0} ﬁ  is meromorphic and doubly periodic
on L. Further, if we set go = >, & and g3 = >, 7, ¢'(2)® = 4p(2)* — g2p(2) — g5. This leads to:
Let C be an elliptic curve in Weierstrauss Normal Form and ¢ be the corresponding Weierstrauss function
then (p(z),9'(2)) € C,Vz and (p(u), p'(u)) & (p(v), 9’ (v)) = (p(u+ v), o (v + v)). Motivation: Want to
parameterize solutions by finding y(t)? = z(¢)? + ax + b.

Define the Moebius transformation g(z) = Zj_‘tdb over C. The group of Moebius transformations is

denoted by M and is are conformal. The modular group SLs is the subset of M with ad —bc = 1 with the

obvious identification and is generated by 7 +— 7+1,7 — —%. Note fundamental region. Set S = ( (1) _01 )

11
and T' = < 0 1
D={z:—3 <Re(z) <0,|z| =1V -1 < Re(z) < 1,|z| > 1}. M maps H into itself and D is a fundamental
domain for SLs.

); these correspond to S(z) = =% and T(2) = z + 1. Define H = {z : Im(z) > 0} and

Reimann surfaces: Glue two copies of C to get /z. For N € Z,N > 0 define T'q(N) C SLs with
Nle. To(N) acts on H and H/T((N) = Xo(N)\K where K are the cusps. X((N) is compact and the
members are the modular functions of level V.

Semi-Stable: For all primes [ > 3, [|Disc and only two of the roots are equal  (mod l). Frey curve:

Cf;b(g y? = x(x —aP)(x —bP). If bis even and a = —1 (mod 4). Frey curve is semi-stable.

Denote EA7B7C7D(Q)d§f y> = Az + Ba?> + CX + D, A,B,C,D € Q. Define b, to be the number of so-

lutions to Ea p,c,p(Q) = 0. E is modular if 3 eigenfunction, f(z) = Y, a,e*™*. E/Q is modular if 3f
and eigenfunction with a, = p+ 1 — b, for all but finitely many p.

Taniyama-Shimura Conjecture: Every elliptic curve is modular. Alternate T-S: E(A, B,C, D). 3 mod-
ular functions f(z), g(z) such that g(2)? = Af(2)% + Bf(2)*> + Cf(z) + D.

Define the conductor Cond,p,. = Hp‘ abe D- Two elliptic curves are isomorphic iff their j-invariants are

equal. The j-invariant of Cib = 28%. If F(%j_‘g) = (cz + d)*F(z), F is a modular form of
weight 2.

Proof of Fermat’s Last Theorem: Suppose it’s false and that a? + b? = ¢P is a counterexample. Let
CF, be the Frey curve. Disc(CE,) = a®*b?Pc* so C} is semi-stable. Wiles proved every semi-stable elliptic
curve is modular so C f » is modular and has a cusp form of weight 2 and level N where NV is the conductor. If
[ is an odd prime and I|N, by Serre, we can obtain a new F' of weight 2 of level N/I. By induction, keep doing
this until N = 2. The dimension of the space of cusps is equal to the genus of compact Reimann surface
Xo(N). But Genus(Xo(2)) = 0, so there is no such cusp forms of weight 2, level 2. This contradiction
establishes the theorem. Incidentially, the restriction of semi-stability in Wiles Theorem has been removed.

1.4 Analysis, Geometry and Topology

1.4.1 Geometry and Topology

[@b,d = @- (bx&). Plane II, perpendicular to unit vector 7 and containing @ #-7 = @ -7 = d. Dis-

tance from ¢ to Il is |d — ¢ - 7i|. & x § = (x2ys — ygxg)z?—i— (x3y1 — ygxl);—i— (x1y2 — yle)E. Denote

[@,b] as the line from @ to b; [h, 40 + @) = {Z : (F— @) x @ = 0}. So the line that includes zp and #7 is

{Z: (F—5) % (#1—29) = 0}. Denote [@, b, & as the plane containing @, b and . @x (bx &) = (@-&)b—(@-b)é. Let

6 be the angle (measured counterclockwise) between [0, u] and [0, v] then A(u,v) = ugvs —ugv1 = |ul|v|sin(0).
uy ug us

A(u,v,w) = [u,v,w] =det [ vi vy wvs |. Distance between (Z — 2p) x @ = 0 and (Z — #1) x b = 0 is
wp w2 w3
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(@0 —a1)-(3-b)
llax ]|

Moebius Transformations: Co, = CU {o0}. M = {74p.c.a(2) : Tapecda(z) = ZZZIS I e pealz) =
a b

Ta,B,7,6(2), 3A € C such that ( e d
of the following type: z +— az, z — z+b and z — 1. For all ordered points, < z1, 22, 23 >, < w1, wa, w3 > in

Coo, there is a unique 7 € M such that 7(z;) = w;. For ordered points, < 21, 22, 23, 24 >, < W1, Wa, W3, Wy >
in Cy, there is a 7 € M such that 7(z;) = w; iff the cross-ratio of [z1, 22, 23, z4] equals the cross ratio of

)—)\( : ?) Ifre M, 7:Cyp — Cy and 7 is a product of maps

d cz+d?
of the homomorphism is AI, A € C. The restriction of ® to SLy(C) is also a surjection with kernel +1.

[w1, we, w3, wy]. D : GL2(C) — M is a surjective homomorphism given by <I>(< Ccl b >) = 2z4b. the kernel

cos(a) = sin(b)sin(c)cos(A) + cos(b)cos(c), SS;Z((Z)) = ;;:((g)).

Circumcenter: common intersection of the 3 perpendicular bisectors of each side of a triangle. Incenter:
common intersection of the 3 angle bisectors of each side of a triangle. Orthocenter: Intersection of the
altitudes. Angle bisector divides opposite side in proportion to adjacent sides.

Pick’s Theorem: Let B be a polygon which contains n; interior lattice points and n; lattice points on
its boundary. A(B) = n; + an_2 Flex: A non-singular point intersecting P with multiplicity 3. Every
irreducible cubic in the plane has a singular point or a flex. H = det([Fyq, Fya, F..]7,...). Flex or singular
if H=0.

Projective points as one dimensional subspaces. Projective lines are 1 dimensional. 7, on 17 = 1 on; pNp-

Fundamental of Projective Geometry: Given 3 distinct collinear points on each of
two distinct lines there is a projective transform that maps the two sets of points in the specified order.

r — (@13 —T3y1) (@2ya—Tay2)
(z1ya—way1)(z2yz—x3y2) "

Cross Ratio of four points:

Desargues: If ABC and A’B’C’ are perspective from a point X, then ABN A'B’ = P, ACNA'C' = Q,
BC N B'C" = R are collinear. Pappus: If ABC is on L and A'B’C” is on L', then AB'N A’'B = P,
AC'NA'C =@, CB'"NC'B = R are collinear.

Ptolemy’s Theorem: Let ABCD be a cyclic quadrilateral (vertices lie on a circle). Then AB - CD +
AD-BC = AC - BD. Pascal: Suppose a hexagon is inscribed in a conic section, and opposite pairs of sides
are extended until they meet in 5 points. Then if 4 of those points lie on a common line, the last point will
be on that line, too.

Menelaus: If points X,Y,Z on BC,CA, AB (suitably extended) are collinear %%% = 1. Similarly,
ABC with X opposite A. AX, BY,CZ are concurrent iff %%% =1

Spherical Geometry: Let PQR be a spherical triangle with subtended angles p, q,r on a sphere of ra-
dius R. The area of PQR is R%(p +q +r — ). Proof: Let P’,Q’, R’ be the antipodal points of P,Q, R
respectively and Cp,Cqg,Cr be the great circles containing PP, Q@' and RR’ respectively. Let Ac be
the common area of the three great circles in the hemisphere containing P, @, R which forms the spherical
triangle. If A(Cp, Cg) is the lune formed by the intersection of the great circles, set Ay = A(Cp,Cq) — Ac,
Ay = A(Cp,Cr) —Ac, Az = A(Cr,Cg) — A, and let Ay, A}, AL, and Aj be the corresponding antipodal
areas. Ac+A1+As+Az = AL+ A+ AL+ AL and Ao+ A1+ As+ Az + AL+ A+ AL+ Al = 47 R? (“EQ
17), 80 Ac + A1 + Ay + Az = 27 R?. Further, Ac + Ay = 2R?p, Ac + Ay = 2R?r, and Ac + Az = 2R?%q
50 3Ac+A1+As+ Az = 2R?(p+q+7), subtracting EQ 1 from this and dividing by 2 gives the desired result.

Euler’s Formula: V — F + F = . E‘or a sphere, x = 2. Let n;: number oﬁvertices with valence 4,
2¢ > 3F, 3in; = 2E. Let U(Z) = 5. Curve length: s(t) = ftto Y (t)|dt. T(t) = UML), N(t) =

UR"()— < 7"(t), T(t) > T(t). Alternatively, T(s) = U (s)), N(s) = U(T'(s)). r(t) = %
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B(t) =T({t)x N(t), 7(t) = %m. First Fundamental Form: If £ = @, - 25, F = 2,,- 2, and G = 2, - 2,

then I(du,dv) = Edu? + 2Fdudv + Gdv?. If N = SX% then [ = —a;, - N, M = —1(a7, - N, + 7 - Ny,),

T | xa |
N = —z, - N, and II(du,dv) = Ldu? 4+ 2Mdudv + Ndv?. k, = I—II Kk is a principal curvature iff
det( L—-—xE M—kF

M —kF N —-kG
values of the curvature at a point on a surface, the Gaussian curvature is K = k1ko; x = 2 — 2g is the Euler
characteristic, where g is the genus. The genus of a connected, orientable surface is an integer representing
the maximum number of cuttings along closed simple curves without rendering the resultant manifold dis-
connected and it is equal to the number of handles on it. Gauss-Bonnet: If X is a compact, hypersurface
in R¥1 then [ K = Vol(S%)X(X.

) = 0. Gaussian curvature: If k; and ko are the maximum and minimum

Let G(u,v) be a homogeneous polynomial and (ug,vo) € P, Ik > 0 and H(u,v) with H(ug,vo) # 0 :
G(u,v) = (vou — ugv)*H(u,v). Any line in P? can be parameterized by (z,y,2) = (aou + bov,aru +
biv,asu + bov). L intersects C to order n at P = (zg : 9o : 20) if C(u,v) = (vou — upv)"H(u,v) in the
foregoing theorem; denote this as ordy, p(C) = n, ordy p(C) = oo if C is identically 0. If Ly, Lo are lines,
ordr, p(P) =1 or co. If C'is a curve defined by C(x,y,2) =0, C is non singular at P if (Cy,C,,C,) # 0 in
which case the tangent line is C, X + C,Y + C,Z = 0. If C is non-singular at P there is a line in P% that
intersect C' to order at least 2.

Eight Point Theorem: Suppose C is a curve in P% defined by homogeneous cubic polynomial C(z,y, 2) =
0. Let l4,12,13 and mq, ma, m3 be lines in P% with l; # m;,Vi, j and P;; = [; N'm;. Suppose further that C
is not singular at P;;,Vi,j # 3,3. Then P33 € C. This is proved in a series of lemmas. Lemma 1: Let P =
(u; v;) and my @ ajx+bjy+c;z =0, T, (us,v;) = 0 and 75 vanishes only at P;;. i (u, v)mz(u, v)ms(u, v)
is a homogeneous cubic polynomial. Lemma 2: If R(u,v),S(u,v) are homogeneous of degree 3 and is
not identically 0 and they both vanish at (u; : v;) then 3o € K,a # 0: R = aS. Lemma 3: C =
amy (u, v)ma(u, v)mz(u,v) and C = aly (u, v)ls(u, v)l3(u,v). Lemma 4: I; | (C —amy(u, v)ms(u, v)ms(u,v)),
m; | (C — Bli(u,v)lz(u,v)l3(u,v)) and if D = C — amq (u, v)ma(u, v)ms(u, v) — Bl (u, v)la(u, v)i3(u, v), then
limj | D. Lemma 5: D = lymil(u,v) and I(P2) = [(Pa3) = I(P32) =0, so D = 0. To conclude the proof of
the eight point theorem, observe, since D = 0, C' = amq (u, v)ma(u, v)ms(u, v) + Bl (v, v)l2(u, v)lis(u, v) and
l3(P33) = mg(ng) = 0 thus C(ng) =0.

The eight point theorem proves associativety of elliptic curve addition. Let P, @, R be points on C' and con-
sider [y = P,Q,lo =00,Q+ R, I3=R,P+Q,m =Q,R, my=00,P+Q, mg=P,R+Q. 1Nm; =Q,
liNmy = —(P+Q), linNnmg =P, lsNm = —(Q+R), loNmg =00, lcNmg =Q+R,I3Nm =R,
IsNmy = (P+Q),lsNmg =X. Xis —((P+ Q)+ R) (from the definition of l3) and —(P + (Q + R))
(from the definition of m3) by the definition of addition. Now apply the eight point theorem to get the result.

The eight point theorem also proves Pascal’s Theorem: Let ABCDEF be a hexagon inscribed in a conic
section whose equation is Q(z,y,2) = 0. If X = ABNDE, Y = BCNEF, Z = CDnN FA, then
X,Y,Z are collinear. Proof: Put Iy = EF, Iy = AB, I3 = CD, m; = BC, my = DE, mg = FA,
C(z,y,2) = Q(z,y, 2)l(x,y, z) and apply the theorem. It also proves Pappus’s Theorem: Let I, m be two
distinct lines A, B,C on [ and A’, B’, C’ on m none of which are on INm. If X = AB'NA’B,Y = BC'NB'C,
7 =CA’'NC"A, then X,Y, Z are collinear. Proof: Use Pascal with hexagon AB'CA’'BC".

1.4.2 Complex Analysis

If w= f(z+iy) = u(z,y) + iv(z,y) is analytic in a region R then % = %Z and g—Z = f%.

Cauchy: If f(z) is analytic in a region R and its boundary C then [, f(z)dz = 0. Morrera: If f(z) is
continuous in a simply connected region R and | ¢ f(2)dz = 0 around every simple closed curve C in R, then
f(2) is analytic in R.

Mn!

If f(z) is analytic inside and on a circle C of radius r and center at z = a then |f(")(a)| < 22! where
|7/(2)] < M on C in R. If an analytic function is bounded in the plane it is constant.

If f(2) is analytic inside and on a circle C of radius r and center at z = a then f(z) = 5= fo% fla+ret?)dd.
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Meromorphic: Analytic everywhere in the plane except at a finite number of poles. Entire: Analytic
everywhere in the complex claim. If f(z) is analytic inside and on a closed curve C except at a finite number

of pole then 2m fc f(z) = N — P where N and P are, respectively, the number of zeros and poles of f(2)

inside C. Rouche’s theorem: If f(z), g(z) are analytic in and on a simple closed curve C and |f(z)| > |g(2)|
on C then f(z) and f(z) 4+ g(z) have the same number of zeros in C.

Cauchy Integral Formula If f(z) is analytic inside and on a closed curve C and a is any point inside C

then f((a) = = [ = a)nﬂ Laurent: If f(z) is analytic inside an annular region A = {a < z — z9 < b}
then f(z) =307 cn(2—20)". In that case, c_1 = Limzﬁaﬁg‘—:((zfa)kf(z)). Residue Theorem:

fc 2)dz =2mi(a_1 +b_1 + ...).

1.4.3 Real Analysis and Manifolds

Taylor: f(z) = > ,_, f(k,;(a) (x —a)* + %(x —a)™ for some ¢ : a < ¢ < x. Proof: Set F(t) =

£t + Z;(c " )f‘,j, (@ — )% and let En(z) = f(z) — Sr_y L2 (@ — ). Note F(z) — F(a) = En(z) and

F'(t) = E B (@—t)". Put G(t) = (w—t)" and H(t) = G(t)[F(z)— F(a)| = F(t)[G[z] - G(a)]. H(a) = H(x)
J

so3c:ia<c<awith H(c) = 0. So By(z) = F(z) — F(a) = 53[G(x) — G(a)

Substituting gives the
desired result.

X separates if 34, B, A # X,0,3B # X, both open with AUB = X and AN B = (). X is connected iff
there is no separation. Suppose f : X — Y is continuous. If X is compact so is f(X). If X is connected,
so is f(X). If X compact, connected set in R then X = [qa, b].

Let @ : @ — P be a homotopy of ¢y into ¢; as closed curves and let y ¢ ®(Q). Then the winding
number W (p,,y) is constant for 0 < r < 1. Let ¢ be a closed curve ¢ : [a,b] — P and suppose ¥, y; can
be joined by a curve which does not intersect ¢, then W(p,yo) = W(p,y1). Let f: D — P be a mapping of
the disk onto the plane and let C = 9D and let y ¢ f(C); if the winding number of f|C about y is not zero,
then y € f(D) such that f(x) =y. Let f : D — P be a mapping of a disk onto a plane, P and C' = 9D that
fixes all of C' then D C f(D). No mapping of a disk onto its boundary fixes each point of the boundary. If
f is a mapping of a disk onto itself, it has a fixed point.

[T _cos(max)cos(nz)dx = ["_sin(mz)sin(nz)dz = 6y, m. Bernoulli: ¢, () = ¢n_1(x), do(z) =1, fol ¢n(z)dr =

x) = fooo uF e v du. ffR(% — %) = Jopdx + qdy.

Fixed Point Theorem: Let E be a complete metric space and f : E — E. Suppose dk < 1 : Vp,q €
E ||lf(p) — f(@)|] < k|lp — q||- Then there is a unique P € E : f(P) = P. Proof: Let ppt1 = f(pn).
f (Prs1) = fo)ll < Kllpn — pr1l] < E™||p1 — po||. This is a Cauchy sequence and converges. Set
p = limp—0oPn, f(p) = p. Uniqueness: if ¢ is another such point: ||f(p) — f(q)|| = ||p — ¢|| < k||p — ¢l so
|lp —qll = 0.

Simple Implicit Function Theorem: Let f be a real valued continuous function on an open set £ C
R?, (a,b) € E with continuous partial g—i(a b) # 0. There are open sets U,V with a € U,b € V and a continu-

ous function ¢ : U — V such that f(z, ¢(x)) = 0,2 € U. Proof: Define F(x,y) = y—f(z, y)( ) ! F(a b) =

b, %‘Z (a,b) =0 and F(z,y) =y iff f(x,y) = 0. Pick r small enough so that in the ball B, (a b) : | | < 3.

Choose k : 0 < k < r then choose h: 0 < h < v/r?2 — k2 such that |F(z,b) — b| < £ when |z — a| < h. Put
U= (a—h,a+h),V=(b—kb+k). Fixz € U and |y —b| < k and suppose ||(z,y) — (a,)||? < h? +k? < r?
and [|(z,5/) — (a,B)|F < b2+ K2 < 2. 3" : |F(z,y) — F@,y)| < ZE(@y"ly—y| < Ly - y/| and
|F(z,y) — b < |F(z,y) — F(z,b)| + |F(z,b) — b| < k. Apply Fixed Point Theorem to get § = f(z,¥). This
is unique. Define p(z) = 7. A simple argument shows ¢ is continuous.

Simple Inverse Function: Let g be a real valued function on an open set £ C R and suppose ¢’ ex-

ists and is continuous in E and g¢'(b) # 0. There are open sets U,V C R with b € V' : gjyy is 1-1 and
1. U — V is differentiable. Proof: Put f(x,y) = z — g(y) and apply the Implicit function theorem.
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Existence of solution to ordinary differential equation: Let f be a continuous real valued function in
an open set E C R? containing (a,b) and suppose IM : |f(z,y) — f(z,2)| < M|y — 2|, (z,y), (x,2) € E
then 3h > 0 and ¢ : (a — h,a + h) — (b—Mb—l—M):(p’()—f( o(x)) on (a — h,a + h) and
p(a) = b. Proof This is equivalent to ¢'( f f(t,o(t))dt + b. Suppose 1 is a function and define
F:y— f f(t,(t))dt +b. F maps the complete metric Space of functions on a closed interval of E itself.
A fixed point in thls metric space would satisfy the theorem; we show such a ﬁxed point exists. Choose
N > |f(a,b)|,3r : ||(z,y) — (a,b)|| <7 — |f(z,y)] < N. Choose h > 0: h < 75,h < $,hM < 1 and con-
sider the complete metric space of continuous functions on [a — h,a + h] denoted by C ([a — h,a+ h]); define
R={(z,y) € E:|la—z| < h,|ly—b| < Nh}and B = {¢: [afh,aJrh} — [b—Nh,b+Nh]}, finally, Let By, (D)
be the ball in C([a — h, a+ h]) of functions within Nh of the constant function b. For ¢, w € By, (b) note that
[(x)—b| < Nhand f(t,1(t)) < N so |Fy(x)—b| < Nh. For 1, w € Byp(b) : |Fip(x)—Fw(z)| < hM|[¢p—wl]].
This satisfies the conditions of the fixed point theorem and the fixed point satisfies the conclusion of the
theorem.

Implicit Function Theorem: Let a € E™ C R™ and b € E" C R™ with (a,b) C E™"", and open
set. Suppose fi(a,b) =...= fn(a,b) =0 and fl exist and are continuous in ™™ and det(g, 0/ ( ,0)) #0
then JUP" C E™,a € U veren C E™ b € VZ,D U — V such that f;(z,¢(x)) = 0 for i = 1,2,...,n
Proof: Define z = & = (21,...,@m), ¥y = § = (W1,.--,yn) and F = F = (F\(Z,9),...,F.(Z,7)). De-
fine Fi(xz,y) = yi — > ;Cijf (z,y) with each partial continuous. (1) The F; are continuously differen-
tiable; (2) Fi(a,b) = b; (3) 25; (a,b) = 0; (4) fi(z,y) = 0 iff Fj(xz,y) = y;. For 3 to hold (¢;;) must
be the inverse of the Jacobian. For 4 to hold, the determinant of the Jacobian must be # 0. Choose
r > 0 such that for (z,y) € B.(a,b) C E™*™, |g%| < 7= and det( ) # 0. Choose k : 0 < k < r

n2

and choose h so that 0 < h < V72 —k? and [|F(z,b) — bl| < & if Hx —a|]| < h. Fix x € U with
n . _ OF (z,y") OF, (z,y")

1(z,9) — (@)l < 7. Ty € B [l —b| < b, 3y" s Flary) — Flay/) = (y—yf) - (ZEes) | OFuleay o

ﬁ(|y1—yi|+. oy =) < 2n||y y'|]. So ||F(z,y)— F(z,y")|| < k and the fixed point theorem applies.

Extended Inverse Function Theorem: f;(z,y) = z; — ¢;(y),a = g(b). Same deal.

Inverse Function Theorem: Suppose f : R" — R" is contlnuously differentiable and |det(f ( )| # 0.
Jyepen yoren =1 q cV, f(a) € W with f~1: W — V and f~1(f(z) = z. Further f'~!(y) = W
Notes: Let A = D(f(a)). May assume A = I. Can show |z — xa| < |f(z1) — f(22)]-

Implicit Function Theorem: If f : R® x R™ — R™ is continuously differentiable in an open set con-
taining (a,b), f(a,b) = 0 with M = (Dy4;(f*(a))) with 1 < 4,5 < m. If det(M) # 0,3A°P" C R" and
Berem CR™ a € A,b € B:Vx € A there is a unique g(x) € B, f(z,g(z)) = 0. Further, g is differentiable.
Notes: Look at F(z,y) = (z, f(x,y)) and apply Inverse Function Theorem.

Partitions of unity: A°P°" C R"™ and O and open cover of A. 3® € C* such that Yy € ®: (1)
0 < p(x) <1and Vo € A, (2) Vz,p(z) = 0 for all but finitely many ¢ € @, (3) > cp¢(z) = 1. (4)

Vo € ®,3UP" € O : ¢(x) =0 for x ¢ U where U is some closed subset of U.

Direct proof of inverse function theorem. Suppose f is a C’ mapping f : E — R", a € E°P*"™ C R"
with f’(a) invertible and f(a) = b, then (a) JU°P", VoPe® C R™ : g € U,b € V such that f is 1-1 on U;
f(U)=V. (b)If g = f~1 then g € C'(V). Proof of a: Put f'(a) = A and choose X : 2)\||[A71|| = 1,
set U = Ba(a) C E: |[f'(x) — Al]| < \,Vz € U. Set @y(x) = x4+ A7 (y — f(x)),Vy € R". |lg,(2)]] =
[ATHA = f'(@))l] < 3. ley(z1) — @y(22)|| < 3,Vz1,20 € U [Equation 1] by the mean value theo-
rem. ¢, is a contraction map so it has a unique fixed point x : y = f(z). Put V = f(U) and sup-
pose yo € V, there is a xg € U : yo = f(xg). Pick r > 0 : B.(xzg) C U. Fix y : |y — yo| < M.
For = € Br(zo), lp(zo) — ol < I9(@) — p(wo)| + [¢(z0) — 20l < blz — 7| + 5 < 50 (z) € Bylao)
and again ¢, is a contraction map. Its fixed point x satisfies f(z) = y,y € Br(;vo) C f(U) =V, so
V is open. Proof of b: Pick y € V, y+k € V,Iz,a+h € U : y = f(x),y +k = f(z + h). Now
oz +h) —p(x) =h+ A (f(x+h) = f(z)) =h— A7 (f(z+ h) = f(x)) = h — A"'k < Sh by equation
1, s0 ||[A71k|| > @ and ||h|| < 2||A7 k|| = A7 |K||. f'(x) has an inverse T and g(y + k) — g(y) — Tk =
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— lo(u+k)=g()=Tk|| _ [ITI| |If(z+h)=F(z)=f"(x)h
h—Tk = —=T[f(x + h) — f(z) — f'(x)h] and 12 )Ilkgll(y) = TIH II’(LII) @A Now h — 0 as

k — 0. Since the right hand side goes to 0, the left hand side goes to 0 and we get ¢'(y) = T.

Fubini’s Theorem: [ [}, f(z,y)dydz = fo fo x,y)dy)dr. In a simply connected region of the plane,

S for a < z < b bounded by bi(2) < y < ba(a), [ f5 f(x.y)dyds = [)/([,°\) f(x,y)dy)dz. Change of

variables: Let A C R"™ be an open set, g : A — R continuously differentiable and det(¢’(z)) # 0,Vzx € A. If
f:g(A) — R is integrable then fg(A) f=[4fogldet(q)]

Let TF(V) = {T :V — R}, V C R" where Vi: T(v1, ..., Vi1, UHW, Vi 1y ey V) = T (U1, ooy Vi1, Uy Vig 1,5 ooy Uk )+
T (V1 vey Vi1, Wy Vg 1y ooy V) ANA T(V1, ey V1, QUL V41,5 ooy V) = aT(V1, .00y Vi1, Uy Vig1, ..y ). T(V) are
called the n—tensors V. If f : V — W with VW C R" then f* : 7"(W) — T™(V) by f*(T(v1,...,0n)) =
T(f(v1)yeees f(vp)). T € TF S € T° define T® S = T(x1)S(x2). T1(V) is just the dual space V*. If
€1, ....en is a basis for V and ¢; € V* such that ¢;(e;) = d;; then the set of all k — fold tensor products

iy @ iy @ ... ® @, is a basis 7F(V) which thus has dimension n*.

Alternating forms: A*(V) = {T € T*(V)} such that T(...v..w...) = =T (..w...v...). VI € T"(V), Alt(T) =

5 20 8gn(0)T (Vo (1), s Vo (ny) € AF(V). Tfw € AR(V), Alt(w) = w. Ifw,p € AR AL wAp = (l;r,f, Alt(w®n).

A is multilinear and wAn = (=) nAw; f*(wAn = f*(W)Af*(0). (WANAO =wA(nAD) = (k,:,rll,z,n Alt(w®
n®0). Ifw=>w;, ;dr" A..Azx% then dw = dw;, . Ndx Ao Az dim(di, Ao Agy) = (Z)
orientation: [e1,...,e,]. Volume elements: w; = ) .a;;v; then w(wl,...7wn) = det(aij)w(vl,...,vn) for

w € AP,

J

Forms: Let p,v € R", define the tangent space of R”™ at p, R™,,, as the (p,v) with (p,v) + (p,w) = (p,v+w)
and (p, av) = a(p,v).

Vector field: F(p) = Fl(p)(e1)p + ... + F"(p)(en)p with the usual rules (F + G)(p) = F(p) + G(p)
(f-9)p) = f(p)-9(p). V =2Di-ei

w(p) € AF(R™,): If ¢;(p) is the dual basis for (e1),, (€2)p, -, (€n)p then w(p) = Y wi, i@ Ao A @ik
is a differential form and df (p)(v,) = Df(p)(v). df =Y.' D, fdx".

If f : R" — R™, f, : R", — R™, by fu(v,) = (Df(p)(v))sm- Thus fo : AFR™ ) — AF(R™,). So
if wis a k—form on R™, f*w(p) = f*(w(p)) is a k—form on R"™. f*(da’) = > Dj Gf e dad, ff (w1 4 wa) =
frwi) + ff(wa), f*(g-w) = go ffwand f*(w+n) = fw+ fo If f:R" = R Df(p) € AY(R").
Y (ey) = DEGYW). F.(0p) = (DF@)©)sgn- F 5 BT = R™, £ s R — Ry fu i AFR™ 1)
AF(R™). f*(da') = 377, Djfidal. f*(gow) =go fo frw.

d’w = 0, closed form: dw = 0, exact form: 3 : dp = w. Poincare: If A°P°" C R" is a star
shaped region then every closed form in A is exact. I™ = Y71 3" o (=1)"F*I"(; o) where I"(; o) =
(2, ..., 27 o, 2ttt a™). Note that 91" = 0. If A°P°" C R™ and g : A — RP is differentiable and ¢'(z)
has rank p whenever g(x) = 0 then g~1(0) is an n— p dimensional manifold. Diffeomorphism, k—dimensional
manifold. An n-dimensional differentiable manifold is called orientable if it has a differential form w of
degree n which is nonzero at every point on the manifold.

Stokes: If M is a compact oriented k—dimensional manifold with boundary and w is a k — 1 form on
M then [ dw= [, w

Classical Integral Theorems: Let ¥ = (x1,%9,...,2,). Lagrange: Maximize F(Z) subject to ¢1(Z) =
0,02(F) = 0,...,0n (%) = 0; form G(F) = F (& )+/\1¢1( )+ Ao (Z) + .. +/\m¢m( %) and solvea—ci = 0. Sup-
pose R CR" R € R™ and f : R — R/ is continuously differentiable then [, F(Z)dZ = [, F(f(u))|Jy(@)|du
where Jy (4 ) |det(f")|. Green: If C' surrounds R, a simply connected region of the plane then Jo Pdx +

Qdy = fR = — —)dxdy Gauss: If S is a surface enclosing a convex region V and Fis continuously
differentiable then LV F(Z)di = f ﬁ %) dS Stokes: If S with boundary C and F is continu-

ously differentiable then [(V x F(Z = [ F( Fourier: F(z) = \/% [, Fw)e™du and
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flu) = \/% 7, F(z)e ™ da.

Calculus of variations: Let I = fff L(z,y,y )dz and f(x) be the function that minimizes I (61 = 0),

d 0L OL __
then ~dz oy’ + By 0.
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1.5 Probability

1.5.1 General Probability

px = B(X), ox? = Var[X] = E[(X — E[X])?], Covariance: pxy = E((X —pux)(Y —py)). Correlation:
p(X)Y) = E((X;(’;(’E()T(?;;”Y)). Moment generating function: G(e) =37, Pr[X = kle'* = E[e'*]. Mo-
ment Generating Function for Poisson distribution (f(z) = e™**) is ¢(t) = E(e'®) = [[° e Ae  dx = 325

BE(X?) =4¢t)=3%. Var(X) = 3.

Stirling’s approximation: n! ~ v2mn(2)". Proof: M, = In(n!) = 31, In(i). [/'In(z) < M, <
an In(x). Sonin(n) —n < M, < (n+1)in(n+1) —n. Set d,, = In(n) — (n+ )ln( )—n. dp —dpi1 =
1
(n + in(™t) — 1. Writing 2= = 1?71“ and expanding the log, and comparing to the geometric se-
2n+1

ries in 2n + 1, we find d,, converges to, say, C. So, n! = e“n"t2e ™. To find eC use Wallis’ formula:

limp—oo Ezn))'%;i /7. To get this, show fo sin™(x) = nn1 fo sin"2(z).

z—pu)?
Bayes: P(B;|A) = %. Normal Distribution: N(z) = a\}ﬂe_( ey . Z = (X;Z;’).
mial Dlstrlbutlon B(N n,p) = ( )p"(1 —p)N~", E(B) = Np,0? = Np(1 — p). Poisson Distribution:

P(x)=e"

Bino-

it = X\, 02 = )\, probability of count in time At is AAt.

