## Cryptanalysis

## Lecture 1: Computing in the Presence of an Adversary

John Manferdelli<br>imanfer@microsoft.com<br>JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

## Welcome to Cryptanalysis

## Class Mechanics

- Web site is best comprehensive information source.
- Microsoft e-mail is most reliable way to reach me.
- Grading: 25\% Final, 75\% Homework.
- Sign up for mailing list, Wiki.
- Office: 444 CSE.

Web Site: http://www.cs.washington.edu/education/courses/599r/08au/
Prerequisites

- Check out description of class and "Short Math Notes."


## Basic Definitions

## The wiretap channel: "In the beginning"

The Sender
Alice
Plaintext
(P)

Message sent is:

$$
C=E_{K 1}(P)
$$

Decrypted as:
$\mathrm{P}=\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$
$P$ is called plaintext.
C is called ciphertext.


## Cryptography and adversaries

- Cryptography is computing in the presence of an adversary.
- An adversary is characterized by:
- Talent
- Nation state: assume infinite intelligence.
- Wealthy, unscrupulous criminal: not much less.
- Access to information
- Probable plaintext attacks.
- Known plaintext/ciphertext attacks.
- Chosen plaintext attacks.
- Adaptive interactive chosen plaintext attacks (oracle model).
- Computational resources
- Exponential time/memory.
- Polynomial time/memory .


## Computational strength of adversary (edging towards high class version)

- Infinite - Perfect Security
- Information Theoretic
- Doesn't depend on computing resources or time available
- Polynomial
- Asymptotic measure of computing power
- Indicative but not dispositive
- Realistic
- The actual computing resources under known or suspected attacks.
- This is us, low brow.


## Information strength of the adversary (high class version)

- Chosen Plaintext Attack (CPA, offline attack)
- The adversary can only encrypt messages
- Non-adaptive Chosen Ciphertext Attack (CCA1)
- The adversary has access to a decryption oracle until, but not after, it is given the target ciphertext
- Adaptive Chosen Ciphertext Attack (CCA2)
- The adversary has unlimited access to a decryption oracle, except that the oracle rejects the target ciphertext
- The CCA2 model is very general - in practice, adversaries are much weaker than a full-strength CCA2 adversary
- Yet, many adversaries are too strong to fit into CCA1


## Your role

- In real life, you usually protect the user (COMSEC, now IA)
- Here, you're the adversary (COMINT, now SIGINT)
- Helps you be a smarter for the COMSEC job.
- You may as well enjoy it, it's fun.
- Don't go over to the Dark side, Luke.
- In real life, it's important to have ethical people do both jobs


## Dramatis persona

## Users

- Alice (party A)
- Bob (party B)
- Trent (trusted authority)
- Peggy and Victor (authentication participants)


## Users Agents

- Cryptographic designer
- Personnel Security
- Security Guards
- Security Analysts


## Adversaries

- Eve (passive eavesdropper)
- Mallory (active interceptor)
- Fred (forger)
- Daffy (disruptor)
- Mother Nature
- Users (Yes Brutus, the fault lies in us, not the stars)

Adversaries Agents

- Dopey (dim attacker)
- Einstein (smart attacker --- you)
- Rockefeller (rich attacker)
- Klaus (inside spy)


## Adversaries and their discontents

## Wiretap Adversary (Eve)



Man in the Middle Adversary (Mallory)


## It's not just about communications privacy

Users want:

- Privacy/Confidentiality
- Integrity
- Authentication
- Non-repudiation
- Quality of Service

Adversaries want to:

- Read a message
- Get key, read all messages
- Corrupt a message
- Impersonate
- Repudiate
- Deny or inhibit of service

Remember
Who's the customer? What do they need? What's the risk?
Public policy? Role of standardization and interoperability. It's the system, stupid: practices and procedures.

## Cryptographic toolchest

- Symmetric ciphers (includes classical ciphers)
- Block ciphers
- Stream ciphers
- Codes
- Asymmetric ciphers (Public Key)
- Cryptographic Hashes
- Entropy and random numbers
- Protocols and key management


## Symmetric ciphers



- Encryption and Decryption use the same key.
- The transformations are simple and fast enough for practical implementation and use.
- Two major types: Stream ciphers and block ciphers.
- Examples: DES, AES, RC4, A5, Enigma, SIGABA, etc.
- Can't be used for key distribution or authentication.


## Asymmetric (Public Key) ciphers



Encryption and Decryption use different keys.

- Pk is called the public key and pk is the private key. Knowledge of Pk is sufficient to encrypt. Given Pk and C , it is infeasible to compute pk and infeasible to compute P from C .
- Invented in mid 70's -Hellman, Merkle, Rivest, Shamir, Adleman, Ellis, Cocks, Williamson
- Public Key systems used to distribute keys, sign documents. Used in https:. Much slower than symmetric schemes.


## Cryptographic hashes, random numbers

- Cryptographic hashes (h:\{0,1\} ${ }^{\star}\{0,1\}^{\text {bs }}$. bs is the output block size in bits--- 160, 256, 512 are common)
- One way: Given $b=h(a)$, it is hard (infeasible) to find a.
- Collision Resistant: Given $b=h(a)$, it is hard to find $a^{\prime} \square$ a such that $h\left(a^{\prime}\right)=b$.
- Cryptographic random numbers
- Not predictable even with knowledge of source design
- Passing standard statistical tests is a necessary but not sufficient condition for cryptographic randomness.
- Require "high-entropy" source.
- Huge weakness in real cryptosystems.
- Pseudorandom number generators
- Stretch random strings into longer strings
- More next quarter


## Algorithm Speed

| Algorithm | Speed |
| :--- | :--- |
| RSA-1024 Encrypt | $.32 \mathrm{~ms} / \mathrm{op}(128 B), 384 \mathrm{~KB} / \mathrm{sec}$ |
| RSA-1024 Decrypt | $10.32 \mathrm{~ms} / \mathrm{op} \mathrm{(128B)} 13 \mathrm{~KB} / sec$, |
| AES-128 | $.53 \mathrm{\square s} / \mathrm{op} \mathrm{(16B)}, \mathrm{30MB/sec}$ |
| RC4 | $.016 \mathrm{\square s} / \mathrm{op} \mathrm{(1B)} 63 \mathrm{MB} / sec$, |
| DES | $.622 \mathrm{Zs} / \mathrm{op}(8 B), 12.87 \mathrm{MB} / \mathrm{sec}$ |
| SHA-1 | $48.46 \mathrm{MB} / \mathrm{sec}$ |
| SHA-256 | $24.75 \mathrm{MB} / \mathrm{sec}$ |
| SHA-512 | $8.25 \mathrm{MB} / \mathrm{sec}$ |

Timings do not include setup. All results typical for a $850 \mathrm{MHz} \times 86$.

## What are Ciphers

A cipher is a tuple $<\mathrm{M}, \mathrm{C}, \mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{E}\left(\mathrm{K}_{1}, \mathrm{x}\right), \mathrm{D}\left(\mathrm{K}_{2}, \mathrm{y}\right)>$
$-M$ is message space, $x$ is in $M$.

- $C$ is cipher space, $y$ is in $C$.
- $\mathrm{K}_{1}$ and $\mathrm{K}_{2}$ are paired keys (sometimes equal).
$-E$ is encryption function and $K_{1}$ is the encryption key.
- D is decryption function and $\mathrm{K}_{2}$ is the decryption key.
- $\mathrm{E}\left(\mathrm{K}_{1}, \mathrm{x}\right)=\mathrm{y}$.
- $D\left(K_{2}, y\right)=x$.


## Mechanisms for insuring message privacy

- Ciphers
- Codes
- Stegonography
- Secret Writing (Bacon's "Cipher")
- Watermarking
- We'll focus on ciphers which are best suited for mechanization, safety and high throughput.


## Codes and Code Books

- One Part Code
- A

2

- Able

8

- Two Part
- In first book, two columns. First column contains words/letters in alphabetical order, second column has randomly ordered code groups
- In second code book, columns are switched and ordered by code groups.
- Sometimes additive key is added (mod 10 ) to the output stream
- Code book based codes are "manual." We will focus on ciphers from now on.
- "Codes" also refers to "error correcting" codes which are used to communicate reliably over "noisy" channels. This area is related to cryptography. See, MacWilliams and Sloane or van Lint.


## Basic Ciphers

- Monoalphabetic Substitution
- Shift
- Mixed alphabet
- Transposition
- Polyalphabetic Substitution
- Vigenere
- One Time Pad
- Linear Feedback Shift Register


## Kerckhoffs' Principle

- The confidentiality required to insure practical communications security must reside solely in the knowledge of the key.
- Communications security cannot rely on secrecy of the algorithms or protocols
- We must assume that the attacker knows the complete details of the cryptographic algorithm and implementation
- This principle is just as valid now as in the 1800's.


