Cryptanalysis

Lecture 10 : Error Correcting Codes

John Manferdelli
imanfer@microsoft.com
JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Binary symmetric channel (BSC)

- Each bit transmitted has an independent chance of being received correctly with probability p and incorrectly received with probability $q=1-p$.

Transmitted Received

- Can we transmit m bits more reliably over this channel if we have spare bandwidth?

Error Detection

- Suppose we want to transmit 7 bits with very high confidence over a binary symmetric channel. Even if $\mathrm{p}>.99$, we occasionally will make a mistake.
- We can add an eight bit, a check sum, which makes any valid eight bit message have an even number of 1's.
- We can thus detect a single bit transmission error. Now the probability of a relying on a "bad" message is $\mathrm{P}_{\text {error }}=1$ ($p^{8}+8 p^{7}(1-p)$) instead of $P_{\text {error }}=1-p^{8}$. If $p=.99, P_{\text {error }}$ drops from about 7% to $.3 \%$.
- This allows us to detect an error and hopefully have the transmitter resend the garbled packet.
- Suppose we want to avoid retransmission?

Error Correction

- We can turn these "parity checks" which enable error detection to error correction codes as follows. Suppose we want to transmit $\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4}$. Arrange the bits in a 2×2 rectangle:

b_{1}	$\mathrm{~b}_{2}$	$\mathrm{c}_{1}=\mathrm{b}_{1}+\mathrm{b}_{2}$
$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	$\mathrm{c}_{2}=\mathrm{b}_{3}+\mathrm{b}_{4}$
$\mathrm{c}_{3}=\mathrm{b}_{1}+\mathrm{b}_{3}$	$\mathrm{c}_{4}=\mathrm{b}_{2}+\mathrm{b}_{4}$	$\mathrm{c}_{5}=\mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3}+\mathrm{b}_{4}$

- We transmit $\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \mathrm{c}_{4} \mathrm{c}_{5}$.
- The receiver can detect any single error and locate its position.
- Another simple "encoding scheme" that corrects errors is the following. We can transmit each bit three times and interpret the transmission as the majority vote. Now the chance of correct reception is
$P_{\text {correct }}=p^{3}+3 p^{2} q>p$ and the chance of error is $P_{\text {error }}=3 p q^{2}+q^{3}<q$. For
$\mathrm{p}=.99, \mathrm{P}_{\text {error }}=0.000298$ and $\mathrm{P}_{\text {correct }}=.999702$.

Codewords and Hamming distance

- To correct errors in a message "block," we increase the number of bits transmitted per block. The systematic scheme to do this is called a code, C.
- If there are M valid messages per block (often $M=2^{m}$) and we transmit $n>\lg (M)$ bits per block, the M "valid" messages are spread throughout the space of 2^{n} elements.
- If there are no errors in transmission, we can verify the message is equal to a codeword with high probability.
- If there are errors in the message, we decode the message as the codeword that is "closest" (i.e.-differs by the fewest bits) from the received message.
- The number of differences between the two nearest codewords is called the distance of the code or $\mathrm{d}(\mathrm{C})$.

Hamming distance

- The best decoding strategy is to decode a message as the codeword that differs least from a codeword. So, for a coding scheme, C, if $d(C)=2 t+1$ or less bits, we can correct t or less errors per block.
- If $d(C)=s+1$, we can detect s or fewer errors.
- The Hamming distance, denoted $\operatorname{Dist}(\mathbf{v}, \mathbf{w})$, between two elements \mathbf{v}, $\mathbf{w} \in G F(2)^{n}$ is the number of bits they differ by. The Hamming distance satisfies the usual conditions for a metric on a space.
- The Hamming weight of a vector $\mathbf{v} \in \mathrm{GF}(2)^{\mathrm{n}}$, denoted, $\|\mathrm{v}\|$ is the number of 1's.
- If $\mathbf{v}, \mathbf{w} \in G F(2)^{n}, \operatorname{Dist}(\mathbf{v}, \mathbf{w}),=\|\mathbf{v} \oplus \mathbf{w}\|$.

Definition of a Code

- In the case of the "repeat three times" code, $\mathrm{C}_{\text {repeatx } 3}, \mathrm{M}=1$ and $\mathrm{n}=3$. There are two "codewords," namely 111 and $000 . \mathrm{d}\left(\mathrm{C}_{\text {repeatx } 3}\right)=3$, so $\mathrm{d}=2 \mathrm{t}+1$ with $\mathrm{t}=1$.
- In general, a C(n,M,d) denotes a code in $G F(2)^{n}$ with M codewords with $d(C)=d$ the minimum distance, n is dimension.
- As discussed, such codes can correctly decode transmissions containing t errors or less.
- The rate of the code is (naturally) $R=\lg (M) / n$.
- Error correcting codes strive to find "high rate" codes that can efficiently encode and decode messages with acceptable error.