Jcla

x— 2 T — y— y— 2 /
1 _(( Ul%l) +(2p)( uall)z(:ryz #2)+(y 0#32) )/(2 1_/)2)

s —
2wo1024/1 — p?

p is the cross correlation between x and y.

fx,y) =

Central Limit Theorem: If X; are independent, identically distributed random variables and S,, = X7 +
..+ X, then lim,, ., P(a < ("7\;” <b) = A f; e~ (/2 Proof: E(S,) = nu, 02 = Var(S,) = nox,.

H(X1—p) t?{)?:—u) t(Xp—p) £(X1—p) )
Define S¥ = 5= "“ So E[etS2] = E[e ov@ e ovn ...e ova | = Ele ov» |*. Expanding the exponen-
g* _ _ —t2
tial in the taylor series, we get Eletn] = E[1 + til)f/fz’;) + (;'(()f/ﬁi))); +...] = e . This is the same moment

generating function as the normal distribution, so were done.

¥ = _ (Yo—np3)® + .4 Gha— npi2)* ,P(x* <z2) =

T v_q1 _u
(np2) (np12) fo uz e z2du.

1
220(%)
Markov: Let Y be a random variable assuming only non-negative values, and with expected value E[Y]
convergent. Then for any ¢t > 0, Pr[Y > ¢] < y

Chebyshev: Let Y be a random variable with expected value p = E[Y] and variance, Var(Y). Then
for any t > 0, Pr[|Y —pu| > t] < V%Z,(Y)

Chernoff: Let T1,T5,...,Tny be mutually independent Bernoulli variables T" = vaﬂ Then Ve > 0,
Pr(T > ¢E(T)) < e“F(T) where o = In(c) + i-1

Wald: Let Q be a random variable that takes on only non-negative integer values such that E(Q) < oco. Let
R1, Ry, ... be a sequence of random variables with the same distribution and let 7' = Ry + Ra + ... + Rg.
Suppose Ry is independent of the event that it is included in the sum, that is Vk > 1, Rj is independent of
an indicator variable for the event @ > k then E(T') = E(Q)E(Ry).

Occupancy: Let X; be an indicator for a ball falling into i. E(X;) = 1. Let Z; be the probability
that the bin is empty. E(Z;) = 2. Let pp(r,n) be the probability of finding r balls in n cells with exactly

m empty cells. p,,(r,n) = (;)(1 — m)"po(r,n —m). Further, po(r,n) = Z?:O(—l)i(?)(l — %)T

Lovasz Local Lemma: Let G = (V, E) be a dependency graph for events ej,es, ..., €, in a probability
space. Suppose Jx; € [0,1] for 1 <14 < n, such that Prle;] < x;1l(; jyep(1 —x;). Then Prine;] > 11} (1 — ;).
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If {p;} and {g¢;} are probability distributions and G(q1,¢2,...,¢,) = —>_piln(g;). Then G is minimum
when p; = ¢;.

1.5.2 Statistical Inference and Hidden Markov Models

Let Y = Pred(L), 0>(Y,L) = E((Y — L)?). Value of predictor: W(Y,L) = ZL LY g —
W(E(L),L) < W(Y,L) < W(L,L) = 1. E((X —t)?) is minimized t = E(Y). Let cov(X,Y) = BE(XY) =
E(X)E(Y). Best linear predictor: ¥ = aX + b, a = gszgg (and solve for b). Worth of best predictor
#ﬁm Posterior models. P(|Y — pu| > t) < %gy)

(using mean square error) is p(X,Y)? =

Let S = {1,2,3,...,n} be the n possible states of a hidden markov process with T transitions and T + 1
outputs. Notation: Denote X@) = HiL:oX and # € X(O) with 7 = (zo,21,...,2L); we denote &; = x;.
Suppose the output vector of the process is O e (Zm)(T). Finally, suppose the following distributions are
given: initial state distribution - 7(4),i¢ € Z,,; output distribution - ¢;; = ¢(j|i) = Pr(O; = IS, = i), Ve
state transition distribution: p;; = P(j|i) = Pr(S, = j|S;_1) = i, Vt.

e Problem 1 Given O = Oq, 01,03, ...,Or, A = (P,q,7), how do we compute Pr(O|\) efficiently?
e Problem 2 Given O = 0p, 01,04, ...,O7 and A\, how do we choose an ¢ which is optimal?

e Problem 3 How do we adjust the model parameters A = (P, ¢,7), to optimize Pr(6|A), given the
observed sequence: O7

Problem 1: Assuming the foregoing, the probability of the output O is:

T T
PriO|A] = Z W(§O)Q(OO|§O)HP(§|§i71)HQ(Oi|§i)
FeS(T) i=1 i=1
The following recursion greatly improves the calculation cost. Let ag(i) = m(i)q(Opli), Vi and oy(i) =

(Zf 1ou—1(J)P(Sy = i|Si—1 = 7))q(Oi),Vi. This is called the “forward recursion”. Then a4(i) =
2 sedt 5,—i T(50)q(Ool50) Hj:1 P(5;]5;-1) H;Zl ¢(0;|5;), the probability of the observation of the sequence

up to time t given & = i. Pr(O|\) = Y27, ar(i); computing {ar (i)} takes O(n?(T + 1)) rather than
O(2(T 4+ 1)nT+1). This solves problem 1.

Problem 2: Slightly abusing the notation from above define 8;(i) = Pr(O¢i1,...,07|S: = i,\). The
“backwards recursion” is: fr(i) = 1,Vi, (i) = Z?:l P(S; = i|St41 = 7)5t+1(4)q(O¢41]7). Now define
Y(j) = P(sy = 1|0, A) so y(j) = %. The most likely state at time ¢ is the one that maximizes ~;(%).
Problem 3: Define (i, j) = P(S; = i, 8141 = j|O,\) so %(i,j) = a"(i)P(St:j‘St};l(glq)(o"“|j)ﬁt+1(j) and
(i) = Z;L:l Y¢(i, 7). v (i,7) is the probability of being in state i at ¢ and transitioning to state j.

Now, suppose the model, A = (7, P, q), is unknown, the MLE of the model, given observations O is deter-
mined by:

o 0= 555[Pr(0=(0o....,0r)) = M (X5 m(k) — 1)).

Pr(0 = (Op,...,0r)) = Aa(X 1y P(K|i) — 1)].

3P(J\2)[

5:25[Pr(0 = (0o, ..., Or)) = As(L 15y q(kli) — 1)].

Solving gives the following re-estimation formulas:

oO:

o (i) =7(1) = %7 >om(i) = 1.
S5 > m( 4) _ T au($)a(Oe115) P16 Be (5) T
PGl = S0 ST (0300 0 22 POl =

4 2icqo.1,...,7-1},0,=;5 7:(3) Zf olot —; ot (d) 51
q(]| ) Zt,() e (%) - S F e (8)Be (i Z q(jl ) L.
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Baum showed that if Q(X\, X) = -, . PA(O, s)log(P5(0, s) and Q(A,X) > Q(A, A) then Pg(O,s) > PA(O,s).
Optimizing @ instead of P gives the Baum EM algorithm. Note that optimizing using dynamic program-
ming may give a different result: do(i) = 7(i)q(i|Oo), 0¢(i) = maw;cqa,... .ny(0:—1(j)Pjigio, ) since it optimizes
the overall path. You can deal with underflow by taking logs or (in the HMM case) scaling in a way that
maintains the re-estimation result.

EM as Gaussian mixture problem: p(Z) = Zi{:l N(&|4ik, X1), let Zbe a K dimensional random variable
from the sample space all of whose components are 0 but a single one which is 1 (i.e.- 2z = 1) under the
Gaussian model (7, i, Xk). p(Z)z = 1) = N(Z|gk, Xk), p(zk = 1) = 7 and p(Z) = p(Z|2)p(2). 7k is the

prior estimate of z;, = 1 and «(zx) is the posterior estimate. y(zx) = p(z = 1|7) = Zp(‘;’z 1)%(5(‘3;91). For
2j= J—

mixing, let < 27, ...,2% > be a sample. The log likelihood is p(Z|7, {, ) = En:l ln(X:k:1 TN (20| oy k)
and EM maximizes this. Maximizing equations come from taking derivatives with respect to u; and set-

ting them to 0 — 0 = _an:1 %% - Yg (€, — pk). The term in the denominator is y(znk),

N, = ij:l Y(znk) and p = N%c Zﬁ[:l ¥(2nk). Taking the derivatives with respect to Xj give the re-

maining equations (Note: pp = %) An alternative (Bayesian) view is to regard Z as latent, O as the

model parameters and In(p(X|0)) = In(3, p(X|Z,0)). We use this to estimate the likelihood from
©°!d for general ©: Q(0,0°%) = Y p(Z|X,0°)in(p(X,Z|O)); the “M” step corresponds to finding
O™ = arg mare(Q(0, 0.

Principal Component Analysis: Suppose x1,s,...,2zy € RP and we project this space onto

< Uy, U, ..., up > where up € RP and uzuzT = 1. For example, for M = 1, the variance of the projection
is EnNzl(ufxn —ul'T) = ul Su; where T = % vazl x; and S is the co-variance matrix. Finding the first
principal component requires us to to maximize u? Su; subject to u{u; = 1. Using Lagrange multipliers,
this is equivalent to maximizing f(u1) = ul Su; + A1 (1 — uf'uy). Taking derivative, we get S(u1) = Ajus
with A1 the largest eigenvalue of S. Can also find A; with EM. For general M, uiTuj = 0;j, Tn = Zle Qi
ang = (xXuj), z, = Zil(xfuz -u;) and we want to minimize J = & Efy:l ||z, — Z||* which reduces to an
eigenvalue problem.

1.5.3 Information and Coding Theory

Shannon conditions for entropy: (a) continuous in probability, (b) monotomcally increasing in num-
ber of messages, additive with respect to refinement: H(3,1,3) = H(3, 5) H(%,%). Number of bits
of information obtained in observing event that occurs with probability p is lg( ). H(P) =5 —pilg(p:),
lg(|X]) > H(X) > 0. I(X,Y) = H(X) - HX|Y) = H(X) + H(Y) - H(X,Y). H(X,Y) < H(X) + H(Y).
HUIV)=0if U = g(V).

D(p|lq) = Emp(x)lg(%) > 0. Markov chain denoted by X - Y — Z. If X - Y — Z then I(X;Y) <
I(X; Z). Let T(X) be any statistic and F =< fp(x) > and X a sample from F then I(0;T(X)) < I(6; X). T
is a sufficient statistic if equality holds. T'(X) is a minimal sufficient statistic relative to F if it is a statistic
of every other sufficient statistic U(X). 8 — T(X) — U(X) — X. A stochastic process X =< X, X5,... >
is stationary if the joint distribution of any subsequence is invariant with respect to time shifts. Entropy
of a stochastic process is H(X) = lim, %H(Xl, Xa,...,Xp). For a stationary Markov chain, the entropy
rate is given by H(X) = H(X2|X1). If X is a stationary markov chain then so is the process < Y; = ¢(X;) >
and H(Y,|Yn—1,...,Y1,X1) < HY) < H(Y,|Y,—1,...,Y7) equality holds by taking the limit across the in-
equalities.

Hs(X) =lgmin{|T|: T C Ax,Pr(x €T) > (1 —9)}. Asymptotic Equipartition: n, independent iden-
tically distributed random variables X, if X™ = (X3, Xo,...,X,,) is almost certain to belong to B C A%
having about 2V# members, each with probability “close” to 27V . This is equivalent to Shannon’s

Source coding Theorem: The n r.v.’s can be encoded by NH bits with negligible information loss. To
show this, show for any § there’s an n such that Hs(X(™) ~ NH. Hint: Define Y = %lg(ﬁ). Let

2
Top={y € A% : [Hlo(5) — HI” < 5%}

Channel Capacity: C = maxp(H(I|J) — H(I)). For a DMC, BSC with error rate p, this implies
Cpsc(p) =1+ plg(p) + qlg(q). So for BSC R =1 — H(P).

53



Detect t errors d(C) >t + 1. Correct t errors d(C) >t + 1. Perfect code: M(3}, () (g —1)F) =q™

Shannon Source Coding: If a memoryless source has entropy H then any uniquely decipherable code
over an alphabet ¥ with D symbols must have length > %. Further, 3 a uniquely decipherable code with

average length < 1+ ﬁ.

Shannon’s Theorem Channel Coding: If 0 < R < 14plg(p)+qlg(q), M,, = 2[%"] then P*(M,,,n,p) — 0
as n — oo. Notation: Each codeword has n bits. Let P; be the probability of making an error in decod-
ing if z; is transmitted. Then Py = ﬁ >, P; is the probability of making a decoding error if a randomly
chosen codeword is transmitted and every codeword is equiprobable. P*(M,,,n,p) = minc(Pc), with
BlockLength(C) = n, R = % and M, = 2LEF7). Proof: Define the following terms: f(u,v) = 0, if
d(u,) > pand f(u,v) = 1,if d(u,z) < p, gi(y) = L= f(y, i) +32;4; [ (¥, 2;). Then Py =37 P(ylzi)gi(y) =

Sy PWlz)[l — fly,20)] + 22, Yoy Plylai) f(y, x2). So, Po = minc(g; 32,(32, 30, Plyles)[l — fly,zi)] +
>y 2ing Plwi) f(y, z:))]. Now, taking expectations over all eligible C' and using the fact that at least one

particular C' must have P < the expected value of Po over all C, we get Po < [ 3. >, E(P(ylz)[1 —
fysx))) +232, > E(P(ylzi)) E(f(y, 2:))]. Now, let N, be the number of received bits in error in a string

of length n, then E(N.) = np and Var(N.) = \/npq. Set b = , /*#4 then P(n. > np+b) < § by Chebychev.
2
If B, () is the set of words of distance < p. So, we get Po < §+M ™13, Doy 2ing EPWlx)E(f(y,2:)) <

§+ (M —1)27"|B,)|. Now p = pn and B,(z) = 3., (). But 1 = A+ (1 =X =300 <
AP(1 — A)r=p) SRR (1), So, 27HE) > 5P (). Putting this back in the equation for Po we get

Po < §+ (M —1)27n(1+HP) < on(R=1-H(P) which goes to 0 if R < 1+ H(p).

(n,M,d) codes: M is number of codewords, d is minimum distance, n is dimension. An [n,k,d] linear
code is an k—subspace of an n— space over F' with minimum distance d. Standard form for generator is
G = (Ix|A) with k message bits, n codeword bits. Codeword ¢ = mG and d = min,zoucc{wt(u)}. Parity
check matrix, H, of a code is the generator of its dual code. C+ = {z : (z,y))) = 0,Vy € C}. Note that
GH = 0. If C is a code, C* is a code (the dual code). H = (—AT I, ), GHT = 0. Consider a table with
the codewords forming the first row, subsequent rows add error e until all 2" blocks are in the table. Each
row is a coset and the element of minimum weight in each row is called the coset leader. To decode received
word r = ¢+ e: (1) compute syndrome s(r) = rHT, (2) find coset leader with s(r) and locate the codeword,
¢o in that column, (3) decode as r — ¢o.

Define V(n,r) = 23:1 (?) Hamming Bound: |C] < #ne) Sphere Packing Bound: If d = 2¢ + 1,
Ag(n,d)> 5o () (g —1)* < ¢". GSV Bound: A(n,d) > V(n27;—1)’ where A(n,d) is the largest code with

minimum distance d.

A Hamming code is a [n, k,d] linear code with n = 2™ — 1, k = 2™ — 1 —m and d = 3. To decode,
if r = ¢+ e is received (1) calculate s(r) = rH”, (2) find j which is the column of H with syndrome s(r),
correct position j. The [7,4] code has encoding matrix

100 0 0 1 1
O = 01 00101
0010110
0001111

with check equations y1 +ys +ys +ys =0, y2 +y3 +¥6 + y7 = 0, ya + ys + ys + yr = 0. For Hamming,
n = 2™ — 1, m parity checks identify error position. Motivation for BCH is to use another m parity checks
which identify f(j) = j2 positions. Rows of Hadamard matrix HHT = nI forms a (n,2n, %) code. Let A;
be the number of codewords of weight i for a code C, then A(z) =Y, A;2" is the weight enumerator.

A cyclic code, C, has the property that (¢i,co,...,¢,) € C — (cn,¢1,-..,¢n—1) € C. Denoting U, (z) =
2™ — 1 we have the following theorem: C'is a cyclic code of length n iff its generator g(x) = ag+ a1z + ...+
an—12""1 | Up(z) where codewords c(z) have the form m(z)g(x). Further, if U,(x) = h(z)g(z), c(z) € C
iff h(z)e(x) = 0 (mod U,(x)). Example: g(x) = 1+ 22 + 2 generates (7,4) code. g(x)m(x) = c(x),
a = (1010),a(x) = 1 + 2% g(z)a(z) = c(z) = 2° + 2 + 2% + 1, ¢ = (1001110). In shift register imple-
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mentations, bits come out of 0-degree term, recurrence is shifted into high-degree. Cyclic codes ideals in
Zs/(z™ — 1). Codewords are multiples of the generator polynomial g(z). Let a be a primitive element of
GF(2™). [n =2" — 1,k = n —m,d = 3] hamming code has parity check H = (1,a,a?,a%,..., a?" ~2). If
g(x) is the generator for «, generator matrix is

9(x) (() | 0
0  zg(z 0
¢= 0 90 22g(x)

For BCH with [n = 2" — 1,k = n — 2m,d > 5|, g(z) = MW (z)M®) (z) where M®)(z), is the minimum
polynomial for a3.

BCH codes: If g(z)|z™ — 1, the ideal generated by g(x) is a cyclic code. If g(x) factors into linear
factors in GF(2") with roots A = {aq,..., o}, the set C defined by f(z) € C iff f(a) = 0,Va € A is
a cyclic code. For BCH, pick g(z) = my(x)ms(x)...m,(z) of degree d with each factor irreducible. Let
n — d message bits be the high order coefficients Cj(z) of an n — 1 degree polynomial whose remaining
terms are Cg(z) with Cr(z) = g(z)q(x) + Cr(x). For a 2-ECC, pick g(x) = mq(z)ma(x) with m4(z)
the irreducible monic polynomial for a primitive nth root of 1, a and ms(z) the irreducible monic poly-
nomial for a3. Alternatively, suppose g(z) is a cyclic code and « is a primitive nth root of g(x) and
g(ah) = g(a!t!) = ... = g(a!*9) = 0 then d > § + 2 and the resulting BCH code has weight d. Decoding
BCH for r = ¢ +e: (1) compute (s1,s2) = rH", (2) if 51 = 0, no error, (3) if s1 # 0 put 2 = a’/~*, error is
in position j (of p # 2,¢; = —=Huzry), 3) c=7 —e.

Reed-Solomon code is BCH code over F;; with n = ¢ — 1. Let o be a primitive root of 1 and choose
d:1<d<nwith g(x) = (z — a)(x — a?)...(x — a?!). The BCH code generated by g(z) is a Reed
Solomon code (an MDS code t0o).

Building codes and Reed Muller: If Cy : (n, M;,d1) and Cs : (n, Ma,ds), C5 = C; % Cy denotes the code
where codewords in Cj are (u,u +v),u € Cy,v € Cy. It is a (2n, My My, min(2d,,dz)) code. RM(0,m) =
{0,1}, RM(r+1,m+1) = RM(r+1,m)* R(r,m). R(r,m) is a (n,, My, d,) code, with n, = 2™ d, =2m""
and M, =2% a=1+ (T) 4.+ (”:) R(r,m) has parameters [n = 2™ k =1+ (T) 4.+ (T),d =2m7,
it consists of boolean functions whose polynomials are of degree < m. RM (r,m)* = RM(m —r — 1,m).

R= % (4,7) code. U = %, 27N messages 2"V meaningful ones, 27(5) keys. 2H(K) 1 keys have

probability, q, of spurious decryption R—r = D. F= number of false ones. F = (21(¥) — 1)g = QH(K)-D)N
The correct key maps cipher into meaningful class always. False keys map cipher into meaningful /meaningless
randomly. After how many message is the expected number of spurious keys which map all the samples into
meaningful less than 1?7 Shannon: M¢: total message length, M: meaningful part, p: probability of error.
pMc = k, 2Me=M > (Me),

Hadamard Code: Let h;; = (—1)%b+-+aibi " where ¢ and b index the rows and columns respectively.
This gives a 32 x 32 entry matrix, H. Let generators be G = [H| — H]T. For each of the 0 < i < 25 possible
messages, send the row corresponding to i. To decode, for the 32 bit received word, r, compute d; = 7 - R;,
where R; is the 32 bit row 4. If there are no errors, the correct row will have d; = 32 and all other rows will
have d; = 0. If one error, d; = 30, etc.

Golay Code G4 is a [24, 12, 8] linear code. G = [I12|Cy|N] = [I|B] where Cy = (1,1,1,1,1,1,1,1,1,1,1,0)7
and N is formed by circulating (1,1,0,1,1,1,0,0,0,1,0) 11 times and appending an row of 11 1’s. The first
row of N corresponds to the quadratic residues  (mod 11). Note that wt(r1+re) = wt(ry)+wt(re)—2[r;-ra],
all codewords have weight divisible by 4 and d(C) = 8. Gay = G5;. To decode Golay, write G = [I12|B] and
BT = (b1, by, ...,b12) with b; a column vector. Suppose r = ¢ + e is received and wt(e) < 3. Put s = rGT
and compute sB, s+cl', 1 <i <24 and sB —|—b]T, 1 <j <12 fwt(sB) < 3, there is a non-zero entry in the
k-th position of sB if the k 4+ 12-th position of e is non-zero. If wt(s) < 3 a non-zero entry in s at position
k corresponds to a non-zero entry in position k of e. If wt(s + cf) < 2, for some j, 13 < j <24 thene; =1
and non-zero entries of s+ e? are in the same positions as non-zero entries of e. If wt(sB+ b?) < 2, for some
j, 1 < j <12then e; = 1 and non-zero entries of sB—f—b]T at position k correspond to non-zero entries of e y12.
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Leech: Let R(C) be the row space of C' over GF'(2). Define the I" to be the collection of (vy,ve,...,v24) =

v € Z** such that (1) Z?il v, =4m, (2) v; =m (mod 4),if¢; =0, (3) v, =m+2 (mod 4)if ¢; = 1.

Rogers Bound: RB(n) = 7an(n), Frpi(a) = 2 [drescen) Fr1(B)d, sec(28) = sec(26) — 2,
2 %4- 2

Fi(a) = Fo(a) =1, fu(sec(2a)) = F,(a). RB(3) =.7404. A; =0, Ay, = ( ﬁ” % >

Lg: v € Lg iff v € Zg and v; = a; (mod 2) or v; = @; (mod 2). Lg — Ag: v € T'g iff v € Lg and
Z?:l 4v; = 4m. Contact number: 4320, radius: /2.

Loy4: Sphere centers are equal  (mod 2) to R(C) and ) ,v; =0 (mod 4).

Shape | Number

016, (—1)8 759
016, (-1)%,12 21252
016, (—1)%,14 53130
016, (—1)%,16 21252
016,18 759

022, (—2)? 276
022, -2,2 552
022,22 276

Total 98256

Density of Loy: % =271 first factor of 2 in denominator is from condition that the sum of the coordi-

nates =0 (mod 4). Packing density: .0009647.

Ias: Express coordinates in Loy in binary and retain the ones that satisfy the following conditions (a)
the 24 1’s bits are either all 0 or all 1, (b) the 2’s bits form a row in R(C), (c) 4’s bits rows have even
parity for points with 1’s bits that are all 0 and odd otherwise. Equivalently, suppose ¢ € R(C) and for
m € Z, define &(m) = {v € Z** : Y ,v; = dm,c; =0 = v; = m (modd),¢; =1 — v; = m+ 2
(mod 4)}, A = Aoy = Up,é(m). Contact number: 98256 (even parity) + 98304 (odd) = 196,560. Density:
.001929. Shapes: (016, (£2)%), (022, (£4)?), ((£1)?3, (£3)). Each vertex is adjacent to 4600 others. Example:
(4,4,0,...,0) is adjacent to (4,0,...,0) - there are 88 of these, (2,2,...,0) - there are 77 x 27 of these and
(1,3,...,0) - there are 2048 of these.

Definition: Conway’s group .O is the set of rotations in R?* fixing O pointwise and A setwise.

Notation: vs = ) ,cqvi. The set GA = {2vx, K € R(C)} U {vg — 4} generates A. If v,w € GA,
then v-v=16nand v-w =0 (mod8). A, = {z € A,z-2 =16n}. A; =0, Ay consists of A3 of shape
(0%, (42)®) - there are 97152 of these, A3 of shape ((£1)23, (£3)!) - there are 98,304 of these, A3 of shape
(072, (44)?) - there are 1104 of these.

Structure in .O. Q:PL(23),a:xr—>z+1,6:xH2x,7:x»—>_71,5:x+—>9:173,x¢Q
3

and 0 : v — %,x € Q. PSL(23) =< a,7 >, My =< «a,7,0 >. If 7 € Sq, define (v;)™ = vg).
es(vi) = —v;,i € S and eg(v;) = v;,1 ¢ S.

Preliminary results: If S € R(C), es € .0. E =< €5 >ger(c), M = Myy. N = EM. If X € .0 and
A fixes v; (some i) then A € N. If A € N then \(A3) = A3.

Main result: If H > N, H is transitive on Ay and H = .O. Proof: (1) A%, A3, A3 are all N-orbits. A counting
argument shows that the union of two of them can’t be an H orbit (otherwise, p | |.O| for p > 23). Now define
As(z) = {y :y L x}. (2) H, is transitive on I'y(z) (hard). Orbit of A3 under N, is {y} U {\(y)}, A € N,.
There are 926. Since Myy is 5—transitive |H, : H, | = 926 and |.O| = |H| = 196560 - |H,|; further, H,
is transitive on As(x) = {y : y L x}. An orbit of H, has 93150 elements so |Hg| = (93150)|H, | and
H, , = E19Majy. This gives the order of H and shows H = .0.
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The simple groups: “.1” =.0/Z(.0). “.2” = {x € .0, x stabilizes 2 points v,w € Ay : [v—w| = 4y/2}. “.37
= {x € .0,z stabilizes 2 points v,w € Ay : |v — w| = 44/3}.

Reed-Solomon construction: Fix n elements, < ai,...,a, >, |F| > n, E(m) =< May,..., Ma, >,
d(E(mi,ma)) <n-+k—1.
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Chapter 2

Computer Science

2.1 Basics

feO0(g) < geQf) < Lzam% <oo. feo(g) —gew(f) Lmﬂwﬁg =0. G; C (G, E) is a strongly

connected component iff x,y € G; means there is a directed path * — y and a directed path y — =z.

Recurrences: Suppose T(n) = aT(n/b) + f(n). If f(n) = On'°9%(D=¢) then T(n) = O(n'°%@). If
f(n) = ©(n'o9()) then T(n) = O(n'°9(Dig(n)). If f(n) = Q(nl°9%(@+¢) and af(n/b) < cf(n),c < 1 then
T(n) = 6(f(n)).

Adding an m bit number and n bit number takes O(max(m,n)) time and O(m + n) space. Multiply-
ing an m bit number and n bit number takes O(mn) time and O(m + n) space. The extended ged of an m
bit number and n bit number takes O(mn) time and O(m + n) space. AX (mod M) where M is an m bit
number and E is an n bit number takes O(nm?) time. Rotation is linear in @ but not in +. GCD(u,v)

average running time: O((1 + %)lg(min(u, v))).

heapify(A,i) { for(i=n;i>1;i--) {
1l:= LEFT(i); r:= RIGHT(i); swap(A[1], A[i]);
if (1 <= heapsize[A] and A[1]>A[i]) n--;
M:= 1; heapify(A,1);
else }
M:= i; }
if (r <= heapsize[A] and A[r] > A[M])
M:= r; heapsort(4) {
if (M '=1i) A{ // stored in A[1...n]
swap (A[i], A[MD); for(i=2;i<=n;i++)
heapify (A, M); SiftUp(i);
} for(i=n;i>1;i--) {
} swap(A[1], A[il);
ShiftDown(i-1);
heapsort (A) { b
n= length[A]; }

Finding the shortest path between x and y in G = (V, E) where I(e) > 0 is the weight of e € E is
O(elg(n)). d(v) contains an overestimate of the shortest path from s to v. prev(v) contains the previous
element in the shortest path from s to v. (Ford-Bellman version works for negative weights.)

shortestpath(V,E,s) { d(s)= 0;
for (v in V) { mark(s) ;
d(v):= infinity; while (H is not empty) {
prev(v) := empty-set; h= deletemin(H);
} for e=(v, w) in E, w unmarked) {
H:= empty-set; if(d(w)>(d(v)+1(e))) {
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d(w)=d(v)+1(e); }
prev(w)= v; }
insert(w, H); }

3

Union-find: Link(x, y): make x and y kids of a common parent. Parent node points to itself. m
UNION-FIND operations on n elements is O((m + n)lg(n)).

makeset (x) { link(x, y) {
px)= x; if (rank(x)>rank(y)) swap(x, y);
rank(x)= 0; if (rank(x)==rank(y)) rank(y)++;
} p(x)=y;
return(y);
find(x) { }
if(x !'= p(x)) p(x)= find(p(x));
return(p(x)); union(x,y) {
} link(find(x), find(y));
}

2-3 Trees: Interior node has smallest key of 2nd and 3rd descendant. Insert: Do membership test stop
at terminal position; id 2 kids, add one, if not, split into two, (n,n’). Add n’ using insert. Delete: If two
kids left, done. Otherwise, try to move node of a siblings under common parent; if you can’t, transfer this
node to a sibling. If this leaves a singleton, in the parent, recurse the transfer on parent.

G = (V,E). Each edge has a weight. Blue: V = X U (V — X), no blue edges between X and V — X.
Pick and edge of min wt between them. Color it Blue. Red: Find a cycle with no red edge. Pick an edge of
max wt, color it red. Apply blue and red in any order as long as possible. Blue edges form a MST.

Floating Point Numbers: f x b°7 is represented as (e, f).

Given € > 0 there is a multiplication algorithm such that the number of elementary operation T'(n) needed
to multiply two n-bit numbers satisfies T'(n) < c(e)n**€. Strassen: T'(n) = O(nlg(n)).

NP Completeness: P C N. If A< B! and B € Pthen A€ P. L € NPC if and only if L € NP,
A€ NP — A< L. Classical computation theory classifies problems by a “certain” solution on all instances.
Later we will encounter problems which can be solved in polynomial time “up to an arbitrary error, ¢’ and
call the class RP for “randomized polynomial.” P C RP C NP.

P: MST. Given a weighted graph, G, and a weight, K 3 a tree, NP: TSP. Given a weighted graph, G,
and a weight, K 3 a cycle, C, that connects all nodes of G with weight < K.

P: Circuit value. NP: Circuit SAT.

P: 2-SAT: Use ¢ = (ay V b1) A ... A (a, V b,) to form graph with nodes a;, b;,a;, b; insert edges @ — b;
and b; — a;. Find strongly connected components. If no strongly connected component contains a variable
and its negation, it is satisfiable; otherwise not. So 2-SAT is not NP hard. NP: 3-SAT. Note in disjunctive
normal form SAT is easy but translating is hard.

P: matching. NP: 3D matching.

P: Linear Programming. NP: Integer Programming.

Ford-Fulkerson: Augmenting path p is a simple path from s to t that increases the flow.

Initialize flow, f to O;

while (there is an augmenting path, p)
augment flow along p;

return f;

Undecidable: Suppose Term(P,X) is a boolean function which takes a program, P, and an input X.
Term(P, X) returns true iff P terminates on X. Term(P, X) returns false iff P does not terminate on X.
Theorem. Term(P, X) does not exist. Suppose it did. Set

1A < B means problem A can be transformed to problem B in polynomial time; this is called a reduction from A to B.
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diag(P,X) {
if $Term(P,P)$==true
loop
}

diag(diag) terminates iff it doesn’t terminate. Contradiction.

Stable Matching (up to n? rounds). (1) Boy goes to favorite girl on list. (2) Girl tells highest choice
“maybe”, tells everyone else No. (3) Boy crosses off girls that have said no. (4) terminate in the round when
every girl has told one boy “maybe”, convert “maybe” to yes.

Linear Programming Standard Form: Maximize + = C7 X, subject to AX = B, X > 0. Prob-
lem: There may be exponentially many corners. (Reason: introduce to n constraint inequalities m slack
variables; the corner points occur when m variables are 0. There are (m:l'") ways to select the variables to
be set to 0.) Simplex idea: move along growing paths instead of trying all corners randomly. Dual, minimize
x = BTW, subject to ATW =C, W > 0.

