Cryptanalysis

Lecture 2: The adversary joins the twentieth century

John Manferdelli jmanfer@microsoft.com JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

jlm20081004

Dramatis persona

<u>Users</u>

- Alice (party A)
- Bob (party B)
- Trent (trusted authority)
- Peggy and Victor (authentication participants)

Users Agents

- Cryptographic designer
- Personnel Security
- Security Guards
- Security Analysts

Adversaries

- Eve (passive eavesdropper)
- Mallory (active interceptor)
- Fred (forger)
- Daffy (disruptor)
- Mother Nature
- Users (Yes Brutus, the fault lies in us, not the stars)

Adversaries Agents

- Dopey (dim attacker)
- Einstein (smart attacker --- you)
- Rockefeller (rich attacker)
- Klaus (inside spy)

Adversaries and their discontents

Man in the Middle Adversary (Mallory)

Claude Shannon

Information Theory Motivation

- How much information is in a binary string?
- Game: I have a value between 0 and 2ⁿ-1 (inclusive), find it by asking the minimum number of yes/no questions.
 - Write the number as $[b_{n-1}b_{n-2}...b_0]_2$.
 - Questions: Is b_{n-1} 1?, Is b_{n-2} 1?, ..., Is b_0 1?
- So, what is the amount of information in a number between 0 and 2ⁿ-1?
 - Answer: n bits
 - The same question: Let X be a probability distribution taking on values between 0 and 2ⁿ-1 with equal probability. What is the information content of a observation?
 - There is a mathematical function that measures the information in an observation from a probability distribution. It's denoted H(X).
- $H(X) = \prod_{i} -p_{i} Ig(p_{i})$ JLM 20080915

What is the form of H(X)?

- If H is continuous and satisfies: -H(1/n, ..., 1/n) < H(1/(n+1), ..., 1/(n+1)) $-H(p_1, p_2, ..., p_j, ..., p_n) = H(p_1, p_2, ..., qp_j, (1-q)p_j, ..., p_n)$ $-H(p_1, p_2, ..., p_j, ..., p_n) = 1$ if $p_j = 1/n$ for all j then $H(p) = \prod_{i=1}^{n} -p_i Ig(p_i)$.
- $H(p_1, p_2, ..., p_j, ..., p_n)$ is maximized if $p_j = 1/n$ for all j

Information Theory

- The "definition" of H(X) has two desireable properties:
 - Doubling the storage (the bits your familiar with) doubles the information content
 - $H(1/2, 1/3, 1/6) = H(1/2, 1/2) + \frac{1}{2} H(2/3, 1/3)$
- It was originally developed to study how efficiently one can reliably transmit information over "noisy" channel.
- Applied by Shannon to Cryptography (BTSJ, 1949)
- Thus information learned about Y by observing X is
 I(Y,X)= H(Y)-H(Y|X).
- Used to estimate requirements for cryptanalysis of a cipher.

Sample key distributions

- Studying key search
 - Distribution A: 2 bit key each key equally likely
 - Distribution B: 4 bit key each key equally likely
 - Distribution C: n bit key each key equally likely
 - Distribution A': 2 bit key selected from distribution (1/2, 1/6, 1/6, 1/6)
 - Distribution B': 4 bit key selected from distribution (1/2, 1/30, 1/30, ..., 1/30)
 - Distribution C': n bit key selected from distribution $(1/2, \frac{1}{2} 1/(2^{n}-1), \dots, \frac{1}{2} 1/(2^{n}-1))$

H for the key distributions

- Distribution A: $H(X) = \frac{1}{4} \lg(4) + \frac{1}{4} \lg(4) + \frac{1}{4} \lg(4) + \frac{1}{4} \lg(4) = 2$ bits
- Distribution B: H(X)= 16 x (1/16 lg(16))= 4 bits
- Distribution C: $H(X) = 2^n x (1/2^n) Ig(2^n) = n$ bits
- Distribution A': $H(X) = \frac{1}{2} \lg(2) + 3 x(1/6 \lg(6)) = 1.79$ bits
- Distribution B': $H(X) = \frac{1}{2} \lg(2) + 15 x(1/30 \lg(30)) = 2.95$ bits
- Distribution C': $H(X) = \frac{1}{2} \lg(2) + \frac{1}{2} 2^{n-1} x(\frac{1}{2^{n-1}}) \lg(2^{n-1}) \approx \frac{n}{2} + 1$ bits