Example rates and errors

Code	n	M	d	R	p_{1}	p_{2}	$\mathbf{P}_{1, \mathrm{e}}$	$\mathbf{P}_{2, \mathrm{e}}$
Repetition $\times 3$	3	2	3	1/3	3/4	7/8	0.156	0.043
Repetition $\times 5$	5	2	5	1/5	3/4	7/8	0.103	0.016
Repetition $\times 7$	7	2	7	1/7	3/4	7/8	0.071	0.006
Repetition $\times 9$	9	2	9	1/9	3/4	7/8	0.049	0.004
Hamming(7,4)	7	16	3	$4 / 7$	3/4	7/8	0.556	0.215
Golay(24,12,8)	24	4096	17	1/2	3/4	7/8		
Hadamard $(64,32,16)$	64	32	16	3/16	3/4	7/8		
RM(4,2)	16	11	4					
BCH[7,3,4]	7	8	4	3/7				

Shannon

- Source Coding Theorem: The n random variables can be encoded by nH bits with negligible information loss.
- Channel Capacity: $\mathrm{C}=\max _{\mathrm{P}(\mathrm{x})}(\mathrm{H}(| | \mathrm{O})-\mathrm{H}(\mathrm{I})$). For a DMC, BSC with error rate p, this implies $C_{B S C}(p)=1+p \lg (p)+q$ $\lg (q)$. So for BSC R=1-H(P).
- Channel Coding Theorem: $\mathbb{Z} \mathbb{R}<C_{\text {max }}, \mathbb{B}>0, \mathrm{C}(\mathrm{n}, \mathrm{M}, \mathrm{d})$ of length n with M codewords: $M \geq 2^{[R n]}$ and $P^{(i)}$ error $\leq \square$ for $i=1,2, \ldots, M$.
- Translation: Good codes exist that permit transmission near the channel capacity with arbitrarily small error.

The Problem of Coding Theory

- Despite Shannon's fundamental results, this is not the end of the coding problem!
- Shannon's proof involved random codes
- Finding the closest codeword to a random point is the shortest vector problem, so "closest codeword" decoding is computationally difficult. Codes must be systematic to be useful.
- The Encoding Problem: Given an m bit message, m, compute the codeword, \mathbf{t} (for transmitted), in $\mathrm{C}(\mathrm{n}, \mathrm{M}, \mathrm{d})$.
- The Decoding Problem: Given an n bit received word, $\mathbf{r}=\mathbf{t + e}$, where \mathbf{e} was the error, compute the codeword in $\mathrm{C}(\mathrm{n}, \mathrm{M}, \mathrm{d})$ closest to r .
- General codes are hard to decode

Bursts

- Bursty error correction: Errors tend to be "bursty" in real communications.
- Burst error correcting codes can be constructed by "spreading out codewords". Let cw ${ }_{[i j}[\mathrm{j}$ mean bit j of codeword i. Transmit $\mathrm{cw}_{1}[1], \mathrm{cw}_{2}[1], \ldots, \mathrm{cw}_{\mathrm{k}}[1], \mathrm{cw}_{1}[2], \ldots$ where k is the size of a "long" error.
- Some specific codes (RS, for example) are good at bursty error correction.

Channel capacity for Binary Symmetric Channel

- Discrete memoryless channel: Errors independent and identically distributed according to channel error rate. (No memory).
- Rate for code, $R_{C}=\lg (M) / n$.
- Channel capacity intuition: How many bits can be reliably transmitted over a BSC?
- The channel capacity, c, of a channel is $c=\sup _{\mathrm{X}}$ $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$, where X is the transmission distribution and Y is the reception probability
- Shannon-Hartley: $c=B \lg (1+\mathrm{S} / \mathrm{N})$, B is the bandwidth, S is the signal power and N is the noise power.
- Information rate, R=rH.

How much information can be transmitted over a BSC with low error?

- How many bits can be reliably transmitted over a BSC? Answer (roughly): The number of bits of bandwidth minus the noise introduced by errors.
- Shannon's channel coding theorem tells us we can reliably transmit up to the channel capacity.
- However, good codes are hard to find and generally computationally expensive.

Calculating rates and channel capacity

- For single bit BSC, C=1+plg(p)+qlg(q).
- Recall c= $\sup _{X} I(X ; Y)$.
- The distribution $P(X=0)=P(X=1)=1 / 2$ maxmizes this.
- $c=1 / 2+1 / 2+p \lg (p)+q \lg (q)$

Linear Codes

- A $[n, k, d]$ linear code is an k-subspace of an n-space over F (usually GF(2)) with minimum distance d.
- An [n,k,d] code is also a ($n, 2^{k}, d$) code
- Standard form for generator is $G=\left(I_{k} \mid A\right)$ with k message bits, n codeword bits. Codeword $\mathbf{c}=\mathbf{m G}$.
- For a linear code, $d=\min _{u \neq 0, u \in c}\{w t(\mathbf{u})\}$.
- Proof: Since C is linear, $\operatorname{dist}(\mathbf{u}, \mathbf{w})=\operatorname{dist}(\mathbf{u}-\mathbf{w}, \mathbf{0})=w t(\mathbf{u}-\mathbf{v})$. Since the code is linear, $\mathbf{u}-\mathbf{v} \in \mathrm{C}$. That does it.
- Parity check matrix is $\mathrm{H}: \mathbf{v} \in \mathrm{C}$ iff $\mathbf{v H}^{\top}=0$.
- If G is in standard form, $\mathrm{H}=\left[-\mathrm{A}^{\top} \mid \|_{\mathrm{n}-\mathrm{k}}\right]$. Note that $\mathrm{GH}=0$.
- Example: Repetition code is the subspace in GF(2) ${ }^{3}$ generated by (1,1,1).