Notation: basic variables # 0, basic variables = 0. A is an m X n matrix, with m variables (including slack)
and m constraints. Tableau has basic variables and their values in 2 first columns. Top row is all variables
as labels middle is matrix (A). Rightmost column is constants (B). Bottom row is C' — CT X in terms of the
non-basic variables.

1. Locate most negative coefficient in bottom row, call column containing it x;.

2. Compute fﬁ. The smallest one, denoted k, is the pivot.
ij

3. Convert pivot to 1 and eliminate all coefficients in the same column.
4. Replace xj, row by x;.

5. repeat until no negative numbers in bottom row.

NP Complete: SAT, k-SAT (k > 2), k-clique, Vertex Cover, Independent set, Subset Sum, Partition,
Bin Packing, Hamilton circuit. Clique/SAT reduction: Each occurrence of a variable is a vertex, edges
between vertices if their occurrence in the clauses have same complementarity. k& is number of clauses.
SAT/k:—sat reduction: 4y VIioV ...V, - LUV VZiANTIVIsVraAN...Tp—3V i1V ...V, Phase
transition for SAT: -clauses ~ 4 3 3 SAT — MQ. Replace + with V, - with A , 1 with true, 0 with false. If

variables
ci =iy VT, Vi, add xi, + x4, + 24,2, and x4, - 24, + Tiy - Tig + T4y - Ty = T4y and xy, + x4 + 24, - T4y = 1.

Hard core bit: Let f be a one-way function from {0,1}" to {0,1}", = € {0,1}" , r € {0,1}" , and
let G be a function that takes {0,1}" to {0,1}"*! by G(x,r) = f(z),r,< z,r >. Let P be a prediction
function. Goldreich-Levin: If there is an algorithm A such that |Prob,[A(f(z),r) =< 2,7 >] — 1| > € then
there is an algorithm I that produces a list L of size < E% with  in L, (2) I runs in time polynomial in n and
% and doesn’t compute f. Negligible: smaller that inverse of any polynomial. Witness: w : ¥* — P(T").
Decision problem: A4, C ¥*, A, = {z € ¥ |w(x) # 0}. Example: x € ¥* is an encoding of a Boolean
Form. y € T'x is an encoding of a truth assignment. #P is class of witnesses, w, such that: (i) there is a P-
time algorithm to decide if x € w(x) and (ii) 3k € N such that Vy € w(x),|y| < |z|*. w € #P — A, € NP
and A€ NP — Jw, A= A,.

Counting perfect matchings of a bipartite graph is # P complete.

Finite State Machine: Finite alphabet, A, finite states, S, two functions: § : SxA — Sandy: SxA — A.
Finite State Automata is FSM without output.

Language L is a subset of A*. Regular expression, R over alphabet, A with letters a € A: (1) ¢ € R, (2)
a€A B)r*eRifreT, (4) rmro € Rifry,r0 € R, (4) 1 Vry € Rif r1,7 € R. Language associated
with a regular expression: (1) L(e) = {e}, (2) L(a) = {a}, (3) L(r*)L(r)*, (3) L(rire) = L(r1)L(rs2), (4)
L(r1Vre) = L(r1) UL(rz). L is a regular language if Ir € R with L = L(r). Phrase structured Gram-
mar, G, consists of (1) Vocabulary V, (2) terminals (denoted by lower case letters) T C V, (3) variables
or non-terminals V' \ T' (denoted by upper case letters), (4) a designated non-terminal S, called the start
symbol, (5) a finite set P of productions: o — 8. w = w’ iff Ju, v, w = uav and w’ = uPv.
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Grammar types defined by production rule limitation: (1) Type 0: no limitations, (2) Type 1: produc-
tion rules of the form o« — f, |a| < |8] or @ — ¢, (3) Type 2: production rules of the form A — 3, (4)
Type 3: production rules of the form A — a or A — aB, (5) context free: production rules of the form
A — 3, (6) context sensitive: production rules of the form aAa’ — afa’, (7) regular: production rules
of the form A — a, A — aB or S — ¢. Backus-Naur form for type 2 context free grammar: (i) ::= replaces
—, (ii) non-terminals enclosed in brackets <> and (iii) all productions with the same non-terminal LHS
are combined into a single RHS. Example: < sentence > ::= < noun phrase >< verb phrase >, < noun
phrase > ::= < noun > | < article >< noun >, < noun >:= boy.

A language L can be generated by a type 3 (regular) grammar iff there is a finite automaton M that
accepts L. Pushdown automata (with infinite stack) recognize L iff L is context free. L is recognized by a
linear bounded automata (tape linearly bounded in length of input) iff L is context sensitive.

Minimizing State machines: Two states, s;, s;, are 0 equivalent if the states have the same output
for every input. States are k + 1 equivalent if they have the same outputs for any input and their successor
states are k equivalent. Minimization procedure: Define 7 as all states that are 0 equivalent. Do until no
further refinement happens: sub-partition 7 into w1 into subblocks are k + 1 equivalent. This terminates.
When it does, merge equivalent states.

Pumping Lemma: Let L be a finite state grammar accepted by a finite state machine, M, with n states.
If o is a string accepted by M of length at least n, then o = ul|v||w where ul|v*||w is also in L.

Turing machines are FSMs with a bi-directionally infinite tape with a finite number of pre-marked squares
and an additional transition function o : S x A — {L, R, HALT}.

Huffman algorithm: Label each node with frequency. As long as more than one node is present, take
the two nodes with the lowest frequency and combine them into a single node with the two combinants as
children. New node has combined frequency. Left subnode has lower of two frequencies, right the higher.
Read code by traversing from root. Left traversal at parent is 0, right, 1.

Resulting code is prefix free. Further H(X) <I(z) < H(X) + 1.

2.1.1 Concurrency

ECMA Consistency
1. Reads and writes cannot move before volatile read.
2. Reads and writes cannot move after volatile write.

CompareExchange(ref int loc, int value, int comp) {
Monitor.Enter;
ret= loc;
if (ret==comp) loc= value;
Monitor.Exit;
return ret;

}

class SpinLock {
volatile int isEntered=0; // 1 if lock acquired
int Enter() {
while (CompareExchange (isEntered,1,0) !=0);
}
Exit() {
isEntered= 0;

}

Memory Consistency Rules
1. Behavior of Thread in isolation is unaffected
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2. Reads cannot move before lock
3. Writes cannot move after lock

return DPLL (assign(1,C), A + 1)) OR

DPLL(C,A) { DPLL (assign(not 1,C), A + not 1));
// C: clauses, A: literal assignments }
// Termination: Note: If A, B, C are p-free,
// empty clause: unsatisfiable (A| p) & (BI!'p) &C) is inconsistent iff (A[B)&C is.
// empty set of clauses: satisfiable
if (A is empty) Chase(C,x) {
return SATISFIED; set x to t;
if (A has an empty clause) delete all clauses containing x from C;
return UNSATISFIABLE; delete all occurences of !x from clauses in C;
// unit clause is a clause with one literal if (empty clause)
if unit clause (1) occurs in A return UNSATISFIABLE;
return DPLL (assign(1,C), A + 1)); if (unit clause 1)
if 1 occurs with same polarity throughout return Chase(1l,t);
return DPLL (assign(1,C), A + 1)); if (C is empty)
1= choose-literal(A); return SATISFIED;

Priority Queue (arrays start at 1 here)
Insert(A,k) {

ExtractMax(A) { heapsize(A)=heapsize(A)+1;
if (heapsize(A)<1) i= heapsize(A);
return error; while(i>1 & A[parent(i)]<k) {
max= A[1]; Ali]= Alparent(i)];
A[1]= Al[heapsize(A)]; i= parent(i);
heapsize (A)=heapsize(A)-1; }
Heapify(A,1); Alil= k;
return max; }
}

Select(A,k) {
// select kth element from A[1,...n-1] SideSelect(A,k) {

if (k==0) return min(A); for (i<=0<=n=INT(size(A)/5))
// For randomized, choose x in A at random Sort successive 5 elements
x= SideSelect(A); // A[5i]l<=A[5i+1]1<=A[5i+2]<=A[5i+3]<=A[5i+4]
Set B= < y in A: y <=x> R= < A[6i+2] > , 0<=i<=n
Set C= < y: y>x > x= SideSelect(R,Size(R)/2);
if (k<|B|) return Select(B,k) // note x <= 3*INT((n-5)/10) elements.
return Select(C, |B|-k); }
} // Note E(T(n))= E(T(sn))+n, x ~ 3/4
struct semaphore { void V(semaphore s) {
int count; if (s.queue.empty())
ProcessQueue queue; (s.count)++;
}s else
s.queue.remove(); //schedule process
void P(semaphore s) { }
if (s.count>0) {
(s.count)--; shared semaphore s= 1;
else P(s);
s.queue.Insert(); // block //critical section
} V(s);
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Map ()

Reduce () Readers/writers
Scan() // || prefix linear sweep
Scatter ()

Gather ()

Architecture and current PCs: P = C x V2 x f. Big endian word: 0, 1,2, 3 (descending byte address).
Little endian word: 3,2,1,0 (descending byte address).

Optimization Level Description Level
High Procedure inlining 3
Local common subexpression 1
Local constant propagation 1
Local stack height reduction (expression tree) 1
Global global common subexpression 2
Global global constant propagation 2
Global code motion 2
Global induction variable elimination 2
Global loop unrolling 4
Global strip mining 4
Arch specific strength reduction 1
Arch specific pipeline scheduling 1
Arch specific branch offset 1

Effect on performance of Bubblesort (100K items). Base is 300MHz Sparc Ultra.

Optimization level | Relative performance | Clocks | Instructions | CPI
0 1.00 | 158,615 114,938 | 1.38
1 2.37 | 66,990 37,470 | 1.79
2 2.38 | 66,521 39,993 | 1.66
3 2.41 | 65,747 44993 | 1.46

SRAM: .5 — 1ns, 4,0008/GB. DRAM: 50 — 70ns, 100$/GB. Disk: 107ns, 1$/GB. Dram address setup:
1 memory cycle, access time: 15 cycles, data transfer: 1 cycle. 4-way interleave plus multiword block gets
time down to 20 cycles on average. Miss penalty to main: 500 cycles, to L2: 25 cycles. TLB: 512 entries.
Miss: 100 cycles. Miss percentage; .5-1. Disk seek latency: 10 ms, rotational latency: 5 ms, transfer rate:
50 MB/s, MTTF: 10 hours. Bus speed: system (800 MHz), NB (266 MHz), SB (33 MHz). Bandwidth:

Device | Bandwidth
Memory 3.2GB/sec
Disk | 150 MB/sec
AGP | 2.1 GB/sec
PCI | 132 MB/sec
NIC 20 MB/sec

Dwarves: Finite state machines, combinatorics, graphs, Structured/unstructured grids, dense matrix,
sparse matrix, map-reduce, backtrack/branch-and-bound, N-body, FFT, Graphical models.

LU-factorization: Let A # 0 be an m X n matrix. There are permutation matrices P, such that
PTAQ = LU where L is lower triangular and U is upper triangular. @QR-factorization: Let X € Cn*?
have rant p then £ = QR where @) is an orthogonal matrix and R is an upper triangular matrix. QR-
factorization via unitary operations is used in the least square approximation problem. Spectral decomposi-
tion: U% AU = diag(\1, Mg, - - -, An). The eigenvalues of X X are the sequence of singular values of X. For
a p X q matrix, row major storage is A[1,1] = a[l], A[1,2] = a[2], ..., A[2,1] = a[qg + 1], etc., and in general,
row major storage is A[i, j| = a[(i — 1)g + j], column major storage is A[1,1] = a[1], A[1,2] = alg+ 1], ...,
A[2,1] = a[2], etc., and in general, column major storage is A[i,j] = a[(j — 1)p + i]. One step of Gaussian

Elimination:
Q1] a1T2 _ B1 - Qi1 Oéng _ B1
anp  A22 by 0 A22-— afllaglalTQ by — ozfllﬁlagl
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Chapter 3

Cryptography and Computer Security

3.1 Classical Systems

Shannon Theory: What is the amount of information in a number n : 0 < n < 2™. Information learned
about Y by observing X is I(YV,X) = H(Y|X) — H(Y). Note H(X|Y) =Y px(2)H(Y|X = z) which is
generally not equal to )y y py (y[2)lg(py (y[7)). Hr = limy—oo H(:n). H(K|C)=HM|C)+H(K|M,C).
Perfect secrecy: Pr(M|C) = P(M). Unicity Theorem: Let H be the entropy of the source (say English)
and let ¥ be the alphabet. Let K be the set of (equiprobable) keys, then u = %‘)). IC(f) = %

, Ug(=D—H
MO(f, f') = &L

Vigeniere alphabet chaining: If « is the mixed plaintext alphabet and 3 is the mixed cipher alpha-
bet underneath, rearranging with the plain alphabet into its normal form we get the tableaux:

1 2 n
Bl (D) B @) | ... Bla ()
Bla (1) +1) | Blar2)+1) | ... | Bla™ (n)+1)
Bla M +n—1) | Bla1@2) |..|Ba1tn)+n-2)

Note that the columns have the same sequence of characters as the original rows — if plain A corresponds
to cipher F and if plain F corresponds to cipher W then the distance between plain A and plain F is the
same as cipher F and cipher W in the original sequence.

Heburn: Five rotors, two ratchet controls. Key: [i,j, k, m,n] and 2 ratchet stepping controls at right and
left (1,7). Rightmost (R5) rotor moved after every enciphered letter. Leftmost (R;) moved when fast rotor
reached position specified by r. a(m) character in line to Rs. When the leftmost rotor hit ! the middle (Rj3)
rotor moved one position. Equation: (p) KC*R;C~'C7 RyC~7C*R3C~F*C™R,C~™C"RsC~ "L = ¢, C'is the
cyclic in alphabetical order. Solution: c¢(m) = a(m)C("+P) RsC~("+P) [, d(m,p) = c(m)L~*Cm+P) R IC—(m+p)
then d(m,p)RglC”_ng) = d(n,p). Practical application relies on the IC for the monoalphabetic substitu-
tion (imagine all the input letters are the same). If i = d(m,p), j = d(n,p) and k = n —m. To remove noise,
tally s'[i, j, k] =3, >, s[i,m, k —m]s[m, j,n], this can be iterated.

Enigma: K: Keyboard. P = (ABCDEFGHIJKLMNOPQRSTUVW XY Z). N: First Rotor. M:
Second Rotor. L: Third Rotor. U: Reflector. Note: U = U~'. 4,7, k: Number of rotations of first, second
and third rotors respectively. ¢ = (p)PPNP~PIMP-ipkLP~kUPkL-1P=*PiM~1P~IPIN-1P~% Later
military models added plug-board or “Stecker ”(.S):

c = (p)SPiniinMPiijLpikUPkLilPikijilpijPiNflpfiS*l'

Total key including rotor wiring (in bits): 67.1 + 3 x 88.4 = 312.3. Method of Batons (no Stecker):
Let N be the fast rotor and Z the combined effect of the other apparatus, then, N"!ZN(p) = c at first
letter; assuming other rotor doesnt turn, P=*N~1P'ZP~iNPi(p) = c or ZP"'N(p(i))P* = P~'NPic(i).
Rejewski: Let Q = MLUL 'M~! = Q~!, the first 6 permutations (used to encrypt settings twice) are:

A=A"1=8SP'NP QPN P17 B=B!=SP:NP2QP?N-1p~25-!
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C=C"1=8P3NP3QP3N P38 D=D1'=SP'NP4QP‘N-1p~45-!
E=E1'=8SP°NP QPN P 5S 1 F=F1=SP°NPSQPSN-1p65-1!
Their products and ciphertext (c1cacscacscs) satisty:
AD = SPNP'QP'N'P’NP4QP*N'P~4S7! (¢))AD = ¢4
BE = SP?’NP2QP?>N'P3NPPQP°N~'P~°S™! (¢;)BE = ¢;
CF =SPNP3QP’N'P?NP QP NP~ 657! (¢3)CF = ¢

So we can find AD, BE and CF after about 80 messages. To solve for rotors if S is known. First note
the following Theorem: If two permutations of the same degree consist of disjoint transpositions then
their product contains an even number of cycles of the same length (and conversely) and cillies (guessed
simple indicators like aaa) align cycles. Let U = P~1S7'ASP = PNP'1QPN~'P~1, V = P~25-1BSP?
etc, then VIW = NPIN-YUV)NPN~!, WX = NP"IN-Y(VW)NPN~!, etc. which can be solved for N.

Assume we know all rotor wirings and the plaintext for some received ciphertext. We do not know plugboard,
rotor order, ring and indicator.

Position  123456789012345678901234
Plain Text OBERKOMMANDODERWEHRMACHT
CipherText ZMGERFEWMLKMTAWXTSWVUINZ

Observe the loop A[9] — M|[7] — E[14] — A. (E)M;MygM,4 = E, where M; is the effect of the machine at
position ¢. British Bombe searched probable text for these loop isomorphisms. False alarms have probability
5 for each independent loop tested.

3.2 Public Key Systems

RSA: n = pq, choose e, ed =1 (mod ¢(pq)), e is often 26 + 1 for efficiency.

DLP: Given g,h and h = ¢%, find z. DHP: Given g,a = ¢*,b = ¢Y, find z = ¢*¥. DDH: Given
g € Gia=g*b=g¥%c= g* determine if z = xy. DDH < DHP < DLP. Theorem: FACTOR <
SQRT < FACTOR. If the RSA problem is hard, then RSA is secure under a chosen plaintext attack. If
DHP is hard, El Gamal is secure under a chosen plaintext attack.

Finding square roots (mod p): We want z : 22 = a (mod p). First check (3) =1 Ifp=3
(mod 4), z = % (mod p). If p="5 (mod38), b= % =11 (modp), thenifb=1,2 = w
(mod p), otherwise, if b= —1,2 = % (mod p). This leaves the hard case, p=1 (mod 8)). The
algorithm of Tonelli and Shanks solves this case (and the others). Again, we want z : 2> =a (mod p). Put
p—1= 2%, q, odd. Choose n: (%) =—-1,2=ng (modp),Q = @. Puty=2zr=ex=a@Q (mod p);
b=az? (modp); z=azx (modp). Now R=2"—1,ab= 22, yR = —1,bR = 1;. Do the following: loop:
if(b = 1) return(x);

Let M = 2™. For smallest m > 0:bM =1 (mod p)

if(m = r) return non-residue;

t=32""" (modp);y=1t2 (mod p); r=m;x=axt;b=by; goto loop;

Factoring n may be equivalent to computing ¢(n) which is equivalent to finding d. Strong primes: p — 1
has a large prime factor r, p 4+ 1 has a large prime factor a, » — 1 has a large prime factor ¢t. Miller-Rabin
has error probability p = %.

El Gamal: Let g be a generator of F,;. A picks a at random, this is A’s secret. User picks k at ran-
dom and sends (g*, Pg*®). E1 Gamal Signature: g is a primitive element Zy. (p,g,y = g*) are public, x
is secret. To sign m, pick k: 1 <k < p—2 with (k,p—1) = 1. sigg(m, k) = (r,s), r = g~, s = k=1 (m —zr).
verg(m,r,s) is true iff y"r® == ¢g™. Note: k must be different for each signature and m must be a hash.
Recommended parameters: > 768 bits. Existential forgery if hash isn’t used in El Gamal: For key elements,
(< Zp >,g,a), pick (u,v), r =g'g® = g"T®. s=—rv=! (mod p—1), M = su. Note that t = rsy” = g**.
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Diffie Hellman: Let g be a generator of F;. A generates a € F; at random and transmits g%, B generates
b € F; at random and transmits g“, they use g® as key.

Blinding and E-cash: Let M be a note or check. To blind, generate random k. Let (e,d,n) be the
bank’s key and H, a hash. Send bank r = H(M)k®. Bank sends back ¢, now multiply by k~!. For fraud
resistant protocol, do this for a bunch of ks’s. Bank signs one of them.

DSA: Pick p,q, 219 < q < 2160 25114648 )y 9512464 () < ¢ < 8 with ¢|(p — 1). Let z be a primi-

tive root  (mod p). Set g = 25T > 1 (mod ¢). Finally, pick ¢ at random and set A = g* (mod p).
p,q,g, A are public, a is secret. To sign M: generate random k : k < q. Set » = g* (mod ¢) and compute
s=k 1 (h(M)+zr) (mod q), where h is a cryptographic hash. Signature is (r, s). To verify: u; = s~1h(M)
(mod q), us = s7'r (mod q), v = g*1g“> (mod p) (mod q). If v = r, it verifies. Unlike El Gamal sig-
nature, s does not carry full information about p (only  (mod ¢)) and since ¢ is large, the Pohlig-Hellman

attack is harder.

1; think of r = 2%, 2" < n < 2" R = ab (mod n).
t =1ab; m =tn' (modr); u= "2 if(u > n) u— =n;
(mod n); b = br (mod n); T = MontPro(a,b);

Montgomery Arithmetic: Suppose (r,n

@ =ar (modn). rr’ —nn' =1 MontPro(a, b):
return(u); MontMult(a,b,n): Compute n’ ; @ =
x = MontPro(z,1);

return(z).

ar

NAF: Let k =Y\ _os;

by following algorithm:

co = 0;

for(j=0;5 <+ +){
i1 = [(Kj + ki +¢5)/2];
sj = kj+¢j = 2¢415 }

27, s; € {0,1}, NAF form is k = Zéit ¢j29,¢; € {—1,0,1}, conversion is achieved

AMD-64 3Ghz dual core timings.

Algorithm KSize T(u-sec) Cycles || Algorithm KSize T(u-sec) Cycles
ECDSA-SIGN 256 4942 14,827,000 || ECDSA-VERIFY 256 9,848 29,546,000
ECDSA-SIGN 384 13,000 38,860,000 || ECDSA-VERIFY 384 25,900 77,639,000
ECDSA-SIGN 521 29,500 88,287,000 || ECDSA-VERIFY 521 58,900 176,524,000
Algorithm | KeySize T (mu-sec) Cycles || Algorithm KeySize T(mu-sec) Cycles
DSA-SIG 512 1,077 3,233,000 | DSA-VERIFY 512 2142 6,427,000
DSA-SIG 768 2,332 6,999,000 || DSA-VERIFY 768 4,641 13,924,000
DSA-SIG 1024 4,027 12,083,000 | DSA-VERIFY 1024 8,015 24,047,000
Algorithm | KeySize T(u-sec) Cycles | Algorithm KeySize T(u-sec) Cycles
RSA-SIGN 1024 3,488 10,465,000 | RSA-VERIFY 1024 168 505,000
RSA-SIGN 2048 22,905 68,717,000 | RSA-VERIFY 2048 608 1,825,000
RSA-SIGN 3072 72,494 217,491,000 | RSA-VERIFY 3072 1,340 4,021,000
RSA-SIGN 4096 168,548 505,664,000 | RSA-VERIFY 4096 2,363 7,091,000
Algorithm KeySize T(sec) Algorithm KeySize T(sec)

RSA KeyGen 1024 .37 || ECC KeyGen 160 .0053

RSA KeyGen 2048 3.5 || ECC KeyGen 224 .0056

RSA KeyGen 3072 11.2 || ECC KeyGen 256 .0067

McEliece Cryptosystem: Bob chooses G, an [n, k,d] linear code, G; = SGP where P is an n X n per-
mutation matrix and S is a k x k invertible matrix. To send a message to Bob, Alice adds an error, e, of
weight t, y = G + e. To decrypt, (1) compute y; = yP~! = 2SG + ey; (2) apply error decode to y; to get
x1; (3) compute g : oG = x1; (4) compute = 205~ L. Want d to be large. For example, use Goppa code
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(n=2md=2t+1k=n=mt): m=10,t=>50 to get [1024, 524, 101].

3.3 Symmetric Key Systems

CBC: yo = IV, yi = Ex(z; +yi—1). OFB: 29 = IV, 211 = Ex(2), yi = s + 2. CFB: yg = IV,
zi = Ex(yi—1), yi = x;+2;. CTR: 2; = Ex(Nouncel|ctr), y; = ©;@z;. HMAC: (K, m) — h((K®a)||h(K®
b)||m). GCM: F = GF(2'%),p(x) =228 + 2" + 22 + 2 + 1, (20,90) = (IV,0'2®), (21,%) — (2iz+1,¥ix1) by
zip1 = mi(z), if mi(x) = 0, 2; ® y; otherwise and y; 41 = y; >> 1 if LSB(y;) = 0 otherwise y;+1 = (y; >>
1)@ R, R = [11100001][0'2. Define X - Y = (2128, y125). incs(X) = MSBion(x)—a(X)||[int(LSBs(X)) + 1
(mod 2%)];.

GHASHy(X),len(X) =128m: H = Ex(0128). Y5 =028 Y, 11 = (Y; ® X;41) - H. return Y,,,.
GCTRk(ICB,X): If X is the empty string, then return the empty string as Y. n = [(len(X)/128]. Let
CBl = ICB, CBI = 7;71032(0Bi_17i =1...n. }/z = Xi D EK(CBl) Yn* = XZ*EK(CBl) return Y.

GOM — AEg(IV,P,A): H = Ex(0'2%). If len(IV) = 96, Jo = IV]|03|[1. If len(IV) # 96, let s =
128[len(IV)/128] — len(IV), and let Jo = GHASHy (IV]]|05764||len(IV)54). C = GOCT R (incz2(J0), P).
Let n Define S = GHASHy (A||0°]|C||0%||len(A)%||len(C)5%). T = MSBy(GCT Rk (Jo, S)). return (C,T).

Recurrence for LFSR of length k: s; = ¢15;_1 + ... cksj—r. Hamming weight: wy(z) = #{n : z, #
0}. Modular weight: wy(z) = |2/| where 2/ = 2 (mod 2") and —2""! < 2/ < 2771, NAF weight:
wyar(z) = #{i <n: o #0}. A®(z,y), At(x,y), AT(z,y) are the xor, modular and signed differences
respectively. Distortion for map ¢: D(¢,d;,ds) = supw?gyWsupw#y%. flz,. .., 2,) 18
m~correlation immune if I(f(xy,...,2,); %y, ..., x;, ) = 0 for any choice of the iy. This happens when the
boolean spectrum of F'(w) is 0 when w has weight < m. Shrinking Generator: Take two LFSR: LFSR;
and LF'SRy synchronously clocked. Use LESR(t) in stream when LFSR;y(t) = 1. Take LFSR;(t) = z;(t)
fori=1,2,...,nuse f(x1(t),z2(t),...,x,(t)) where f is non linear. For k stage shift register design, where
stage i has n; bits of state, keysearch takes 20 Tn+1+-+ne—1 while correlation attack [Example: Geffe com-
biner: f(z,y,z) =y ® yz ® 2], then f(z,y,2) = = with p = 2] takes 270 4 2"+ 4 4 2mk—1,

Ti Tl Tjtz e Tjgkel
Let M, y(x) = g+l i+2 i+ Jtk . If < x; > is generated by an LFSR of length N
Tjtk—1 Lj+k LTjtk+1 - Tj42k—2

but not one shorter then det(M; n(z)) = 1 and det(M; ,(x)) = 0,n > N. f 2y = coTn+. . .+ Cm—1Znim—1
and ¢(x) = 2™ +c¢p_12™ 4. . .+ co, the associated connection polynomial, is irreducible, then the sequence
repeats at an interval of k£ = 2™ — 1.

Connection polynomial for L,(5) is ¢(z) = 1 + c12 + ... + qa! with ¢(x) = 0 if L,(5) = 0. De-
fine d, as nth discrepancy, suppose m is the position of change of length in minimal generating LFSR.
Lm(5) < Ln(3) and Ly,41(5) = Ln(5). The recurrence is ¢"9(z) = ™ (2) — dpd,, 2™ (z).
The synthesis algorithm is O(n?). Theorem: A LFSR of length & has maximal period (= 2F — 1) iff
its connection polynomial is primitive. Proof: Let G(z) = ap + a12 + a2z® + ... + apm_12™ 1 + ..,
Am = C1am—1 + ... + cpa1, etc. We get a recurrence yielding %, flx) = 1 — ¢(x). If sequence is

p, G(z) = (ap+ar1z+...+am_12™ V) +(ag+arz+.. . +a;_12™ HaP+... = (a°+a1m+'1'f;i’"*1”mq) = (fﬁ)).

Massey’s Lemma: If L, (5) generates < sg, ..., S,—1 > but not < so, ..., s, >then L,11(8) > max(L,(5),n+
1 — L,(8)). Proof: Suppose L generate < sg,$1,...,S,—1 > but not < sp,$1,...,8, > and let L' with
Ly, 1(8) =1 then I’ > n+1—1. Proof. If | > n, I’ > 1 soit’s true. If [ < n, let ¢; be the coefficients

of L and ¢}, the coefficients of L. s; + Zi=1 cisj—y =0for j =1014+1,...,n—1 but not for j = n and

55+ Zl c;sj—i =0forj=01"+1,...,ns0 — 22:1 CiSj—i = 22:1 C; 22:1 €. Sn—i—k Switching the order

=1 "
of summation, the second sum is s,, which is a contradiction.

Berlekamp-Massey: Given si, sa, ..., sS,—1 output linear complexity L.

1. C(x)=1,L=0,m = —1,b(z) =1,n=0.
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2. d= Sn + Zle CiSpn—i-
3. If (d==1) t(z) = c(z),c(x)+ = b(x)z" ™) if(L < §) L=n+1—L,m=n,b(x) = t(z)

4. n=n+1;
RC4Init () { i= 0;

for (i=0; i<256; i++) j= 0;
slil= i; }

fill k[] with key repeating
as necessary; byte Next() {

j= 0; i= (i+1) (mod 256);

for(i = 0; i<256; i++) { j= (§+s[il) (mod 256);
j= (k[il+s[i]+j) (mod 256); swap(s[il, s[j1);
swap(s[i], s[j]); return(s[(s[il+s[j]) (mod 256)1);
} }

Let A(s™) be the associated linear complexity of the sequence < s; > of length n and N, (L) be the number
of sequences of length n with linear complexity L, then N, (L) = 2N,,_1(L) + Ny_1(n — L), if n > L > &;
No(L) = 2N,_1(L), if L = %; and, N,(L) = N,—1(L), if 2 > L > 0. So N, (L) = 2min(n=2L2L-1) "4f
n>L>0,N,(L)=1,ifn>L=0. B(A(s")) = & + 220 _gonin 4 2y ygp(pA(sm)) = 5.
RC4 Weakness: Let S; be the state at time i, N = 2" (n = 8, usually). Let < z; > be the output
sequence. P(z) = 0) = Z. Proof: Suppose Sp[2] = 0, So[1] # 2, So[1] = X, So[X] = Y. Round
1: i =1, X = Sp[1] + 0. Exchange Sp[1] and Sp[Y]. Round 2: ¢ = 2, j = X + 51[2] = X, Output
S1[S1[2] + S1[X]] = S1[X] = 0. So P(z; =0) ~ + + =(1 — %) ~ %. So by Bayes, if zo = 0, we can extract
byte of state with probability %

ANSI 9.17 random stream generator: I = Ei(D). z; = Ex(I ® s) and s = Ei(x; ® s). FIPS
186 One Way Function (OWF): ¢, ¢ 160 bits. Output G(t,c) where t = H;||Hs...||Hs. Pad ¢ with 0s
to get 512 bit block X. Break X into 16 32 bits words xg,...,x15 and set m = 1, apply iterative step of
SHA-1.