Some Theorems

- Bayes: P(X=x|Y=y) P(Y=y)= P(Y=y|X=x) P(X=x)= P(X=x, Y=y)
- X and Y are independent iff P(X=x, Y=y)= P(X=x)P(Y=y)
- H(X,Y) = H(Y) + H(X|Y)
- H(X,Y) [] H(X)+H(Y)
- $H(Y|X) \square H(Y)$ with equality iff X and Y are independent.
- If X is a random variable representing an experiment in selecting one of N items from a set, S, H(X) IIIg(N) with equality iff every selection is equally likely (Selecting a key has highest entropy off each key is equally likely).

Huffman Coding

the smallest integer greater than or equal to y.

Long term equivocation

- $H_E = \lim_{n \to \infty} \prod_{(x[1],...,x[n])} (1/n) Pr(X=(x[1],...,x[n]))$ Ig(Pr(X=(x[1],...,x[n])))
- For random stream of letters
 - $H_R = \prod_i (1/26) \lg(26) = 4.7004$
- For English
 - $H_E = 1.2-1.5$ (so English is about 75% redundant)
 - There are approximately T(n)= 2^{nH} n symbol messages that can be drawn from the meaningful English sample space.
- How many possible cipher-texts make sense?
 - $H(P^{n})+H(K) > H(C^{n})$
 - $nH_E + lg(|K|) > n lg(|\Box|)$
 - Ig(|K|)/(Ig(|□|)- H_E)>n
 - $R = 1 H_E / Ig(|\Box|)$

Unicity and random ciphers

Question: How many messages do I need to trial decode so that the expected number of false keys for which all m messages land in the meaningless subset is less than 1?Answer: The unicity point.

Nice application of Information Theory.

Theorem: Let H be the entropy of the source (say English) and let I be the alphabet. Let K be the set of (equiprobable) keys. Then u= lg(|K|)/(lg(|II)-H).

Unicity for random ciphers

Decoding with correct key

Decoding with incorrect key

Unicity distance for mono-alphabet

$$H_{CaeserKey} = H_{random} = Ig(26) = 4.7004$$

 $H_{English} \approx 1.2.$

- For Caeser, u ≈ lg(26)/(4.7-1.2) ≈ 4 symbols, for ciphertext only attack. For known plaintext/ciphertext, only 1 corresponding plain/cipher symbol is required for unique decode.
- For arbitrary substitution, u ≈ lg(26!)/(4.7-1.2) ≈ 25 symbols for ciphertext only attack. For corresponding plain/ciphertext attack, about 8-10 symbols are required.
- Both estimates are remarkably close to actual experience.

Information theoretic estimates to break mono-alphabet

Cipher	Type of Attack	Information Resources	Computational Resources
Caeser	Ciphertext only	U= 4.7/1.2=4 letters	26 computations
Caeser	Known plaintext	1 corresponding plain/cipher pair	1
Substitution	Ciphertext only	~30 letters	O(1)
Substitution	Known plaintext	~10 letters	O(1)

One Time Pad (OTP)

- The one time pad or Vernam cipher takes a plaintext consisting of symbols **p**= (p₀, p₁, ..., p_n) and a keystream **k**= (k₀, k₁, ..., k_n) where the symbols come from the alphabet Z_m and produces the ciphertext **c**= (c₀, c₁, ..., c_n) where c_i = (p_i + k_i) (mod m).
- Perfect security of the one time pad: If P(k_i=j)=1/m and is iid, 0<=j<m, then H(c|p)=H(p) so the scheme is secure.
- m=2 in the binary case and m=26 in the case of the roman alphabet.
- Stream ciphers replace the 'perfectly random' sequence k with a pseudo-random sequence k' (based on a much smaller input key k_s and a stream generator R).