G and H and decoding

- Let $\mathbf{r}=\mathbf{c}+\mathbf{e}$, where \mathbf{r} is the received word, \mathbf{c} is the transmitted word and \mathbf{e} is the error added by the channel.
- Note codewords are linear combinations of rows of G and $\mathrm{rH}^{\top}=\mathrm{cH}^{\top}+\mathrm{eH}^{\top}=\mathrm{eH}^{\top}$.
- Coset leader table

Minimum weight
Coset leader

c_{1}	c_{2}	c_{3}	\ldots	c_{M}
$c_{1}+e_{1}$	$c_{2}+e_{1}$	$c_{3}+e_{1}$	\ldots	$c_{M}+e_{1}$
$c_{1}+e_{2}$	$c_{2}+e_{2}$	$c_{3}+e_{2}$	\ldots	$c_{M}+e_{2}$
\ldots	\ldots	\ldots		\ldots
$c_{1}+e_{h-1}$	$c_{2}+e_{h-1}$	$c_{3}+e_{h-1}$	\ldots	$c_{M}+e_{h-1}$

Error
0
e_{1}
\mathbf{e}_{2}
$\mathbf{e}_{\mathrm{h}-1}$
$\mathbf{e}_{\mathrm{h}-1} \mathrm{H}^{\top}$

Syndrome and decoding Linear Codes

- $\mathrm{S}(\mathrm{r})=\mathrm{rH}^{\top}$ is called the syndrone.
- A vector having minimum Hamming weight in a coset is called a coset leader.
- Two vectors belong to the same coset iff they have the same syndrone.
- Now, here's how to systematically decode a linear code:

1. Calculate $\mathrm{S}(\mathrm{r})$.
2. Find coset leader, \mathbf{e}, with syndrone $\mathrm{S}(\mathbf{r})$.
3. Decode ras r-e.

- This is more efficient than searching for nearest codeword but is only efficient enough for special codes.

Syndrone decoding example (H[7,4])

- Message: 1100.
- Codeword transmitted: 1100011.
- Received: 110000 1. (Error in $6^{\text {th }}$ position)

Syndrone decoding example (H[7,4])

- Coset table (Left)

- (110001) $\mathrm{H}^{\top}=(010)$ which is the syndrone of the seventh row whose coset leader is $\mathbf{e}=(0000010)$.
- Decode message as (110001) + (0000010)=(110011).

Syndrone decoding example ($\mathrm{H}[7,4]$)

- Coset table (Right)

Syn

> 00011111001100010101011010010011001101101001111001111111 00011101001101010101111010000011000101101101111011111110 00011011001110010100011010110011011101100001111101111101 00010111001000010111011011010011101101111001110001111011 00001111000100010001011000010010001101001001101001110111 00111111011100011101011110010001001100101001011001101111 01011111101100000101010010010111001111101000111001011111 10011110001100110101001010011011001001101011111000111111

Bounds: How good can codes be?

- Let $A_{q}(n, d)$ denote the largest code with minimum distance d.
- Sphere Packing (Hamming) Bound: If d=2e+1,
$A_{q}(n, d) \leq \square_{k=0}{ }^{e}{ }_{n} C_{k}(q-1)^{k} \leq q^{n}$.
- Proof: Let I be the number of codewords.
$-\mathrm{I}\left(1+(\mathrm{q}-1)_{\mathrm{n}} \mathrm{C}_{1}+(\mathrm{q}-1)^{2}{ }_{\mathrm{n}} \mathrm{C}_{2}+\ldots+(\mathrm{q}-1){ }_{\mathrm{n}} \mathrm{C}_{\mathrm{e}}\right) \leq \mathrm{q}^{\mathrm{n}}$ because the e-spheres around the codewords are disjoint.
- GSV Bound: There is a linear [$\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code satisfying the inequality: $A_{q}(n, d) \geq 2^{n} /\left(1+(q-1){ }_{n} C_{1}+(q-1)^{2}{ }_{n} C_{2}+\ldots+(q-1)^{d-1}{ }_{n} C_{d-1}\right)$
- Proof: The d-1 columns of the check matrix are linearly independent iff the code has distance d. So $q^{n-k} \geq\left(1+(q-1){ }_{n} C_{1}+(q-1)^{2}{ }_{n} C_{2}+\ldots+(q-\right.$ 1) ${ }^{d-1}{ }_{n} C_{d-1}$)
- Singleton Bound: $M \leq q^{n-d+1}$, so $R \leq 1-(d-1) / n$.
- Proof: Let C be a (n,M,d) code. Since every codeword differs by at

MDS

- Singleton Bound: $M \leq q^{n-d+1}$, so $R \leq 1-(d-1) / n$.
- Code meeting Singleton bound is an MDS code.
- If L is an MDS code so it L^{\square}.
- If L is an $[n, k]$ code with generator G, L is MDS iff there are k linearly independent columns.
- Binary 3-repetition code is an MDS

Hamming

- A Hamming code is a $[n, k, d]$ linear code with
$-\mathrm{n}=2^{\mathrm{m}}-1$,
- $\mathrm{k}=2^{\mathrm{m}}-1-\mathrm{m}$
$-\mathrm{d}=3$.
- To decode r=c+e:
- Calculate $\mathrm{S}(\mathrm{r})=\mathrm{rH}^{\top}$.
- Find j which is the column of H with the calculated syndrome.
- Correct position j.