## Cipher Requirements

- WW II
- Universally available (simple, light instrumentation) - interoperability.
- Compact, rugged: easy for people (soldiers) to use.
- Security in key only: We assume that the attacker knows the complete details of the cryptographic algorithm and implementation
- Adversary has access to some corresponding plain and ciphertext
- Now
- Adversary has access to unlimited ciphertext and lots of chosen text.
- Implementation in digital devices (power/speed) paramount.
- Easy for computers to use.
- Resistant to ridiculous amount of computing power.


## Practical attacks

- Exhaustive search of theoretical key space.
- Exhaustive search of actual key space as restricted by poor practice.
- Exploiting bad key management or storage.
- Stealing keys.
- Exploiting encryption errors.
- Spoofing (ATM PIN).
- Leaking due to size, position, language choice, frequency, inter-symbol transitions, timing differences, side channels..


# Paper and pencil ciphers --- "In the beginning" 

## Transposition

- A transposition rearranges the letters in a text.
- Example: Grilles
- Plain-text: BULLWINKLE IS A DOPE
- Written into a predefined rectangular array

> B U L L
> W I N K

LEIS $\rightarrow$ BWLAEUINEDLNIOLKSP
A D 0 P
E
$c_{i}=p_{s(i)}$ where
$S=(1)(2,5,17,16,12,11,7,6)(3,9,14,4,13,15,8,10)$

- Another example: Rail fence cipher.


## Breaking filled columnar transposition

Message (from Sinkov)<br>EOEYE GTRNP SECEH HETYH SNGND DDDET OCRAE RAEMH TECSE USIAR WKDRI RNYAR ABUEY ICNTT CEIET US

Procedure

1. Determine rectangle dimensions ( $l, w)$ by noting that message length $=\mathrm{m}$ $=\mid x w$. Here $m=77$, so $\mid=7, w=11$ or $\mid=11, w=7$
2. Anagram to obtain relative column positions

Note a transposition is easy to spot since letter frequency is the same as regular English.

## Anagramming

- Look for words, digraphs, etc.
- Note: Everything is very easy in corresponding lain/ciphertext attack

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | E | G | A | E | R | C |
| 0 | C | N | E | U | N | N |
| E | E | D | R | S | Y | T |
| Y | H | D | A | I | A | T |
| E | H | D | E | A | R | C |
| G | E | D | M | R | A | E |
| T | T | E | H | W | N | I |
| R | Y | T | T | K | U | E |
| N | H | 0 | E | D | E |  |
| P | S | C | C | R | Y | U |
|  | N |  |  |  |  |  |


|  | 3 | 6 | 1 | 5 | 7 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | G | R | E | E | C | E | A |
|  | N | N | 0 | U | N | C | E |
|  | D | Y | E | S | T | E | R |
| $\rightarrow$ | D | A | Y | I | T | H | A |
|  | D | R | E | A | C | H | E |
|  | D | A | G | R | E | E | M |
|  | E | N | T | W | I | T | H |
|  | T | U | R | K | E | Y | T |
|  | 0 | E | N | D | T | H | E |
|  | C | Y | P | R | U | S | C |
|  | R | I | S | I | S | N | S |

## Alphabetic substitution

- A mono-alphabetic cipher maps each occurrence of a plaintext character to a cipher-text character (the same one every time).
- A poly-alphabetic cipher maps each occurrence of a plaintext character to more than one cipher-text character.
- A poly-graphic cipher maps more than one plaintext character at a time
- Groups of plaintext characters are replaced by assigned groups of cipher-text characters


## Et Tu Brute?: Substitutions

- Caeser Cipher (Shift)

Message: B U L L W I N K L E I S A D O P E
Cipher: D W N N Y K P M N G K U C F Q S G
$\mathrm{c}=\mathrm{pC}^{\mathrm{k}}, \mathrm{C}=$ (ABCDEFGHIJKLMNOPQRSTUVWXYZ), k= 2 here
k=3 for classical Caeser

- More generally, any permutation of alphabet


## Attacks on substitution

- Letter Frequency

| A | .0651738 | B | .0124248 | C | .0217339 | D | .0349835 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E | .1041442 | F | .0197881 | G | .0158610 | H | .0492888 |
| I | .0558094 | J | .0009033 | K | .0050529 | L | .0331490 |
| M | .0202124 | N | .0564513 | O | .0596302 | P | .0137645 |
| Q | .0008606 | R | .0497563 | S | .0515760 | T | .0729357 |
| U | .0225134 | V | .0082903 | W | .0171272 | X | .0013692 |
| Y | .0145984 | Z | .0007836 | Sp | .1918182 |  |  |

- Probable word.
- Corresponding plain/cipher text makes this trivial.


## Inter symbol information

- Bigraphs
EN
ON
ST
ND
- Trigraphs

| ENT | ION |
| :--- | :--- |
| TIO | FOR |

AND
ING
IVE
OUR
THI
ONE

- Words

| THE | OF | AND | TO | A |
| :--- | :--- | :--- | :--- | :--- |
| IN | THAT | IS | I | IT |
| FOR | AS | WITH | WAS | HIS |
| HE | BE | NOT | BY | BUT |
| HAVE | YOU | WHICH | ARE | ON |

## Letter frequency far graph



## Breaking a mono-alphabet substitution

LB HOMVY QBF TFIL EOON LWO HFLLBY SDJVYM FNADPZI

| Ch | $\#$ | Freq | Ch \# | Freq | Ch | $\#$ | Freq | Ch | \# | Freq |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L | 5 | 0.125 | F | 4 | 0.100 | 0 | 4 | 0.100 | B | 3 | 0.075 |
| Y | 3 | 0.075 | D | 2 | 0.050 | M | 2 | 0.050 | N | 2 | 0.050 |
| H | 2 | 0.050 | V | 2 | 0.050 | I | 2 | 0.050 | E | 1 | 0.025 |
| P | 1 | 0.025 | Q | 1 | 0.025 | S | 1 | 0.025 | T | 1 | 0.025 |
| A | 1 | 0.025 | W | 1 | 0.025 | J | 1 | 0.025 | Z | 1 | 0.025 |
| 40 characters, |  |  |  |  | index of coincidence: 0.044. |  |  |  |  |  |  |

LB HOMVY QBF TFIL EOON LWO HFLLBY SDJVYM FNADPZI to begin you must keep the button facing upwards

## Breaking a mono-alphabet substitution

FMGWG OWG 0 XQJYGW UI YOEE YGOWLXPH LXHLRG FMG LHLH FMOF KOX YG MGOWR

| Ch | \# | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | 9 | 0.161 | 0 | 7 | 0.125 | L | 5 | 0.089 | W | 5 | 0.089 |
| M | 4 | 0.071 | H | 4 | 0.071 | F | 4 | 0.071 | X | 4 | 0.071 |
| Y | 4 | 0.071 | R | 2 | 0.036 | E | 2 | 0.036 | Q | 1 | 0.018 |
| I | 1 | 0.018 | U | 1 | 0.018 | J | 1 | 0.018 | K | 1 | 0.018 |
| P | 1 | 0.018 | 56 characters, index of coincidence: 0.071 |  |  |  |  |  |  |  |  |

FMGWG OWG O XQJYGW UI YOEE YGOWLXPH LXHLRG FMG there are a number of ball bearings inside the

LHLH FMOF KOX YG MGOWR isis that can be heard

## Using probable words

- From Eli Biham's notes (127 characters)

UCZCS NYEST MVKBO RTOVK VRVKC ZOSJM UCJMO MBRJM VESZB SMOSJ OBKYE MJTRV VEMPY JMOMJ AMVEM HKOVJ KTRVK CZCQV EMNMV VMJOS ZHVER OVEMP BSZTM MSOKN PTJCI MZ

| C-letter | \# Occur | Pletter | Expocc |
| :--- | :--- | :--- | :--- |
| M | 19 | e | 15 |
| V | 15 | t | 12 |
| O | 11 | a | 10 |
| J | 10 | o | 10 |
| S | 9 | n | 9 |
| E | 8 | i | 9 |
| K | 8 | s | 8 |
| Z | 7 | r | 8 |
| C | 7 | h | 7 |
| R | 6 | l | 5 |
| T | 6 | d | 5 |
| B | 5 | c | 4 |
| N | 3 | U | 4 |


| C-letter | \# Occur | Pletter | ExpOcc |
| :--- | :--- | :--- | :--- |
| Y | 3 | u | 4 |
| P | 3 | p | 3 |
| H | 2 | f | 3 |
| U | 2 | m | 3 |
| A | 1 | y | 2 |
| I | 1 | b | 2 |
| Q | 1 | g | 2 |
| D | 0 | v | 1 |
| F | 0 | k | 1 |
| W | 0 | q | 0 |
| L | 0 | x | 0 |
| G | 0 | j | 0 |
| X | 0 | z | 0 |