One-time pad alphabetic encryption

Plaintext +Key (mod 26)= Ciphertext

Legend

А	В	C	D	Ε	F	G	н	I	J	K	L	М
00	01	02	03	04	05	06	07	80	09	10	11	12
N	0	Р	Q	R	S	т	U	v	W	х	Y	\mathbf{Z}
13	14	15	16	17	18	19	20	21	22	23	24	25

JLM 20080915

One-time pad alphabetic decryption

Ciphertext+26-Key (mod 26)= Plaintext

14 0	8 S	-	19 T	14 0	01 B	-	04 E	-		17 R	 _	-	Ciphertext
				s 18									Key
B 1	บ 20	L 11		W 22							Р 15	E 04	Plaintext

Legend

A	в	C	D	Ε	F	G	н	I	J	к	L	М
00	01	02	03	04	05	06	07	80	09	10	11	12
N	0	Р	Q	R	S	т	U	v	W	х	Y	\mathbf{Z}
13	14	15	16	17	18	19	20	21	22	23	24	25

JLM 20080915

Binary one-time pad

10101110011100000101110110110000

0010101001101010001010110010111

1010010000110110100100000100111

00101010011010110001010110010111

10101110011100000101110110110000

Plaintext Key Ciphertext

Key

Plaintext

The one time pad has perfect security

- E is perfect if H(X|Y)=H(X) where X is a plaintext distribution and Y is the ciphertext distribution with respect to a cipher E.
- To show a one time pad on a (binary) plaintext message of length L with ciphertext output a message of length L with keys taken from a set K consisting of 2^L keys each occurring with probability 2^{-L}, we need to show H(X|Y)=H(X).

Proof:

$$\begin{array}{l} \mathsf{H}(\mathsf{X}|\mathsf{Y}) = - \prod_{\mathsf{y} \text{ in } \mathsf{Y}} \mathsf{P}(\mathsf{Y}=\mathsf{y}) \; \mathsf{H}(\mathsf{X}|\mathsf{Y}=\mathsf{y})) = - \prod_{\mathsf{y} \text{ in } \mathsf{Y}} \mathsf{P}(\mathsf{Y}=\mathsf{y}) \; \prod_{\mathsf{x} \text{ in } \mathsf{X}} \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \; \mathsf{lg}(\mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y})). \\ \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \; \mathsf{P}(\mathsf{Y}=\mathsf{y}) = \; \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) \; \mathsf{and} \; \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) = \; \mathsf{Pr}(\mathsf{X}=\mathsf{x}, \mathsf{K}=\mathsf{x}+\mathsf{y}) = \; \mathsf{P}(\mathsf{X}=\mathsf{x})\mathsf{P}(\mathsf{K}=\mathsf{k}). \\ \mathsf{So} \; \mathsf{H}(\mathsf{X}|\mathsf{Y}) = \; - \prod_{\mathsf{y} \text{ in } \mathsf{Y}, \mathsf{x} \text{ in } \mathsf{X}} \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) \; \mathsf{Ig}(\mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) = \; \mathsf{Pr}(\mathsf{X}=\mathsf{x}, \mathsf{K}=\mathsf{x}+\mathsf{y}) = \; \mathsf{P}(\mathsf{X}=\mathsf{x})\mathsf{P}(\mathsf{K}=\mathsf{k}). \\ \mathsf{So} \; \mathsf{H}(\mathsf{X}|\mathsf{Y}) = \; - \prod_{\mathsf{y} \text{ in } \mathsf{Y}, \mathsf{x} \text{ in } \mathsf{X}} \; \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) \; \mathsf{Ig}(\mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) - \mathsf{P}(\mathsf{Y}=\mathsf{y})] \\ = \; - \prod_{\mathsf{y} \text{ in } \mathsf{Y}, \mathsf{x} \text{ in } \mathsf{X}} \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) \; \mathsf{Ig}(\mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y})) \; \mathsf{H}_{\mathsf{y} \text{ in } \mathsf{Y}, \mathsf{x} \text{ in } \mathsf{X}} \; \mathsf{P}(\mathsf{X}=\mathsf{x}, \mathsf{Y}=\mathsf{y}) \; \mathsf{Ig}(\mathsf{P}(\mathsf{Y}=\mathsf{x})) \\ = \; - \prod_{\mathsf{x} \text{ in } \mathsf{X}, \mathsf{y} \text{ in } \mathsf{Y}} \; \mathsf{P}(\mathsf{X}=\mathsf{x})\mathsf{P}(\mathsf{K}=\mathsf{x}+\mathsf{y})\mathsf{Ig}(\mathsf{P}(\mathsf{X}=\mathsf{x}) - \prod_{\mathsf{x} \text{ in } \mathsf{X}, \mathsf{y} \text{ in } \mathsf{Y}} \; \mathsf{P}(\mathsf{X}=\mathsf{x}) \; \mathsf{P}(\mathsf{Y}=\mathsf{x}+\mathsf{k})\mathsf{Ig}(\mathsf{P}(\mathsf{Y}=\mathsf{x}+\mathsf{k})) \\ + \prod_{\mathsf{y} \text{ in } \mathsf{Y}, \mathsf{x} \text{ in } \mathsf{X}} \; \mathsf{P}(\mathsf{X}=\mathsf{x}) \; \mathsf{P}(\mathsf{Y}=\mathsf{Y})\mathsf{Ig}(\mathsf{P}(\mathsf{Y}=\mathsf{y})) \\ = \; \mathsf{H}(\mathsf{X}) \end{split}$$