[7,4] Hamming code

- The $[7,4]$ code has encoding matrix G, and parity check H where:

$$
G=\begin{aligned}
& 1000110 \\
& 0100101 \\
& 0010011 \\
& 0001111
\end{aligned} \quad H=\begin{aligned}
& 1101100 \\
& 1011010 \\
& 0111001
\end{aligned}
$$

- The code words are:

0000000, weight: 0
1000011, weight: 3
0100101, weight: 3
1100110, weight: 4
0010110, weight: 3
1010101, weight: 4 0110011, weight: 4 1110000, weight: 3

0001111, weight: 4 1001100, weight: 3
0101010, weight: 3
1101001, weight: 4
0011001, weight: 3
1011010, weight: 4
0111100, weight: 4
1111111, weight: 7

Decoding Hamming code

1000110	1101100	110
$\mathrm{G}=\left[\mathrm{I}_{4} \mid \mathrm{A}\right]=0100101=\left[-\mathrm{A}^{\top} \mid I_{3}\right], \mathrm{H}=$	1011010 ,	$H^{\top}=101$
0010011	0111001	011
0001111		111
		100
		010
		001

- Message: $1100 \rightarrow 1100011$.
- Received as 1100001.
- $1100001 \mathrm{H}^{\top}=010$ which is sixth row of H^{\top}. Error in sixth bit.
- 1100001+0000010= 110011

Dual Code

- If C is an $[n, k]$ linear code, then $C^{\square}=\{\mathbf{u}: \mathbf{u} \cdot \mathbf{c}=0, \square \mathbf{c} \in C\}$ is an $[\mathrm{n}, \mathrm{n}-\mathrm{k}]$ linear code called the dual code.
- The parity check matrix, H , of a code, C , is the generator of its dual code.
- A code is self-dual if $\mathrm{C}=\mathrm{C}^{\square}$.
- Weight enumerator: Let A_{i} be the number of codewords in C of weight i, then $A(z)=D_{i} A_{i} z^{i}$ is the weight enumerator.

Example: dual code of $(7,4)$ Hamming code

- $G=\quad \begin{aligned} & 1101100 \\ & 1011010 \\ & \\ & \\ & \\ & \end{aligned}$

Codewords:

0000000	0111001
1101100	1010101
1011010	1100011
0110110	0001111

Hadamard Code

- Hadamard Matrix: $\mathrm{H}^{\top}=\mathrm{nI}_{\mathrm{n}}$. If H is Hadamard of order m, J=

H H
H -H
is Hadamard of order 2 m .

- Hadamard code uses this property. Generator matrix for this code is $\mathrm{G}=[\mathrm{H} \mid-\mathrm{H}]^{\top}$. For message $\mathrm{I}, 0 \leq \mathrm{i}<2^{i}$ send the row corresponding to i .
- Used on Mariner spacecraft (1969).
- To decode, a 2^{i} bit received word, \mathbf{r}, compute $\mathbf{d}_{\mathbf{i}}=\mathbf{r} \cdot \mathbf{R}_{\mathrm{i}}$, where $\mathbf{R}_{\mathbf{i}}$ is the 2^{i} bit row i.
- If there are no errors, the correct row will have $\mathrm{d}_{\mathrm{i}}=2^{\mathrm{i}-1}$ and all other rows will have $\mathrm{d}_{\mathrm{i}}=0$.
- If one error, $\mathrm{d}_{\mathrm{i}}=2^{\mathrm{i}}-2$ (all dot products but 1 will be ± 2), etc.

Hadamard Code example

- Let $h_{\mathrm{ij}}=(-1)^{\mathrm{a} 0} \mathrm{b0} 0+\ldots+\mathrm{a} 4 \mathrm{~b} 4$, where \mathbf{a} and \mathbf{b} index the rows and columns respectively. This gives a 32 times 32 entry matrix, H .
- H(64, 32, 16): 64=2 ${ }^{6}$ bit codewords, 6 messages. First 32 rows:
00000000000000000000000000000000 00
01010101010101010101010101010101 01
00110011001100110011001100110011 02
01100110011001100110011001100110 03
00001111000011110000111100001111 04
01011010010110100101101001011010 05
00111100001111000011110000111100 06
01101001011010010110100101101001 07
00000000111111110000000011111111 08
01010101101010100101010110101010 09
00110011110011000011001111001100 10
01100110100110010110011010011001 11
00001111111100000000111111110000 12
01011010101001010101101010100101 13
00111100110000110011110011000011 14
01101001100101100110100110010110 15
00000000000000001111111111111111 16
01010101010101011010101010101010 17
00110011001100111100110011001100 18
01100110011001101001100110011001 19
00001111000011111111000011110000 20
01011010010110101010010110100101 21
00111100001111001100001111000011 22
01101001011010011001011010010110 23
00000000111111111111111100000000 24
01010101101010101010101001010101 25
00110011110011001100110000110011 26
01100110100110011001100101100110 27
00001111111100001111000000001111 28
01011010101001011010010101011010 29
00111100110000111100001100111100 30
01101001100101101001011001101001 31