Dual Elliptic Curve RNG seed= Hash_df (seedBits, seedlen);
s[0] in [0,1, ..., #E-1] V= seed;
output 240 bits C= Hash_df ((0x00]||V), seedlen);
for(i=1 to k { reseedCtr= 1;
s[i]l= x(s[i-1]P); return;
r[il= 1sb[240] x(s[ilQ);
} Hash_DRBG_Generate (numReqBits, addInBits)
return(r[1] ... r[k]); if (reseedCtr>reseedInterval) then
Reseed;
// State for Hash_DRBG if (addInBits!=NULL)
V // seedlen bits w= Hash(0x02| |V||addInBits);
C // seedlen bits V=(V+w) mod 2**seedlen;
reseedCtr returnedBits= Hashgen(numReqBits, V);
H= Hash(0x03||V);
Hash_DRBG_Instantiate(entBitsIn, nonce, V=(V+H+C+reseedCtr) mod 2**seedlen;
extraEnt) reseedCtr= reseedCtr+1;
seedBits= entBitsIn| Inonce| |extraEnt; return returnedBits;
seed= Hash_df (seedBits, seedlen);
V= seed; Hashgen (numReqBits, V)
C= Hash_df ((0x00||V), seedlen); m= reqNumBits/outlen;
reseedCtr= 1; data= V;
return; W= NULL;
for i= 1 tom
Hash_DRBG_Reseed(entBitsIn, addInBits) w= Hash(data);
seedBits= 0x01||V||entBitsIn| |addInBits; W= W||w;

68



data= (data+l) mod 2x*seedlen; // Full entropy

returnedBits= Leftmost numReqBits CTR_DRBG_Reseed(entBitsIn, addInBits):
bits of W; temp= len(addInBits);
return returnedBits; if (temp<seedlen), then

) ) addInBits= addInBits]| |
Hash_df (inBits, numRetBits): [seedlen-temp] bits of O;
temp= NULL; seedBits= entBitsIn-addInBits.;

m= numRetBité/outlen; . (Key, V)= Update (seedBits, Key, V);
counter= 8-bit representation of 1; reseedCtr= 1;

for i= 1 to len do

return;
temp= temp|| Hash(counter]| |
numRetBits| |inBits); // Derivation Function Required
counter= counter+1; CTR_DRBG_Reseed(entBitsIn, addInBits):
regBits= Leftmost numRetBits of temp; seedBits= entBitsIn||addInBits;
return reqBits; seedBits= Block_Cipher_df (seedBits,
seedlen) ;
// State for CTR_DRBG (Key, V)= Update (seedBits, Key, V);
V // outlen bits reseedCtr= 1;
C // keylen bits return;
reseedCtr
nStrength CTR_DRBG_Generate (numRegBits, addInBits):
fPrediction if reseedCtr>reseedInterval, then
reseed;
CTR_DRBG_Update (provided_data, Key, V): if (addInBits!=NULL)
temp= NULL; temp= len(addInBits);
while(len(temp)<seedlen) do if (temp<seedlen))
V=(V+1) mod 2**outlen; addInBits= addInBits] |
outBits= blockEncrypt(Key, V); [seedlen-temp] bits of 0;
temp= temp| |ouput_block; (Key, V)= Update (addInBits, Key, V);
temp= Leftmost seedlen bits of temp; else
temp= temp”provided_data; addInBits= [seedlen] bits of 0;
Key= Leftmost keylen bits of temp; temp= NULL;
V= Rightmost outlen bits of temp; while(len(temp)<numRegBits) do:
return Key and V; V=(V+1) mod 2**outlen;

outBits= blockEncrypt(Key, V);

temp= temp| |outBits;
returnedBits= Leftmost numReqBits of temp;
// Update for backtracking resistance.
(Key, V)= Update(addInBits, Key, V);
reseedCtr= reseedCtr+1;

// Full Entropy
CTR_DRBG_Instantiate(entBitsIn, extraEnt):
// Ensure that the length of
// extraEnt is seedlen bits.
temp= len(extraEnt);

if (temp<seedlen)) .
return returnedBits;
extraEnt= extraEnt| |
[seedlen-temp] bits of 0; BCC(Key, data):
seedBits= entBitsIn"extraEnt; CV= [outlen] bits of O0;
Key= [keylen] bits of O; n= len(data)/outlen;
V= [outlen] bits of O; Split the data into n blocks of outlen bits
(Key, V)= Update (seedBits, Key, V); forming block[1] to block([n];
reseedCtr= 1; for i= 1 to n do
return; inBlock= CV~block[i];
// Derivation function required Ousgitziogs?ncrypt(Key,1nBlock),

CTR_DRBG_Instantiate(entBitsIn, extraEnt):
seedBits= entBitsIn| Inonce| |extraEnt;
seedBits= Block_Cipher_df (seedBits, seedlen)Block_Cipher_df (numRetBits, inBits)

Return outBits;

Key= 0 of [keylen]; if (numRetBits>maxNumBits), then
V= 0 of [outlen]; return ERROR;

(Key, V)= Update (seedBits, Key, V); L= len(inBits)/8;

reseedCtr= 1; N= numRetBits/8;

return; S= L||N||inBits||0x80;
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// Pad S with zeros, if necessary. 4. for(c=0; c<uL;c++)

while(len(S) mod outlen) != 0 T= t|| h(mSeed || ¢);
S= S| 10x00; 5. output leading bits
temp= NULL;
i= 0; PSS-Encode(M, emBits, salt, sLen)
K= Leftmost keylen bits // M- message
of 0x00010203...1D1E1F. // emBits— bits of EM >= 8 hLen + 8 sLen + 9
while len(temp)<keylen+outlen) 1. emLen= ceil(enBits/8);

IV= il | [outlen-len(i)] bits of O0;
temp= temp| |BCC(K, (IV][S));
i= i+1;

K= Leftmost keylen bits of temp;

if (1(M)> largest message), return error;
mH= h (M)

if ( emLen < hlLen+sLen+2 ), return error;
M’= (0x00)"8 || mH || salt

~N O O W N

X= Next outlen bits of temp; H= h(M’);
temp= NULL; DB= (0x00) " (emLen-hLen-sLen-2)
while len(temp)<numRetBits [l 0x01 || salt
X= blockEncrypt (K, X); 8. dbMask= mgf (H, emLen-hLen-1);
temp= temp| |X; 9. maskedDB= DB~dbMask;
reqBits= Leftmost numRetBits of temp; 10. Set leftmost 8*emLen-emBits to O in maskedDB
return reqBits; 11. EM= maskedDB || H || Oxbc

. . . 12. return EM;
MGF property: Given no input and partial output, b

remaining output is unpredictable. emsa—pkcs (M, emLen)

mgfl(mSeed, nLen) // emLen= 1(EM)>= tLen+11

1. if (mLen>2"32$, return error 1. H= h(M)

2. T= ||; 2. T= hash-prefix || H ; // tLen= 1(T)

3. ul= ceiling(mLen/hLen), 3. EM= 0x00 || 0x01 || (Oxff)~ (emLen-tLen-3) || T;
// hLen is length of hash used 4. return EM;

Blum-Blum-Shub: Select p,q each = 3 (mod 4), n = pq, s € [1,n — 1]-seed, (s,n) = 1 29 = 52

(mod n) for(i=1to 1) z; =27 ; (mod n) z; = LSB(z;) . Next bit test: Given [ bits, no polynomial time
algorithm can predict the [ + 1st with probability > % + €.

RC6 input: A,B,C,D, r rounds, w-bit round keys in S[O...2r+3].

RC6() {
B= B+S[0];
D= D+S[1]; // Key L[O to k-1];
for(i=1;i<=r;i++) { RoundKeys(L,S,k) {
t= (B*(2B+1)) <<< 1lg(w); S[0]= 0xB7E15163al Elliptic Curve RNG
u= (D*(2D+1)) <<< 1lg(w); s[0] in [0,1, ..., #E-1]
A= ((A~t)<<<u)+S[2i]; output 240 bits
C= ((CTu)<<t)+S[2i+1]; for(i=1 to k {
(A, B, C, D) = (B,C,D,A); slil= x(s[i-1]1P);
} r[il= 1sb[240] x(s[ilQ);
A= A+S[2r+2]; }
C= C+S[2r+3]; return(r[1] ... r(k]);
}

OAEP: Want to send m. Let p(r) be a pseudo random number generator initialized with seed r. Calculate
a=p(r)®m,b=r® H(a). Send E(al[b).

Traitor tracing: y = Hfilhiéi. 0 is the representation vector with respect to the base h. Convex combi-

nations of representations are also solutions. Generate [ > 2k + 2 private keys with security parameter s to

defend against coalition of size k. Choose g, a generator of G4, r;, ¢ =1,2,...,2k at random with h; = ¢g"™.

Public key is < y, hi, ha, ..., ho, > where y = I125 h;*". Private key is 6; with 6;7(") a representation of
Sy

y. T'= {71 4@ . 4O} are public. Each v = >0, is a codeword. 6; = St ~*. Encrypt: pick

j=1"373
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a randomly C' =< My® h1?, ..., (hox)® >. To decrypt C =< C, Hy,..., Hy, >, compute M = —i where
U =112k H;". Tracing: Assume q > max(l,2k) examine [ — 2k — 1 x 2k matrix A

1 1 1
1 2 3 l
A= 12 22 32 12
et gt giaker T b
Rowspace <> polynomials of degree < | — 2k — 1. Let B be formed by the column vectors by, bo, ..., ba,

the basis of vectors satisfying AX = 0(¢). Jw of Hamming wt < k with vB = d, null space of B « f with
deg(f) <1—2k—1and v—w =< f(1), f(2),... f(I) > in all but (at most) k places. Use Berlekamp to find
f from v.

3.4 Public Key Analysis

2
3

1
Generally primality testing is O(n9(9(")) and factoring (Number Theory Sieve) is O (nc(t9(m) 3 (lg(lg(n))3 )
mod n) then n is prime with probability %
) () = —(%),if m=n=1,3 (mod 4),
ifn=35 (mod8), (4) (1) = (2)"(})-

) n n n

Solovay-Strassen: Choose 1 <a < (n—1). I
Use the following to compute (£): (1) (™L72) = (Z:2)(=
() = (£), otherwise, (3) (2) =—1,ifn=1,7

n

n

n—1

Pockington: Let n > 1 and s | (n — 1). Suppose for some a, (1) a2 =1 (mod n), and (2) Vg, qls,
n—1
(e« —1,n)=1. Then p | n. Soif s > \/n, n is prime.

Pollard p — 1: (for numbers with a factor, p, where p — 1 factors into small primes). n is B smooth.
In(n) .
Q=Tl,5 ¢' . Va,aQ = 1(p), ged(a@ —1,n) = d. Q = LCM,i<p(p").

Application of Pollard-p to discrete log: Let z;1; = f(z;) and n be the order of the multiplica-
tive group. m = (u(1l + L%J) For the discrete log problem, h = g%, x,, = To,,; tail of length X\, p is
length of cycle. A < m < XA+ p. Let Si,S3, S5 partition the multiplicative set, 1 ¢ Sy and define ;41 =
f(z;) = hay,m; € St 21 = f(zy) = 22,2 € S2 xip1 = f(2;) = gz, € S35 aj41 = a; (mod n),z; € Sy
ai+1 = 2a; (mod n),xi €5 aiv1 =a; +1 (mod n),xi € Ss; bi+1 =b;+1 (mod n),xi €5 biy1 = 2b;
(mod n),x; € Sy biy1 =b; (mod n),z; € S3 and consider 3-tuples (z;,a;,b;) with (g, ag,bo) = (1,0,0).
Then log,(z;) = a; + bjlogy(h) is an invariant of the sequence. When x,, = Zam, am + by, = a2m + xbom,
and x = Pm—pm,

Quadratic Sieve: Factor Base is Bg = {—1,2,3,...p},p; < B. Define a sequence a; = ([\/n] +14)% —

Set b; = ( m ] +1i), b? — a; = n. For the a;’s that factor over the base, find a bunch using linear algebra
after taking the log. Then for these a;,’s, [[ai, = y*> (mod n), where y is a product of the corresponding
b;’s. Sieving finds B—smooth elements of sequence. Sieving: Fix sieving interval —C < s < C, compute
f(s) = (z + [n])? —n, find s : p | f(s) - i.e- find roots of f(z) = 0 (mod p), walk through sieving
interval by steps of p for others. Divide each f(s) in sieving interval by the higher dividing power of each p,
ones with 1 or —1 are smooth. Wiedemann algorithm for solving sparse linear equations is Ln[%, 20+ o(1)].
Sieving is O(L,[3,v 4+ £ + 0(1)]/p). Reason: Let ¢/(X,Y) be the number of ¥ —smooth numbers in [1, X].
Pr(a € [1,X]isY — smooth) = ﬂ ; expected trials to find one: w())f(Y) need about 7(Y') to get enough

(Y) X

for a square and each takes m(Y") work to test, so the total work is W(X,Y) = 7~+5. Minimum occurs

when YV = e2 VIn(X)in(n(X)) ang X ~ nzte. Try n = 24961, 157.

Number Field Sieve: F = {p: p < B} want to find a, A : b=a+ N and b is B-smooth so [[p € Fp% =
HperbP (mod N). Procedure: (1) Fix A, (2) let Array A have A+ 1 0’s, (3) Vp € F, add lg(p) to all
positions congurent to —AN (mod p) and (4) choose a larger than some threshhold. Construct two monics
of degree dy,da: fi(m) = fa(m) =0 (mod N) using the number fields K; = Q(6;) and Ky = Q(2). We
have two homomorphisms ¢; : Z[0;] — Z/NZ, with 6; — m. Set S = {(a,b) € Z* : (a,b) = 1} satisfying
[Ig(a—b61) = % and [[g(a—0b2) = 4. Then ¢1(8)? = ¢2(v)*> (mod N) and (¢1(8) —¢2(v)) | N. What's
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left is to find S, 32, f1 and f,. An algebraic integer is smooth if the the ideal it generates is divisible only
by small primes. Define F;(X,Y) = Y% f;(X/Y) then Ng,)/g(a — bi) = F;(a,b). Use two factor bases
Fi =A{(p,0i =), fi(r) =0 (mod p)}. Fi(a,b) =TI, er pjsy). Sieving: (1) fix a, (2) init sieve array
—B < b < B, S[t] = lg(Fi(a,b) - F5(a,b)), (3) ¥(p,r) € F; subtract lg(p) from every element: a —rb =0
(mod p), (4) the desired b’s are the ones: S[b] < T'hreshhold. [], , cs(a —b6;) = 72,7 C Z[6;]. Now find
enough relations such that [[¢(a — b61) = 52, etc.

Example: N =290% + 1, fi(z) = 2% + 1, fo(z) = 2 —m,m = 290. fi(m) = fo(m) =0 (mod N).
x y N(z —iy) | Factors | x —my | Factors
-38 | -1 1445 5-17° 252 [ 22.3%.7
—22 | —19 845 5-132 | 5488 24 .73

(=31 4+14) = —(2+14)(4 — i), 22+ 19)) = —(2 +i)(3 — 2i)%, (=38 + m)(—22 + 19m) = 20327% =
11762 = (31 — 124)%. ¢1(31 — 124) = 31 — 12m = —3449, (—3449)? = (1176)%. (N, —3449 + 1176) = 2273,
(N, —3449 — 1176) = 37.

Pollard p: f(z) = 22 + 1. Compute x;11 = f(z;). Look at ged((x; — z;),n) for factors of n. Floyd’s
trick: Compute (z;,z2;) from (x;_1,22;—2), test (x9; — x;,n). Expected tail length: /2. Expected

8
loop: /75"

Define Ly[u,v] = e?n(m"n(n(m)'™ = [ 10 4] is polynomial and Ly[1,v] is exponential. Let t(x, B) be
the B—smooth numbers < z. Let € > 0; if z > 10 and w < (In(z))'~¢, then ¢ (z,zw) = zw= T/ (@w) and
I2w) 0 for w — co. Result: As n — 00, $(n%, Ly[u,v]) = n®Ln[1—u, —(2)(1—u)+o(1). For QS: a ~ 1.

w

v

2

NFS discrete log is Ly (3, (84)3]. MPQF: O(e(VIn(Min(n(N))) QS and NFS cross at 350 bits. Results

9

below. Note: 1IMIP — yr = 3.1 x 10'3 instructions. 120000Mip — years = 550pteron — 2.2GHz — years.

RSA-129 RSA-130 RSA-200
Date 4/1996 8/1999 5/2005
Time (MIP-years) 500 8,000 120,000
Rows 3.5x105 6.7x10° 6.4 x 107
Non Zero Members | 1.4 x 108 4.2 x 108 1.1 x 1010
NZ/R 39 62 171
Linear Algebra (hrs) 68 224 2160
RSA key ECC key Symmetric Key  ArithOps SieveMem LAMem
428 110 51 5.5 x 1017 2GB 128MB
512 119 56 1.7 x 10'° 64MB 10GB
768 144 69 1.1 x 10%3 - -
1024 163 79 1.3 x 10%6 256MB 100GB
2048 222 109 1.5 x 10%° - -

Finding discrete logs using Pohlig-Silver: Let g a generator for Fj,. Find x such that ¢* =y. ¢ —1 =

ia=1)
p1*t ... pp®*. First, precompute: r; ; = g7 z Jforj=1,2,...,p—1. Want to find x (mod p*), for each p
then use Chinese Remainder Theorem (CRT). x = g +x1p+ 2op® + ...+ To_1p% L. yla=1/p = gela—1)/p =
Tpa,- Lhis yields zg. Next put y; = ggo . This reduces the discrete log over any group order to discrete log

over p. This takes O(3 ¢ (e(p)(lg(|G|) + y/p)) if we use Pollard.

Finding discrete logs using Index Calculus. g a generator for F;, with ¢ = p". Find z such that g* = y.
Precompute: Let f(z) be an irreducible polynomial of degree n over F,. Let B,, be the set of irreducible
polynomials of degree < m. Pick random ¢ and compute c(z) = g(x)" = co[[p a(z)*. ind(c(x)) =
ind(co) + > 4ep,, Qeaind(a(r)) =t (mod g—1). Now solve for the ind(a(z)). To compute ind(y(z)), pick
random ¢ and compute y(z)g(x)" = [[p a(x)* (mod f(z)). This runs in Lyl3.c+o(1)]. In Ep, there
is no good basis corresponding to primes.

Square Roots: Suppose (%) = 1, so that a is a square and let n be a quadratic non-residue (mod p).
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s+1

Want to find 2: 22 =a (mod p). Set p—1=2%s and put b=n* (mod p) andr =a 2 . Then a~'r?is a
2971 root of 1 (mod p). b is a primitive 2271 root of 1 (mod p) otherwise n would not be a non-residue
now use powers of b to make the x = b’r a perfect square; to do this set j = jo + 2j1 + ... + ja—22%"2 and
do the Pohlig routine.

Shanks Baby/Giant: < g >= G. Given y = ¢%, find z = log,(y). Put m = /n, Compute (j,g")
for 5 =1,...,m sorted by second coordinate. Set t < g="™, s« y.

For(i=0 to m-1) { /* is s second component?*/ if(s = g%) return(z = im + j); s « st}. Alternative: Solve
g° =a (mod p). Pick n:n? > (p—1) and compute ¢/ (mod p) and ag~™* (mod p) for 0 < j,k < n;

match two lists giving ¢/ = ag™™* (mod p) or ¢+ =a (mod p).

Boneh-Joux attack on El Gamal/RSA with small messages and no preprocessing. Suppose we encrypt
an m bit message M which is small then M is often smooth — i.e. M = M;M,. If the El Gamal system
is < p,g,y = g* > and either the order of g is small (less than 3&-) or p — 1 = ¢s and the DL problem is
tractable for subgroups of order s, much of the time (a2 .18) which solves the problem using about 2m/2 ex-
ponentiations. Here is the general problem: Let z € G, — Z;, where G, is a subgroup of order g; if A < 2™
and ©v = zA (mod p) then given u, find z. Here is a meet in the middle shortcut. Suppose A = AjA,,
Ay < 2™, Ay < 2™2, by tablizing A{ for possible A;’s and trying every possible Ay in ()7 = A{(modp),
we can find A = Aj Ay in O(2™ 4 2™2) time and 2™ space. With my = mg = 32 this can solve for a 64

bit session key with probability about .18.

Defense for Boneh-Joux: OAEP (IND-CCA) c=E(m) = fla=M @ G(r)||b=r® H(a)
REACT: E(m,r||s) : (a = f(z,7),b =k ®m,c = H(m,z,a,b), k = G(z). For El Gamal: a = Rand(1..q),
R = Rand(< g >), A=g* A" = Rg*, k = G(R), B= Ei(m), C=H(R,m,A,d,B).

n_p H(Bu(p) |n p H(Bup)
2 5 213 5 3
2 .60 194 | 3 .60 2.91
2 .75 162 | 3 .75 2.43
2 .80 144 | 3 .80 2.16
2 .90 93 |3 .90 1.4
2 .95 573 .95 85

A H(PQX) | A H(PW)

5 91 | .60 1.00

75 1.14 | .80 1.18

90 1.27 | .95 1.31

Shamir’s attack on RSA with multiplication bug: Assume the RSA implementation uses the CRT
(which yields a speedup of 4) and let the public key be n = pg with p < ¢. Suppose that axb (two 32 bit quan-
tities) is computed incorrectly on a computer with a word size of w bits. We can pick ¢ = [/n] sop < ¢ < q.
Put ¢ = 2% ¢ 2¢ =D 4 4 ¢,2¥ 4 ¢ and select m such that m = ¢, 2%% + ¢ 20F=D 4 4+ a2% +b.
Assume we can have the flawed machine compute m? (mod n). In the CRT (since p < m < q is likely),
my =m (mod ¢) will be computed correctly but ms = m (mod p) will be computed incorrectly. Since
a and b are not likely to appear in the representation of m; but will appear in mg, m12? will be computed
correctly but mso? will be computed incorrectly. When the combined result y = m? (mod n) is computed, y
will likely be correct  (mod p) but incorrect  (mod ¢). Thus p | y¢ —m but p{ y¢ —m and p = (y* —m,n).
Padding interferes with this attack.

Weiner’s attack: |a — §| < 2—;2 with d < %N%. Put N =pq, g <p<2q,ed=1 (mod 9¢). |§ - §| < ﬁ

withed—k¢ =1, [N —¢| = [p+q+1| <3VNso | & —%| < % < 54 and £ arises as a convergent, o = £.

Coppersmith: Let f(z) € Z[z] be a monic polynomial of deg(f) = d, N € Z. If 3xg : f(xg) = 0
(mod N) with |zg| < X = Ni~¢, one can find zo in time polynomial in lg(N) and L for fixed d. This can
be used to extend the Franklin Reiter attack.

If f(z) = fo+ fiz+ ...+ faz® and Jzg : f(z0) =0 (mod n) with |zo| < N4, find z¢ efficiently. The idea
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is to find h(z) € Z[z] which shares a root with f (mod n) with ||h||2 = zj;%(“ |hs|? with [|h|| small.

Lemma: Let h(z) € Z[z], deg(h) < n, X, N € Z>Y; suppose ||h(XN)|| < i if |zo| < X satisfies h(zg) =0
(mod N) then h(xg) = 0.

Suppose f(z9) =0 (mod n) then f(z9)* =0 (mod N¥). For some m, set g, ,(z) = N™ vz f(z)?, 0 <
u<d,0 <v<mthengy,(zo) =0 (mod N™). Fixm, try tofind ay,, € Z: h(z) = 3,5, S Qo Guw (T)

that satisfies the lemma; that is ||h(zX)|| < \/;(/L with h(zX) = 32,5 S o Gu,wdu,w(zX) that. Use LLL

for this minimization problem. LLL conditions on<b17b2,.. by, > are ;; = %,b? =b;— Zj<i,uijb;7
197112 > (3 — 12, )lIbia |2, if 2 € L, |[ba]] < 275 ||, [[ba]| < 2% A7,

Example: f(x) = 22 + ax +b. Want to find zg : f(zo) = 0 (mod N). Set m = 2. ggpo(zX) = N2,
gio(xX) = XN?2, go1(xX) = bN + aXaN + XN2%x, g11(2X) = bONXz + aX?22N + N2X323, goo(2X) =
b*+2abXx+(a® —|—2b)X2332+2aX3x3+X4x4 glg(ch) = 0’ X2 +2ab X222+ (a® +2b) X323+ 2a X 22t + X 5245,

N? 0 bN 0 b? 0
0 XN? aXN bNX 2abX Xb?
| 0 0 NX? aNX? (a®+2b0)X2  2abX? I s s
0 0 0 0 x4 2a.X*4
0 0 0 0 0 X®
b= Au, Bu= (ur,ua, .- ug), [ X)]| < 2, frol < X = 2% and [o] < N
8

Common Modulus attack: Suppose (e1,e2) = 1 and m is encrypted both with an < n,e; > scheme and
a < n,eg > scheme; let ¢; =m®  (mod n) and c; = m®?  (mod n) with dye; +daez = 1 then m = ¢; % cp%.

Small exponent attacks: Suppose ¢ = 3 and ¢; = m1%, ¢ = mo® with ms = mq + 0, where § is
known. Put F'(z) =2° —¢; (mod n) and G(z) = (z +6)® —c2  (mod n) then (x —m) | (F(z),G(x)) and
we can recover m. Now if § is unknown but |§] < n® and there is an algorithm, A (e.g- Coppersmith’s
algorithm), that can find the roots, a of f(z) = 0 (mod n) when |a| < n9, the foregoing attack can be
extended. To do this, consider F'(z) = 2 —¢; (mod n) and G(z,y) = (x+y)° —c2 (mod n) and compute
the resultant h(y) = Res(F,G) in the ring Z,[y]; note h has a root, J.

3.5 Lattice Methods

LLL: F(A) = {a1a1 + ... + apa, : 0 < a; < 1} then vol(F(A) = det(A). Reduced basis: p;; < 3,
162112 < 2||biy1(3)]]?. Let (by,...,b,) be a reduced basis of L then ||by|| < 2

" A(L).
I 0
A -B
with U a 0,1 vector. Since ||[U,0]7|| < n, a short vector in the lattice generated by the column space of M
is likely to be close to a solution of AU = B. Let L be a lattice generated by M, vol(L) = |det(M)| Not all
lattices are generated by linearly independent vectors; for example < (1,2),(1,1),(2,1) >

LLL motivation: AU = B has a solution iff M = ( ) and M[U,1]T = [U,0]T has a solution

Lattices in 2 dimensions (vectors are columns) [a,b] is reduced iff ||a]| < [|b]| and ||all,||b]] < |la +
bl[,[la — b||. Lemma: If |[z|| < ||z + y[| then ||z +y|| < ||z + ayl||, a > 1. Let Ay = ming|{v € L(B) — {0} :
[lv]] < 2}| > k (so Ay is the shortest vector in the lattice.) Theorem: If a,b is a basis, ||a|| = A1, |[b]| = A2
iff [a,b] is a reduced basis. Gauss algorithm: (1) Find p: ||b — pal| is minimal. (2) if |ja — b|| > ||a + b||
replace b with —b. (3) if [a, b] is not reduced, swap a and b and go to 1. Note: LLL Gives an approximation
to reduced basis n > 2.

Definitions: m;(z) = >, <<bb$ bI>> b3, bf = m(b;). [z] is integer closest to x. B = [b1,ba,...,b,] € R™*" is

LLL reduced with respect to & if

Lo fpigl < 5,0> .
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2. 6[|m(by)[[* < [|mi(bign)[|? (same as |[b7[[* < |61y + pris,ibf]]%)-
Note: For § = 1 this just means m;[b;, b41] is reduced. Also observe that (6 — 1)|[b7||* < [|bf,4]]%. So
n—1
A > min||bf]| > L7 by, a7t =6 — L.
LLL single step for § = %:

. % o <b1,bj>
1. bl = b’L — E]<l b] where Hij = ’—WJ

2. if §||m;(0:)||? > ||mi(big1||?, swap b; and b; 41 and repeat reduction step.

Note: Terminates because det(B)? € Z decreases by at least & at each step.

n—1

LLL Theorem: Let L C R” be a lattice with reduced basis (b1, ba, ..., b,) then (a) Vz € L, ||b;|| <272
and (b) replace & by max of ¢ linearly independent vectors.

||

K is convex and symmetric iff z,y € K implies ax + by € K provided |a| + |b] < 1. Minkowski: Let L

be a lattice of rank r. Let v, be the shortest vector, v; the shortest vector independent of < vy,...,v;_1 >,
or 3

then [v1[vz| ... |vp| < 55755 d(L) where vol(B,) = 1“(%25))

Minkowski’s theorem on linear forms: Let A € RY and Li,...,Ly be linear forms with associated

matrix C; if det(C)d(N\) < €1€2...€n, there is a lattice point A # 0 such that |L,,(A)| < €. Corollary:
3 : L (1) < (det(C)) ™.

,ms) and

Low density subset sum. > a;s; = s look at matrix formed by I,, with bottom row (%, . ,%

first n entries in rightmost columns (maj, mas, ..., ma,). Round.

Weakness due to partial knowledge: If n = pg has m bits and we know the first or last 7 bits of
p, then n is easy to factor. If plaintext is short, match cx

—e

=y° to get c= (zy)¢ (modn). If ¢ < p < 2q
and 1 <d,e < ¢(n) withde=1 (mod ¢(n)) and d < %n% then d can be found easily.

Attack on RSA using LLL: Suppose message is of the form “M xxx” where only ‘xxx’ varies (e.g.-
“The key is xxx”). Thus the message is of the form B + x where B is fixed and |z| < Y. ¢ = (B + z)3
(mod n) and f(T) = (B+T)®> —c = T + axT? + a1T + a9 (mod n). We want to find z : f(z) = 0
(mod n). Let v = (n,0,0,0), v2 = (0,Yn,0,0), v3 = (0,0,Y?n,0), v4 = (ag,a1Y,a2Y?,Y3). Then
[1b1]] < 2%|d€t(’01,1}2,7}3,’1}4)| =2iniY3. by = v + ... +cyuy = (€0, Yer,Y2es,Y3e3); g = c1n + cqaq,
€1 = can + caaq, ea = C3n + c4a9, €3 = cy4, and g(T) = e3T> + eaT? + e1T + eg. Since f(z) =0 (mod n)
and ¢4 f(T) = g(T) (mod n), 0 = csf (z) = g(x) (mod n). IfY < 26ns, |g(z)| < 2||b1]| (use C-S) but
[|b1]] < 271n so |g(x)| < n and g(z) = 0 yielding 3 candidates for . Coppersmith extended this to small
solutions of polynomials of degree d using a d + 1 dimensional lattice by examining the monic polynomial
F(T)=0 (mod n) of degree d when |z| < ni.

3.6 Symmetric Key Analysis

DES S Box Criteria: (1) S is not linear or affine in the inputs, (2) changing 1 bit of input changes
at least 2 bits of output, (3) minimize differences between 1s and Os if one input bit is held constant,
(4)Ham(S(z) ® S(x ©001100)) > 1, and (5) S(z) # S(x @ 11ab00).

Differential cryptanalysis: Notation: x — y, p means input difference z produces output y with prob-
ability p. If 2’ — ¢ and D;(2',y') = {u : Sj(u) & S;(u® ') = y'} then z & k € D;(z/,y'), and
ke Dj,y)®x. Set 1j(x,2',y) ={k: ke D, y)®x} and testj(Ej,Ej*,Cj’.) = 7;(E;, E; & E}, C}).
Note: some candidate keys will scritch. To convert from chosen to known attack, select 232v/2m pairs,
about m of these will have the right difference x produces output y with probability p. If 2/ — ¢/
and D;(z',y") = {u : Sj(u) ® Sj(uda’) = y'} then v &k € D;(2',y), and k € D;(2',y') & x. Set
mi(w, 2",y ) = {k : k € D;j(2',y') © x} and test;(E;, E;*,C%) = 7;(Ej, E; © B}, CY).

J
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3-round Attack: (Lo, Ro), R3 = Lo + f(Ra,k3) = Lo + f(Ro, k1) + f(Ra,k3). Choose Ry’ = 000000, so
that f(Ro, k1) + f(RS, k1) = 0, get Ry = L{y + f(Ra, k3) + f(R5,k3). Set C' = P~Y(R4 + L)) which is the
output xor for round 3. Compute £ = E(L3), E* = E(L3). Calculate test;(Ej;, E;*,C}), for j= 1,2,...,8
after choosing plaintexts. Can do this since Ry = L3 is known. Not that key bits overlap on initial and final
rounds and must satisfy both conditions. Best differential cryptanalysis attack on DES uses two 13 round
differentials in a 2R attack.

6-round Attack: Use Ly, Rj: 0x40080000, 0x40000000, L}, R}: 0x40000000, 0x00000000, p = .25; L4, R):

0x00000000, 0x40000000, p = 1; L%, R5: 0x40000000, 0x40080000, p = .25.

R6 = L5 + f(R5,K6) = R4 + f(R5,K6) = L3 + f(R37K4) + f(R5,K6). Estimate Lé = 0204000000 and
4 = 0240080000 with p = 1. Use this to estimate input xor for S-boxes of round 4. Get C{C5...Cy =

P~'(Rg + 0204000000) and E Ej...Ey = E(Rs) = E(Lg). Now compute test;(Ej, E;*, C}), for j= 2,5,6,7,8.

Right pair follows characteristic. Right pairs bump count for correct key bits, wrong pairs are random. Filter:

If [test;(E;, E;", C})| = 0, for any j= 2,5,6,7,8, this is a wrong pair. % of the wrong pairs are detected this

1

way, so ratio of right pairs remaining is — 1 = 4. Number of suggested pairs is Il|test;(E;, E;, CHls
16 16 3

for j= 2,5,6,7,8, correct values will be suggested ?{—g times; incorrect strings at random among approx 230

values. Let T); be the counter vector of length 64. For each pair compute T}, j= 2,5,6,7,8, 1 < i < n. For

IC{1,2,...n}, > ics Tj’ There should be some I of size about 3% where all of the indexes have 1 in the

vector. This is the suggested key.

Another 3-Round Characteristic: Ly, R: 0x00200008, 0x00000400, L}, R}: 0x00000400, 0x00000000, p =
25: Ly, Rb: 0x00000000, 0x00000400, p = 1; LYy, R,: 0x00000400, 0x00200008, p = .25.