JLM 20080915

Mixing cryptographic elements to produce strong cipher

- Diffusion transposition
 - Using group theory, the action of a transposition [] on $a_1 a_2 \dots a_k$ could be written as $a_{I(1)} a_{I(2)} \dots a_{I(k)}$.
- Confusion substitution
 - The action of a substitution [] on $a_1 a_2 \dots a_k$ can be written as [] (a_1) [] $(a_2) \dots$ [] (a_k) .
- Transpositions and substitutions may depend on keys. Keyed permutations may be written as I_k(x). A block cipher on b bits is nothing more than a keyed permutation on 2^b symbols.
- Iterative Ciphers key dependant staged iteration of combination of basic elements is very effective way to construct cipher. (DES, AES)

Linear Feedback Shift Registers

JLM 20080915

Binary one-time pad

10101110011100000101110110110000

0010101001101010001010110010111

1010010000110110100100000100111

00101010011010110001010110010111

10101110011100000101110110110000

Plaintext Key Ciphertext

Key

Plaintext

Linear Feedback Shift Registers (LFSR)

- State at time t: $S(t) = \langle z_0, z_1, ..., z_{m-1} \rangle = \langle s_t, s_{t+1}, ..., s_{t+m-1} \rangle$.
- Recurrence is $s_{j+1} = c_1 s_j + ... + c_m s_{j-m-1}$,
- At time t, LFSR outputs $z_0 = s_t$, shifts, and replaces z_{m-1} with $c_1 z_{m-1} + \ldots + c_m z_0$.

JLM 20080915

LFSR as linear recurrence

- G(x) is power series representing the LFSR, coefficients are outputs.
- $G(x) = a_0 + a_1 x + a_2 x^2 + ... + a_k x^k + ...$
- Let $c(x) = c_1 x + ... + c_m x^m$.
- Because of the recurrence, $a_{t+m} = \prod_{q < i < m+1} c_i a_{t+m-i}$,
 - $G(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1} + x^m (c_1 a_{m-1} + \dots + c_m a_0) + x^{m+1} (c_1 a_m + \dots + c_m a_1) + x^{m+2} (c_1 a_{m+1} + \dots + c_m a_2) + \dots$
 - After some playing around, this can be reduced to an equation of the form G(x)= K/(1-c(x)), where K is a constant that depends on initial state only. Let f(x)= 1-c(x) be the called the connection polynomial. [1-c(x)=1+c(x) (mod 2), of course].
 - If the period of the sequence is p, $G(x) = (a_0 + a_1 x + ... + a_{p-1} x^{p-1}) + x^p(a_0 + a_1 x + ... + a_{p-1} x^{p-1}) + ... = (a_0 + a_1 x + ... + a_{p-1} x^{p-1})(1 + x^p + x^{2p} + ...)$
- We get $(a_0 + a_1 x + ... + a_{p-1} x^{p-1})/(1-x^p) = K/(f(x))$ so $f(x) | 1-x^p$ and f(x) is the equation for a root of 1. If f(x) is a primitive root of 1 p will be as large as possible, namely, $p=2^m-1$.