Hadamard Code example

- Last 32 rows:
11111111111111111111111111111111 32
10101010101010101010101010101010 33
11001100110011001100110011001100 34
10011001100110011001100110011001 35
11110000111100001111000011110000 36
10100101101001011010010110100101 37
11000011110000111100001111000011 38
10010110100101101001011010010110 39
11111111000000001111111100000000 40
10101010010101011010101001010101 41
11001100001100111100110000110011 42
10011001011001101001100101100110 43
11110000000011111111000000001111 44
10100101010110101010010101011010 45
11000011001111001100001100111100 46
10010110011010011001011001101001 47
11111111111111110000000000000000 48
10101010101010100101010101010101 49
11001100110011000011001100110011 50
10011001100110010110011001100110 51
11110000111100000000111100001111 52
10100101101001010101101001011010 53
11000011110000110011110000111100 54
10010110100101100110100101101001 55
11111111000000000000000011111111 56
10101010010101010101010110101010 57
11001100001100110011001111001100 58
10011001011001100110011010011001 59
11110000000011110000111111110000 60
10100101010110100101101010100101 61
11000011001111000011110011000011 62
10010110011010010110100110010110 63

Hadamard Code example

- Suppose received word is:
- 11001100110011000011001100110001
- Dot product with rows of matrix is:
- 00: 002, 01: 002, 02: -02, 03: -02, 04: -02, 05: -02, 06: 002, 07: 002.
- 08: -02, 09: -02, 10: 002, 11: 002, 12: 002, 13: 002, 14: -02, 15: -02.
- 16: -02, 17: -02, 18: -30, 19: 002, 20: 002, 21: 002, 22: -02, 23: -02.
- 24: 002, 25: 002, 26: -02, 27: -02, 28: -02, 29: -02, 30: 002, 31: 002.
- 32: -02, 33: -02, 34: 002, 35: 002, 36: 002, 37: 002, 38: -02, 39: -02.
- 40: 002, 41: 002, 42: -02, 43: -02, 44: -02, 45: -02, 46: 002, 47: 002.
- 48: 002, 49: 002, 50: 030, 51: -02, 52: -02, 53: -02, 54: 002, 55: 002.
- 56: -02, 57: -02, 58: 002, 59: 002, 60: 002, 61: 002, 62: -02, 63: -02.
- So we decode as 50 and estimate 1 error.

The amazing Golay code

- Golay Code G_{24} is a $[24,12,8]$ linear code.
- $\mathrm{G}=\left[\mathrm{l}_{12}\left|\mathrm{C}_{0}\right| \mathrm{N}\right]=\left[\mathrm{l}_{12} \mid \mathrm{B}\right]$
$-\mathrm{C}_{0}=(1,1,1,1,1,1,1,1,1,1,1,0)^{\top}$.
$-N$ is formed by circulating ($1,1,0,1,1,1,0,0,0,1,0$) 11 times and appending an row of 11 1's.
- The first row of N corresponds to the quadratic residues (mod 11).
- Note that $w t\left(r_{1}+r_{2}\right)=w t\left(r_{1}\right)+w t\left(r_{2}\right)-2\left[r_{1} \cdot r_{2}\right]$, all codewords have weight divisible by 4 and $d(C)=8$.
- $G_{24}=G_{24}{ }^{\square}$. To decode Golay, write $\mathrm{G}=\left[\mathrm{I}_{12} \mid \mathrm{B}\right]$ and $\mathrm{B}^{\top}=$ $\left(b_{1}, b_{2}, \ldots, b_{12}\right)$ with b_{i} a column vector.

G for $\mathcal{G}(24,12,8)$

12345567819101112131415161718192021222324

| $\mathbf{1}$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- |
| $\mathbf{2}$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| $\mathbf{3}$ | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| $\mathbf{4}$ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
| $\mathbf{5}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| $\mathbf{6}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| $\mathbf{7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| $\mathbf{8}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| $\mathbf{9}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| $\mathbf{1 0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| $\mathbf{1 2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Properties of the Golay code

- The Golay code $\mathcal{G}(24,12,8)$ is self dual. Thus, $\mathrm{GG}^{\top}=1+\mathrm{BB}^{\top}=0$
- Other properties:
- Non-zero positions form a $(24,8,5)$ Steiner system.
- Weights are multiples of 4.
- Minimum weight CW is 8 (hence $\mathrm{d}=8$).
- Codewords have weights $0,8,12,16,24$.
- Weight enumerator is $1+(759) x^{8}+(2576) x^{12}+(759) x^{16}+x^{24}$.
- Voyager 1, 2 used this code.
- Get $\mathcal{G}(23,12,7)$ is obtained by deleting last column. It is a remarkable error correcting code. $7=2 \times 3+1$, so it corrects 3 errors. It does this "perfectly."

The Golay code $\mathcal{G}(23,12,7)$ is perfect!

- There are 2^{12} code words or sphere centers.
- There are ${ }_{23} \mathrm{C}_{1}=23$ points in Z_{23} which differ by one bit from a codeword.
- There are ${ }_{23} \mathrm{C}_{2}=253$ points in Z_{23} which differ by two bits from a codeword.
- There are ${ }_{23} \mathrm{C}_{3}=1771$ points in Z_{23} which differ by two bits from a codeword.
- $2^{12}(1+23+253+1771)=2^{12}(2048)=2^{12} \times 2^{11}=2^{23}$.
- 23 bit strings which differ by a codeword by $0,1,2$ or 3 bits partition the entire space.
- The three sporadic simple Conway's groups are related to the lattice formed by codewords and provided at least one Ph.D. thesis.