Linear cryptanalysis: - P+ (3-C = ~v-C with p = % + 6 requires about c6~2 plaintexts. Last
round estimation: L(P)+ M(C) + N(P,_1,K,) = P(K) then use MLE: T= # plain cipher pairs = 0 if
|Tmaz — %| > |% — Tpnin| and p > .5, guess P(K) = 0. Best demonstrated effect on DES is 2426,

3-round: PL[7,18,24,29] + CL[7,18,24,29] + Pr[15] + Cp[15] = K1[22] + K3[22).
8-round: Pp[7,18,24] + Pr[12,16] + CR[7,18,24,29] + C[15] + Fs(Cr, Ks) = K1[19, 23] + K3[22] + K,[44] +
K5[22] + K7[22).

Gradual exercises: Analyze 8 round RC5 with no rotation, 8 round RC5 with rotation equal to round
number, 12-round DES with no S-box, 4 round DES, 6 Round DES. Best Linear attack on DES uses a 14
round differential with bias 27217% forward and reverse and uses 2%3 corresponding pairs with .85 probability
of success.

An encryption scheme, E, is semantically secure if YA, 3B such that Vf, h, f,h : {0,1}* — {0,1} and
all ensembles {X,,} where X,, {0,1}"", PrlA(E(X,),h(X,)) = f(X,)] < Pr[B(h(X,)) = f(X,))] + p(n)
where p is negligible. A deterministic PT algorithm G is pseudo-random if 3l : N — N, so that for any
probabilistic PT algorithm D, and any positive polynomial P and all sufficiently large k, |Pr[D[G(U)) =
1] = PrD(Uyy) = 1]| < ﬁ. (I is a stretching function.)

A linear trail is U = (u(o),u(l), e ,u(’")) associated with a composite function g = p(pr=1  pM1)
with correlation contribution at each step of C((u?)?p(¥)(a),ul*"Ya) and overall correlation of C,(U) =

(r™)
IL Cyr i

Theorem: C(u?((a),wla) = > U u® =uu =w Cp(U).

Some rules for Walsh transforms: V; = {w : f(w) # 0} is called the support for f. Computing
Walsh transforms of composite functions is easier if the components have non-intersecting support (as they
do it they depend on different variables); in that case, VNV, = 0 trivially. If w € V; and h(z) = g(z)+w'z,
Hu)=Gwau). fV;NV,=0thenueV,, Hu+w)=F(w)G(u).

“Bricklayer” functions: If



then Co = T 1Ch(l (- Truncating Function: Let a’ = h")(a) taking GF(2)""' — GF(2)" be
defined by a = a; for i 7& sand a, = e® vta @ as where vTa = € defined the restriction. Then C’fuh;,) =1,
o) = (—1)¢, YVw : ws = 0; note there are two non-zero entries both of amplitude 1. If C’ = C’C(hm,

vOw,w

Crw = Cuw © (=1)Cupew if ws =1 and 0 if w, = 0.

For key alternating ciphers, C,(U) = Hi(—l)(“(i))T’f(i)Cuu)’u(ifl) = (=)o, )R |C (17)|. Put
5 = UTK ® dy, C(0T - 5(a),070) = X u0r—aera (~ 1 KICYU)]. Cyl) = (—1)%Ci, averaging
over the round keys we get E(C?) =275 3, (3°,(—1)%C;)?. After reduction, average correlation potential
is BE(C?) =Y, C?, note that C;C; = 2"54(i & j).

For key schedule K = M.k, E(C?) = 27"x %", Zj(Zk(_l)(dui@dUJ)TMKkeadui@de)C’,-Cj. The inner sum

simplifies to (—1)%: i 2nx §(MT (U; @ U;)). If key schedule is not linear K = f,.(k), the coefficient of the

T
mixed term is (*Dwi@Uj) P (k) @dy,; Sdu;

Multiround linear expressions correspond to linear trails. Generally, |C,(U)| is independent of round key
but this is not the case in DES because of the shared bits between S-boxes. 32 bit input parities before FE
give rise to a 221-48 bit patterns. If [ is the number of pairwise neighboring S-boxes, we can do this in16l
multiplications and additions. The probability that a multiround expression holds is 3(1 + C,,(U)) for the
associated trail.

Question: Is there an easy to compute function, Tk, obviously non-linear, so that TKEKTI;1 has good
linear approximations? How do you find such Tk? Finding the best approximation reduces to finding an
orthogonal transformation that maximizes the largest entry. Suppose T is such a matrix; if 7" has all bad
affine approximations is it possible that there is another orthogonal transformation, R with T® = R™1TR
such that max;; (|(T%)i;]) > maxi;(|(T)i;])? If p1,p2,...,pn is a series of such transformations (like the
iterated components of a block cipher), note that R™'Ex(2)R = R~ 1pRR 'poR... R"!p, R thus raising
the possibility of better “per round” approximations on a related cipher.

cos(p)  sin(p) 0 1 0 0
Here is a motivating example in R3: R= | —sin(p) cos(p) 0 |, T=[ 0 cos(d) sin(d) | and
0 0 1 0 —sin(f) cos(9)
cos?(p) + cos(8)sin?(yp) cos(p)sin(p) — cos(B)cos(p)sin(p) —sin(p)sin(f)
R7ITR = | —cos(p)sin(p) + cos(0)cos(p)sin(p) sin?(p) + cos(0)cos?(p) sin(p)sin(0)
sin(p)sin(0) —cos(p)sin(0) cos(0)

NL(f) <2"t =257 NL(f) < 2" + /2" + mazezo(F(D.(f))), where D.f = f(x) @ f(z @ e).
Prolog to computing DES correlation matrix: Let f(z1, 22,3, 24) = (x1+f1(23, 24), T2+ fo (T3, 24), T3, 24)

(first position most significant) then, with least significant positions indexing rows and columns, and F;(w)
as the Walsh transform for f;(x3,z4) and H(w) the Walsh transform of h(z) = f1(z) + f2(z). Bit positions
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in this example are (z1, 22, T3, 24).

100 0] 0 0 0 0 0 0 0 0 0 0 0 0
010 0| 0 0 0 0 0 0 0 0 0 0 0 0

00 10| 0 0 0 0 0 0 0 0 0 0 0 0

000 1] 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0|F(0) 1) F2) KRG 0 0 0 0 0 0 0 0

00 0 0|F(1) F0) F3) 2| o 0 0 0 0 0 0 0

00 0 0[R2 FRB) K0 R1)| o 0 0 0 0 0 0 0

o | 0.0 0 0| BB B2 RB1) F0)| 0 0 0 0 0 0 0 0
“|00 0 0] 0 0 0 0 |F(0) F(1) Fi(2) FB3)| 0 0 0 0
0000 0 0 0 0 |F(1) FR0) F@B) 2| o 0 0 0
0000 0 0 0 0 |F(2) RB) F0O) FR1)| o 0 0 0
0000 0 0 0 0 |FR©B) R F((1) F0)| o 0 0 0
0000 0 0 0 0 0 0 0 0 |H(0) H(1) H(2) H(3)
0000 0 0 0 0 0 0 0 0 | H(1) H0O) H(3) H(?2)
0000 0 0 0 0 0 0 0 0 | H(2) H(3) H(0) H(1)
0000 0 0 0 0 0 0 0 0 | H(3) H(?2) H(1) H(©)

Feistel: A typical round of DES consists of two involutions: 7 and o. ox(L,R) = (L @ f(R,k), R),
f(x,k) = PS1Sy...Ss(E(x) + k). 7(L,R) = (R,L). First “line” of oy is yo = w9 ® Si(wes + k1,733 +
ko, w34+ ko, w35+ ko, w36 + ko, x37 + k2), y17 = 217 D ST (Tea + k1, T3z + ko, Taa+ ko, T35+ ko, 36 + k2, 37 + k2),
Yoz = X3 D S} (Tea + k1, T3z + ko, T3a + ko, T35 + ko, T36 + k2, T37 + k2), Y31 = 231 B S (zea+ k1, T334+ ko, T34+
ko, w35 4 k2, 236 + k2, 237 + k2).

Suppose 7(z1, 2, x3,24) = (23, %4, T1,22), with position (0001) representing x4, then
10 0000 OO0 O0OO0OOUOO0OO0OO®O0
o0 0 010 0 0(0 0 O0OO0OO0OO0OO0OO®O0
0000 O0OOOTU OD|1 0O0O0OO0OO0OO0OTO
0 000OO0OOODO0OD|0O0O0OOT1TO0OTGO0ODO
01 00 0O0OO0OTO0O|0O0OOOOTU OO
o0 0 0010 0({00O0OO0OUO0OO0OO0OF® O
o0 0 00 O0O0 001 O00O0O0O0°O0
o _ 0 00O0OOOU OO O|0O0O0OOOOTU OO
00 00OO0OOODTUOD|0O0O0OOOT1TO0TFO
0o 01 0 0O0OO0OUO0O[0OO0OO0OO0OTUO0OTQO0OTO0OTF® 0
o0 0 00 O0O1TO0(00O0OO0OO0O0O0°®O0
0 000OO0OOOTUOD|0 01 O0O0OO0OTUO0OTO
000 0OO0OO0OOTU OD|0O0O0OOOOT1TTO0
0001 0O0O0OO0|00O0OOOOTU OO
o0 0 00 O0O0OT1T{0 0 0 0 0000
o0 0 000 o0 0(00O0OT1TTUO0TO0O0°O®O0

The column order from left to right in the forgoing is: 1, (z4), (z3), (x4,23), (z2), (x4,22), (x3,z2),
(.704,’1}3,1‘2), (1’1), (1’4,%1), (.%3,331), (x47x3ﬂ'rl)ﬂ (xQ,xl)v (:c4,x2,ac1), (13358271.1)7 (QZ4,$3,IQ,$1) correspond-
ing to the ordered sequence 0000, 0001, 0010, .... The row order from top to bottom is 1, (z2), (x1), (22, 1),
(24), (T2, 22), (T4,21), (T4, 22,21), (T3), (%3,21), (T3,22), (¥3,72,21), (T3,24), (T3,74,22), (T3, 24,72),
($3,$4,$1), (x3,$4,.’1'}2,l‘1).

Todo: Best Approximation of degree two. Correlation of decomposed function (g(x1, 2, . .., Tk, A(Tkr1,- -, Tn)))-

Minimum distance.

Standard Functions: For h(z) = 2 ® k, Cq(ih& = (=1)*"*. For h(z) = Mz @ w, O&f‘ﬁ, = §(MTu ® w).
Grg = 27" Y0, (- 1)@ jp = ep .

Theorem: All correlation matrices are doubly stochastic and orthogonal. Correlation matrices for in-
volutions are symmetric.
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To calculate the round correlation for DES, decompose it into three involutions. The first, adds output from
odd numbered S-boxes but is otherwise the identity. The second, adds output from even numbered S-boxes
but is otherwise the identity. The third transposes L and R. The first and second involutions don’t overlap on
input variables to the SBoxes so the Walsh transforms of components of the S-Boxes are all that is needed. In
both the first and second transformations, each position affected by an S-box is multiplied by (—I)wT"C (i.e. -
+1) for the relevant round keys. Thus, if 0(L,R) = (L® f(R, k), R), f(z,k) = PS152...Ss(E(x)+k)), the
first “line” is yg = 2o ® ST (vea+k1, w33 +k2, 34 +ka, 35+ ko, £36 + ko, T37+k2), y17 = 217557 (vea+k1, 233+
ko, 34+ ke, T35 + ko, 36 + ko, 37 + k2), Y23 = 123D S5 (v64+ k1, 33 + ke, T34 + ka2, T35+ ko, 236 + ko, 37 + k2),
Y31 = T31 D Sil(aiﬁzl + k1,233 + ko, T34 + ko, T35 + ko, T36 + ko, T37 + kz) TT‘(C(AES)) is the number of fixed
points of AES. Since Tr(AB) = Tr(BA), Tr(CHAES) = Tr(CFdCks) Ok CES) (CMES))13),

The difference propagation probability denoted by R,(a’ —y, ¥') is Prob™(a/,bt') =27 % 8t + h(a+d') +
h(a)); we have 0 < R,(a’ —5 b') < 1. The restriction weight is defined as w,(a’ —p V') = —lg(Rp(a’ =, 1))
(restriction weight reflect loss of entropy). w.(U) = —lg(|C,(U)|) (correlation weight). For bricklayer func-
tion, Prob"(a’,b") = []; Prob"® (azi), bzi)) and w,(a’,0") =", 111T(a'(i)7 b'(i)).

Theorem: Prob/(a’,0) = (1 + Zw(fl)“’T“'F(w)Q). The differential probability and correlation potential
table of a boolean function satisfy Prob(a’,b’) = 27™ Zu)w(—l)“’T“/@“T” C2

A differential trail, Q = (q_(o),q(l), ...,q")) with steps (¢, ¢()) having weight w{fm (=1, ¢) have
trail weight w,.(Q) = >, w?' (¢, qD). Prob(d’,v') = >y —ar g=p Prob(Q). For a differential trail,
Q, with weight < (n — 1), Prob(Q) ~ 2~%(Q). For a differential trail, @, with weight w,(Q) > (n — 1), for
expected proportion 27 ~1=%(Q) of keys, there will be a right pair. >, Ry(a’ —, V') = 1. Ry(a’ —p b') =
27 Y, W (—1)PIHY (O )? and dually €2, =277 3, (1) T R (o —, V).

Block cipher design: To eliminate low weight trails, there are two strategies: (1) Choose S-boxes with
difference propagations that have high restriction weight and input-output correlations with high correla-
tion weights; or, (2) Design round transformations so that only trails with many S-boxes occur. Linear
cryptanalysis requires correlation > 22" over most rounds. This can’t happen if we choose the number of
rounds so that there are no such linear trails with correlation contribution > n,;12_n7b Each output parity
is correlated to an input parity since >, F(w)? =1 but if it occurs by constructive interference over many
trails that share input/output selection then any such must be the result of at least ny linear trails which
are unlikely to be key dependent. Differential cryptanalysis requires input to output difference propagation
with probability > 2!=". If there are no differential trails with low weight, difference propagation results
from multiple trails which again will not likely be key dependent.

Design strategy for Rijndael: Choose number of rounds so that there is no correlation over all but
a few rounds with amplitude significantly larger than 2= by insuring there are no linear trails with corre-
lation contribution above nk*12’7h and no differential trails with weight below ny,.

Examine round transformations p = A oy, where A is the mixing function and v is a bricklayer func-
tion that acts on bundles of n; bits. Block size is n, = mn;. The correlation over v is the product of
correlations over different S-box positions for given input and output patterns. Define weight of correlation
as —lg(Amplitude). If output selection pattern is # 0, the S-box is active. Looking for maximum amplitude
of correlations and maximum difference propagation probability. The weight of a trail is the sum of the
weights of the selection patterns or the sum of the active S-box positions it is greater than the number of
active S-boxes times the minimum correlation weight per S-box. Wide trail: design round transformations
so there are no trails with low bundle weight.

Define wy(a) as the bundle weight of a. Bg(¢) = mingpra(ws(a @ b) + wp(d(a) & ¢(b))). Bi(d,a) =
MiNg, 8,0 (aT 2,87 ¢(x))20(Ws() +wy(3)). Theorem: In an alternating key block cipher with yA round func-
tions, the number of active bundles in a two round trail is > the bundle branch number of \. If 1 = yO~v\ is
a four round function, B(v) > B(\) x B¢(0) where B can be either the linear or differential branch number.
The linear and differential branch numbers for an AES round is 5.
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Linearized polynomial: L(z) = Z::O Bix? |3 € GF(2"). Discrete Fourier Transform: A, =
S[f(@) + f(O)]aF, flz) = S Apa®. Ay = A2, Coset leaders: C, = {s,2s,2%s,...,2"% s}, coset
leader s is smallest: s = s2"~! (mod 2" — 1). For any non-zero function f : GF(2") — GF(2) can be
represented as f(z) = >y cp(,) T71* (Apx®) + Agn 122" 1 where I'(n) are the coset leaders  (mod 2™ — 1),
ng | n and Tri*(x) is the trace function from GF(2"*) — GF(2). Let a be a primitive element of GF(2")
and f(0) = 0 with a; = f(a?),t =0,1,2,...,2" — 1, 2 = 20 + 110 + 120% + ... + 210" L.

Any function f : GF(2"™) — GF(2) corresponds to a binary sequence with period N | 2" — 1; TBD—
what is k. Hadamard-Walsh: f()\) = ZIGGF(QH)(—1)TT()"“)+f(”). Polynomials —,q; Periodic sequences
—trace Boolean Functions.

Low degree approximations 3g # 0 : fg = 0 and fg has low degree deg(fg) > deg(f). |Sq| = Zf:o (7;)
Let f be a boolean function of n variables. The annihilator ideal of f, AN(f) = {g : g(x)f(x) = 0},Vz €
GF(2"), AN4(f) = {g € AN(f) : deg(g(x)) < d}. The algebraic immunity, AI(f) is the smallest degree
non-zero polynomial in AN(f) UAN(1+ f). AI(f) < [%].

Suppose L is an n-bit NLFSR based filter generator with filter function f and that L takes the current n-bit
state to the next n-bit state. Suppose the initial state is £g. Then the generated keystream is s; = fo L!(xp).
sg=1if 3g € AN4(f): go L' (25) =0, s, = 0if I3h € ANy(1 + f) : ho L*(z5) = 0. Collect all functions of
degree < d for N known keystream bits; then, (1) go L*(x1,22,...,2,) : Vg € ANg(f),VO <t < N : s = 1;
and, (2) ho LY (z1,22,...,m,) : Vg € ANg(1 + f),¥0 <t < N : sy = 0. Using linearization to solve these

n

Z. ) variables.

Gaussian reduction on this system takes time O((Zf:l (")) ~ n*? where w ~ 2.37 and the the number of
2n?
A G (AN () +Em (AN AT -

equations, requires identifying the subset of monomials forming a linear system of up to 2?21 (

monomials is ~

Akelarre: Akelare; Rounds 0 < R < R. (By, B1, Ba, Bs) = (Ag, A1, Ag, A3) <<< Ki3,44[25,26,...,31].
Initial Prep: Ij = Xj = Kj. Round 7: (I(/]v-[{al—év-[é) = (I[),I17127.[3) < << K13T+4[25,26, .. 73].] AR(Ié &)
Ié,[{@[é) = (IL||(LR. Og = I(/)@CLR7 O; = Ii@a[” Oy = Ié@aR, O3 = IéEBaL. Final Out: }/j = I§+K13R+5+J‘.
Todo: describe Ag.

FEAL-4: 32 bit blocks, 64 bit keys. Four round Feistel with input/output whitening. Key, K, is used
to generate 12 16-bit keys Ko, Ki,...,K11. To define the key schedule and the round function F' put
Go(a,b) = (a+b (mod 256)) <<< 2, G1(a,b) = (a+b+1 (mod 256)) <<< 2. Key Schedule: Define
i 1 Z3% x 73% — 732 as follows: fx(a,b) = ¢, a = agl|ai]|az||as, b = bol||b1||b2]|b3, ¢ = col|c1||e2]|cs, then
di =ap®ai, dys = asPaz, c; = Gl(dhag@bo), Co = Go(dg,cl@bl), Cco = Go(ao,cl®b2), c3 = Gl(ag,CQ@b;g).
Then put B =0, By = K1, By = Kg, and Biy1 = fr(Bi—2,Bi-1 @ Bi_3, Koi—1) = (Bi)r, Koi—1 =
(B;)g. Encryption: If Py, Pg is the cipher input and Cp,, Cg is the cipher output, Lo = P, @ (K4||K5) and
Ry = Lo ® Pr @ (Kg||K7). Each round is defined as: R;y1 = L; ® F((Ka—1)||K2i-1) ® R;) and L1 = R;.
F' is defined by: F(zo,z1,72,23) = (yo,Y1,Y2,y3) Where y1 = Gi(zo © 71,72 © x3), Yo = Go(To, 1),
y2 = Go(y1, 2 ® x3), and y3 = G1(y2, z3). Finally, Cr, = L4 @ (K3||Kg),Cr = Ry ® L4 @ (K19||K11). Note
that Ag® Ay = 0280800000 — F'(Ag) ® F (A1) = 0x02000000. For differential attack, pick Py, at random and
Py = 028080000080800000. Suppose X' is the output differential of F' in round 3, Y is the input differential
to F in round 4 and Z’ is the output differential in Round 4, then C}, = 0202000000 ® Z" and C, = C, @Y’
and Y = Cp & Cr. Now we can solve for K3 with standard differential techniques. For linear analysis,
denote S; ;(X) = z; ® xj, Si(X) = x;. Then, S5(Go(a, b)) = S7(a ®b) and S5(Go(a,b)) = S7(a & b) & 1.
The fOHOWiDg hold: Slg(Y) = 87715723731()() S5 1, S5(Y) = 515(Y) S5 S7(X), 315(Y) = Sgl(Y) S5 823,31(X),
SQg(Y) = SQQ(Y) D Sgl(X) (&) 1 and a = 523729(PL ©® PR &) CL) S5 Sgl(PL D CL S5 OR) ©® S30(PL S5 OL D Ko)

WEP Attack: WEP is data level encryption using a long term secret K and per message initial vec-
tor, IV which is 3 bytes which we call Ky, K1, K3. The IV and the key bytes K3, ... form a single RC4
key Ko, K1, Ko, K3,.... Attack involve selecting IV = 3|255|V. The RC4 initialization at ¢ = 0 step is
j=7+So+255=3 (mod 256) then swap S[0], S[3]; this leaves S:

i [0[1]2[3[4[5]6]7
SiI (3] 1[2[0[4[56]7
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Thei=1stepisj=j+51 +K; =3+1+255 (mod 256) = 3; this leaves S:

i [0[1]2[3[4][5]6]7
SiI (3]0 [2[1]4[56]7

Thei=2stepis j=j+ S+ Ko =5+V (mod 256) = 3; this leaves S:

i [0[1 234 ..]5+V
ST (3]0 5+V [1]4].. 2

Finally, at i =3 stepis j=j+ S3+ K5 =54V +S3+k+3 (mod 256) = 6+ V + K3; this leaves S:

i (01 2 3[4 .. [54V [ .. | 64V+K[3]
S [3 [0 [5+V | 6+V+K3] [ 4] ... 2 .. 1

Stream|0] = S[3] = 6+ V + K3 if initialization stops here. Attack works if S[0], S[1], S[2] don’t change. The
- . . 253255

probability of this is 5257 ~ .0513.

A®X = X ® X~ 1. r—round characteristic: sequence of differences < ag, a1, ..., a, >. Definition (Lai): An

iterated cipher is called a Markov cipher if Pr(AC; = 8|ACy = a, Cy = 7) is independent of v, Vo, 5 # e.

Homogeneous Markov Chain: Pr(v;;1|v; = «) is independent of 4, Vo, (.

If an r—round iterated cipher is a Markov and the r round keys are independent and uniformly distributed
then AP = ACy, ACY,...,AC, is a homogeneous Markov chain and Pr(ACs = asl...|AC, = ay|AP =
Oéo) = HPT(AC7|A01_1)

Differentials: Right pair follows differential. Assume m pairs of chosen text, p is probability of char-
acteristic, k is the number of keys, 7 is number of suggested keys. There are about mp right pairs. If A is the
. . . . . . myA % k
ratio of non-discarded pairs to the number of discarded pairs, wrong key is suggested ==. S/N = =% = ,Y—’;\
For DC to succeed, S/N > 1. A, f(x) = f(zr +a) — f(z). Aoy, a; = Da; (Do, a;_1)- If a; is linear inde-
pendent of a1,...,ai—1, 04y ,as,..,a: f (@) = 0. ord(A,(f(x)) < ord(f(x)) — 1. If 04, as,....a; f(x) # ¢ then the

non-linear order of f(z) > i.

Let P = (pi;) be the transition probabilities of a homogeneous Markov chain and p;;* is the probability
that state j can be reached from state 7 in s steps. Ergodic: aperiodic and irreducible. If a random cipher
is selected from Yon, Pr(P is ergodic ) — 1.

Theorem (OConner): Most Feistel ciphers are resistant to differential attack. Let p, be the proba-
bility of the best linear approximation of g. |py — 1| = mazymazao.8|Pro(g(z, h) - B =z -a) — 1| and the
best s round linear approximation satisfies [p, — 3|* < |py — 4|2. For DES, s > 4, |p, — 1|? < 8|py — 3|*.

An r—round iterated 2m bit block cipher with r-round keys each has n bits. A strong key schedule
is one in which (1) For any s bits of the r round keys derived from k where s < rn, it is “hard” to find any
of the remaining rn — s bits from the s bits, (2) given a relation between two different master keys, is it
“hard” to predict the relationship between any of the round keys. < RK; >=nMSB(Ey,(IV &1)).
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3.7 New Ciphers
3.7.1 AES-Rijndael

Arithmetic in GF(2®) with minimum polynomial m(z) = 2% + 2 + 2° + = + 1. If m(#) = 0, matrix for
multiplication by 6 over GF(2) is denoted by T and squaring by .S, then

R RO R PR OOO
O OO, OO OO
OO OO O OO
O OO OO
—_—_ o, O O
R RO R PR OOO
[N e No oMo N
= e N el e Mo ie)

O, O FOOF
SO EFEOFRFRO
OO OO OO O
[N eNoNol o NoNol

OO OO OO O
OO DD OO O+ O
OO O OO+~ OO
[N eNeNoll =l =le]

Tr(a) =a+aP + a?’ +...+a?"" and N(a) = aa’a?” ...aP""". Linearized polynomial: L(z) = apx + araP +

2 d—1 . . . . .
asx? + ...+ ag_1x2P ; linear functions can be expressed as linearized polynomials.

Rijndael input: p consisting of Nb words, k with Nk words. State: 4 rows, Nb columns. Key: 4 rows, Nk
columns. Both key rows are filled in the following order: Fill leftmost column s; 9,7 = 0, 1,2, 3, then next
column, etc.

Nb/Nk 4 6 8 4 otherwise.

4 10 12 14 }

6 12 12 14

8 14 14 14 MixCol(state) {

multiply each col of state by
Rijndael(p, k, Nb, Nk) { c(x) (mod x**4+1);

ComputeRoundKeys (K, W[i]) // c(x)= 0x03x**3+0x01x**2+0x01x+0x02
state= p // d(x)= 0xObx**3+0x0dx**2+0x09x+0x0e
AddRoundKey (state) }

for (i=0, i<Nr, i++) {
for each byte, b in state, ByteSub(b)AddRoundKey(state) {

ShiftRow(state) state= state + W[i];
if (i<Nr-1) }
MixCol(state)
AddRoundKey (state) ComputeRoundKeys (K [4#Nk], W[Nb*x(Nr+1)]1) {
} for(i=0; i<Nk; i++)
} Wlil= (K[4i], K[4i+1],
K[4i+2], K[4i+3])
ByteSub(b) { for(i=Nk; i<Nbx(Nr+1)); i++) {
t= 0 t= Wli-11;
if b!=0 { if ((i mod Nk)==0)
t= 1/b; t= SubByte(RotByte(t)) "RCon(i/Nk) ;
// M= circ(1,0,0,0,1,1,1,1) if ((i mod Nk)==4 and Nk>6)
// [Shift right going down]. t=SubByte(t);
// a= (1,1,0,0,0,1,1,0)°T. W[il= W[i-Nk] ~ t;
return(Mt + a); }
3 }
ShiftRow(state) { SubByte (w) {
shift right row 1 by 0. w= ByteSub(w);
shift right row 2 by 1. }
shift right row 3 by 2 if Nb<S,
3 otherwise. RotByte(w= (a,b,c,d)) {
shift right row 4 by 3 if NDb<8, w= (b,c,d,a);
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} RC[1]= 0x01;
RC[i+1]= RC[il*x (x in poly over GF(2));
RCon[i]= (RC[i], 0x00, 0x00, 0x00);

Note [ShiftRow, MixCol] = 1. Rounds Key: K, o, K,1,...,K,15. First Round is input key. For
s=r+1, Ty = S[K,13]+ 0", T1 = S[K,14], To = S[K, 15], T3 = S[K; 12] and K ; = K, ; + T;,0 < i < 3,
Ko, = K, + Ksi—4,4 < i < 15. Note that key expansion is equivalent to: W[i] = W[i — 1] @ W[i — 4],
ifi #0 (modd4) W[i] = T(W[i—1])) @ W[i — 4], if i = 0 (mod 4) where T(a,b,c,d) = (SB(b) &
r(i),SB(c), SB(d), SB(a)),r(i) = 02025 in GF(2%). Inverse provides linear/differential immunity, linear
diffusion provides algebraic complexity.

10001111 yr z7
11000111 Yo 6
11100011 s 5
11110001 Y4 T4
L*11111000’y3’Lx3
01111100 o s
00111110 m 1

S[w] = L{w~Y] 4 0263. Combined RowShift, ColumnMix and Diffusion and AddRound is = + Mz +
0263 + k; where M is a 16 x 16 matrix and miny(x) = (z + 1)')|(2® + 1) which can be transformed into
PIMP =V, ®...® Vi5 with dim(V;) = (16,143,103,82,6, 4, 4%, 2).

Motivation. Linear cryptanalysis resistance is provided if no linear trail has a correlation coefficient
> 2%. Differential cryptanalysis resistance is provided if there is no differential trail with prop ratio
> 217" The prop ratio of differential trail is approximately the product of the prop ratios of its active
S-boxes. The correlation of a linear trail is approximately the product of the I/O correlations of its ac-
tive S-boxes. The wide trail strategy is: (1) choose an S-box with maximum prop ratio and correlation
~ 276,273 respectively; (b) construct diffusion layer in such a way that there are no multiple round trails
with few active S-boxes. Theorem: The weight of a two round trail with @ active columns at the input
and output is > 5@Q; The minimum number of active S-boxes in a four round differential or linear trail is 25.

3.7.2 Tea, TwoFish

Tea(unsigned K[4], ref unsigned L, ref unsigned R) {
unsigned d= 0x9e3779b9;
unsigned s= 0;
for(int i=0; i<32;i++) {
s+= d;
L+= ((R<<4)+K[0])~ (R+s) "~ ((R>>BE)+K[1]);
R+= ((L<<4)+K[2]) "~ (L+s) "~ ((L>>5)+K[3]);
}

3

(1) 4 different 8 x 8 bijective, key dependent S boxes. (2) MDS code. (3) PHT: ¢/ = a+b (mod 23?),
b =a+2b (mod 232). Basic algorithm: whiten, 16 rounds, whiten.

0z01 Oxef 0x5b 0x5b
0z5b Ozef 0x5b 0x01
Ozef 0x5b 0201 Oxef
Ozef 0xz01 Ozef 0x5b

Round(wy, wq, w3, wy, k1, ko) = (w,wh, wy,ws): wi = ws + Fi(wi,we,r) >>> 1; wh = (wy <<< 1) 4+

MDS =

Fi(wy,wa,7); Fr.(w,v) = PHT(g(w), g(v <<< 8)) + k, (mod 232); g(z,y,z,w) = MDS
calculations over GF(2%).
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3.7.3 Miscellaneous

Cramer-Shoup: G = Z,, G =< g >=< ¢ >, H, a collision resistant hash whose image is Z,".
PK = (G,g,¢',h,k, K), s,t,t',u,u’ randomly selected. h = sg, k = tg+t'g’, ¥’ = ug + «v'g’. Encrypt
(m): Choose 7, random, set n = H(rg|rg'|m + rnk’). E(m) = (z,y,2z,w) = (rg,rg’,m + rh,rk + rnk’).
Decryption: D(z,y, z,w), check that (nu + t)x + (nu’ +¢'))y = w. If so, compute z — sx.

Bit Commitment and coin flips: b,0' € {0,1}. Alice sends Bob ¢ = commit(b), Bob sends Alice ¥/,
Alice sends Bob reveal(c). Result is b V.

Zero Knowledge using 3 color: For each round, Prover randomly permutes colors and commits color
at each vertex. For each round, Verifier asks to reveal color at the vertices of an edge. blob: commit with
equality.

Shalevi-Micali Commit: h is a one way function like SHAL. commit(m) = h(r|lm), r, random. p a
161 bit prime. Pick a,b: ax +b=2z (mod p),y = h(x),c = (y,a,b). reveal(c) = z,m.