# Breaking mono-alphabet with probable word 

- From Eli Biham's notes (127 characters)
UCZCS NYEST MVKBO RTOVK VRVKC ZOSJM UCJMO MBRJM
VESZB SMOSJ OBKYE MJTRV VEMPY JMOMJ AMVEM HKOVJ
KTRVK CZCQV EMNMV VMJOS ZHVER OVEMP BSZTM MSOKN

PTJCI MZ

- By frequency and contact VEM is likely to be the and thus $P$ is likely $y$ or $m$.
- Playing around with other high frequency letters UCZCA could be "monoa" which suggests "monoalphabet" which is a fine probable word. The rest is easy.
- Word structure (repeated letters) can also quickly isolate text like "beginning" or "committee"


# Breaking mono-alphabet with probable word 

UCZCS NYEST MVKBO RTOVK VRVKC ZOSJM UCJMO MBRJM monoa lphab etics ubsti tutio nsare mores ecure VESZB SMOSJ OBKYE MJTRV VEMPY JMOMJ AMVEM HKOVJ thanc aesar scsph erbut theyp reser vethe distr KTRVK CZCQV EMNMV VMJOS ZHVER OVEMP BSZTM MSOKN ibuti onoft helet tersa ndthu sthey canbe easil PTJCI MZ ybrok en

Word breaks make it easier

## Vigenere polyalphabetic cipher

6 Alphabet Direct Standard Example (Keyword: SYMBOL)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

STUVWXYZABCDEFGHIJKLMNOPQR
YZABCDEFGHIJKLMNOPQRSTUVWX MNOPQRSTUVWXYZABCDEFGHIJKL BCDEFGHIJKLMNOPQRSTUVWXYZA OPQRSTUVWXYZABCDEFGHIJKLMN LMNOPQRSTUVWXYZABCDEFGHIJK

PLAIN: GET OUT NOW
KEY: SYM BOL SYM
CIPHER: YCF PIE FMI

## Initial Mathematical Techniques

## Matching distributions

- $\quad$ Consider the Caeser cipher, $E_{a}(x)=(x+a)(\bmod 26)$
- Let $p_{i}=P(X=i)$ be the distribution of English letters
- Given the text $\mathrm{y}=\left(\mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{n}-1}\right)$ with frequency distribution, $q_{i}$, where $y$ are the observations of $n$ ciphertext letters, we can find a by maximizing $f(t)=\square_{i=0}^{25} p_{i+t} q_{i}$.
- $t=a$, thus maximizes $f(t)$.


## Correct alignments

- Here we show that $\square p_{i} q_{i}$ is largest when the ciphertext and plaintext are 'aligned’ to the right values.
- Proof: Repeatedly apply the following: If $a_{1} \square a_{2} \square 0$ and $b_{1} \square b_{2} \square$ 0 then $a_{1} b_{1}+a_{2} b_{2} \square a_{1} b_{2}+a_{2} b_{1}$. This is simple: $a_{1}\left(b_{1}-b_{2}\right) \square a_{2}\left(b_{1}-\right.$ $\mathrm{b}_{2}$ ) follows from $\mathrm{a}_{1} \square \mathrm{a}_{2}$ after multiplying both sides by $\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \square 0$.
- A similar theorem holds for the function $\square p_{i} \lg \left(p_{i}\right)$ which we'll come across later; namely, $\square \mathrm{p}_{\mathrm{i}} \lg \left(\mathrm{p}_{\mathrm{i}}\right) \square \square \mathrm{q}_{\mathrm{i}} \lg \left(\mathrm{p}_{\mathrm{i}}\right)$.
- Proof: Since $\square p_{i}=1$ and $\square q_{i}=1$, by the weighted arithmeticgeometric mean inequality, $\square p_{i} a_{i} \square \square a_{i}{ }^{p[i]}$. Put $a_{i}=q_{i} / p_{i} .1=\square$ $p_{i} a_{i} \square \square\left(q_{i} / p_{i}\right){ }^{p[i]}$. Taking $\lg$ of both sides gives $0 \square_{i} \lg \left(q_{i}\right)-p_{i}$ $\lg \left(p_{i}\right)$ or $p_{i} \lg \left(p_{i}\right) \square p_{i} \lg \left(q_{i}\right)$.


## Statistical tests for alphabet identification

- Index of coincidence (Friedman) for letter frequency
- Measure of roughness of frequency distribution.
- Can choose same letters $f_{i}$ choose 2 ways

$$
\text { IC }] \square_{i} f_{i}\left(f_{i}-1\right) /(n(n-1)) \text {, so IC } \approx \square_{i} p_{i}^{2}
$$

- For English Text IC $\approx .07$, for Random Text IC= $1 / 26=.038$.
- IC is useful for determining number of alphabets (key length) and aligning alphabets.
- For n letters enciphered with m alphabets: IC( $\mathrm{n}, \mathrm{m} \approx 1 / \mathrm{m}(\mathrm{n}-\mathrm{m}) /(\mathrm{n}-$ 1) $(.07)+(m-1) / m n /(n-1)(.038)$.
- Other Statistics
- Vowel Consonant pairing.
- Digraph, trigraph frequency.


## Statistical estimation and monoalphabetic shifts

- Solving for the "shift" using the frequency matching techniques is usually dispositive.
- For general substitutions, while frequency matching maximization is very helpful, it is scarcely adequate because of variation from the "ideal" distribution.
- Inter-symbol dependency becomes more important so we must use probable words or look for popular words. For example, in English, "the" almost always helps a lot.
- Markov modelling (next topic) can be dispositive for general substitutions. We introduce it here not because you need it but the mono-alphabet setting is a good way to understand it first time around.
- In more complex situations, it can be critical.


## Group Theory in Cryptography

- Groups are sets of elements that have a binary operation with the following properties:

1. If $x, y, z \square G, x y \square G$ and $(x y) z=x(y z)$. It is not always true $x y=y x$.
2. There is an identity element 1 IG and $1 x=x 1=x$ for all $x$ in $G$
3. For all, $x$ in $G$ there is an element $x^{-1} \square G$ and $x x^{-1}=1=x^{-1} x$

- One very important group is the group of all bijective maps from a set of $n$ elements to itself denoted $S_{n}$ or $\square_{n}$.
- The "binary operation" is the composition of mappings. The identity element leaves every element alone.
- The inverse of a mapping, $x$, "undoes" what $x$ does.


## Operations in the symmetric group

- If $] \| \mathbb{S}_{n}$ and the image of $x$ is $y$ we can write this two ways:
- From the left, $y=\square \|(x)$. This is the usual functional notation your used to where mappings are applied "from the left". When mappings are applied from the
 mapping obtained by applying $\square$ first and then $\square$ - i.e. $y=\square(x))$.
- From the right, $\mathrm{y}=(\mathrm{x})$ पाIFor them, CD denotes the mapping obtained by applying $\square$ first and then D - i.e. $y=((x) \square \square$.


## Element order and cycle notation

- The smallest $k$ such that $\square^{k}=1$ is called the order of $\square$.
- $\quad G$ is finite if it has a finite number of elements (denoted $|\mathrm{G}|$ ).
- In a finite group, all elements have finite order
- Lagrange's Theorem: The order of each element divides |G|.
- Example. Let $\mathrm{G}=\mathrm{S}_{4}$.
$-\square=1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4,4 \rightarrow 1, \square=1 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 1,4 \rightarrow 2$.

$$
\square^{\square \square}=1 \rightarrow 4,2 \rightarrow 1,3 \rightarrow 2,4 \rightarrow 3
$$

- Applying mappings "from the left", $\mathrm{V}=1 \rightarrow 4,2 \rightarrow 1,3 \rightarrow 2,4 \rightarrow 3$.
- Sometimes DIls written like this:

$$
\square=\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}
$$

- Sometimes permutations are written as products of cycles:



## William Freidman

## Vigenere -polyalphabetic cipher

6 Alphabet Direct Standard Example (Keyword: SYMBOL)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

STUVWXYZABCDEFGHIJKLMNOPQR YZABCDEFGHIJKLMNOPQRSTUVWX MNOPQRSTUVWXYZABCDEFGHIJKL
BCDEFGHIJKLMNOPQRSTUVWXYZA OPQRSTUVWXYZABCDEFGHIJKLMN LMNOPQRSTUVWXYZABCDEFGHIJK

PLAIN: GET OUT NOW
KEY: SYM BOL SYM
CIPHER: YCF PIE FMI

## Constructing Vig Alphabets

Direct Standard:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Reverse Standard:
ZYXWVUTSRQPONMLKJIHGFEDCBA
Keyword Direct (Keyword: NEW YORK CITY):
NEWYORKCITABDFGHJLMPQRSUVZ
Keyword Transposed (Keyword: CHICAGO):
CHIAGO
BDEFJK
LMNPQR
STUVWX
YZ
CBLSYHDMTZIENUAFPVGJQWOKRX

## Mathematical description of Vigenere

- Suppose we have a sequence letters (a message), $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$.
- The transposition cipher, $\mathrm{\|}$ 酐, works on blocks of $m$ letters as follows. Let $j=u m+v, v<m, C\left(s_{j}\right)=s_{u m+\square(v)}$ where the underlying set of elements, $S_{m}$, operates on is $\{0,1,2, \ldots, m-1\}$.
- If the first cipher alphabet of a Vigenere substitution is $\mathrm{DID} \mathrm{S}_{26}$ where the underlying set of elements, $S_{m}$, operates on is $\{a, b, \ldots, z\}$ then $C\left(s_{j}\right)=\square P^{(1 \text { mod } k)}\left(s_{j}\right)$ where $P$ is the cyclic permutation ( $a, b, c, \ldots, z$ ). Sometimes $\mathrm{k}=26$ or could be the size of the codeword.
- Mixing many of these will obviously lead to complicated equations that are hard to solve.