Decoding $\mathcal{G}(24,12,8)$

- Suppose $\mathbf{r}=\mathbf{c + e}$ is received. $\mathrm{G}=\left[\mathrm{I}_{12} \mid \mathrm{B}\right]=\left[\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{C}_{24}\right]$ and $B^{\top}=\left[b_{1}, b_{2}, \ldots, b_{12}\right]$.
- To decode:

1. Compute $\mathbf{s}=\mathbf{r} \mathbf{G}^{\top}, \mathbf{s B}, \mathbf{s}^{\mathbf{+}} \mathbf{c}_{\mathbf{i}}{ }^{\top}, 1 \mathrm{I} \leq \mathrm{i} \leq 24$ and $\mathbf{s B}+\mathbf{b}_{\mathbf{j}}{ }^{\top}, 1 \leq \mathrm{j} \leq 12$.
2. If $w t(\mathbf{s}) \leq 3$, non-zero entries of \mathbf{s} correspond to non-zero entries of \mathbf{e}.
3. If $w t(\mathbf{s B}) \leq 3$, there is a non-zero entry in the k-th position of $\mathbf{s B}$ if the $\mathrm{k}+12$-th position of e is non-zero.
4. If $w t\left(s^{+}+\mathbf{c}_{\mathrm{i}}^{\top}\right) \leq 2$, for some $\mathrm{j}, 13 \leq \mathrm{j} \leq 24$ then $\mathbf{e}_{\mathrm{j}}=1$ and non-zero entries of $\mathbf{s}+\mathbf{e}_{\mathrm{j}}{ }^{\top}$ are in the same positions as non-zero entries of e.
5. If $w t\left(s B+\mathbf{b}_{j}^{\top}\right) \leq 2$, for some $\mathrm{j}, 1 \leq \mathrm{j} \mathrm{I} \leq 12$ then $\mathbf{e}_{\mathrm{j}}=1$ and non-zero entries of $\mathbf{s B}+\mathbf{b}_{\mathbf{j}}{ }^{\top}$ at position k correspond to non-zero entries of $\mathbf{e}_{\mathrm{k}+12 \text {. }}$.

Decoding $\mathcal{G}(24,12,8)$ example

- G is $12 \times 24 . \mathrm{G}=\left[\mathrm{I}_{12} \mid \mathrm{B}\right]=\left(\mathrm{c}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{24}\right)$.
- $B^{\top}=\left(b_{1}, b 2, \ldots, b_{12}\right)$.
- $\mathbf{m}=(1,1,0,0,0,0,0,0,0,0,0,1,0)$.
- mG=(1,1,0,0,0,0,1,0,1,0,1,1,0).
- $\mathbf{r}=(1,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0)$.
- $\mathbf{s = (0 1 1 1 1 0 1 1 0 0 1 0)}$.
- $\mathbf{s B}=(101011001000)$.
- Neither has wt ≤ 3, so we compute $\mathbf{s}+\mathbf{c}_{\mathbf{j}}{ }^{\mathbf{\top}}, \mathbf{s B} \mathbf{b}_{\mathbf{j}}{ }^{\mathbf{T}}$.
- $\mathbf{s}+\mathbf{b}_{\mathbf{4}}{ }^{\boldsymbol{\top}}=(0,0,0,0,0,0,0,1,0,1,0,0)$
- $\mathbf{c}=\mathbf{r}+(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0)$
- $\mathbf{c}=(1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0)$
- $\mathbf{m}=(1,1,0,0,0,0,0,0,0,0,0,1,0)$.

Cyclic codes

- A cyclic code, C , has the property that if $\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}\right) \in \mathrm{C}$ then $\left(c_{n}, c_{1}, \ldots, c_{n-1}\right) \in C$.
- Remember polynomial multiplication in $\mathrm{F}[\mathrm{x}]$ is linear over F.
- Denoting $U_{n}(x)=x^{n}-1$ we have
- Theorem: C is a cyclic code of length n iff its generator $g(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \mid U_{n}(x)$ where codewords $c(x)$ have the form $m(x) g(x)$. Further, if $U_{n}(x)=h(x) g(x), c(x)$ in C iff $h(x) c(x)=0\left(\bmod U_{n}(x)\right)$.

Cyclic codes

- Let C be a cyclic code of length n over F, and let $\mathbf{a}=\left(a_{0}, a_{1}\right.$, $\left.\ldots, a_{n-1}\right) \in C$ be associated with the polynomial $p_{a}(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$. Let $g(x)$ the polynomial of smallest degree over such associated polynomials the $g(x)$ is the generating polynomial of C and
$1 . g(x)$ is uniquely determined.

2. $g(x) \mid x^{n}-1$
3. C: $f(x) g(x)$ where $\operatorname{deg}(f(x)) \leq n-1-\operatorname{deg}(g)$
4. If $h(x) g(x)=x^{n}-1, m(x) C$ iff $h(x) m(x)=0\left(\bmod x^{n}-1\right)$.

- The associated matrices G and H are on the next slide.