Time memory tradeoff: Fix a plaintext block, P and pick SP;,i =1,2,...,m. For each i, set K} = SP;
and K;g_l = F(E(K;7 P)),7=0,1,...,t—1 where F is a randomizing function to avoid short cycles and put
EP; = K}. For each i, store (SP;, EP;). Phase 2: Get C = E(P, K) from oracle where K is unknown. Com-
pute Xo = C, X;11 = E(P, X;) until X; = EP; for some ¢, j. Then compute Yy = EP; and Y, 41 = E(P,Y;)
until Yy = C then K = Yj_;. If m is the number of starting points for each F', ¢ is the number of encryptions
per chain and r is the number of tables. Attack requires mr memory and ¢r time with the probability of

trm

success 1 —e™ &

Nostradamus (“herding”) attack: Let h be a Merkle-Damgard hash with compression function f and
initial value IV. Goal is to hash a prefix value (P) quickly by appending random suffixes (S). Procedure
Phase 1: Pick k and generate 2% random values dy; from each pair of the values f(IV||d; ;+1) find two mes-
sages My j, M1 ; which collide under f and call this value d; ; this takes effort 27/2 for each pair. Keep doing
this (colliding d; ;, d;y1,; under M; ;, M;i1 ; to produce d; j+1 until you reach dak o. This is the diamond.
Publish y = w(dar o) where w is the final transformation in the hash as the hash (i.e. - claim y = h(P||S).
The cost of phase 1 is (2F — 1)27/2. In phase 2, guess S’ and compute T' = f(IV||P||S’); keep guessing until
T is one of the d;;. Once you get a collision, follow a path through the M;; to dax o, append these M;; to
P||S” and apply w to get right hash.

3.8 Cryptographic Hashes

Weak collision resistance: Given z, it is computationally infeasible to find 2’ # = with h(xz) = h(a’).
Strong collision resistance: It is computationally infeasible to find &’ # x with h(z) = h(a’) for any =z,
z’. One-way: Given a digest z, it is computationally infeasible to find = with h(z) = z. Strongly collision
resistant implies one-way.

Merkle Damgard construction: zy = IV,z;11 = f(z;,m;),h(m) = ¢(z,), where f is a compression
function, r is the number of rounds and m = mq||ma||...||m,. If f is collision resistant then so is h.
Hash from Block Cipher: g; = 691_1(1’1‘) +x;, g = €gi_1(l’i) +x; + gi—-1, i = egi_l(gi_l + I’Z) + x;,
gi =e€g, 1 (gi—1 +23) + gic1 + 4.

Chaum Hash: «, § two primitive elements of Z,, h(x,y) = o®4Y (mod p). If there’s a collision, log,(5)
can be computed efficiently. h(0*Y||y1), gix1 = h(g:||1||yi+1). Todo: do reduction proof.

Iterative construction is vulnerable to multi-collision (Joux): Suppose M1, M1'; M2, M2';...; Mt, Mt'
all collide. From these we get 2¢ collisions. If r people each have one of N possible birthdays, there is a
greater than .5 chance of k collisions if r > N %5+, Todo: prove this fact.

Random Oracle Model: Let f be a OWF with trapdoor, (y1,y2) = (f(r), h(r) +m) is used as encryption.

An oracle with [ requests L, Pr(guess right) = P(r € L)+ $P(-r € L). Set p =1 +e, e < Pr(r € L).
Canetti, Goldreich, Halevi constructed a cryptosystem that is secure in Random Oracle Model but insecure
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for any concrete hash.

MD-4: In description below, K[0]= 0, K[1]= 0x5a827999, K[2]= 0x6ed9ebal. F(A,B,C) = (AA B)V
(RAAC), G(A, B,C) = (ANB)V (AAB)V (BAC), H(A, B,C) = (A& B)&C. W; = X,),i =0,1,...,47.
Q1=A4,Q3=D,Q2=C,Q-1=B. QiAB,C)=(Qi—a+ F(Qi-1,Qi—2,Qi-3) + Wi + Ko) <<<
Si70 <i< 157 QZ(A,B,C) = (Q¢_4 + G(Ql’_17Qi_2’Qi_3) + W; + Kl) << s, 16 <1< 31, Qi(A,B,C) =
(Qia + H(Qi—1,Qi—2,Qi—3) + Wi + Ka) <<< 54,32 <0 < 4T,

MD-4(Y[0] , ..., YIN-11)
K[0]= 0; K[1]= 0x5a827999; K[2]= 0x6ed9ebal;
(A, B, C, D)= (0x67452301, Oxefcdab89, 0x98badcfe, 0x10325476) ;
for(i=0; i<(N/16); i++) {
X[j1= Y[16i+jl, j= 0, 1, ..., 15;
Wljl= X[SIGMA(j>]1, j= 0, 1, ..., 47;
Q[-41= A;
Q[-3]1= D;
Ql-2]= C;
Ql-1]= B;
// Calculate Q[i] recursively according to formula above
(A, B, C, D)+= (Q[44]1, Q[45], Qr461, Q[471);
(A, B, C, D)= (A, D, C, B);
}
return (A, B, C, D);

Dobbertin attack on MD4: Let M and M’ be 512 bit messages consisting of 16, 32-bit works X, X1, ..., X5
with X; = X! for all i except i — 12 and let X|, = X12 +1 (mod 232). We want to find a collision. Xi3 is
first used in step 12 and last used in step 35. A; = (Q} — Q;, Q)1 — Qj-1,Q;_» — Qj—2,Qj_5 — Q;j—3) after
step i. Dobbertin attack consists of three steps: (1) Show that if Ajg = (0,22°, —2°,0) then Azs = (0,0,0,0)
with probability p > 273° (actually, p > 2722); (2) get conditions on M (i.e. on the X;) based on round
12, that guarantee A9 = (0,225, —2% 0); (3) find Xo, X1, ..., X11 that produce candidates that present the
desired conditions at step 12, after about 222 of these, you’ll get a collision. The work factor is about 22°.

1. Steps 19-35. Suppose Ajg = (0,22°,—25,0) and G(Q19, Q1s, Q17) = G(Qg, Qs, Q)7), then the following
table holds:

JLAQ;) A(Qj-1) A(Qj-2) A(Qj-3)| i s p In
19 225 —2° 0 0] * = *
20 0 225 —2° o1 3 1 X1
21 0 0 225 2511 5 1 X5
22 | —2M 0 0 2% 11 9 1 X,
23 26 —14 0 0|1 13 i X3
24 0 26 —214 ol1 3 i X
25 0 0 26 —214 11 5 i Xs
26 | —2%3 0 0 26011 9 i X0
27 219 —223 0 0|1 13 i X4
28 0 219 —223 0ol1 3 1 X;
29 0 0 219 -2 11 5 1 X
30 -1 0 0 2911 9 1 X1
31 1 -1 0 0|1 13 1 X5
32 0 1 -1 012 3 1 Xo
33 0 0 1 -112 9 1 Xs
34 0 0 0 112 11 g X4
35 0 0 0 012 15 1 X9, X12+1

Steps 12 to 19. To get AIQ = (072257_2570)a Qlﬁ = Q367 ng = Q/lg + 225a QlS + 25 = Q&Sa Q17 = Q/17
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jlit MIn M In
12 0 X]_Q X12 +1
130 X3 @ X3
1410 Xyg X4
1510 X5  Xis
16 |1 X Xo
1701 X, X,
81 X X
1911 X5 Xipp+1

These yield the following conditions: (@}, <<< 29)—(Q12 <<< 29) =1, F(Q}5, Q11, Q10)—F(Q12,Q11, Q10) =
(Ql3 <<< 25) — (Q13 <<< 25), F(Q}5,Q12,RQ11) — F(Q13,RQ12,Q11) = (Q, <<< 21) — (Q1q <<< 21),
F(Q14, @13, Q12) —F(Q1a, Qu3, Q12) = (Q5 <<< 13)—(Q15 <<< 13), G(Q15, @14, Q13)—G(Q15, Q14, Q13) =
Q12— (Q12, G(Ql, Q15 Qr1a) —G(Qu6, Q15, Q13) = Q13— (Q'13, G(Q'7, Qg Q15) — G(Q17, Qi6, Q1a) = Q12—
Q2+ (Q1s <<< 23) — (Q1s8 <<< 23)', G(Q15, Q'7, Q16) — G(Q18, Q17, Q15) = Q15 — Q5 + (Q10 <<< 19) —
(Quo <<< 19)). For the solutions, (Qi0,Q11,Q12,Q13,Q14, Q15, Q16, Q17, Q1s, Q19, Q'2, @13, @14, Q15),
Alg will hold if X3 = anything, X114 = (Q14 << 21) — QlO — F(ng,ng,Qn), X5 = (Q15 < <<
13) = Qu — F(Q14,Q13,Q12), Xo = (Q16 <<< 29) — Q12 — G(Q15,Q14,Q13) — K1, X4 = (Q17 <<<
27) — Q13 — G(Q16, Q15, Q14) — K1, Xg = (Q18 <<< 23) — Qua — G(Q17,Q16, Q15) — K1, X12 = (Q19 <<<
19) — Q15 — G(Q18,Q17,Q16) — K1, Qo = (Qi3 <<< 25) — F(Q12,Q11,Q10) — X13, Q3 = (Q12 <<<
19) — F(Q11,Q10,Q09) — X12. Can choose Q12 = —1, Q15 = 0, Q11 = 0 to simplify. This means
we can pick Q14,Q15, Q16, @17, @18, Q19 arbitrarily and determine Qq9, @13, @3, @4, Q)5 subject to the
checks G(Q15,Q14, Q13) — G(Q'5, @14, Q13) = 1 and F(Q4, Q13,0) — F(Q1a, @13, —1) — (Q5 <<< 13) +
(R15 <<< 13) = 0. Finally, we must insure the solutions is admissible by checking that G(Q}9, Q}s, @17) =
G(Q19,Q18,Q17). Under these circumstances the solution is a candidate for the differential. Once one candi-
date is found use the “continuity” of F' and G by modifying one bit of the candidate at a time, the continuity
makes it likely this will work.

Steps 0 to 11. Having found Qg, Q9, Q10, @11 such that

MD45, . 47(Qs, Qo, Qro, @11, X) = M D412 47(Qs, Qg, Q10, Q11, X ")

we need to find M D4y, 11(IV, X) = (Q11,Q10, Qo, @s). We are free to choose X;,j=1,2,5,6,7,9,10, 11.
We pick X1, X2, X3, X5 at random and compute Xg, X7, Xo, X190, X11 such that M D4g . 11(Q2, @3, Q4,Q5,X) =
(Q117Q103Q97Q8)' Since Q11 = (Q? + F(Qlo,Qg,Qg) + Xll) <<< 19, if can do this by making X1 =
(Q11 <<< 13) — Q7 — F(Q10,Q9,Qs) and similarly for Xj9, X9. We can’t do this for Xo but since
Qs = (Q4 + F(Q7,Q6,Q5) + Xg) <<< 3, it Q7 = —1,Q¢ = (Qg <<<L 29) — @4 — Xg the desired
equation holds for all such Xg; in particular, by picking X = (Qs <<< 21) — Q2 — F(Q5,Q4,RQ3) and
X7 =(Q7 <<< 13) — Q3 — F(Qs, @5, Q4). These guarantee Azs = 0.

SHA1(M,n)
// M is message, n is number of 512 bit blocks
M= SHA1Pad(M)

fi(B,C,D)=(BAC)V (BAD),0<i<19
fi(B,C,D)=(B®C®D),20 <i <39
fi(B,C,D)=(BAC)V(BAD)V(CAD)40<i<59
fi(B,C,D)=(B®C®D),60<i<79

K; = 025a827999,0 < ¢ < 19; K; = 0x6ed9ebal, 20 < i < 39
K; = 028 f1bbcde, 40 < i < 59; K; = 026a62¢1d6,60 < i < 79

Hy = 0267452301, H; = Ozefcdab89, Hy = 0x98badcfe, Hy = 0210324576, Hy = 0xc3d2el fO

for (=0, ¢ < n, i++) {
M; = Wy||[Whll|...||[Wis
for(j = 16,5 < 80,5+ +) {
// ROTL' below is difference between SHA-0 and SHA-1
W;j = ROTL'(W;—3 & W;_s & W;_14 & Wj_15)
}
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A=Hy, B=H,,C=Hy,,D=H3, F=H,

for(j = 0,7 < 80; j++) {
ROTL? below is correlated to lowest wt differential
t = ROTL5(A) + fj(B,C,D)+ E4+ W; + K;
E=D,D=C,C=ROTL*(B),B=AA=t
}

H0+ = A7H1+ - B,H2+ - C,H3+ - D,H4+ =F

}

SHA-1Pad(x) // with MD strengthening
Append 1 and enough 0’s until there are 64 bits remaining
Append size hashed in 64 bit format
return(x)

Shamir’s non-linear functions with maximal period: z — 22 A ¢, ¥ — z + 4h(z) + 1, Example:
z— (z+1)(2z+1).

Changes from MD4 to MD5: (1) 64 steps, function for final 16 rounds is I(A, B,C) = B@&(AV-C), (2)
G(A,B,C)=(ANC)V (BA-C), (3) each round uses different constant, (4) each step adds result of previ-
ous step, (5) the order of input words to the steps is different,(6) shift values are different. Chinese attack
uses “precise” differential (signed difference) where 0 indicates no difference, + indicates 1 — 0 difference
and — indicates 0 — 1 difference. This is different from both xor and modular difference; for example, if
z' = 10100101, z = 10010101, V(2’, z) = 00 + —0000.

Chinese attack on MDS5. Attack proceeds in four phases: (1) specify input differential patters via
modular difference (hard and “done by hand” according to Wang), (2) specify output differential pattern
(only 1 known) that is easily satisfied in earlier rounds, (3) derive sufficient conditions propagation; (4) gen-
erate pairs of 1024 bit numbers that satisfy 3 (deterministically when possible). To do step 4: (a) generate
My at random; (b) use single step modification to My to satisfy sufficient conditions; (c) use multi-step
modifications to insure conditions hold in middle rounds; (d) check conditions for all remaining steps; (e-f)
do the same for M7; compute Mj = My + AMy and M{ = M; + AM; according to the input differential.
Conditions: Tj = F(Qj717 Qj,g, Qj,g) + Qj*4 + Kj + Wj, Rj = Tj <<< 85, Qj = Qj,1 + Rj, now apply
modular difference and derive conditions on AT; and AQ); for differential (below) to hold.

AX = X' - X. AHO *)(MO,M[')) AHl H(]th{) AHQ ‘}(Mi—lyMi,,l) AHZ = H with each COmpOSGd
of AHZ — P, ARi+1’1 — P, ARZ’+1’2 —P; ARZ‘+1’3 —P, ARi+1’4 = AHi+1. Let Al,] = l‘,IL-J- — T4y =
+1 and Ax;[j1,42,.--,01] = ®i[j1,J2, ..., 5] — ;. Collision is caused by 1024 bit input: (Mg, M;) with
AM, = (0,0,0,0,230,0,0,0,0,0,2'%,0,0,23,0) and AM; = (0,0,0,0,23,0,0,0,0,0,0, —2°,0,0, 23, 0).
Sufficient conditions insure that differential holds with high probability. At 8th iteration, by = co + (b1 +
F(ca,do,az) + my + t7) <<< 22, we try to control (Acg, Ady, Aag, Aby) — Aby with the following (A)
non-zero bits of Abs: d2’11 = ].,bg’l = 0, d2$26 = Q226 = ].,bg’l(; = 0, dgﬁgg = Q228 = O,bQ,i = 0,
d2711 = 1,[)234 = O; (B) zero bits of Abg: Coy = O, dgﬂ; = a2, C2;1 = 1, d276 = m = O, dgﬂ; = O,
da12 = 1, az 24 = 0, Tth bit of ¢3,ds, as result in no change in by. Algorithm 1: Repeat until first block is
found (a) Select random My, (b) Modify My, (¢) My, M = My + AM;y produce AMy — (AHy, AM;) with
probability 2737, (d) Test characteristics. 2: Repeat until first block is found (a) Select random My, (b)
Modify My, (¢) My, M{ = M; + AM; produce AM; — 0 with probability 273°, (d) Test characteristics.

Comments from NIST: Randomization (prevent offline computation for herding): RMX (r, My]...|Mp) =
(rlmy ®r|...|mp ®r). H.(My|...|Mr) = H(rlmiy ®r|...|mg ®r). Transmit r. Herding attack: first
committing to an output h, then mapping messages with arbitrary starting values to h. Joux: If Hy, Hy are
n bit hashes; Hy(M)||Ha(M) can be broken in O(n2%). Haifa: h; 1 = CF(h;, M;, bitlength, salt).

Joux attack on SHA-0: For SHA-0, change bit 1 which shifts to bit 31 and because of no carry: it is
linear in @. Disturbance bit vector: (méo), mél), e ,mém)). Perturbation mask: —5 <17 < —1, Méi) =0,0<
i <79, M{) = 0,if k#£10<i<79,M) =M. Corrective masks: —4 < i <79, M{"” = ROLs(M{™"),
—3<i <79, M =M, 2 <i <79, M) = ROLso(M{™), =1 < i < 79, M) = ROLso(M{™"),
0<i< 79,M3(i% = ROLgy (Ml(FS)). Early round differentials are prescribed and later round differentials
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hold with non-negligible probability (276!, 2756 using neutral bits — A bit is neutral if flipping it doesn’t

change differential pattern). Multi-block: patch final round errors in next block. Early rounds are non-linear
and prescribed. Late rounds linear and probabilistic. Final rounds can be “patched”. Procedure: Fix lin-
ear characteristic, fix non-linear characteristic, modify message (keeping differential) if conflict in mid round.

SHA-256 definitions: Ch(x,y,z) = (x Ay) ® (—z Az 2 Maj(z,y,z) = (x Ay)V(zAz)V(yAz).
2’5]{5 (r) = ROTR!(x) ® ROTRI(z 6) ® ROTRF(x Q’gé r) = ROTR(x) ® ROTR!(z) ® SHRF(z).
3% (x) = w,;{g 22( ), X3%%(x) = ¢215112 z).
05°%(x) = bai 3( ) 0%56(17) 256 10( ).

SHA-512 definitions: Ch(z,y,2) = (z Ay) & (- /\ k) Maj(z,y,2z) = (x Ay) V(e Az)V(yAz).
é’ka( ) = ROTR!(z) ® ROTR’ (z) ©® ROTR*(z), 215 (r) = ROTR!(z) ® ROTR! (z) & SHRF(x).
2512( ) 1/)28 ,34, 39( ) 2512( ) ¢14 18, 41( )
012 5§2 012 P ¥
(2) = 6515 (2), o2 (2) = o33y (x).

SHA-256 (M |[Ma||. .. |[My):
for(i =1;e < N;i++) {
W, =M", 0<t<15,
Wi = U%SG(Wt72) OW 7@ 035?(Wt715) © Wi_16,16 <1 < 63;
a=H"V0=H"; c=HyV;d=H{Y,
e — Hizfl); f _ Hs(zfl); g= Hézfl); e — H’ngl);
for(t:();t<64;t—|—+){
Ty = h+31%(e) + Chle, f,9) + K + Wy T = X5°%(a) + Maj(e, f,9);
h=g,9g=f; f=ee=d+T;d=c;
c=bb=a;a=T1+1T5;

HY =a+H " B =0+ HY HY =+ H{ ™V B =d+ HY ™Y,
Hil) — 6+H4§Z_1); H(Z) f+H(Z 1) H(Z) g+Hél—1); H(Z) h+H($ 1)

SHA-512 is the same except there are 79 rounds and the words are 64 bits long.

3.9 Elliptic Curve Crypto

Er(a,b):y*> = 23+ax+b where a,b € F and char(F) # 2, 3; we sometimes write E,(a,b) if F = GF(q). For
ECC, also require smooth; namely, 4a®+27b% # 0 (mod p), p = char(F). For P = (z1,y1) and Q = (22, y2)

define P+Q = (z3,y3) with z3 = \>—21—2,y3 = AN(z1—x3)—y1 where A = ég%g;)) if P# Qand \ = (3(22')‘1)
if P = Q. For char(F) = 2, Ep(a,b) : y?*+xy = 2 +az+b and 23 = N2+ +a+z1+22,y3 = A(z1+23)+23+731
where \ = (gifﬁ) P#Qand A =z + yl ,P = Q. For an ECC system, the public key parameters are
q,a,b, P (P is called the base point); pick 1 < x < p, x is the private key. Public key is Q = xP. ECDLP:
Find z knowing Q. ECC Encrypt: To encrypt m (already an integer in the right range), map it to a
point on the curve Py, pick 1 < k < p, send (kP,kQ + Pyr). ECC Decrypt: Receive (L, M) calculate
M —zx L = Py; and map it back to the integer message. Here is a way to embed integers in curves: For ¢ = p",
odd, select parameter x so that the probability of failure is 27"; m is message and 0 < m < M,q > kM
and z = mk + j € F, now for the first j for which 2% 4+ ax + b is a square, use the corresponding point
P = (z,1/7). ECDSA sign: Select k at random, compute kP,r = fr(kP),s = k~'(H(M)+xr). Signature
is (r,s). Verify: u; = s7YH(M),up = s~ 'r, accept if fg(u1 P+ usQ) = r. Note: (k,#FE) = 1.

Curve selection: Avoid anomalous curves (Definition: char(F) | #Er(a,b)), and supersingular
curves (Definition: #FE,(a,b) = q+ 1 —t,q | t — t is Frobenius trace satisfying (¢,)? — t¢, + ¢ = 0;
also t is Tr(¢4)), CM 3 (a = 0,p = 3 (mod 4), MOV-vulnerable (Frey-Ruck) For comparison, attacks

on DLP: L(v,¢,n) = exp(c(in(p)”(In(In(p))*~"), NFS discrete log is Ly |3, (%)%]. Best known ECDLP is

EC(n) = y/n. In comparisons, usually put n = lg([q]), N = lg([p]) and put Ef(]jziv = ezp(cN%(lj;(N(log(Q))% .
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NIST Curves: Use prime fields F,, with p = 21922641 222499611 9256 2224 91924 996_7 2384_2128_
296 232 — 11,2521 1 or binary fields F, with g = 21632233 2283 2409 9571 4B (a,b) = q+1—t,|t| < 2,/q
and ¢ is called the trace of E. E,(a,b) has rank 1 or 2, that is: E,(a,b) = Z,, X Zy, and na | n1,n2 | (¢ —1).
If no = 1,Ey(a,b) & Zy,, = {kP :0 <k < ny} and P is a generator. E,(a1,b1) = E,(az,bs) if a1 = u'as
and by = utbs. E,,q = p" is supersingular if p | t. Field represented as polynomial or normal basis. Hyper-
elliptic: higher genus. Weil-Deligne: Set ((t, E/F;) = exp(>_, N;;tr ), where N, is the number of solutions

a—a 2
Of E/qu. C(t,E) = ﬁ

numerator. Random selection of (E, B): Generate z,y, a at random and compute b = 32 — (2® + az), check
there are not multiple roots. To compute |E|, use Schoof.

JNi=q+1—a,N,=q¢"+1—a" — " where a, § are reciprocal roots of the

MOV Attack: Ey(a,b) — Fy, if n, the curve order, satisfies n | ( ¥ — 1) then use index calculus, small
probability of supersingular or k < log?(q). Attack fails if & > log?(q) (Frey and Ruck extended the attack).

IBE: Suppose p = 6¢ — 1, E, : y> = 2> + 1 (mod p) and suppose #E = 6q. 3Py # oo and ¢P = oco.
Finally, suppose there is a bilinear map, é(P,Q), from points into g-th roots of unity that is easy to com-
pute with é(aPy,bPy) = é(Py, Py)®™. &(Py, Py) # 0 and two hash functions: H; :< 2° >— kP, and
Hy : {w'} —< 2" >. Pick a secret s : P; = sPy. To encrypt to ID: set Dy = sH1((ID), g = é(H1(ID), Py),
choose r # 0 (mod ¢) and compute t = m® Ha(g9"), A — B :c = (rPy,t). To decrypt: Get (u,v), compute
h=¢e(H1(Dy,u), m=v® Ha(h). Note h = g".

ECC Point Operation Costs: I = inverse cost /GF(p). M = multiply
cost /GF(p).

S = square cost /GF(p).

Operation Cost Modular Op | Cost

2P I1+4+25+2M Add, Sub O(lg(n))
P+Q I+S+2M Multiply O(lg(n)?)
2P+ Q 21+ 25 +2M || Invert O(lg(n)?)
P+Q,P—Q | I+254+4M Exp O(lg(n)?)

IfX =< X1,X5,...,X,, >and Y =< ¥7,Y5,...,Y,, > then Pr(AX,AY) = QL for perfect differential
resistance. (AX,AY) is a differential characteristic. Np = .= and pp = 1] B; where ~ is the number of

active boxes.

Tr(z) =z +aP+...+a?" . e dis a dual basis if Tr(dDe®) = 5(i & j).

3.10 Algebraic and other attacks

Hadamard-Walsh: W;(w), measures distance to affine and completely determines f. Autocorrelation:
r#(w) measures differential and does not determine f.

Balanced: weight is 2"~!. CI #(t): output is statistically independent on any ¢ input bits. Resilient:
Ry (t) is CI¢(t) and balance]%. Non-linearity: Ny is distance to affine. Ny = mingepar1,n)d(f,g) =
2"t — Imax,|Wr(w)|. € = 3£ — & Linearity: Ly = maz,|Wy(w)|. Dy(f(z)) = f(2) ® f(w + z)
Theorem: ry(w) =27" > Wg(u)?(—1)“™. For iterated ciphers, once the number of rounds is high enough
to generate G (usually A, ), more rounds don’t help.

AES: 8j +m component is v(j ). 0 = Wy, (jm) + Pim) + Ko, (j,m)> 0 = Ti (j,m)Wi,,m) + 1,0 = 1,2,...,9.
0= Wy (j,m) T (Ma?ifl)(j’m) + ki,(j,m)ai =1,2,...,9,0= C,m) + (M*l‘g)(j’m) + klO,(j,m)- M is the combined
effect of ShiftRow, MixColumn and the Linear diffusion. 5248 equations, 3840 sparse quadratic, 1408 linear
diffusion, 7808 terms, 2560 state variables; 1408 key variables. 1280 + 1408 = 2588 state/key variables
eliminated, 4288 — 2688 = 1600 unknown. 2688 equations, 1280 sparse quadratic, 5248 terms, 2560 state,
1408 linear diffusion, 1408 key variables.

For AES: M : 2 — CRLx + 63 (Everything but subByte). Minimal polynomials: C : (z* + 1), R: (z* + 1),

L:(x+1)3,C: (x+1)!5 BES: b — Mpb~*+kp. wo = p+ko, x; = wi_l, w; = Mpx;_1+k;, c = Mgzo+kio.
AESIC(P) =C+ BES¢(I€)(¢(P)) = ¢(C)7 ¢(a) = (a20aa217a227a237a247a257a267a27)'
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Circulﬁant as lin(;,arized polynomial: z — 020522 4020922 + 0$f9$22 +022522° + 0:vf4x24 1020122 +
0zb52% + 0x8fz? , St w ZZ:O Aw?%=2" 4 0263, modified: S : w ZZ:O A\w~?". Rank of system is

equations
monomials*

Equation Solving: If n =number of equations, M = number of variables. Solution takes 2", if n = m, n,
ifn=m+1and /nif m>>n.

Buchberger:
Input: F' = {f1, f2,..., fm}. Output: Grobner G = {g1,92,...,9s}
G — F,
Do {
G — G,
for(p,q € G',p # q) {
Compute S(p, q);
r— REM(S(p,q),G");
if(r #0) {
G — G uU{r};

}
} while(G! = G7)

Theorem: Foregoing algorithm yields Grobner Basis.

F4/F5: Grobner by matrix reduction. Example: f; = 3z3yz — bzy, fo = 52222 + 32y + 1, g1 = ay — 22,
2
g2 = 2 — 3y=z.

yz 2227 y2®  wxy z 1

fi 3 0 0 -5 0 O
fa 0 5 0 3 0 1
222q1 1 -2 0 0 0 0
191 0 0 0 1 -2 0
zg2 0 1 -3 0 0 O

Complexity of F5 is Np® where Np is the size of the largest matrix containing polynomials of degree D. If
m=mn,D ~ .09n.

Condition Complexity
m=an exponential in n
n << m <<n? subexponential in n
m = an? polynomial in n

AES Design Criteria: Invertibility, minimize largest non-trivial correlation between input and output,
minimize largest non-trivial xor, complexity of algebraic expressions, Simplicity of expression. Estimation
of linearly independent equations for XSL on AES-128.

XL: The Extended Linearization.

Input: F = {f1, fo, ., fmn}-
Output: univariates.

S —
Pick D =d+1;
G — F,
fori=1i<n+1;i++) {
Generate pg; = 2° f;, f; € F;
Do Gaussian reduction.
If there is a univariate f(z) {
Solve;
S —SU{(z—ai)};
Substitute.
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}

else
D—D-+1;
}

For each round (0 <4 < 9) and each S-box (0 < j < 15), we get r = 8 x 3 = 24 quadratics. S: Total S-boxes,
P — 1: passive S-Boxes, Highest degree: 2P. R: Equations. B: S-boxes/round. |R| = (}";) tF — (@t —-nrP),
|R'| = (P”il)SB(N,,+1)(tfr)P’1, |R"| = (Pil) (Sk — Li) (N, +1)(t —7)P~1, Li: independent key variables,
Sy: key variables. Total terms: T = (;z)tp. For P=2, (R+ R + R") = 33,665,888, T = 33,788,100. For
P=3, (R+R +R") =9518 x 10°, T = 91.9 x 10°.

Saturation Attack: A-set has 256 states which are either all the same in a byte position or all differ-
ent. In either case @, ., 2;; = 0. Mixcolumn is the only operation that changes this condition and only if
there is more than one active byte in the column. To capitalize on this at final round (where mixing disrupts
condition), guess key byte. If condition holds, it’s right; otherwise it isn’t.

Boomerang: E = E1Ey. Ey : o« — B,p, E1 : v — d0,q. (1) Pick Py & P, = «; (2) Ask for ¢y =
E(Pl),CQ = E(PQ), (3) Compute C3 =C4 @D v, Cy =y @D ; (4) Request Py, = E_I(C4), P; = E_I(Cg,)
EO(PI) = Il, Eo(PQ) = IQ, E0<P3) = 13, Eo(P4) = I4. El(ll) = Cl; El(Ig) = Cg, El(Ig) = Cg, E1(14) = 04.
What is probability that P3 + Py = a. ey : Pr[l; + I3 =] = q, e2 : Prlla+ Iy = 6] = q. Prle; Aes] = ¢*.
Pr(ls + 1y = ] = ¢, Pr[Ps+ Py = a] = p>¢®. If (pg)? > 27", pg > 27"

Amplified Boomerang: Use two short differentials instead of one differential. Start with quartet P, ® Py =
P;@ Py = a, each has o — § with probability p. Eo(P1)®Eo(P) = Eo(Ps)BEo(Ps) = 8. Eo(P1)®Eo(Ps) =
Eo(Py) ® Eg(Py) =7. Co®Cy =C;1 & C3 =6 and we want to use v — §. Probability that quartet be-
comes right is (]\gp)2_"q2. Distinguishers count quartets ((Py, P»), (Ps, Py)) satisfying C1 @& C3 = Co®Cy = 0.

Bilinear Attack: Notation: L.[0,1,2,...,n — 1], R.[0,1,2,...,n — 1] are the input to round r and
1.[0,1,2,...,n— 1], O.[0,1,2,...,n — 1] are the input (without key) and output to the round functions. If
aC{0,1,2,...,n—1}, define L, [a] = @, Lr[s]. Consider the bilinear L, 1[3] - R,11[a] ® R, [f]- L.[a] =
I.[8] - Orla].

Square/Integral: Gives one linear combination of 4 key bits in round 4. Properties of sets of texts pre-
served by encryption. Example: 256 plaintexts that agree on 15 input bytes. 6 - linear map, v - non-linear
transform, 7 - byte transposition, o - key addition, A - 256 active states, A - set of indices of active bytes.
Then @b:@(a),aeA bi’j =0. V:L‘,y S A7 ZTi 4 7& biyj if (Z,j) € A\, Tij = bi’j if (27]) ¢ A ;5 = bi,j D S,\[bi,j]€9f7j;
if the result is not balanced, key is wrong. (See saturation attack earlier.)