## Solving Vigenere

1. Determine Number of Alphabets

- Repeated runs yield interval differences. Number of alphabets is the gcd of these. (Kasiski)
- Statistics: Index of coincidence

2. Determine Plaintext Alphabet
3. Determine Ciphertext Alphabets

## Example of Vigenere

- Encrypt the following message using a Vigeniere cipher with direct standard alphabets. Key: JOSH.

All persons born or naturalized in the United States, and subject to the jurisdiction thereof, are citizens of the United States and of the state wherein they reside. No state shall make or enforce any law which shall abridge the privileges or immunities of citizens of the United States; nor shall any state deprive any person of life, liberty, or property, without due process of law; nor deny to any person within its jurisdiction the equal protection of the laws.

- We'll calculate the index of coincidence of the plaintext and ciphertext.
- Then break the ciphertext into 4 columns and calculate the index of coincidence of the columns (which should be mono-alphabets).


## Message as "five" group and IC

ALLPE RSONS BORNO RNATU RALIZ EDINT HEUNI TEDST ATESA NDSUB JECTT OTHEJ URISD ICTIO NTHER EOFAR ECITI ZENSO FTHEU NITED STATE SANDO FTHES TATEW HEREI NTHEY RESID ENOST ATESH ALLMA KEORE NFORC EANYL AWWHI CHSHA LLABR IDGET HEPRI VILEG ESORI MMUNI TIESO FCITI ZENSO FTHEU NITED STATE SNORS HALLA NYSTA TEDEP RIVEA NYPER SONOF LIFEL IBERT YORPR OPERT YWITH OUTDU EPROC ESSOF LAWNO RDENY TOANY PERSO NWITH INITS JURIS DICTI ONTHE EQUAL PROTE CTION OFTHE LAWS

| Ch Count | Freq |  |  |  |  |
| :--- | ---: | ---: | :--- | ---: | :--- | :--- | ---: | :--- | :--- | ---: | ---: |
| E | 49 | 0.129 | T | 42 | 0.111 | I | 32 | 0.084 | 0 | 29 | 0.077 |
| S | 28 | 0.074 | N | 28 | 0.074 | R | 26 | 0.069 | A | 25 | 0.066 |
| H | 18 | 0.047 | L | 16 | 0.042 | D | 13 | 0.034 | U | 11 | 0.029 |
| F | 10 | 0.026 | C | 9 | 0.024 | P | 9 | 0.024 | Y | 8 | 0.021 |
| W | 7 | 0.018 | B | 4 | 0.011 | M | 3 | 0.008 | J | 3 | 0.008 |
| Z | 3 | 0.008 | V | 2 | 0.005 | G | 2 | 0.005 | K | 1 | 0.003 |
| Q | 1 | 0.003 | X | 0 | 0.000 |  |  |  |  |  |  |

379 characters, index of coincidence: 0.069 , IC (square approx): 0.071 .

## Ciphertext and IC for ciphertext

JZDWN FKVWG TVABG YWOLB AODPI SVPWH ZLDBA ANRKA JHWZJ BVZDP BLLHL VCVWQ DFAZM WUARC FAQSJ LXTSY NQAAR NWUBC XAQSM URHWK BHSAN GSUMC XAQSK AJHWD QSJLR BLONM JLBWV LWCKA JHWZQ ODSVO CLXFW UOCJJ NOFFU OODQW UOBVS SUOTY RRYLC VWWAW NPUSY LBCJP VAMUR HALBC XJRHA GNBKV OHZLD BAANR KAJHW ZWCJZ QODSJ BQZCO LLMSH YRJWH WMHLA GGUXT DPOSD PKSJA HCJWA CHLAH QDRHZ VDHVB NDJVL SKZXT DHFBG YMSFF CCSUH DWYBC FDRHZ PWWLZ SIJPB RAJCW GUCVW LZISS YFGAN QLPXB GMCVW SJKK

| Ch Count | Freq |  |  |  |  |
| :--- | ---: | ---: | :--- | ---: | :--- | :--- | ---: | :--- | ---: | ---: | ---: |
| W | 29 | 0.077 | A | 28 | 0.074 | S | 23 | 0.061 | L | 23 | 0.061 |
| J | 22 | 0.058 | H | 22 | 0.058 | C | 20 | 0.053 | B | 20 | 0.053 |
| D | 18 | 0.047 | V | 17 | 0.045 | 0 | 15 | 0.040 | Z | 15 | 0.040 |
| R | 14 | 0.037 | U | 13 | 0.034 | N | 12 | 0.032 | Q | 12 | 0.032 |
| F | 11 | 0.029 | K | 11 | 0.029 | P | 10 | 0.026 | G | 10 | 0.026 |
| Y | 9 | 0.024 | M | 9 | 0.024 | X | 8 | 0.021 | T | 5 | 0.013 |
| I | 3 | 0.008 | E | 0 | 0.000 |  | 0 | 0.000 |  |  |  |

379 characters, index of coincidence: 0.045, IC (square approx): 0.048

## Ciphertext broken into 4 columns with IC

```
JNWAW AIWDN JJDLC DMRQX NRBQR BNMQJ QRNBW JQVXO
NUQBU RCAUB VRBRN ODNJW QJCMR WAXOK HAARD NLXFM
CHBRW SBCCZ YNXCJ
```

Column 1: 95 characters, index of coincidence: 0.058 , IC (square approx): 0.068.
ZFGBO OSHBR HBPHV FWCST QNCSH HGCSH SBMWC HOOFC
OOWVO RVWSC AHCHB HBRHC OBOSJ MGTSS CCHHH DSTBS
CDCHW IRWVI FQBVK
Column 2: 95 characters, index of coincidence: 0.077, IC (square approx): 0.087.
DKTGL DVZAK WVBLW AUFJS AWXMW SSXKW JLJVK WDCWJ
FOUST YWNYJ MAXAK ZAKWJ DQLHW HGDDJ JHQZV JKDGF
SWFZL JAGWS GLGWK
Column 3: 95 characters, index of coincidence: 0.060, IC (square approx): 0.070.
WVVYB PPLAA ZZLVQ ZAALY AUAUK AUAAD LOLLA ZSLUJ
FDOSY LWPLP ULJGV LAAZZ SZLYH LUPPA WLDVB VZHYF
UYDPZ PJULS APMS
Column4: 94 characters, index of coincidence: 0.081 , IC (square approx): 0.090.

## Breaking a Vigenere

- Break the Vigeniere based ciphertext below. Plaintext and ciphertext alphabets are direct standard. What is the key length? What is the key?

```
IGDLK MJSGC FMGEP PLYRC IGDLA TYBMR KDYVY XJGMR TDSVK ZCCWG ZRRIP
UERXY EEYHE UTOWS ERYWC QRRIP UERXJ QREWQ FPSZC ALDSD ULSWF FFOAM
DIGIY DCSRR AZSRB GNDLC ZYDMM ZQGSS ZBCXM OYBID APRMK IFYWF MJVLY
HCLSP ZCDLC NYDXJ QYXHD APRMQ IGNSU MLNLG EMBTF MLDSB AYVPU TGMLK
MWKGF UCFIY ZBMLC DGCLY VSCXY ZBVEQ FGXKN QYMIY YMXKM GPCIJ HCCEL
PUSXF MJVRY FGYRQ
```


## Look for repeats



## IC study of 5 alphabet hypothesis

Full Cipher

| Ch Count | Freq |  |  |  |  |
| :--- | ---: | ---: | :--- | ---: | :--- | :--- | ---: | :--- | ---: | ---: | ---: |
| Y | 23 | 0.079 | M | 21 | 0.072 | C | 19 | 0.066 | R | 18 | 0.062 |
| G | 17 | 0.059 | L | 16 | 0.055 | D | 16 | 0.055 | S | 15 | 0.052 |
| F | 13 | 0.045 | I | 12 | 0.041 | P | 11 | 0.038 | E | 11 | 0.038 |
| X | 10 | 0.034 | Z | 10 | 0.034 | Q | 9 | 0.031 | B | 8 | 0.028 |
| K | 8 | 0.028 | U | 8 | 0.028 | W | 7 | 0.024 | A | 7 | 0.024 |
| J | 7 | 0.024 | V | 7 | 0.024 | N | 5 | 0.017 | T | 5 | 0.017 |
| H | 4 | 0.014 | 0 | 3 | 0.010 |  | 0 | 0.000 |  |  |  |

290 characters, index of coincidence: 0.044, IC (square approx): 0.047.