G, H for cyclic codes

- Let $g(x)$ be the generating polynomial of the cyclic code C.

$$
\begin{array}{rccccccccccc}
G=\begin{array}{rccccccccccc}
g_{0} & g_{1} & g_{2} & \ldots & \ldots & \ldots & \ldots & g_{k} & 0 & 0 & 0 & 0 \\
0 & g_{0} & g_{1} & g_{2} & \ldots & \ldots & \ldots & \ldots & g_{k} & 0 & 0 & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & \ldots & \ldots & \ldots & g_{k} & 0 & 0 \\
& & \ldots & & \ldots & & \ldots & & \ldots & & & \\
0 & \ldots & 0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & \ldots & \ldots & \ldots & g_{k} \\
H= & h_{1} & h_{l-1} & h_{l-2} & \ldots & \ldots & \ldots & \ldots & h_{0} & 0 & 0 & 0 \\
0 & h_{1} & h_{l-1} & h_{l-2} & \ldots & \ldots & \ldots & \ldots & h_{0} & 0 & 0 & 0 \\
& \ldots & \ldots & & & & & \ldots & & & \ldots & \\
0 & 0 & 0 & 0 & h_{1} & h_{l-1} & h_{l-2} & \ldots & \ldots & \ldots & \ldots & h_{0}
\end{array}
\end{array}
$$

Cyclic code example

- $g(x)=1+x^{2}+x^{3}, h(x)=1+x^{2}+x^{3}+x^{4}, g(x) h(x)=x^{n}-1, n=7$.
- Message 1010 corresponds to $m(x)=1+x^{2}$.
- $g(x) m(x)=c(x)=1+x^{3}+x^{4}+x^{5}$, which corresponds to the codeword 1001110.
- G, H are
- Codewords are
- 10110000101100001011000010111110100011101000111011001110
- 01001111100010011000111010011010011100010111010011111111

BCH Codes

- Cyclic codes; so generator, $g(x)$ satisfies $g(x) \mid x^{n}-1$.
- Theorem: Let C be a cyclic [n, $k, d]$ code over $F_{q, ~} q=p^{m}$. Assume p does not divide n and $g(x)$ is the generator. Let 7 be a primitive root of $x^{n}-1$ and suppose that for some $I, ~ D$, we have $g\left(\square^{\prime}\right)=g\left(\square^{1+1}\right)=\ldots=$ $g\left(\square^{++\square}\right)=0$, then $d \geq \square+2$.
- Constructing a BCH code:

1. Factor $x^{n}-1=f_{1}(x) f_{2}(x) \ldots f_{r}(x)$, each $f_{i}(x)$, irreducible.
2. Pick D , a primitive root of 1 .
3. $x^{n}-1=(x-\square)\left(x-\square^{2}\right) \ldots\left(x-\square^{n-1}\right)$ and $f_{i}(x)=\square_{t}\left(x-\square^{j(t)}\right)$.
4. $q_{j}(x)=f_{i}(x)$, where $f_{i}(\square)=0 . q_{j}(x)$ are not necessarily distinct.
5. BCH code at designed distance d has generator

$$
g(x)=\operatorname{LCM}\left[q_{k+1}(x), \ldots, q_{k+d-1}(x)\right]
$$

- Theorem: A BCH code of designed distance d has minimum weight $\geq \mathrm{d}$. Proof uses theorem above.

Example BCH code

- $F=F_{2}, n=7$.
- $x^{7}-1=(x-1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)$
- We pick $\left[\right.$, a root of $\left(x^{3}+x+1\right)$ as a primitive element.
- Note that \square^{2} and \square^{4} are also primitive roots of $\left(x^{3}+x+1\right)$, so $x^{3}+x+1=(x-\square)\left(x-\square^{2}\right)\left(x-\square^{4}\right)$ and $x^{3}+x^{2}+1=\left(x-\square^{3}\right)\left(x-\square^{6}\right)\left(x-\square^{6}\right)$
- $q_{0}(x)=x-1, q_{1}(x)=q_{2}(x)=q_{4}(x)=x^{3}+x^{2}+1$.
- $k=-1, d=3, g(x)=\left[x-1, x^{3}+x^{2}+1\right]=x^{4}+x^{3}+1$.
- This yields a $[7,3,4]$ linear code.

Decoding BCH Codes

- For r=c+e:

1. Compute $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)=\mathrm{rH}^{\top}$,
2. If $s_{1}=0$, no error,
3. If $s_{1} \neq 0$ put $s_{2} / s_{1}=\square \mathbb{D}^{1}$, error is in position j (of $p \neq 2$, $e_{i}=s_{1} / \square\left[\sigma^{-1}\right)(k+1)$,
4. $c=r-e$.

Example Decoding a BCH Code

- $x^{7}-1, \square$, a root of $x^{3}+x+1=0$. This is the 7 -repetition code.
- $\mathrm{rH}^{\top}=(1,1,1,1,0,1,1,1) \mathrm{H}^{\top}=\left(\mathrm{D}+\mathrm{D}^{2}, \mathrm{D}\right)$
- $H=1, \square, \square^{2}, \square^{3}, \square^{4}, \square^{5}, \square^{6}$ $1, \square^{2}, \square^{4}, \square^{6}, \square^{8}, \square^{10}, \square^{12}$
- $s_{1}=\square+\square^{2}=1+\square+\square^{2}+\square^{3}+\square^{4}+\square^{5}+\square^{6}$
- $s_{2}=\square=1+\square^{2}+\square^{4}+\square^{6}+\square^{8}+\square^{10}+\square^{12}$
- $s_{1} / s_{2}=\square^{4}, j-1=4, j=5, e=(0,0,0,0,1,0,0)$.
- $s_{1}=e_{j} \square^{(+1)(k+1)}$
- $s_{2}=e_{j} \square^{(i+1)(k+2)}$