Truncated differentials: Suppose g : GF(2)" x GF(2)" x GF(2)™ — GF(2)" x GF(2)"x implements a
Feistel cipher round that is ¢(X,Y, Z) = (Y, f(Y,Z) ® X). The S/N ratio is % where p is the differential
probability, v is the number of suggested keys and A is the ratio of non-discarded keys to all keys. A full
differential a’ — b’ specifies all n bits, a truncated differential specifies a subset of bits. Here is an example of
its usefulness. Let f(x) = x~!. It has non-linear order n — 1. If n is odd the map is differentially 2-uniform
p = 217" if n is even the map is differentially 4-uniform p = 22~". For 3 rounds, the differential probability
is 23727 and the S/N is 237", For r > 3 the attack can’t succeed. For 2 rounds, p = 2!~ and the S/N is
27+1 50 the attack requires 2" texts and is O(23") but for a’ # 0, there are only 2"~! possible b’ and we get
one bit of information — the S/N is 2337: = 2. Let f(z,k) be the non-linear function in a 5 round Feistel
cipher with block size 2n. Let a # 0 be an input differential for which only a fraction, W, of all output
differences are possible. Then a truncated differential attack requires 2L chosen plain-cipher pairs and is
O(L22") where L is the smallest integer: Wk < 2727,

Higher order differentials: Define

AP (f(@)) = fla+a) = £(2), AL, 0 (F(2) = ADAL L) o (f(@)).
Let Llaj,as,...,a;] is the set of all linear combinations of < a1,as,...,a; >. Then A((jl),@,..i,aq,(f(m)) =
2 veLiar,an..ai] L (P + ) and ord(Agl)(f(x))) < ord(f(z)) — 1. Here is an example application. Let
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f(x,k) = (x+k)? (mod p) be the Feistel round function with size is lg(p). f is differentially 1-uniform and
the round differential has probability %, f"(zx) is constant. The first order differential attack on a 5 round

cipher requires 2p texts and is O(p?); a second order differential attack requires 8 texts and is O(p?). [Use
Ay p(f(x)), 0 = al|0,b = b]|0,S/N = r?]. For a 5 round Feistel with f non-linear of degree r using an rth
order differential requires 2"+1 texts and is O(227+").

SFLASH attack: The idea of SFLASH is to hide an easy-to-invert quadratic map, F'(x) with two “secret”
invertible linear transformations U,T. If e = ¢' + ¢/, F(x) = 2° is quadratic; in particular, if e = ¢ + 1
(and from now on, it is) and P = T'o Fo U, F is (easily) invertible if (¢ +1,¢" — 1) = 1 (so ¢ = 2¥) but
without knowledge of U, T, P isn’t. This is the C* scheme Patarin broke. If we remove r of n quadratic
equations in the base field that represent P, Patarin’s attack doesn’t work and the new scheme C*~ can
be used for signatures. Let I : (x1,22,...,2,) — (21,22,...,Zn—r). P is public key; to sign m, choose r
coordinates at random. Signer recovers s: Pr(s) = 7. Signature is (m, s). The idea of Shamir’s attack is to
use a multiplicative property of the linear transformation induced by a field element, &, on the differential to
obtain a different set of linear combinations of the F' quadratics and then apply Patarin’s attack. Define the
differential DF(a,z) = F(x +a) — F(z) — F(a) — F(0). For F(z) = 2°, e = ¢’ + 1 in field of characteristic
g, DF(¢-a,z) + DF(a,§ - 2) = (£ + fqg)DF(a,x). Denote M, as the matrix for the linear transformation
induced by multiplying by &, L(£) as the matrix induced by & + fqe and A(L(§)) = THML(g)T’l. Let
Q@ be the space of quadratic forms, V the subspace generated by TFU and Vi the space generated by
TaFU. Vi CV C Q. There is a corresponding set of bilinear forms B, and sets W and Wy and set-
ting N¢ = U~'M,U, the relation DP(N¢(a),z)) + DP(Ny¢(x)) = A(L(E))DP(a,z) holds. This equation
relates unknown coefficients of N¢ on the left with unknown coefficients of A(L(§)) on the right. Setting
Sm(a,z) = DPn(Ne(a),x)) + DPr(Nge(z)) we note the LHS is in Wy with probability ¢~" if M repre-
sents a matrix for some £ induced value and probability q”g/ 2 if not. These identify transforms that can
produce other P equations to fill out the r unknown quadratics to apply Patarin. SFLASH-1 parameters:
¢q=2",n=37,0 =11,r = 11; SFLASH-2 parameters: ¢ = 2",n = 67,0 = 33,r = 11.

Impossible differentials: Suppose a — 3 for E; is impossible and £ = E5 o Fy o Ey. Encrypt many
plaintexts with possible output a after Ey and decrypt pairs with all possible subkeys through FEs. If these
suggest o — (3 the keys are impossible.

Related Key Attacks: If K — (K, K»,...,K,) and K* — (K»,...,K,,K;) and F(X, K;) is the round
function then n — 1 of the rounds are identical. If P* = F(P,K;) and we know 2"/2 P/C pairs (P,C)x
and 2/2 P/C pairs (P*,C*) g~ try to solve F(P,K') = P* and F(C, K') = C*; this gives K. Related key
differential: @ — § for E° with p > 27" then Prx g[E%(X) ® Efgap(X ®a)=p]=p>2""

Structural: Prior to MixCol (x}, z%, 2%, 24)T and after (yd,v%,v5,v4)T then y @ y) @ ... @ yJs5 = 00.

Slide Attack: Let F be a per-round function. If C = E(P) = F"(P) and P’ = F(P) then C' = E(P') =
F(C). Effective against rounds which implement weak permutations.

Wiedemann: Solve AZ = b in O(nw) time over F = GF(q) where w is the number of non-zero ele-
ments of A. Let S =< A’ >, det(A) # 0 and suppose f(z) = Zj:o is the minimal polynomial normalized
so the trailing coefficient (fy) is 1. Let z = — Zle fiA"™1b. Then Az = (1 — f(A))b = b so x is a solution,
this requires 2n(w + 1) field operations. To find f, look at the linear recurrent sequence s; = (u, A’b),
the associated polynomial f,|f and can be computed from the first 2n terms is O(n?).

Let F' = GF(q). Every kth order linear recurrent sequence is ultimately periodic with period r sat-

isfying r < q* (r < gv — 1 if homogeneous). If s,ix = arp—15n+k—1 + ... + aos, the associated ma-
o o o0 ... 0 O )
1 0 0 ... 0 O ay

trix is A = o 1 0 ... 0 O as and the least period divides AF — 1. If fo) =
0O o0 0 ... 0 1 ap
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J 9;(x) hj(z) m;  b;
0 1 x 0 0
1 1 x? 1 2
2 1422 2x -1 1
3 1+z+ 22 222 0 0
4 142+ 22 223 1 2
5 14+z4+22+223 204+222+223 -1 2
6 1+ 23 222 4+ 223+ 22 0 1
7T 1422+ 22% 4+ 24 x4zt 0 1
8 1+42zx+a%+223 - 0o -

Figure 3.1: Berlekamp-Massey for G(z) = 1+ 2 + 2% + 2% + 27 € Fy[a]

Sn Sn41 Sp42 e Sn4r—1
S 1 Sn+2 Sn+3 e S —1 . . . T
ot nt nt ot then sg, s1,... is a linear recurrent sequence iff DY) = 0 for
Sn+r—1  Snt+r  Sntr+1 --- Snt2r—1

all but finitely many n > 0. If a linear recurrent sequence has minimal polynomial m(z) of degree < k and
r=|k+ 4 — imoy) then m(z) = 2"gax(2) and m(z) depends only on the first 2k terms.

Wiedemann’s Algorithm

Set b[0]l= b, k=0, y[0l= 0, d[0]= 0

If b[k]=0, x= -y[k]. Terminate.

Select ul[k+1l] at random

Compute first 2(n-d[k]) terms of (ulk+1], Ax*xi b[k])= s[0,..]

Set f[k+1](z)= minimum poly in 4

Set ylk+1]= y[k]l+f[k+1](z) bl[k], blk+1]= b[0]+A[y[k+1]), d[k+1]= d[k]+deg(f[k])
k= k+1, go to 2

~N O O WN

Berlekamp’s Algorithm
Given s[0], s[1], ... with generating function G(x)= s[0] + s[1]lx + ... + s[i] x**i + ... in
F=GF(q)

1. glol(x) =1, hl0]l(x)=x, m[0]= 0

2. b[jl= coefficient of x**j in G(x) gl[jl(x)
gli+11= gljl(x)- v[j] gli]l ®),
h(j+1] = 1/b[j] x glj(x), if b[j] '=0 and m[j] >=0; x h[jl(x), otherwise
m[j+1]= -m[j], if b[j] '=0 and m[j] >=0; m[j+1]+1, otherwise

Version 2
Input: F=GF(q), 2n coefficients of a Linear recurrence <a[0], a[1], ..., a[2n-1]>
Output: Minimal polynomial P

RO=x**(2n); Rl= al[0]+a[1]lx+ ... + a[2n-1] x**x(2n-1); V0=0; Vi=1;
while(n<=deg(R1) {
RO= QR1+R; // Division Algorithm

V= V0-Q V1;
VO= V1; V1= V; RO= R1l; Rl= R;
}

d= max(deg(V1), 1+deg(R1));

P= x*xxd V1(1/x);

return(P/leading-coeff (P));
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3.11 Quantum Crypto

Key Distribution: Choose two basis: B; = (|0 >, |1 >) and B, = (|1 >,| — 1 >). Alice chooses a random
sequence of basis §; from {Bj, Bo} and a random sequence of bits b; and encodes b;with(3;. Bob chooses a
random sequence of basis 3; from {Bj, B2} and obtains sequence ¢; = 3;b;. Bob reveals his sequence of basis
choices and then Alice reveals hers. Each confirms subset of bits for which the sequences agree using some
classical system.

Consider three polarizers A, B, C' which have phases 0,45,90. If A and C are placed in series, no light
comes through but if A, B and C are placed in series, some light gets through. Let |0 >,|1 > be two
orthogonal vectors in a complex 2—dimensional space. A qubit is a unit vector in this space. It can have

many basis. Shor: Choose m : n? < 2™ < 2n? and let v = \/;7( 0>+[1>+...+[2" —1>. Let f be

a function and z = & Y |z >. System computes t = £ Y |z, f(z) >. If f(z) = a” (mod n), measurement
of last % bits fixes sequence t = % Sz, u = f(x) > for fixed v measuring the Fourier transform identifies
period, that is m : a® = a**" so that a” = 1 (mod n) but that means r is a universal exponent and we
can (probably) factor n. Universal exponent method: Suppose a” =1 (mod n),Va : (a,n) = 1. Put
r = 2¥m, m odd. Choose a at random if (a,n) # 1, we have a factor; otherwise, put by = a™ (mod n)
and b,41 = b2 (modn). If by =1orb; =—1 (modn),0 <j<korbjy1 =1 (modn)andb; =—1
(mod n), stop and pick a new a. If b 11 =1 (mod n) but b; # £1 (mod n) then (b; — 1,n) is a factor.

3.12 Protocols, Models

Bell-Lapadula (BLP): Subjects and Objects labeled. Simple Security property: S can read O iff L(O) <
L(S). *-Property: S can write O iff L(S) > L(O). Tranquility: Labels never change. Biba: S can write O
iff 1(0) < I(S). S can read O iff I(S) < I(0).

Perfect Forward Security and ephemeral Diffie-Hellman with authentication. Both Alice and Bob agree
on modulus p and base g. Alice picks secret a and Bob b for signing; signing public keys have been previously
exchanged. To for session key, Alice picks random z and Bob picks random y. In the protocol below, r4 = ¢*
(mod p), rg = ¢¥ (mod p) and K = ¢*¥ (mod p). (1) A — B : “Alice”, r4. (2) B — A : “Bob”, rp,
Ex(sigp(ra,rB)) (3) A — B: Ek(siga(ra,rp)). Throwing away r4,7p, z,y yields perfect forward secrecy.

Kerberos: L is lifetime. Tx is the timestamp from X.

1. A—>S: AB

2.5 — A: {Ts,L,Kap,B,ATa, L, KaB, A} Kps } K as-

3. A= B: {Ts, L, Kap, At kps, {A, Tatk,p-

4. B— A: {T4+1}.
Proto;ol layers: Application (DNS, TLS, HTTP, SSH), Transport (TCP), Network (IPv4), Link (ethernet,
Wi-Fi).

TLS: Three phases: (1) Peer negotiation, (2) PK based key exchange (including certificate exchange),
(3) encrypted traffic. TLS exchanges records each record has a content-type and MAC; all records are
numbered. Content type 22 is handshake. Results in 2 encryption keys, 2 integrity keys and 2 I'V’s.

M1 ) ClientHello(Client-random|[28], cipher-suites, compression methods, highest protocol version),

:(C— S
M2: (S — C) ServerHello(ServerRandom[28], cipher-suite, certificates),
:(C—= S

M3 ) ClientKeyExchange(E(PkS, Pre-Master Secret), MD5-SHA1(M1 —— M2—— M3A)), [Mas-

ter Secret is PRF(Pre-master secret, “master secret”, ClientRandom —— ServerRandom)],

M4: (S — C) Finish MD5-SHA1(M1 M2 M3A M3C).
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IPSEC: Two protocols: securing packets and key negotiation. Two modes: transport and tunnel. In
transport mode only payload is encrypted. Packets can be secured for authentication and integrity only
(AH) or authentication, confidentiality and integrity. IKE Phasel: CP (crypto proposed), CS (crypto se-
lected), IC (initiation cookie), RL (response cookie), K = h(IC, RC,g*® (mod p), Ra, Rp). SKEYID =
h(Ra,Rp,g?® (mod p)). Proofa : [h(SKEYID,g* (mod p),g” (mod p),IC,RC,CP,“Alice”]ajice. Pub-
licKey: (1) A— B:IC,CP.(2) B— A:IC,RC,CS.(3) A — B:IC,CP ¢* (mod p),{Ra}tBob, {“Alice’ }pob.
(4) B— A:IC,CP g* (mod p),{RB}Atice; { “BoV"} atice. (5) A — B :1C, CP E(Proofs; K). (6) B — A:
IC, CP E(Proofp; K).

Fiat-Shamir: Prove knowledge of a secret, s, where v = s> (mod n), n = pg; v,n, public. A proves
she knows s: (1) A picks r at random and computes © = r* (mod n) — commitment, (2) B chooses
e € {0,1} at random and sends e to A — challenge, (3) A computes y =rs® (mod n) and sends it to Bob
— response, (4) finally, B verifies y? = 725 = 2v¢ (mod n) — verify this.

2

S/Mime: Todo.

DSig: <AgreementMethod/>
<Signature> <KeyName/>
<SignedInfo> <RetrievalMethod/>
<CanonicalizationMethod/> </KeyInfo>
<Reference URI=7> <CipherData/>
<Transforms/> </EncryptedData>
<DigestMethod/>
.<D1gestValue/> SAML: Authn/AuthZ Request/Response over SOAP.
</SignedInfo> Assertion, conditions, advice.
<SignatureValue/> XACML: Authorization Rules:
<Ke¥Info/> Subjects, Resources, Actioms.
</;gZi§EEze> REL: Grant, Principal, Right, Resource, Condition.
WS-Policy: security policy
XML Encryption: WS Trust: Trust
<EncryptedData> WS-Privacy including WS-Secure
<EncryptionMethod/> Conversation, Federation.
<KeyInfo> WS-Authorization: Principal, Claim, Token.

More Timings: P4, 2.1 GHz. AES: 44 operations/round.

Algorithm Key Size Speed(MB/sec) | Algorithm Key Size Speed(MB/sec)
DES 56 21 3DES 168 9.8
SHA-1 NA 68 SHA-256 NA 44
TEA 64 23 AES 128 61

Reestimation: Rotor modeled by S(r;, R) = C"RC™" and represented by a ¢ X ¢ permutation matrix. Key
space is D1 X Dy X ... X Dy, D; is all ¢! permutation matrices. x°° = x1°° X x2°° X... X x%, x;° is all possible
g X ¢ stochastic matrices. Suppose p is plaintext distribution. d(r,x) = S(r,z)p. Likelihood L(X|{c,r}) =
Pr(ciphertext = {ci N [{r }V; X) = Hfj:l €e(n)'d(r(n); X). Want to maximize L by adjusting X. The MLE

of X exists and is strongly consistent. Use the following result: Let P(z) be a polynomial with non-negative
oP

coefficients homogeneous of degree d in z;;, 2 = {2 : zi; > 0,50 2;; = 1}. T(2)yj = Z“W

k3 tJ Ozij z
Computations requires is ~ kg2 N and a 2 rotor machine with N = 1024 ciphertext letters requires about 60
iterations.

3.13 Random Number Quality

Traditional approach for getting n bit value: (1) Get large sample. (2) Calculate the relative frequency, 7.,
of each word w in b-bit block. (3) Estimate H = — Zi;ol Twlg(rw). Repeat % times. Total bits checked:
f”ﬁlﬂ Concern: small set of possible values and deterministic mixing reduces entropy. Entropy is not the best
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measure of security. Consider the following Theorem. The entropy of a source P =< p1,ps,...,pny > which
is mixed by F : [1..N] — [1..m] is greater than the entropy of the mixed sequence. Let Prob(O = j) = g;

and Q@ =< q1,q2,---,qm >. Hour = Hq = _Z;'nzl QJ'lg(Qj) = _Z;'nzl[Zf(i):jpi}lg([Zf(i):jpi]) =
— Zfil pilg(p; + S;) < Hy, = Hyy, where S; = Z#i)F(i):F(j)pj for the standard Shannon entropy Hg =
— Zivzl pilg(p;). Suppose T values are required in cryptoperiod; if Q =< ¢1,4qa, ..., ¢mn > is the distribution

and ¢;; > ¢, > ... > q;,,, adversary’s best strategy is to guess < 4;,2,... > until success. This moti-
vates a different entropy measure. Define H,(Q) = ﬁ Z;Vil q;%. H»(Q) is a good measure for collision

resistance (not secrecy) since z;n:l q;? = 2712(Q); the waiting time for repeats is V72H2(Q)-1. H_(Q) is
a good measure for the quality of resulting key generation, since the expected cost of the guessing attack

is ﬁ = 2H(@)~=1 " Ag an example, consider the distribution, @ over 128 bit quantities consisting of one

value that occurs with probability 2780 and is otherwise flat. Ho(Q) =~ 128, H.(Q) ~ 80.

If X is a event with n possible outcomes having respective probabilities p1, po, .. ., pn the min-entropy of X
is Hoo(X) = mini<i<n — lg(pi) = —lg(maz;(p;)). To get an estimate of the min-entropy or W (@), we need
S(Q). Suppose randomizer produces m = 2" outputs with probability distribution Q@ =< q1,¢2,- .., Gm >.
Quality of Q is S(Q) = 37~ 4 > L which is the probability of repeated output. W (Q) = Y ie < mtl
which is the adversary’s work factor. Estimating either Ho(Q) or Huoo(Q) consists of four steps. (1) Form
Markov model of input source data (over L consecutive samples), (2) Compute source data repeat probabil-

ity, (3) Estimate S(Q), (4) Use S(Q) to estimate lower bound on W(Q) and/or H(Q).

Entropy Order Paradox: Consider @)1 =< 0.258,0.116,0.146,0.032, 0.140, 0.266, 0.038, 0.004 > and Q3 =<
0.256,0.232, 0.076,0.130, 0.006, 0.157,0.005, 0.129 >. H(Qy) = 2.54542 and H(Qs) = 2.54495 but S(Q) =
0.194176 and S(Q2) = 0.188076 while W (Q,) = 2.844 and W (Q,) = 2.903.

Step 1 - Markov Model: The model consists of © =< 61,05, ...,0 > states where where p is the initial

i, 71,2 - Tigs
e . . . _ 7’271 7'272 7'2,3 . .. . .
probability distribution, and T = is the transition matrix. The procedure is to (1)
Ts,l 7—5’2 TS’S
Model source as sequence of states < s1, S2,...,8s >, (2) Get p (use steady state estimate), (3) Determine

state defining bits. For multiple sources, %) =< 6;,6,,...,6; > and Zi\il pi® = Zﬁ;l(pg)pg) - .pgf))2.
Step 2 - Compute source data repeat probability: Zjvzl ;2 = [p1,p2,...ps]T[1,1,...,1]T. Step
3 - Estimate S(Q): S(Q) = Y7, ¢} = =(1+¢,) where (14¢,) = (m — )XY p?. Step 4 (for
H;) - Estimate W(Q) usin S(Q) for L source inputs: To get the best possible bound on W(Q)

given S(Q) (g; unknown): Let m’ = min(m, BS(Q)+4€J}FS(C§S§(Q)2HG) ~ min(m,%) then W(Q) > B
where B = 1(3m’ + 3 — \/3(m> — 1)(m/S(Q) — 1)). To obtain this result use Lagrange multipliers to
minimize W(Q) subject to 377", ¢;> = S(Q) and Y_7", ¢; = 1. Step 4 (for H): Use Dynamic Pro-
gramming compute p,,q. or proceed as follows: Set y1 = F(z1), ¢1 = Pr{y1] = Pmaz + Zf\; pil;1 and
q; = EZ]\LQ piIz}j- M1 = E[QI] = ﬁ[l + (M - 1)pmaw]7 M2 = E[Qj] = ﬁ[l _pmam]a 0'% = ZZ\LQ piZVGT(Ii,l) =
(& — ﬁ)zi]\igpf and for j > 2, 07 = %Zizpig. —lg(u1) is a good estimate for H(Q). Want
| = lg(u1) — Hoo(Q)| < 210°79F1 whereas s is largest integer: 10° < Hoo(Q). If Y is the number of ¢;

1—-L10—4
exceeding B, Pr(¢mes < Bl =1—Pr[Y >0 > 1—-E[Y] >1—e. Pr[E;] = Priz > %,j > 1. Put
B = max(p1 + Tio, puz + To0), where z is normally distributed and Pr(z > T1) = § while Pr(z > Tz) =
c 1+3107¢ 1-%107¢
3(M-1) then PT(:ul 2 < Pmaz < 125 2 ) > (1 — 6).

Example (L = 3): Let by, biy1,bir2 be three successive states and Prob(by4o = biy1 @ b)) = .8 with s = 4

8 2 0 0

0 0 .2 8 o e -
states then T = 2 8 0 0 and the initial distribution p = (.25,.25,.25,.25). The state distribu-

0 0 .8 .2

tion is © =< 61,605,035 >. In SHA-1 mixing example, Zf\il p? = 4.87 x 107*, L = 256 and we compute
SQ) =" 2~ 21+ (m—1) S p?l. m =210 m =210 i/ = 2.74 x 103, W(Q) > 9.1 x 10%2,
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Parameter Estimate: N = ol'l71U, « is initial p, T is initial T.U=[11,...,17. L is 1if F(i) =
ond 03 () £ 7. = 1 e (g = 1L pb(Tg) = . Varlg,) = S\ Var(l,y). Var (L)
&=z Var(q) = 2L piVar(liy) = 254 Y p? E(C)L)d) = ity B(@}) = Y50 1E(q]) + Var(q;) =
%(1 + ( -1) Zi:l p?'

Extension to HMM: Transition matrix T = 7;;, s states, g initial distribution, 6, € {1,2,...,r}

is the output at time ¢, C(") = (7(7;)) ET;) = D00, Pr(01,....0n0,0, = Q)Pr(b1,...,0h,00 = j).

> i 57;) = YN p? = >or.0, Pr(61,...,0,)%* and C™ = (BBT) - (TTC"=VT) where - means ele-
mentwise multiplication. Recursion step requires 2s® multiplications. ~ 7 minuses for 400 outputs without
eigenvalue.

[l .

f:G—=C,g:G—C, E(f) = Eg) =0, E(f") = E(lg]*) == 1. Sy = f(x)-g(y
X*(z)x°(y). Imbalance of S: I(S) = |E(S)|*, I(S) = + > jex I(S|K =k). C = (cap), Cap
aA,bE G\ {0}. Let y = ep(x) =x+k, cap = 6(a®Db). cap = ITI(\Z“]:(Xf r)(a)]? .

= |F(f)()*, g = |F(g)(b)|*. Likelihood estimate of correlation: I(S) = |+ E:myf(yc)g(g]ﬂ2
§(x J,N) is the imbalance distribution with imbalance parameter J. &(z,J, N)2 k(2 x, 2% J) where

-5 1=J
h(-,s) is the probability density of x? with 2 degrees of freedom and skewness parameter s. f (z,J,N) =
_NGE+T) 0o T(r+3
ﬁe =7 Y 0 where o, = (2}4)!((%)2&6)7 F((rﬁ))' If J << (ﬁ)Q, &(x, J,N) = h(z,J,N),
N(x
h(z,J,N) = %67 557 with accumulated error e = 1 — e~ 127,

Let S be an I/O product and Si,..., Sy samples, I(S) = |+ E . Sj%. Let E be an n — 1 x n — 1 matrix
with E;; = - and C the truncated correlation matrix. C" — (C E)" and 03(C) = 01(C — E) where
o (M) is the k-th largest singular value of M. Let D = CTC = V_lAV A = diag(1, UQ(C) ..). Theorem:
Let each of the r rounds of an interactive cipher have correlation matrix C' then I(S) <

also, 1(S) < -1 7 +02(C)", 02(C) <min < (1 -3, mma(CTC’)ab) (1=, mmb(CTC’)ab)z >.

Let ® be the Kroneker product. ®(M,N) = >, gasM* @ N°, ¢(z,y) = >, gapz®y’. The eigenval-
ues of ®(M, N) are ¢p(A(M), \s(N)). if C = A® B, the singular values of C' are products of the singular
values of A and B. The correlation of a non-keyed permutation R =G — G is C = (F*PF)(F*PF) where
F=(fw), fao = ﬁx’“(b), P = (pap), Pap = 6(a®¢(b)). C = U-U where U is unitary. Theorem: The cor-

relation matrix of a keyed permutation ey : G — G is C' = |Tl<\ Dok c® ok = U(k)U(k), Uk) = FP® F,
P®) = §(a @ ex(b)).

97



Chapter 4

Physics

4.1 Basic Laws

Classical Mechanics: F = Z’t’, p=mv, m=mo\/1—(3) F =G5 F = q(E +# x B). Special
Relativity: If primed (’) coordinate system moving at constant velocity u in the x direction with respect to

t—uz

the unprimed system, o’ = 2=%_ o/ =y, 2/ = 2, t/ = ——_.

Vi-% Vi-
Maxwell’s Equations: V-] at, V-E = o , V X E = %?, V-B = 0, 2V x B = 6370 + %f,

_ 1

C= Jnee
Solution to Maxwell Equations: £ = —V¢ — ()t , B=V x A. Gauge Transformation: A’ = A+ V),
¢ = ¢ — %—f. Choosing gauge V - A = —i%f in Maxwell’s equations yields: VZ¢ — C%%f = ;—0” and
V24— Lot = 5552 Solving these produces ¢(1,t) = [ P(i;m([l/j”dv and A(1,t) = [ J4ﬁeoc;7ﬂ/lcz av.
Lenart- Welchart o(1,t) = Tres T '“;")m@mm
Fundamental constants: G = 6.671 x 101! ]ché ,c = 2 99725 x 10'0<n, k; = 1.38 x 1()_161%06[92697
h = 6.6262 x 10~27erg — sec, g = 1.60219 x 10719C, ¢g = 225 = 8.854 x 10~ 2 em
R=83143, 20 Ny = 6.022 x 102%mol .
EMF: total accumulated force through wire. Some consequences: E = 4;30(?2' + TC ;t “r + 0125%%),

E=cB. E? — (pc)? = (me?)’, ED = = (E*+B?%), S = %E x B, E = c¢B for EM waves. For conservative
electric field: Ap = — [} qEds, AV = 42, B = -V,

Gauss (always): ®p = [(E-dA = %= S, closed. ®5 = [(B-dA =0, S, closed. B = 52145,
Ampere: [, B -dl = po(Ienciosed + € d2e dt ) Faraday: € = [ E-dl = —%. Biot-Savart (steady currents
only): dB = £2 L ;fdl. E = 0 for conductor in electrostatics. C' = k¢Cy, Steady current in conductor:

J=nqgVy = aE, E = pJ. Wire (steady current): B = ‘“’I AC:V=1IZ.

Devices and circuits. £ = fL%. Iz=V. Zc = Z;, = iwL, Zr = R. Low-pass (Inductance in

sz ’
series, capacitance across EMF), high-pass (switch capacitance and inductance). Reactive: no real term.
. . . . . . . 2 2
Dissipative: real term > 0. Propagation factor: a = % Transmission line: % = LOCO%
impedance is zg = ,/é—g. Mutual Inductance: & = —MCZ;, & = —M% U = fLIQ = 1C’V2

Kirchoff: ), vi, = 0, k covers loop; >, ix = 0, k covers node. Thevinen equivalence: Two terminal
linear network is equivalent to voltage source Vp;, and impedance in series. Norton equivalence: Two ter-
minal linear network is equivalent to current source Vy and conductance Gy in parallel. Resistor: R = %.
Battery: €& — ITinternal = Vap- Op Amp: v, = Aopvg. Transfer and two terminal input and output.

Reflection on string: %;2/’ = :ggjfé’, vg = ¢, vy = dk, Z = /Tp. Power: P(t) = F%lf, For travel-

ling wave: P(t) = Z(%)z. Consider a wave train on a string from the left (L) with a change at z = 0
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of medium (i.e. a denser string) to a string on the right (R). For perfect termination: Fiepm(“R on
L") = 7ZL—6%T° (0,t). For excess force: Fierm(“Ron L") = Zp, Odres (0,). —Zp2ine(0,¢) + ZLL%’ff 0,t) =

ot ot
ok inc awre alpre — Zy,—2Z 9 inc
723(%7(07 t) + Tf(oa t)) SO, ot L (Oa t) - Zi_t,_Zg %7(0’ t)'
R = gi;gg is called the reflection coefficient. Wave Transmission: String: v = \/%, Fluid: v = 1/%,

Solid: v = ,/%, Adiabatic Gas: v = ,/%. Standing wave transmits no energy. Oscillating Dipole (An-

tenna): E = % S”L(O) sin(wt — kr).

feae h —
Early Quantum Mechanics: ApAz > =, A =

body radiation: E(\,T) = %(e(’w)/o‘kn -1 Photoelectric Effect: hf = KE + ¢. Bohr
13.6ev

L T = n2ag, ag = QM'JW = .0529nm. Time Independent Schrodinger:

&y | dmm(F _ U(z))y = 0. Schrodinger: 2% — _ b2y 4 vy,

%, v = %, p = %, E = g—:, Pav = nkT. Black-
-1

hydrogen atom: FE, = —

Relativity: Proper Interval: I(z,y,z,t) = 22 + y* + 2% — 12, I(z,y,2,t) = I(2'y'2't'). ds?® = g;;da'dat,
gij = 9ji, 6 [ds = 0. Action: S = fttlz L(z,2' t)dt, 6 = 0 — 2L — 49L — o  [(z 2 t) =

—moc?y/1 — Z—i —q(p+v-A). Repcess = 1/% — Tmeas = %M7 % = 2.5 % 10_29%. From principle
gH
C2

of equivalence, w = wy(1 + %5 ) - doppler shift measured by Pound and Rebka.

4.2 Physical Constants

1 in = 2.54 em. 1 meter = 39.370 in. 1 AU = 1.496 x 10" m. 1 1b = 4448 N. 1 Pa =1 %
1 Atm = 1.013 x 10° Pa. 1 hp = 7457 W. 1 J =107 erg. 1 ev = 1.602 x 107 J. 1 BTU = 1055 J.
leal =4.186 J. 1 L =1000 em?. 1 Gal = 3.785 x 1073 m?.

Atomic constants: M, = .510998 Mev = 9.10939 x 10™3'kg, M, = 938.256 M ev(= 1836M.) = 1.67262 x
107%"kg, M, = 939.55Mev = 1.67493 x 10~2"kg, ogp = 5.67 x 107 8Wm 2K 4, lev = 1.6 x 107 2erg =
1.6 x 10719, lcurie = 3.7 x 10*2decays, c; = 3.32 x 10*cm/s, 1cal = 4.1855J, 1BTU = 252cal, 1kgT NT =
42MJ, 1A = 10"8cm. HDNA: 2,900,000 kilobases.

Astronomical constants: Hy = 100km(s — Mpc)_l7 1 pc= 3.26 l-y, 103%nucleons, 10%%em — diam, 10!
galaxies.

Milky Way: ¢caiptic/pyw = 62.5, 1.6 x 10" stars, 10%3em — diam, 8 x 10* gm.

Sun: F,,, =4 X 1033ergs/sec, Rsun = 3.5 x 10%m, 1.99 x 10*3gm, \sun = 30days.

Earth: c.q4n = 23.5, 50% clouds, Rpyoon = 2160mi, €moon = 5, Asider = 27d7h43ml12s, Asynod =
29d12h44m3s, RAGreenwich(1986.0) : 6.6245, 0 Jan 1986 = 2,446,430.5JD.

. — (k+3m) 7
Geological: For seismic wave, vp = , Vs =, /E.
P p

tgranite = 1.6 X 10*%dynes/cm, Egranite = 27 X 10*%dynes/cm, kpater = 2.0 x 1010%dynes/cm, pwater = 0.
VP—granite = D.5km/sec, Vs_granite = 3.0km/sec, Vp_water = 1.5km/sec, vg_water = 0.