58 characters, index of coincidence: 0.059, IC (square approx): 0.075.

## IC of columns

| Ch | Count | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | 7 | 0.121 | Y | 7 | 0.121 | C | 6 | 0.103 | L | 5 | 0.086 |
| P | 4 | 0.069 | R | 4 | 0.069 | J | 4 | 0.069 | E | 3 | 0.052 |
| B | 3 | 0.052 | M | 3 | 0.052 | F | 2 | 0.034 | D | 2 | 0.034 |
| Q | 1 | 0.017 | N | 1 | 0.017 | S | 1 | 0.017 | T | 1 | 0.017 |
| U | 1 | 0.017 | W | 1 | 0.017 | I | 1 | 0.017 | Z | 1 | 0.017 |
| 0 | 0 | 0.000 | K | 0 | 0.000 | V | 0 | 0.000 | H | 0 | 0.000 |
| X | 0 | 0.000 | A | 0 | 0.000 |  | 0 | 0.000 |  |  |  |

58 characters, index of coincidence: 0.058, IC(square approx): 0.074.


58 characters, index of coincidence: 0.071, IC (square approx): 0.087.

## IC of columns continued

| Ch | Count | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 9 | 0.155 | I | 7 | 0.121 | W | 6 | 0.103 | X | 6 | 0.103 |
| S | 5 | 0.086 | M | 5 | 0.086 | R | 5 | 0.086 | E | 3 | 0.052 |
| H | 2 | 0.034 | V | 2 | 0.034 | G | 2 | 0.034 | K | 2 | 0.034 |
| A | 1 | 0.017 | P | 1 | 0.017 | T | 1 | 0.017 | Z | 1 | 0.017 |
| C | 0 | 0.000 | Q | 0 | 0.000 | D | 0 | 0.000 | J | 0 | 0.000 |
| U | 0 | 0.000 | F | 0 | 0.000 | B | 0 | 0.000 | N | $\bigcirc$ | 0.000 |
| Y | 0 | 0.000 | 0 | 0 | 0.000 |  | 0 | 0.000 |  |  |  |

58 characters, index of coincidence: 0.075, IC (square approx): 0.091.

| Ch | Column 5 of 5 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Count | Freq | Ch | Count | Freq | Ch | Count | Freq | Ch | Count | Freq |
| Y | 9 | 0.155 | C | 7 | 0.121 | F | 5 | 0.086 | M | 4 | 0.069 |
| P | 4 | 0.069 | Q | 4 | 0.069 | K | 4 | 0.069 | J | 3 | 0.052 |
| R | 3 | 0.052 | D | 3 | 0.052 | G | 2 | 0.034 | S | 2 | 0.034 |
| U | 2 | 0.034 | B | 2 | 0.034 | A | 1 | 0.017 | N | 1 | 0.017 |
| E | 1 | 0.017 | L | 1 | 0.017 | H | 0 | 0.000 | 0 | 0 | 0.000 |
| T | 0 | 0.000 | I | 0 | 0.000 | V | 0 | 0.000 | W | 0 | 0.000 |
| X | 0 | 0.000 | Z | 0 | 0.000 |  | 0 | 0.000 |  |  |  |

58 characters, index of coincidence: 0.063, IC (square approx): 0.079.

## Since the alphabets are standard study most likely slides

Side normal alphabet against input alphabet and check distance: $\mathrm{D}_{\mathrm{i}}=\Sigma_{\mathrm{d}=0^{25}}\left(\mathrm{~d}_{\mathrm{i}}-\mathrm{d}^{\prime}((\mathrm{i}+\mathrm{s})(\right.$ mod
$\mathrm{d}_{\mathrm{i}}$
is

| Alphabet 1 |  | Alphabet 1 |  |
| :---: | :---: | :---: | :---: |
| Slide Distance |  | Slid | tance |
| 00 (A) | 0.0656 | 13 (N) | 0.0707 |
| 01 (B) | 0.0556 | 14 (0) | 0.0791 |
| 02 (C) | 0.0703 | 15 (P) | 0.0723 |
| 03 (D) | 0.0753 | 16 (Q) | 0.0603 |
| 04 (E) | 0.0704 | 17 (R) | 0.0621 |
| 05 (F) | 0.0775 | 18 (S) | 0.0736 |
| 06 (G) | 0.0616 | 19 (T) | 0.0700 |
| 07 (H) | 0.0619 | 20 (U) | 0.0693 |
| 08 (I) | 0.0401 | 21 (V) | 0.0440 |
| 09 (J) | 0.0896 | 22 (W) | 0.0679 |
| 10 (K) | 0.0899 | 23 (X) | 0.0704 |
| 11 (L) | 0.0666 | 24 (Y) | 0.0816 |
| 12 (M) | 0.0163 | 25 (Z) | 0.0553 |


| Alphabet 2 |  | Alphabet 2 |  |
| :---: | :---: | :---: | :---: |
| Slide Distance |  | Slide Distance |  |
| 00 (A) | 0.0724 | 13 (N) | 0.0494 |
| 01 (B) | 0.0733 | 14 (0) | 0.0724 |
| 02 (C) | 0.0540 | 15 (P) | 0.0636 |
| 03 (D) | 0.0795 | 16 (Q) | 0.0689 |
| 04 (E) | 0.0712 | 17 (R) | 0.0691 |
| 05 (F) | 0.0649 | 18 (S) | 0.0693 |
| 06 (G) | 0.0730 | 19 (T) | 0.0702 |
| 07 (H) | 0.0645 | 20 (U) | 0.0446 |
| 08 (I) | 0.0785 | 21 (V) | 0.0752 |
| 09 (J) | 0.0625 | 22 (W) | 0.0777 |
| 10 (K) | 0.0701 | 23 (X) | 0.0732 |
| 11 (L) | 0.0404 | 24 (Y) | 0.0135 |
| 12 (M) | 0.0784 | 25 (Z) | 0.0754 |

## Slides continued

Side normal alphabet against input alphabet and check distance: $D_{i}=\Sigma_{i=0}{ }^{25}\left(d_{i}-d^{\prime}((i+s)(\operatorname{mog} 26))^{2} . d_{i}\right.$ is the cipher alphabet frequency, $\mathrm{d}_{\mathrm{i}}{ }^{\circ}$ is the normal alphabet frequency.

| Alphabet 3 |  | Alphabet 3 |  |
| :---: | :---: | :---: | :---: |
| Slide Distance |  | Slid | tance |
| 00 ( A ) | 0.0764 | 13 (N) | 0.0647 |
| 01 (B) | 0.0901 | 14 (0) | 0.0599 |
| 02 (C) | 0.0841 | 15 (P) | 0.0763 |
| 03 (D) | 0.0836 | 16 (Q) | 0.0838 |
| 04 (E) | 0.0744 | 17 (R) | 0.0799 |
| 05 (F) | 0.0823 | 18 (S) | 0.0907 |
| 06 (G) | 0.0849 | 19 (T) | 0.0871 |
| 07 (H) | 0.0960 | 20 (U) | 0.0741 |
| 08 (I) | 0.0966 | 21 (V) | 0.0752 |
| 09 (J) | 0.0718 | 22 (W) | 0.1086 |
| 10 (K) | 0.0338 | 23 (X) | 0.0919 |
| 11 (L) | 0.0755 | 24 (Y) | 0.0494 |
| 12 (M) | 0.0917 | 25 (Z) | 0.0426 |


| Alphabet 4 |  | Alphabet 4 |  |
| :---: | :---: | :---: | :---: |
| Slide Distance |  | Slide | tance |
| 00 (A) | 0.0711 | 13 (N) | 0.0929 |
| 01 (B) | 0.1091 | 14 (0) | 0.0839 |
| 02 (C) | 0.1079 | 15 (P) | 0.0734 |
| 03 (D) | 0.0672 | 16 (Q) | 0.1000 |
| 04 (E) | 0.0231 | 17 (R) | 0.0759 |
| 05 (F) | 0.0829 | 18 (S) | 0.0577 |
| 06 (G) | 0.0878 | 19 (T) | 0.0508 |
| 07 (H) | 0.0751 | 20 (U) | 0.0782 |
| 08 (I) | 0.0675 | 21 (V) | 0.0949 |
| 09 (J) | 0.0893 | 22 (W) | 0.0971 |
| 10 (K) | 0.0924 | 23 (X) | 0.0860 |
| 11 (L) | 0.0896 | 24 (Y) | 0.0832 |
| 12 (M) | 0.1074 | 25 (Z) | 0.0876 |