Reed Solomon

- Reed-Solomon code is $B C H$ code over F_{q} with $n=q-1$. Let \mathbb{D} be a primitive root of 1 and choose d : $1 \leq \mathrm{d}<\mathrm{n}$ with $g(x)=(x-\square)\left(x-\square^{2}\right) \ldots\left(x-\square^{d-1}\right)$.
- Since $g(\square)=g\left(\square^{2}\right)=\ldots=g\left(\square^{d-1}\right)=0$, BCH bound shows $d(C) \geq d$.
- Codewords are $g(x) f(x)$, $\operatorname{deg}(f(x)) \leq n-d$. There are q^{n-} ${ }^{d+1}$ such polynomials so q^{n-d+1} codewords.
- Since this meets the Singleton bound, the Reed Solomon code is also an MDS code.
- The Reed Solomon Code is an [n,n-d+1,d] linear code for these parameters

Reed Solomon example

- Example:
$-\mathrm{F}=\mathrm{GF}\left(2^{2}\right)=\left\{0,1, \mathrm{C}, \mathrm{D}^{2}\right\}$
$-\mathrm{n}=\mathrm{q}-1=3, \mathrm{l}=\mathrm{\square}$.
- Choose $d=2, g(x)=(x-\square)$.
$-G=$ पा 10
0 प 1
- Code consists of all 16 linear combinations of the rows of G.
- For CD's:
- $\mathrm{F}=\mathrm{GF}\left(2^{8}\right), \mathrm{n}=2^{8}-1=255, \mathrm{~d}=33$.
- 222 information bytes 33 check bytes.
- Codewords have $8 \times 255=2040$ bits.

Polynomials and RM codes

- $R(r, m)$ has parameters $\left[n=2^{m}, k=1+{ }_{m} C_{1}+\ldots+{ }_{m} C_{r} d=2^{m-r}\right]$, it consists of boolean functions whose polynomials are of degree $\leq m$.
- $R M(r, m)^{\square R}=R M(m-r-1, m)$.
- $R M(0, m)=\{0,1\}, R M(r+1, m+1)=R M(r+1, m) * R(r, m)$.
- $R M(n, 0)$ is a repetition code with rate $1 / n$.
- Min distance in $R(r, m)=2^{m-r}$.

$$
G(r+1, m) \quad G(r+1, m)
$$

- $G(r+1, m+1)=0 \quad G(r, m)$

$\mathrm{RM}(4,0)$ and $\mathrm{RM}(4,1)$

- $\mathrm{n}=2^{4}=16$.
- Constants
- $0000000000000000,1111111111111111$.
- Linear
- 101010101010 1010, 010101010101 0101,
- 000011110000 1111, 0000000011111111

RM(r,4) code example

1	1111111111111111
X_{4}	0000000011111111
x_{3}	0000111100001111
x_{2}	0011001100110011
x_{1}	0101010101010101
$\mathrm{X}_{3} \mathrm{X}_{4}$	0000000000001111
$\mathrm{x}_{2} \mathrm{x}_{4}$	0000000000110011
$\mathrm{x}_{1} \mathrm{X}_{4}$	0000000001010101
$\mathrm{x}_{2} \mathrm{x}_{3}$	0000001100000011
$\mathrm{x}_{1} \mathrm{x}_{3}$	0000101000000101
$\mathrm{x}_{1} \mathrm{x}_{2}$	0001000100010001
$\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	0000000000000011
$\mathrm{X}_{1} \mathrm{X}_{3} \mathrm{x}_{4}$	0000000000000101
$\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{4}$	0000000000010001
$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3}$	0000000100000001
$\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}$	0000000000000001

McEliece Cryptosystem

- Bob chooses G for a large [n, $k, d]$ linear code, we particularly want large d (for example, a [1024, 512, 101] Goppa code which can correct 50 errors in a 1024 bit block). Pick a kxk invertible matrix, S , over GF(2) and P, an $n \times n$ permutation matrix, and set $G_{1}=S G P . G_{1}$ is Bob's public key; Bob keeps P, G and S secret.
- To encrypt a message, \mathbf{x}, Alice picks an error vector, \mathbf{e}, and sends $\mathbf{y}=\mathrm{xG}_{1}+\mathbf{e}(\bmod 2)$.
- To decrypt, Bob, computes $y_{1}=y P^{-1}$ and $\mathbf{e}_{1}=e P^{-1}$, then $y_{1}=x S G+e_{1}$. Now Bob corrects \mathbf{y}_{1} using the error correcting code to get \mathbf{x}_{1}. Finally, Bob computes $x=x_{1} S^{-1}$.
- Error correction is similar to the "shortest vector problem" and is believed to be "hard." In the example cited, a [1024, 512, 101] Goppa code, finding 50 errors (without knowing the shortcut) requires trying ${ }_{1024} \mathrm{C}_{50}>10^{85}$ possibilities.
- A drawback is that the public key, G_{1}, is largest.

McEliece Cryptosystem example - 1

- Using the [7, 4] Hamming code, $\mathrm{G}=$

$$
\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

- m=1011.
- $\mathrm{S}=1001$

$$
P=\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

McEliece Cryptosystem example - 2

- $\mathrm{G}_{1}=$

0	0	1	1	0	1	0
1	0	1	0	0	1	1
1	1	0	0	0	1	0
1	0	1	0	1	0	0

- $\mathbf{e}=\left(\begin{array}{lllll}0 & 10000\end{array}\right)$
- $y_{1}=y^{-1}=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array} 001\right)$
- $x_{1}=(0010011)$
- $x_{0}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
- $\mathbf{x}=\mathrm{x}_{0} \mathrm{~S}^{-1}=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$

End