Materials: Dry (static, sliding) Friction: Steel (.78,.42), Teflon; (.04,-). Expansion: «; = l*1% x 108,
C: (Al, 24), (Cu, 17), (Granite, 8.3), (Ice, 50), (Fe, 12), (Water, 207). Heat Capacity: ¢, = m_l% : (He,
12.5), (O3, 21.1), (Na, 20.6), (CoHg , 39.3), MFP Ny = 10~ cm, Cy soig = 3R. Melting/Boiling: MP/BP
(K): Au, 1336, 3081; O2, 54, 90; Cu, 1356, 2839. Heat Conduction: Q' = f/iAaa—leW(ch)*l : (Cu, 4),
(Fe, 0.80), (Si, 1.5), (H2,.00024-.0018), (Rock, 2.8 k¢/mhK). Dielectric: € = Keg: (Glass, 6.7), (Water, 78),
(Nylon, 3.6).
Resistivity: R = p& x 1078: (Ag, 1.4), (Cu, 1.7), (Al 2.8), (Fe, 9.8).
Density: p/pwater: Al, 2.7; Cu, 8; Rock, 5.5; Au, 19; Fe, 8; Gas, .68; air, .0012; wood, .75.
Moduli: B = %75 : Al; 70; Cu, 140; Fe, 100; Water, 200.

\%

AF
Y = < x 10'2dy/em?: Al, 70; Cu, 110; Fe, 190.
l
AF
A

s = 2= : Al, 30; Cu, 42; Fe, 100.
l
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Name RA Dec Vmag Dist | Name RA Dec Vmag Dist
Polaris 0123 8846 2.06 200 Mizar 1320 5527 2.12 26
Aldeberan 0430 1619 .8 21 Capella 0509 4554 .09 14
Rigel 0510 -0819 .11 270 Bellatrix 0520 0616 1.63 140
Betelgeuse 0550 0723 A4 180 Sirius 06 41 -1635 -1.44 2.7
Canopus 06 22 -5238 -.72 ? Castor 0728 3206 1.56 14
Procyon 0734 0529 .36 3.5 Pollux 0739 2816 1.15 10.7
Regulus 1003 1227 1.34 26 Merak 10 56 56 55  2.36 23
Spica 1320 -1038 .97 65 Arcturus 14 11 1942 -.05 11
Antares 1623 -2613 .94 130 Vega 1834 3841 .03 8.1
Altair 1946 0836 .77 4.9 Deneb 2038 4455 1.25 500

Figure 4.1: Stars

Planet D, ,(km x 10%) \(rev) e i Lnode Lper Pepoch M(gm) R(km) Rot
Mercury 57.9 87.97d .2 7 47.9 76.8 222.6 3.3e26 2439 58.7d
Venus 108.2 224.7d  .007 3.4 76.3 131.0 174.3 4.9e27 6050 243d
Earth 149.6 365.26  .017 O 0 102.3 100.2 6e27 6378 23h56m
Mars 227.9 686.98 .093 1.8 49.2 335.3 258.8 6.4e26 3394 24h37m
Jupiter 778.3 11.8yr .048 1.3 100.0 13,7 259.8 1.9e30 71880 9.8h
Saturn 1427.0 29.46 .056 2.5 113.3 92.3 280.7 5.7e29 60400 10.66h
Uranus 2869 84 .047 8 73.8 170.0 141.3 8.8e28 23540 17.24h
Neptune 4496 164.79  .009 1.8 131.3  44.3 216.9 1e29 24600 16h
Pluto 5900 247.7 250 17.2 1099 224.2 181.6 - - -

Figure 4.2: Planetary data - Epoch: 1960 Jan 1.5UT, Orbit: a = byv/1 — €2.

Air: 28.96 m-w, ¢, = 1005 J/kg-K, ¢, = 718J/kg — K. 1 atm = 1.013 x 10°Pa, Pa = 105dyne/cm?® =
IN/m? = 760mm — Hg. p : 1.293mg/cm?, k : 2.4 x 1072W/m — K, visc@20 : .00018g/cm — s. Water:
273.15K, 18 m-w, 540 cal/gm (vaporization), 80 cal/gm (fusion), pice = 917kg/m3, k : .19W/m— K, visc@20 :
0Olgm/em — s, ST : @20 : 73d/cm.

Sound Strength: g = lOlog(ﬁ) in db. Iy = 10712W/m?2. Normal Conversation: 60 db, Jet: 130 db.
Speed of Sound: ~ 330m/s at normal conditions, ve, = /3kT/m.

Misc units: 1in = 2.54 cm, 1 kg = 2.2046 lbs, 1 fluid — oz = 0.0338 ml, 1 gal = 3.3785 liters.

Stellar Evolution (: means differentiate wrt r): P’ = — GM(T) , M' = 4nr2p, L' = 47r2e,
— — — o s
L= 7(4QC(T§’(’Z’;)T2)) (rad), L' = (1 =y Y)Tp= 1P’ (conv), P = RTL’, X =CpT™35 a =205,
Optics: nglass = 1.52, Nyater = 1.33, Ndiamond = 2.42. Lensmaker’s law (air to glass, one surface):
1 n 1
4o _ 1
s s’ f

= — 1 1 hi _di _ f i .
(n2 —mi) g — 7;- 7t = F = z;- Resolving Power:

11
L R L
ocus ocus—objective
4.54/ Dynenes arc-seconds, fratio = Rfi < fratio < 6, Mag = Ltocus—objective

diameter Ltocus—eyepiece

Lensmaker’s law (double surface): =t 4 22 = 4 —

Chemical bonds: covalent: 80-200 kcal/mole (C=C is 200), ionic: 4-7 kcal/mole, hydrogen 5kcal/mole,
vanderWaal < 1kcal/mole (methane). Thermal: .6 kcal/mole. Acid added to HoO increases H* pH =
—log|H™], acid < 7.

Fluids: P+ ¢ + %pvQ = const, Vpv = —p', Vo =0,V x v =0.

in?(ne
Interference: R = Alcos(wt) + cos(wt + @) + ... + cos(wt + (n — 1)¢)]. Ar = Asm(( )) I'=1I Sl,nz((i)).
SN bl

For f(t) = Aje™t + Age'2t T = A3 + A3 + 2cos((w1 — wa)t). Group velocity and modulation.

100



Place Lat Long | Place Lat Long | Place Lat Long
Beijing 40.1 116.33 | SF 37.45 -122.33 | NY 41.44 -73.8
Boston 42.35  -71.05 | Chicago 41.87  -87.63 | Dallas 32.78  -96.78
Madison, Wi~ 43.07  -89.38 | Santa Fe 35.68 -105.93 | Seattle 47.61 -122.33
Tucson 32.22 -110.97 | DC 38.88 -77.0 | Denver 39.75  -104.99
Atlanta 33.75  -84.39 | London 51.5 0.0 | Paris 48.83 2.3
Berlin 52.5 13.42 | Rome 41.88 12.5 | Moscow 55.75 37.7
Athens 37.97 23.75 | Jerusalem 31.75 35.22 | Tokyo 35.75  139.75
Sidney -33.87 151.2 | MKea 19.826 -155.47 | CTlo -70.82  -30.17
New Orleans  29.93  -90.07 | Redmond,OR  44.27 -121.15 | Portland 45.52 -122.68
LA, CA 34.05 -118.24 | San Diego 32.7 -117.15 | Orlando 28.52  -81.38
Milan 45.45 9.28 | Amsterdam 52.3 4.77 | Auckland -36.92  138.58
Bombay 18.93 74.58 | Delhi 28.67 77.23 | Perth -31.93 -115.83
Toronto 43.65  -79.38 | Bagdad 33.3 44.43 | Cairo 30.03 31.35

Figure 4.3: Places on Earth

Spectrum: 30cps audio 30K 500K AM 1500K 3M HF 30M 88M FM VHF 210M 400M UHF 800M 1.5G
Hj S-band 3G 7600A IR 6300 Visible 3900A UV 100A X-ray .1A gamma 67 Mev.
Red: 650nm, Yellow: 580 nm, Green: 500nm, Blue: 475nm, Violet: 400Nm.

Middle C: 256Hz. Octave has 12 notes in uniformly divided log scale. Octave is factor of 2.

Central Forces: F(r) = f(r)7. m(i—r62) = f(r) and (conservation of angular momentum) m(rf+276) = 0.
120 = b, i = = SO V() = — [ f(r)dr, m(7% +1202) + V(r) = E; ellipse if E < 0, parabola if E = 0,

m 2

hyperbola if E > 0. Force from path: f(r) = mh? [& — 2(dry2 ],

ri Lde? r

Rotating frames: Suppose XY Z(F) is inertial system and xyz(M) is rotating frame with a common
origin O. (45)p = (%) +w x A Dp*F = Dp%F + Dy (&) x 7+ 25 x Dy + & x (@ x 7). Last
two terms are Coriolis and Centripetal. If O is moving too, Dp(F) = R+ Dyf+ & x 7 and Dp’7F =
R+ Dy2F+ Dy (&) X P+ 20 x D7+ @ x (& x 7). Object dropped from rotating sphere from a height h
is deflected by fwgt®sin()), where X is the colatitude.

Foucault (constrained to horizontal plane): m# = —T(F) + 2mwycos()), mij = =T(¥) — 2mw(icos(A) —
zsin(N)), mE = —T(152) — mg + 2mwysin(A), i = isin(wcos(A)t) + jcos(wcos(A)t).

Rotation in plane: I = [72dm. O = I3, T = 3Iw? A = 4. Parallel axis theorem: 14 = Ion + mb?.
Perpendicular axis theorem: I, = I, + I.. Lyphere = 2ma®. Ieyiinger = 3ma®. Iyae = 35m(a® + b?).

Rotation in space: Q = > m,(r, X (w x 1), [(ry X (W X 7)]e = w2 (Yu? + 2,%) — WyTpYy — W2 Tpzpu,
Ly = [(y* + 2%)dm, I,y = — [(zy)dm, T = Io Iy, Iy, is the inertia tensor. T = fw-Q is
Iz Izy I..
kinetic energy. Principal Axis Theorem: If wi,ws,ws and Qq,$5,Q3 are the angular velocities and
momenta about the principal axis, Q; = Liw; and T = (1w} + Lw3 + I3w}). Ellipsoid of rotation:
Let 7 be a unit vector in the direction of &, & = fw = w(icos(a) + jcos(B) + keos(v)). T = 3Iw?
where I = Lpcos? () + Iyycos®(B) + I..cos*(7y) + 2Ly cos(a)cos(B) + 21,.cos(a)cos(y) + 21, cos(B)cos ().
p = \% is ellipsoid of revolution. Rotational symmetry about s = 2z axis: I, = I, I = I, = I,.
Ty +wyw,(Is — 1) =0, Twy + wew. (I —I,) =0, I,w, = 0. J, = const, put v = Isl_lws; then Wy, + ywy =,

Wy — YWz =, 80 &y + 72w, =0 and T}, = 27” Precession of Earth: T, = % ~ 305days. Precession

of Disc: T), = i—: Gyroscope: Jy = Iywy = I0, Jy = Ipsin(0), J, = I,S. S = ¢cos() + b, I,S = 0.

Euler’s Equations: Let O be a principal axis coordinate system fixed in a body, the external torque
is A. Ild)l + (Ig — Ig)(,dg&)g = Al, Igd}g + (Il — I3)(.01W3 = AQ, Igd]g + (Ig — Il)wlwg = Ag along the
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principal axes. w - () = c is invariant plane. The angular velocity and momentum in terms of the Eu-
ler angles ¢, 6,1, from Oy, fixed in space to Oyryy./, principal axis, is: wyr = ¢sin(0)sin(y) + Osin(vY),
wy = ¢sin(0)cos(vp) — Osin(y), wy = deos(0) + ¥, ¢ is from z to line of nodes, 0 is from z to 2’ axis,
and, 1 is from line of nodes to z';. T = %(Ilwf + Iows? + Izws?). Top: Suppose €3 is the axis of top’s
line of symmetry. §= sé; = ¢é; . Q = Lwier + Towses + I5(ws + s)es, A = leg X mg = (dQ)F,Il = Is.
(%})F (dQ>B+wXQ Ilw1+(13—12)uJ2w3 mglsm(@), 12(/:)2+(11—I3)w1w3—13w18:0, Ig(u}3—|—8> =0.
In Euler angles, with ¢ = 0, this is w; = 0, wy = ¢sin(9), w3z = ¢cos(9). 0,1, s are angular velocity of
precession, nutation and spin.

Holonomic constraint: &(q1,42, ..., qn,t) = O Generalized coordinates: W = ) ®,0q,, ®o =

> f . Lagrange equations: ( dt)a—T — == = ®,. If the forces are all conservative and L = T —V then

94a 6q
(d )gTL—gTL = 0. Generalized momentum: p, = W' Hamilton: H(p1,....,p.q1, -, qnst) = Y. DaGa—
Pa = 3;1, Go = STH' Hamilton Principal: For conservative forces (H =T+ V), L=T -V, §fttf Ldt = 0.

Note: H =5 pago — L.

4.3 Quantum Mechanics

Formalism: Let |i > denote base states < i[j >= §;;. [ >= >, |i >< ijtp >, < Pl >= )", < Pli ><
il > [ >= 37, [i >< i|yp > evolves under A so |¢p >= Alyp > and < il >= 37, < i[A[j >< jlY >,
Aij =< Z|A|j >.

Free partic!e; U(x,t) = \/ﬁ 7 o(k)e i(kz =252 0) 11 and o(k) = \/% 2% w(x,0)e~**dz. For free par-
ticle, hw = h k

fR3 |4(Z)|dZ = 1. Spatial operators Xw = x1), Yw =y, ZY = zw, = (X,Y,Z). Momentum oper-
ators: p,¢ = ?aw% py¢ =3 6y¢’ py?ﬁ 7 8z¢’ (pmpyvpz)- Angular Momentum: L, = yp, — ZPy,

etc. < A>= [¢*(MAYP(F)dF, AA= V< A2 > — < A >2.

Elements of state space are denoted: | > and (¢,1) =< ¢|¢b >, physically observable quantities are de-
scribed by hermitian operators acting on state space: Aly >, each observable quantity is an eigenvalue of
the hermitian operator.

Postulate 1: Associated with any isolated physical system is a complex vector space, V with an inner
product called a state space. The system is completely described by v € V.

Postulate 2: The evolution of a closed quantum system is described by a unitary transformation on
the state: [¢(t2) >= Ul (t1) >. Postulate 2’: The evolution of a closed quantum system is described by

. , L Oy
Schroedinger’s equation i# ‘g; = H|y >.

Postulate 3: Quantum measurements are described by a collection of measurement operators, {M,,}

that act on the state space. If |1) > is the state immediately before the measurement, the probability that
M |Yp>

<YM, Mo 4>

M, satisfies ), M} M,, = I. A projective measurement on an observable with spectral decomposition,

. . C.Dl|¥
M =73, mP,,, results in one of the m values as possible outcomes. A(C)A(D) > M

the event m occurs is < 9| M M,,|v) > and the state after the measurement is given by

Postulate 4: The state space of a composite system is the tensor product of the state spaces of the
component systems. If we number the systems 1,2,...,n, and system ¢ is in the prepared state |¢; > then
the joint state is [¢1 > ®[2 > ® ... & |ty >

A set of gates is said to be a set of universal quantum gates if any unitary operator can be approx-

imated to arbitrary accuracy by a quantum circuit involving only those gates. The Hadamard, CNOT,
phase and T gates form a universal set.
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For harmonic oscillator: H = % + k% Another hamiltonian: H = 7-(p — 24)2 + V(R) + q¢ —
1.5 .B,B =V x A. Simultaneously observable quantities commute. Independence and uncertainty:
mc

[R;, P] = ihdjr, [R;j, Ri] = 0.

Feynman Postulates: If there is no spin or polarization: (1) < x|s >= a + bi. Pr( particle arrives at z|
particle leaves s) = | < x|s > |2, (2) < 2|8 Spotn=< z|s >1 + < 2[s >2. (3) < T|s >pig 1=< 7|1 >< 1|5 >.

a is probability light scattered at 1 arrives at Dy and b that it arrives at Dy (a >> b). < 73| >= %eiﬂ?z ;
get p relativistically by (pc)?2 = E? — (mgc?)? or non-relativistically as E = £-. Rules for outcomes:

2m
(1)If final states are distinguishable, add probabilities not amplitudes for indistiguisible processes leading

to the same final state add amplitudes; (2) use complete description of isolates system. Outcomes of scat-
tering with indistinuishable particles always interfere: add amplitudes for Bosons, subtract for Fermions.
P, (Bose) = n!P,(dif ferent). Treat metal conduction as noninteracting Fermion gas.

For H, V(r) = — L. ih% = ~ 229V (r). y(r,t) = et PP If f(a,u,2) = g(r(z,y, 2),0(x,y, 2),9(x,y, 2)),
f:cm = grr(rx)Q + 990(91)2 + Gy (%:)2 + 2(gr0r19x + grwrz'lpm + gwﬁ&@:) + IrTea + 9901’1 + gwwxx V2f =
L(r%g,)r + #n(e)(sinw)fg)g + mfww. Use this to solve Schrodinger Equation for Hydrogen.

4.4 Thermodynamics and Statistical Mechanics

First law: AQ: heat into system, If AW: work on system, AFE: increase in energy of system then

AQ + AW = AE. For ideal gas, PV = E = 2N < m2”2 >= nRT = NkT. In general, PV = (y — 1)U

(v = 2 for ideal gas). (g—g)v =C, = 3R, (g—g)p = Cp = C, + R, for adiabatic process: pV"? =¢, v = g—“:
Second Law: It is impossible to build a cyclic engine that converts thermal energy completely into me-
chanical work. Carnot Process: 1 — 2: isothermal at Ty, 2 — 3: adiabatic add Qg, 3 — 4: isothermal

at Tc, 4 — 1: adiabatic add Q¢. e = 1 — % S = f% > 0. S = Nkgin(Q). In irreversible process,

entropy increases, at T = 0, S = 0. For reversible process, S = %1 = %2, W=0Q1— Q= Q:1(1 — %),
eff = % = 7T2,1?1T1 . S = kln(W).

For monatomic gas, P = %U =79-1= % < mv? >= %ij. In a mixture at constant temperature

with two species 1 and 2, n; < miv12 >= ny < mave? > but considering two particles with relative velocity
w with velocity of enter of mass vops we can argue at equilibrium that < w - Vopr >= 0 so ny = ng (Avo-
gadro’s hypothesis. For photon gas, PV =N <p-v > /3s0y= %. For diatomic gas: v = %

dn _ _ mg —PE/KT ,5q 2w — —KE/kt
n<u

Atmosphere: 73 = —7, n = nge Evaporation model: W is binding

energy of liquid, n is density of vapor, 1/V, is density of liquid then nV, = e~W/FT  Chemical kinetics:

BARE _ ceV/*t . Diffusion: Average time to collision is nio OootN(i)dt, N = Nyet/7. Mean Free Path:
l = 7v. Thermal conductivity: %% = —KJ%, K= % if MFP << container.
Maxwell Distribution: Fyp = N(27:7”)%e_m('”i"’”iJr“g)/(%T), the frequency of a particle around v;

dnl/ - FJV[BQ(Q)dq Urms = \/ ?’kTT

Bose-Einstein Distribution (Bosons): Fgp = (e®ef/¥T —1)~1 « is type specific 0 for photon.
Fermi-Dirac Distributions (Fermions): Frp = (%~ F)/FT 4 1)=1 F; is the Fermi energy. Cy =
%(%)V approximately 3R for many solids.

Conductor: half filled conduction band. Insulator: filled conduction band large gap =~ 5ev. Semicon-
ductor: filled conduction band small gap ~ lev which can be overcome by thermal excitation. Electron
mobility: = %4, vy is drift velocity. Fine constant: % ~ ﬁ Josephson junction is two supercon-
ductors separated by thin ~ 1nm insulator; if there is no potential difference, electrons tunnel and we get

dc, if dc potential is applied, we get ac with f ~ 22‘/,
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Type Family 1 Family 2 Family 3

Quark || Up (u) Charm (c) Top (t)

Quark | Down (d) Strange (s) Bottom (b)
Lepton || electron neutrino (v,) | muon neutrino (v,) | Tau neutrino (v,)
Lepton || electron (e) muon (/) Tau (1)

Figure 4.4: Matter Particles - Fermions - not including antiparticles

4.5 More Quantum

Polar Decomposition: Let A be a linear operator on V. Then there is a unitary operator U and positive
operators J, K: A=UJ=KU. J=VATA, K =V AAT.

Singular Value Decomposition: Let A be a square matrix the U,V and a diagonal matrix D with
non-negative entries such that A = UDV. Entries of D are called singular values.

Standard Model: Quantized force fields materialize as particles. Matter particles: Fermions (half-integral
spins). Force particles: Bosons (integral spins). u: ¢ = —l—%, m=2Mev; d: q = —%, m=>5Mev; c: ¢q= —|—§,
m = 1.25Gev; s: q = —%, m =95Mev; t: q = +%, m = 171Mev; b: q = —%, m = 4.2Gev.

Ve: ¢q=0;v,: q=0;vr: ¢=0. &2 =1, m = .511Mev; p: =1, m = 106 Mev; 7: 0, m = 1.78Gev. Bosons:
Photon v - EM Force: ¢ = 0, m = 0; Gluons - Strong Force: ¢ = 0, m = 0; Z - weak force: ¢ = 0, m = 91Gev;
W W~ - weak force: ¢ =0, m = 80.4Gev; Higgs (H): ¢ = 0, 114Gev < m < 192Gev; Graviton - gravity:
q=0,m=0.

Hall Effect: In metal or semiconductor, imagine a thin (2D) slab, z-up, z-across, y-back, with an electric
field, Ey, back, current fz across. Turn on a magnetic field Bz, and the charges move to the back until equi-
librium caused by electrostatic build-up when B,v, = FE,, then Hall resistance is Ry = % Jz, Jo = Uz Ng. At
low temperature (< 30mK), a quantum effect appears: Ry grows monotonically with B, and is quantized
b %e%, this IQHE is evident in a GaAs-GaAlAs hetero-juncture. The magnetic field shifts the Landau
Levels. The diagonal resistance R, is at times 0 when the Fermi energy of the electrons lies between the
Landau Levels freezing out scattering. (The Fermi energy, Er, is the energy of the fermion composite at
0K.) When the mobility of the electrons is high, additional plateaus (corresponding to R,. = 0) appear; this
is due to electron interaction giving rise to fractional charge like quasi-particles; this is the FQHE. Unlike
IQHE, the FQHE gives rise to non-Abelian statistics in the gapped degenerate states.

Laughlin wave function: ®™(z1,...,2,) = [[,;(z — zj)me_u% 2= Moore-Reed: O™ (21,...,2,) =

[Ticj(z fzj)me_ﬁ > ‘Zi‘sz( L ). Energy spectrum of 2DEG breaks into allowed states E, = (n+ 1 )hw,

Zi—2Zj

in B field (Landau levels). When chemical potential lies in Landau bands, material is metallic. Otherwise
localized states materialize adding electrons only add and subtract localized states, no currents flow and

system is incompressible. Magnetic Length: I = %; within [g of the edge, they form quasi-1D

channels. Because there is no back-scattering, R,, = 0. Hidden subgroup: G > H f .G — X
hides H if f : G/H < X.

A set of gates is said to be a set of Universal Quantum gates if any unitary operator can be approximated
to arbitrary accuracy by a quantum circuit involving only those gates. The Hadamard, CNOT, phase and
% gates form a universal set.

Quantum Ion Trap System. The qubits are representations of the hyperfine nuclear spin states at
the lowest vibrational modes (phonons) of trapped atoms. Arbitrary transforms are constructed with laser
pulses using Jaynes Cummings. Qubits interact via shared phonon state. Initial state preparation involves
cooling atoms by trapping and optical pumping to their lowest motional ground and hyperfine state. The
measurement is the measurement of the population of hyperfine states. The phonon lifetimes are short and
the atoms are difficult to prepare. For NMR, the coupling is weak and difficult to control.
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Spintronics: Spintronics exploits the intrinsic spin of electrons and its associated magnetic moment, in
addition to its fundamental electronic charge, in solid-state devices. Electrons are spin-1/2 fermions and
constitute a two-state system with spin “up” and spin “down”. To make a spintronic device, the primary
requirements are to have a system that can generate a current of spin polarized electrons comprising more of
one spin species — up or down — than the other (called a spin injector), and a separate system that is sensitive
to the spin polarization of the electrons (spin detector). Manipulation of the electron spin during transport
between injector and detector (especially in semiconductors) via spin precession can be accomplished us-
ing real external magnetic fields or effective fields caused by spin-orbit interaction. Spin polarization in
non-magnetic materials can be achieved either through the Zeeman effect in large magnetic fields and low
temperatures, or by non-equilibrium methods. In the latter case, the non-equilibrium polarization will decay
over a timescale called the “spin lifetime”. Spin lifetimes of conduction electrons in metals are relatively
short (typically less than 1 nanosecond) but in semiconductors the lifetimes can be very long (microseconds
at low temperatures), especially when the electrons are isolated in local trapping potentials (for instance, at
impurities, where lifetimes can be milliseconds).

Quantum error correcting conditions: Suppose C is a quantum code and P is a projection opera-
tor onto C'. Suppose £ is a quantum operator with measurements F;. A necessary and sufficient condition
for the existence of an error correction operator R is PE;L + E;P = oyj.

A qubit is a two dimensional space |¢) >= a|0 > +b|1 > such that |a]? + |b|*> = 1.

Let Ry, Ra,..., Ry be trajectories in 3 + 1 dimensional space from ¢; to ty. (r7,75) — €. Normally,
0 can either be 0 or m, if  is arbitrary, this describes an anyon. Non-abelian anyons are associated with
higher dimensional representations of the braid group. This can occur when there is a set of g degenerate
states with particles are fixed Ry,...,Ry. If {,} is an orthonormal basis and ¥, — [p(01)]as®s. It is

non-abelian if [p(01)]aslp(02)]5, # [p(02)]aslp(o1)]sn-

Filling factor: Ratio of electrons to magnetic flux quanta. For FQHE: v = ﬁp% or oy = I/%. For
composite fermions with p-filled Landau levels, v = 2;&1' % state is fully spin polarized. Luttinger Liqg-

uid: Interacting electrons in a one dimensional conductor. Fermi Energy: The Fermi energy is the energy
of the highest occupied quantum state in a system of fermions at absolute zero temperature. A quantum
dot is a semiconductor whose excitons are confined in all three spatial dimensions. A quantum well is a
semiconductor whose excitons are confined in two spatial dimensions. A quantum wire is a semiconductor
whose excitons are confined in one spatial dimension. Spin Polarization is the degree to which the intrinsic
angular momentum of elementary particles, is aligned with a given direction. This property is related to
the magnetic moment, of conduction electrons in ferromagnetic metals giving rise to spin polarized currents.
It may also apply to beams of particles, produced for particular aims, such as polarized neutron scattering
or muon spin spectroscopy. Spin polarization of electrons or of nuclei, often called simply magnetization, is
also produced by the application of a magnetic field is used to produce an induction signal in electron spin
resonance (ESR or EPR) and in nuclear magnetic resonance (NMR).

Aharonov-Bohm: The AharonovBohm effect is a quantum mechanical phenomenon by which a charged
particle is affected by electromagnetic fields in regions from which the particle is excluded. Such effects are
predicted to arise from both magnetic fields and electric fields, but the magnetic version has been easier to
observe. According to AharonovBohm, the knowledge of the classical electromagnetic field acting locally on
a particle is not sufficient to predict its quantum-mechanical behavior. In the case of the AharonovBohm
solenoid effect, the wave function of a charged particle passing around a long solenoid experiences a phase
shift as a result of the enclosed magnetic field, despite the magnetic field being zero in the region through
which the particle passes. This phase shift has been observed experimentally by its effect on interference
fringes. There are also magnetic AharonovBohm effects on bound energies and scattering cross sections, but
these cases have not been experimentally tested. If B=VxA= 0, ¢ = %fp A dz. Ay is determined
by ® through the area between two paths; Ay = 27k for superconductor through closed loop. Existance
of monopole forces E, B to be quantized. The Coulomb Blockade is the increased resistance at small
bias voltages of an electronic device comprising at least one low-capacitance tunnel junction. Magnetic
h  ~

quantization: ¢y = 5 ~ 2 x 10~1°Wb; measured by Josephson effect. Berry Phase: Phase acquired in

cyclic adiabatic process; measured through interference experiment.
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Ising Model: Spin coupling: F = — ZZ] Ji;8:8;. One dimensional: E = Zi S;Si+1. Two dimensional:
E=—- Z” 53,585 j+1+S:,Si+1,5. Magnetic field breaks the symmetry. Computational model: (1) Pick ran-
dom site, (2) flip spin and calculate AE, (3) if AE < 0, accept, (4) if AE > 0 accept with probability e #2F,

Cauchy-Schwartz: < ¢l ><< ¢lp >< Yl >. T;; =< w;|T|u; > then T = Zij Tijlu; >< ujl.

Continuous version of inner product: < ¢l >= [¢*¢pdz. If |¢p >= >, ¢;lu; > then ¢ >—
c1 < wuply >
2 | _ | <wlv> | g | >= a0 > +6|1 > then | < 0]p > |?> = |a|?>. Projection opera-
Cn < Upltp >

tor: P, = > ", |u; >< u;|. Observables: Hermitian operators on state vectors.

W) w e} > da(t) oyt ot
600 >= (a0 50" Ho>= (22 ) ﬂﬁﬁi):ihag@:( a8l >,a<t>=el F cos(ist)).

w2 W1 p]
< w|TtHv >=< v|T|w >*, [X,P] = ih. Finding similarity: (1) find eigenvalues/eigenvectors, (2) nor-

malize eigenvectors, v, (3) S™1 = (v1,...,v,).

Hadamard Gate: 1( 1 _11 ) Pauli matricies: X = ( (1) (1) )7 Y = ( (z) _Ol ) and Z =

V2
( 0 ) L=7xp, Lo = yp: = 2py, [Ls, Ly] = ihL.. (AA)*(AB)® > (S572)°.

Degeneracy (duplicate eigenvalues): Suppose A has g, degenerate states then Prob(\,,) = .77 | <
ai | > |2
ac
a c ad
Tensor.(b)®<d): be
bd

Density Operator: p = Y pi[t; >< ¢;|. If system is in a pure stare Tr(p) = 1; if system is in a

mixed state Tr(p) < 1. Klein Gordon and Dirac: C%?;T‘f — 227“20 = (”;L‘;)? o, ih%—f = —ihca - Vb + fmctp.
_ oL

Canonical momentum density: w(z) = 5z.

L=T-V,S8=[Ldt, H(p,q):zipiq'ﬁf:.p:%g,F:%gandp:F.

Symmetries: EM (U(2)), Weak (SU(2)), Strong (SU(3)). A Lie group (1) depends on parameters

01,...,0, and (2) derivatives with respect to group parameters exist. The diffeomorphism group of a Lie
group acts transitively on the Lie group. ¢g(6)s=o = e, 8’%0}9’79';"0")9'_0 = i X; are the generators. [X;, X;] =
1 0 0 ' cos(¢) 0 sin(9)
ifijr Xk is group algebra. Consider Ry({) = | 0 cos(¢) sin(C) |, Ry(¢) = 0 1 0 ,
0 —sin(¢) cos(Q) —sin(¢p) 0 cos(9)
cos(8) sin(f) 0
and R,(0) = | —sin(f) cos(d) 0O |. Unitary: [U,H] = 0. SU(2) has 3 generators and SU(3) has 8.

0 0 1
Noether: If T'(s) is a transformation T'(s) : ¢ — ¢(s) and % = 0, then C' = Pa%i(ss) is a conserved

quantity.

Model for electron flow in crystal: Let C, be the wave function at site n in a linear array of molecules
in a lattice each separated by a distance b. ih%}*l = FEyCp_1 — AC,, — AC,,_5. C,, = ap(x)e /Mt and
an(x) = e*®. Substituting,E = Eq + A(e~** + ¢'**). Using Ey = 2A and cos(t) ~ 1 — ¢?/2 for small ¢, we
get B = hw = Ab;kz SO ‘;—‘; = %k. If F is different, say Ey+ F' at site 0, we get backscattering or trapping
depending on the sign of F.

Energy in conduction band ~ Ey + ak?. N,N, = cefoar/(KT),

~ L
room temperature, kT ~ j5ev.

Egap,Ger = T2ev, Eyqy 55 = 1.1lev; at
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Ny (p—side) pV

Semiconductor junctions: Notn—side) = ¢ "7 -
- 2 — — —
Vdrift = %, yielding the Ohm law: j = %E. For Hall effect, Ey. = —Ugpipt X B =
o . ,
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