## Slides concluded

Side normal alphabet against input alphabet and check distance: $D_{i}=\Sigma_{i=0}{ }^{25}\left(d_{i}-d^{\prime}{ }^{\prime}((i+s)(\bmod 26))^{2}\right.$. $d_{i}$ is the cipher alphabet frequency, $\mathrm{d}_{\mathrm{i}}{ }^{-}$is the ${ }^{\text {normal }}$ alphabet frequency.

| Alphabet 5 |  |
| :---: | :---: |
| Slide Distance |  |
| 00 (A) | 0.0900 |
| 01 (B) | 0.0696 |
| 02 (C) | 0.0624 |
| 03 (D) | 0.0871 |
| 04 (E) | 0.0888 |
| 05 (F) | 0.0598 |
| 06 (G) | 0.0763 |
| 07 (H) | 0.0732 |
| 08 (I) | 0.0833 |
| 09 (J) | 0.0663 |
| 10 (K) | 0.0593 |
| 11 (L) | 0.0539 |
| 12 (M) | 0.0599 |


| Alphabet 5 |  |
| :---: | :---: |
| Slide Distance |  |
| 13 (N) | 0.0684 |
| 14 (0) | 0.0759 |
| 15 (P) | 0.0846 |
| 16 (Q) | 0.0613 |
| 17 (R) | 0.0724 |
| 18 (S) | 0.0806 |
| 19 (T) | 0.0889 |
| 20 (U) | 0.0466 |
| (V) | 0.0833 |
| 22 (W) | 0.0781 |
| 23 (X) | 0.0661 |
| 24 (Y) | 0.0215 |
| 25 (Z) | 0.0699 |

## Vigenere Table

Vig Tableau

ABCDEFGHIJKLMNOPQRSTUVWXYZ

MNOPQRSTUVWXYZABCDEFGHIJKL
YZABCDEFGHIJKLMNOPQRSTUVWX KLMNOPQRSTUVWXYZABCDEFGHIJ
EFGHIJKLMNOPQRSTUVWXYZABCD
YZABCDEFGHIJKLMNOPQRSTUVWX

## The answer is...

```
WITHM ALICE TOWAR DNONE WITHC HARIT YFORA LLWIT
HFIRM NESSI NTHER IGHTA SGODG IVESU STOSE ETHER
IGHTL ETUSS TRIVE ONTOF INISH THEWO RKWEA REINT
OBIND UPTHE NATIO NSWOU NDSTO CAREF ORHIM WHOSH
ALLHA VEBOR NETHE BATTL EANDF ORHIS WIDOW ANDHI
SORPH ANTOD OALLW HICHM AYACH IEVEA NDCHE RISHA
JUSTA NDLAS TINGP EACEA MONGO URSEL VESAN DWITH
ALLNA TIONS
Key Length: 5
Key: MYKEY
```

- Cipher only< 25k [assuming 25 letters are required to identify one letter with high certainty, a pretty conservative assumption. You could argue it was as small as about 8k.].


## Probable Word Method

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{i}}={\underset{\mathrm{p}}{\mathrm{i}}} \mathrm{SC}^{\mathrm{i}-1} \\
& \mathrm{~S}=(\operatorname{AJDNCHEMBOGF})(\text { IRQPKL })(\mathrm{Z})(\mathrm{Y})(\mathrm{W})(\mathrm{V})(\mathrm{U})(\mathrm{T})(\mathrm{S})
\end{aligned}
$$

- Placing a probable word gets several letters.
- Equivalent letters (in the different cipher alphabets) can be obtained be applying C or $\mathrm{C}^{-1}$.


## Differencing

Sliding Components


L J T Z G X V Y V T Q G K S Y X S
Cipher Text
Probable Text
Difference

## Vigenere Cipher Solutions

- If the alphabets are direct standard, after determining number, just match frequency shapes.
- $\operatorname{MIC}(x, y)=\square f_{i} f_{i}^{\prime} /\left(n n^{\prime}\right)$ is used to find matching alphabets
- For both plain and cipher mixed, first determine if any alphabets are the same (using matching alphabets test: $\left.\mathrm{IC}=\square \mathrm{m}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}}\right)^{2}$. The only term that matters is $\square \mathbb{W}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}^{\prime} \mathrm{j}$.)
- Use equivalent alphabets or decimation symmetry of position to transform all alphabets into same alphabet, then use monoalphabetic techniques.


## Equivalent alphabets

- Suppose a message is sent with a mixed plaintext alphabet (permuted by C ) but a direct standard cipher text alphabet.
- Each position of the message represents the same plaintext letter.
- The Vigenere table looks like this:

| (A) | (B) | (C) | ( D | (E) | (F) | ( | ( |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F | G | H | .. |
| B | C | D | E | F | G | H | I | .. |
| C | D | E | F | G | H | I | J | ... |
| D | E | F | G | H | I | J | K | ... |
| ... | ... | ... | ... | ... | ... | ... | ... |  |

## Equivalent alphabets - continued

- If the message bits are $m_{1}, m_{2}, m_{3}, \ldots$ and there are $k$ alphabets used, the message is enciphered as $\square^{-1}\left(m_{1}\right), \square^{-1}\left(m_{2}\right)+1, \square^{-1}\left(m_{3}\right)+2, \ldots$ or in general $\left.\left(\square^{-1}\left(m_{i}\right)+(i-1)(\bmod k)\right)(\bmod 26)\right)$.
- Note that the "columns" retain the correct order of the $k$ enciphering alphabets.
- By substituting the letters (B for $A$ in the second cipher alphabet, etc.), the cipher-text becomes a mono-alphabet which can be solved the usual way.


## Mixed plaintext and cipher-text alphabets

- In general, this is harder but may still be solvable with a shortcut. Suppose, for example, we encrypt the same message two different ways (say with $\mathrm{k}_{1}$ and $\mathrm{k}_{2}$ mixed plain/cipher alphabets).
- Example from Sinkov. The same message with two different keys.
WCOAK TJYVT VXBQC ZIVBL AUJNY BBTMT JGOEV GUGAT KDPKV GDXHE WGSFD
XLTMI NKNLF XMGOG SZRUA LAQNV IXDXW EJTKI TAOSH NTLCI VQMJQ FYYPB
CZOPZ VOGWZ KQZAY DNTSF WGOVI IKGXE GTRXL YOIP CZOPZ VOGWZ KQZAY DNTSF WGOVI IKGXE GTRXL YOIP

TXHHV JXVNO MXHSC EEYFG EEYAQ DYHRK EHHIN OPKRO ZDVFV TQSIC SIMJK ZIHRL CQIBK EZKFL OZDPA OJHMF LVHRL UKHNL OVHTE HBNHG MQBXQ ZIAGS
UXEYR XQJYC AIYHL ZVMQV QGUKI QDMAC QQBRB SQNI

## Mixed plain and cipher alphabets

- The Vigenere table looks like this:

$$
\begin{aligned}
& \square(D) \quad \square(E) \quad \square(F) \quad \square(G) \quad \square(H) \quad \square(I) \quad \square(J) \quad \square(K) \quad . .
\end{aligned}
$$

- If the message bits are $m_{1}, m_{2}, m_{3}, \ldots$ and there are $k$ alphabets used, the message is enciphered as $\left[\left(\square^{-1}\left(m_{1}\right)\right), \square\left(\square^{-1}\left(m_{2}\right)+1\right), \square\left(\square^{-1}\left(m_{3}\right)+2\right), \ldots\right.$ or in general $\square\left(\left(\square^{-1}\left(m_{i}\right)+(i-1)(\bmod k)\right)(\bmod 26)\right)$.


## Mixed plain and cipher example

- Plain

NEWYORKCITABDFGHJKLMPQSUVZ

- Cipher

CHIAGO
BDEFJK
LMNPQR
STUVWX
$Y Z \quad \rightarrow$ CBLSYHDMTZIENUAFPVGJQWOKRX

NEWYORKCITABDFGHJKLMPQSUVZ CBLSYHDMTZIENUAFPVGJQWOKRX

## Alphabet rewritten

NEWYORKCITABDFGHJLMPQRSUVZ

CBLSYHDMTZIENUAFPVGJQWOKRX BLSYHDMTZIENUAFPVGJQWOKRXC LSYHDMTZIENUAFPVGJQWOKRXCB SYHDMTZIENUAFPVGJQWOKRXCBL YHDMTZIENUAFPVGJQWOKRXCBLS HDMTZIENUAFPVGJQWOKRXCBLSY DMTZIENUAFPVGJQWOKRXCBLSYH MTZIENUAFPVGJQWOKRXCBLSYHD TZIENUAFPVGJQWOKRXCBLSYHDM ZIENUAFPVGJQWOKRXCBLSYHDMT IENUAFPVGJQWOKRXCBLSYHDMTZ ENUAFPVGJQWOKRXCBLSYHDMTZI NUAFPVGJQWOKRXCBLSYHDMTZIE

ABCDEFGHIJKLMNOPQRSTUVWXYZ

IENUAFPVGJQWOKRXCBLSYHDMTZ ENUAFPVGJQWOKRXCBLSYHDMTZI NUAFPVGJQWOKRXCBLSYHDMTZIE UAFPVGJQWOKRXCBLSYHDMTZIEN AFPVGJQWOKRXCBLSYHDMTZIENU FPVGJQWOKRXCBLSYHDMTZIENUA PVGJQWOKRXCBLSYHDMTZIENUAF VGJQWOKRXCBLSYHDMTZIENUAFP GJQWOKRXCBLSYHDMTZIENUAFPV JQWOKRXCBLSYHDMTZIENUAFPVG QWOKRXCBLSYHDMTZIENUAFPVGJ WOKRXCBLSYHDMTZIENUAFPVGJQ OKRXCBLSYHDMTZIENUAFPVGJQW

## Alphabet rewritten

NEWYORKCITABDFGHJLMPQRSUVZ

UAFPVGJQWOKRXCBLSYHDMTZIEN AFPVGJQWOKRXCBLSYHDMTZIENU FPVGJQWOKRXCBLSYHDMTZIENUA PVGJQWOKRXCBLSYHDMTZIENUAF VGJQWOKRXCBLSYHDMTZIENUAFP GJQWOKRXCBLSYHDMTZIENUAFPV JQWOKRXCBLSYHDMTZIENUAFPVG QWOKRXCBLSYHDMTZIENUAFPVGJ WOKRXCBLSYHDMTZIENUAFPVGJQ OKRXCBLSYHDMTZIENUAFPVGJQW KRXCBLSYHDMTZIENUAFPVGJQWO RXCBLSYHDMTZIENUAFPVGJQWOK XCBLSYHDMTZIENUAFPVGJQWOKR

ABCDEFGHIJKLMNOPQRSTUVWXYZ

KRXCBLSYHDMTZIENUAFPVGJQWO RXCBLSYHDMTZIENUAFPVGJQWOK XCBLSYHDMTZIENUAFPVGJQWOKR CBLSYHDMTZIENUAFPVGJQWOKRX BLSYHDMTZIENUAFPVGJQWOKRXC LSYHDMTZIENUAFPVGJQWOKRXCB SYHDMTZIENUAFPVGJQWOKRXCBL YHDMTZIENUAFPVGJQWOKRXCBLS HDMTZIENUAFPVGJQWOKRXCBLSY DMTZIENUAFPVGJQWOKRXCBLSYH MTZIENUAFPVGJQWOKRXCBLSYHD TZIENUAFPVGJQWOKRXCBLSYHDM ZIENUAFPVGJQWOKRXCBLSYHDMT

## Letter identification and alphabet chaining

- Using IC, we determine first uses 6 alphabets, the second, 5. Same letters at the following positions:

| X | C | D | V | Z | A | Q | Q | G | I |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| 12 | 15 | 42 | 45 | 72 | 75 | 102 | 105 | 132 | 135 |

- Msg1, alphabet $5=$ Msg2, alphabet 2. Msg1, alphabet $3=$ Msg2, alphabet 5. Can confirm with IC test.
- If we have two rows separated by k (3, in our example):

Plain: A B C DEFGHI JKLMNOPQRSTUVWXYZ
Cipher 1: I E M N B U A F T P D V G C Y J Q H W Z O K L R S X
Cipher 2: U A I F Y P V G E J Z O W S M O K T R N X C H B D L

## Alphabet Chaining

Plain: A B C DEFGHI JKLMNOPQRSTUVWXYZ
Cipher 1: I E M N B U A F T P D V G C Y J Q H W Z O K L R S X
Cipher 4: U A I F Y P V G E J Z Q W S M O K T R N X C H B D L

The decimated interval is:
I U P J O X L H T E A V Q K C S D Z N F G W R B Y M

Rearranging by decimation:

$$
\begin{aligned}
& \text { A F J P U Z W R I B G L Q V N Y K T D H M S X E O C } \\
& \text { I U P J OX L H T E A V Q K C S D Z N F G W R B Y M }
\end{aligned}
$$

Rearranging we get the original sequence.

## Review of attacks on poly-alphabet

- Letter Frequency, multi-gram frequencies, transition probabilities
- Index of coincidence
- Alphabet chaining
- Sliding probable text
- Limited keyspace search
- Long repeated sequences in ciphertext
- Markoff like contact processes
- Decimation of sequences
- Direct and indirect symmetries


## More sophisticated mathematical technique

## Estimation-Maximization

- Find the MLE for the parameters $\square=(\square, P, q)$ that maximizes the likelihood of an observed sequence produced by a Markov chain, where $\mathbf{O}$ consists of T length output sequence (in m symbols) of an HMM with $n$ states.
 slides and $\left.Q(\square]^{\prime}\right)=\square_{\text {sis }} P_{\square}(\mathbf{O}, \mathrm{s}) \lg \left(P_{\square^{\prime}}(\mathbf{O}, \mathrm{s})\right)$.
 the sequence of re-estimations converge to a global maximum.
- This re-estimation can be accomplished with $\mathrm{O}\left(\mathrm{n}^{2}(\mathrm{~T}+1)\right.$ operations using the forward backwards recursion (rather than $\mathrm{O}\left(2(\mathrm{~T}+1) \mathrm{n}^{\mathrm{T}+1}\right)$ as the naïve computation might suggest.
- Baum made a lot of money on the stock market using similar techniques; so did James Simons; so did Elwyn Berlekamp.


## Hidden Markov Models (HMM)

- Uses more sophisticated source model - fairly general
- Think of cipher as state machine.
- Each state transition depends only on previous state, P(jil).
- Map from state to output is also given by probability distribution $\mathrm{q}(\mathrm{o} \mathrm{o})$. There are m output symbols.
- Output is observed. We have T observations $\mathrm{O}_{0}, \ldots$, $\mathrm{O}_{\mathrm{T}-1}$.
- Input (state) is the hidden variable. There are n states.
- Baum offered very efficient procedure to find optimal estimators for this situation


## Calculating likelihood for HMMs

기 $\square(i), \square_{i=1}{ }^{n-1} \square(i)=1$
2. $P(j i), D_{j=1}^{n-1} P(j i)=1$
3. $q(j i), \square_{j=1}{ }^{n-1} q(j \mid i)=1$
4. $\mathrm{O}=\left(\mathrm{O}_{0}, \ldots, \mathrm{O}_{\mathrm{T}-1}\right)$
--- Initial Probability
--- Next State ( $\mathrm{n}-1 \square \mathrm{j} \mathrm{j}$ [0)
--- Output symbol (m-1■j/D)
--- Output observations
$S=\{0, \ldots, n-1\}, O S=\{0, \ldots, m-1\}$

- Let $\square=(\square, P, q)$ be the distribution regarded as parameters, then the 'likelihood' of the observation $y$ is $\mathrm{P}(\mathrm{O}=\mathbf{O} \mid \overline{\mathrm{D}})=\mathrm{D}_{\mathrm{x} \| \mathrm{s}^{\mathrm{T}}} \mathrm{P}(\mathbf{O}, \mathbf{x})=\mathrm{D}_{\mathrm{x}} \mathrm{D}\left(\mathrm{x}_{0}\right) \mathrm{D}_{\mathrm{s}=1}{ }^{\mathrm{n}} \mathrm{P}\left(\mathrm{x}_{\mathrm{s}} \mid \mathrm{x}_{\mathrm{s}-1}\right) \mathrm{q}\left(\mathrm{O}_{\mathrm{s}} \mid \mathrm{x}_{\mathrm{s}}\right)$.


## Forward-Backwards recursion for HMM

Recall

- $P(O=\mathbf{O})=D_{x} P(\mathbf{O}, x)=D_{x}\left[\left(x_{0}\right) \square_{s=1}{ }^{n} P\left(x_{s} \mid x_{s-1}\right) P\left(O_{s} \mid x_{s}\right)\right.$

Define

- $\quad \square_{t}(i)=\quad \square(i) q\left(O_{0}\right)$, if $t=0$;
$\mathrm{C}_{\mathrm{k}=0}{ }^{\mathrm{n}-1} \mathrm{P}(\mathrm{k} \mid \mathrm{i}) \mathrm{q}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{i}\right) \mathrm{C}_{\mathrm{t}-1}(\mathrm{k})$, otherwise
- $\quad \square_{t}(i)=1$, if $t=n$
$\square_{k=0}^{n-1} P(k \mid i) q\left(O_{t} \mid i\right) D_{t-1}(k)$, otherwise
Then
- $P(O=O)=\square_{t}(i) \times \square_{t}(i)$


## Maximization equations

- If $D_{x}(F)$ denotes the partial derivative of $F$ with respect to $X$, Lagrange's equations to maximize $Y$ subject to the three stochastic constraints give:

1. 

$$
D_{\square(i)}\left(P(O=\mathbf{O})-D_{1} \square_{k=0}^{n-1}(\square(k)-1)\right)=0
$$

2. 

$D_{P(j i)}\left(P(O=O)-D_{2} \square_{k=0}^{n-1}(P(k \mid i)-1)\right)=0$
3.

$$
D_{q(i l i)}\left(P(O=O)-\square_{3} \square_{i=0}^{n-1}(q(k \mid i)-1)\right)=0
$$

- The solution (that defined the re-estimated $\square^{\prime}$ ) is:

$$
\begin{aligned}
& \left.\square(i)=\square_{0}(i)=\left(\square_{0}(i) \square_{0}(i)\right)\left[\square_{k=0}{ }^{n-1} \square_{0}(k) \square_{0}(k)\right)\right]^{-1}, j=0, \ldots, n-1 \\
& \left.P(j \mid i)=\left[\square_{t=0}^{n-1}\left(\square_{t}(i) q\left(y_{k+1} \mid j\right) P(j \mid i) Z_{t}(j)\right)\right]\left[\square_{t=0}^{n-1} \square_{t}(i) \square_{t}(i)\right)\right]^{-1}, j=0, \ldots, n-1 \\
& \left.q(j i)=\left[\square_{t=0, y(t)=j^{n-1}}\left(\square_{t}(i) Z_{t}(i)\right)\right]\left[\square_{t=0}^{n-1} \square_{t}(i) \square_{t}(i)\right)\right]^{-1}, j=0, \ldots, m-1
\end{aligned}
$$

## Scaling

- Multiplying a lot of floating point numbers whose absolute value is $<1$ (as we do in EM) leads to underflow. The renormalization technique to avoid this problem is called scaling.
- Put $a_{i j}=P(j \mid i), b_{i}\left(O_{t}\right)=q\left(i \mid O_{t}\right)$.
- $\quad \operatorname{Set} \square_{t}^{\prime}(i)=\square_{j=0}^{(n-1)} \square_{t-1}(j) a_{j j} b_{i}\left(O_{t}\right), \square_{o^{\prime}}^{\prime}(i)=\square_{0}(i), i=1,2, \ldots, n-1$.
- $\quad c_{0}=1 /\left(\square_{j=0}^{(n-1)} \square_{0}{ }^{\prime}(\mathrm{j})\right), \mathrm{Z}_{0}{ }^{\prime \prime}(\mathrm{i})=\mathrm{c}_{0} \mathrm{D}_{0}{ }^{\prime}(\mathrm{i})$.
- For $t=1,2, \ldots, T-1$
$-\quad \square_{t}^{\prime}(i)=\square_{j=0}{ }^{(n-1)} \square_{t-1}{ }^{\prime \prime}(j) a_{j j} b_{i}\left(O_{t}\right), \square_{t}{ }^{\prime \prime}(i)=c_{t} \square_{t}{ }^{\prime}(i)$.
- $\quad \mathrm{D}_{\mathrm{t}+1^{\prime \prime}}{ }^{\prime \prime}(\mathrm{i})=\mathrm{c}_{\mathrm{t}+1} \mathrm{Z}_{\mathrm{t}+1}{ }^{\prime}(\mathrm{i})=\mathrm{c}_{0} \mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{t}} \mathrm{D}_{\mathrm{t}}(\mathrm{i})$ and $\mathrm{D}_{\mathrm{t}}^{\prime \prime}(\mathrm{i})=\mathrm{C}_{\mathrm{t}}(\mathrm{i}) /\left(\mathrm{C}_{\mathrm{j}=0}{ }^{(n-1)} \square_{\mathrm{t}}(\mathrm{j})\right)$
$-\quad P(\mathbf{O} \mid \bar{\square})=\left(\square_{j=0}^{(T-1)} c_{j}\right)^{-1}, \ln (P(\mathbf{O} \mid \bar{\square}))=-\left(\square_{j=0}^{(T-1)} \ln \left(c_{j}\right)\right)$.
- Use same scale factor for $\square_{t}(i)$, compute $\square_{t}(i)$ as before with $\square_{t}{ }^{\prime \prime}(i)$, $\bar{D}_{t}{ }^{\prime \prime}(\mathrm{i})$ in place of $\mathrm{C}_{\mathrm{t}}(\mathrm{i}), \mathrm{D}_{\mathrm{t}}(\mathrm{i})$.


## Breaking a mono-alphabet with EM

- $m=4, T=48$ observations

$$
\begin{array}{lllll} 
& \mathrm{p}: 0.25, & 0.25, & 0.25, & 0.25 \\
\mathrm{P}: & .2 & .2 & .5 & .1 \\
& .333 & .333 & .167 & .167 \\
& .2 & .4 & .1 & .3 \\
& .5 & 0 & .25 & .25
\end{array}
$$

$$
\begin{array}{lllll}
\mathrm{i}: & 0 & 1 & 2 & 3 \\
\mathrm{q}(\mathrm{i} \mid 0): & 1 & 0 & 0 & 0 \\
\mathrm{q}(\mathrm{i} \mid 1): & 0 & 0 & 1 & 0 \\
\mathrm{q}(\mathrm{i} \mid 2): & 0 & 1 & 0 & 0 \\
\mathrm{q}(\mathrm{i} \mid 3): & 0 & 0 & 0 & 1
\end{array}
$$

$50^{\text {th }}$ re-estimation settles on:

| i | $\mathrm{j} \rightarrow$ | 0 | 1 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 1.00000 | 0 | 0 | 3 |
| 1 | .000004 | .000001 | .906980 | .093015 |
| 2 | .000023 | .998303 | .001667 | 0 |
| 3 | .000023 | 0 | 0 | .999977 |

Example from Konheim

## Other paper and pencil systems

## Poly-graphic Substitution

- PlayFair Digraphic Substitution
- Write alphabet in square.
- For two consecutive letter use other two letters in rectangle
- If letters are horizontal or vertical, use letters to right or below.

OHNMA
FERDL
IBCGK

## $\mathbf{T H} \rightarrow \mathbf{Q M}$

PQSTU
VWXYZ

- Hill's multi-graphic substitution
- Convert letters into numbers ( $0 \rightarrow 25$ ).
- Multiply 2-tuples by encrypting $2 \times 2$ matrix.
- Better have inverse in multiplicative group mod 26.


## Identifying Playfair

- Rare consonants $\mathrm{j}, \mathrm{k}, \mathrm{q}, \mathrm{x}$, and z will appear in higher frequencies than plaintext and digraphs containing these consonants will appear more frequently
- There are an even number of letters in the ciphertext
- When the ciphertext is broken up into digrams, doubled letters such as SS, EE, MM, . . . will not appear.


## Hill Cipher

- Each character is assigned a numerical value
$-a=0, b=1, \ldots, z=25$
- for $m=3$ the transformation of $p_{1} \mathrm{p}_{2} \mathrm{p}_{3}$ to $\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}$ is given by 3 equations:


Slide by Richard Spillman

## Hill Matrix

- The Hill cipher is really a matrix multiplication system
- The enciphering key is an $\mathrm{n} \times \mathrm{n}$ matrix, M
- The deciphering key is $\mathrm{M}^{-1}$
- For example, if $\mathrm{n}=3$ one possible key is:

$$
\begin{aligned}
& M=\left(\begin{array}{rrr}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right) \quad M^{-1}=\left(\begin{array}{rrr}
4 & 9 & 15 \\
15 & 17 & 6 \\
24 & 0 & 17
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Slide by Richard Spillman }
\end{aligned}
$$

## Breaking Hill

- The Hill cipher is resistant to a cipher-text only attack with reasonable message size.
- In fact, the larger the matrix, the more resistant the cipher becomes.
- It is easy to break using a known plaintext attack.
- The process is much like the method used to break an affine cipher in that the known plaintext/ciphertext group is used to set up a system of equations which when solved will reveal the key.


## Hill Cipher

- The Hill cipher is a block cipher with block size is 2 over the "normal" alphabet.
- Assign each letter a number between 0 and 25 (inclusive)
- For example, $a=0, b=1, \ldots, z=25$ ( $z$ is used as space)
- Let $p_{1} p_{2}$ be two successive plaintext letters. $\mathrm{c}_{1} \mathrm{c}_{2}$ are the ciphertext output where

$$
\begin{aligned}
& c_{1}=k_{11} p_{1}+k_{12} p_{2}(\bmod 26) \\
& c_{2}=k_{21} p_{1}+k_{22} p_{2}(\bmod 26)
\end{aligned}
$$

- Apply the inverse of the "key matrix" $\left[k_{11} k_{12} \mid k_{21} k_{22}\right]$ to transform ciphertext into plaintext
- Works better if we add space ( $27=3^{3}$ letters) or throw out a letter $\left(25=5^{2}\right)$ so there is an underlying finite field


## Breaking Hill

- The Hill cipher is resistant to a cipher-text only attack with limited cipher-text.
- Increasing the block size increases the resistance.
- It is trivial to break using a known plaintext attack.
- The process is much like the method used to break an affine cipher. Corresponding plaintext/ciphertext are used to set up a system of equations whose solutions are the key bits.


## End