LFSR performance metrics

- The output sequence of and LFSR is periodic for all initial states. The maximal period is 2^m-1.
- A non-singular LFSR with primitive feedback polynomial has maximal period of all non-zero initial states
- A length m LFSR is determined by 2m consecutive outputs
- Linear complexity of sequence $z_0, z_1, ..., z_n$ is the length of the smallest LFSR that generates it
- Berlekamp-Massey: O(n²) algorithm for determining linear complexity

Linear Complexity, simple O(n³) algorithm

 There is a non-singular LFSR of length m which generates s₀, s₁, ..., s_k... iff there are c₁, ..., c_m such that:

$$S_{m+1} = C_1 S_m + C_2 S_{m-1} + \dots + C_m S_1$$

 $S_{m+2} = C_1 S_{m+1} + C_2 S_m + \dots + C_m S_2$

$$S_{2m} = C_1 S_{2m-1} + C_2 S_{2m-2} + \dots + C_m S_{m+1}$$

- To solve for the c_i's just use Gaussian Elimination (see math summary) which is O(n³).
- But there is a more efficient way!

Berlekamp-Massey

• Given output of LFSR, s_0 , s_1 , ..., s_{N-1} , calculate length, L, of smallest LFSR that produces $\langle s_i \rangle$. Algorithm below is O(n²). In the algorithm below, the connection polynomial is: $c(x) = c_0 + c_1 x + ... + c_L x^L$ and $c_0=1$ always.

```
c(x)=1; L= 0; m= -1; b(x)=1;
for(n=0; n<N; n++)</pre>
    d= s_n + \prod_{i=1}^{L-1} c_i s_{n-i} // d is the "discrepency"
    if(d!=0) {
        t(x) = c(x);
        c(x) = c(x) + b(x) x^{n-m};
        if(L<=n/2)) {
            L=n+1-L;
            m = n;
            b(x) = t(x);
             }
JLM 20080915
```

Berlekamp-Massey example

• s₀, s₁, ..., s_{N-1} = 001101110, N=9

n	s _n	t(x)	c(x)	L	m	b(x)	d
-	-	-	1	0	-1	1	-
0	0	-	1	0	-1	1	0
1	0	-	1	0	-1	1	0
2	1	1	1+x ³	3	2	1	1
3	1	1+x ³	1+x+x ³	3	2	1	1
4	0	1+x+x ³	$1+x+x^2+x^3$	3	2	1	1
5	1	$1+x+x^2+x^3$	1+x+x ²	3	2	1	1
6	1	$1+x+x^2+x^3$	1+x+x ²	3	2	1	0
7	1	1+x+x ²	1+x+x ² +x ⁵	5	7	1+x+x ²	1
8	0	1+x+x ² +x ⁵	1+x ³ +x ⁵	5	7	1+x+x ²	1

Linear complexity and linear profile

- "Best" (i.e.-highest) linear complexity for S_N= s₀, s₁, ..., s_{N-1} is L=N/2.
- Complexity profile for S is the sequence of linear complexities $L_1, L_2, ..., L_{N-1}$ for $S_1, S_1, ..., S_N$.
- For a "strong" shift register, we want not just large L but large L_k for subsequences (thus hug the line L= N/2).
- $E(L(< s_0, s_1, ..., s_{N-1}>)) = N/2 + (4 + (\prod_{i=0}^{N-1} s_i) \pmod{2})/18 2^{-N}(N/3 + 2/9)$

Example: Breaking a LFSR

• $Z_{n+1} = C_1 Z_n + ... + C_m Z_{n-m-1}$. m=8. • Plain: 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 • Cipher: 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 • LFSR Output: 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1

	C ₈	C ₇	С ₆	C ₅	C ₄	С ₃	C ₂	C ₁	
i 👘	Z_0	Z ₁	Z_2	Z_3	Z_4	Z_5	Z_6	Z ₇	S _{i+8}
0	0	1	1	0	0	1	1	1	1
1	1	1	0	0	1	1	1	1	1
2	1	0	0	1	1	1	1	1	0
3	0	0	1	1	1	1	1	0	1
4	0	1	1	1	1	1	0	1	1
5	1	1	1	1	1	0	1	1	1
6	1	1	1	1	0	1	1	1	1
7	1	1	1	0	1	1	1	1	0

• GE gives solution (c₁, c₂,..., c₈): 10110011

Geffe Generator

- Three LFSRs of maximal periods (2^a-1), (2^b-1), (2^c-1) respectively.
- Output filtered by $f(x_a, x_b, x_c) = x_a x_b + x_b x_c + x_c$
- Period: (2^a-1)(2^b-1)(2^c-1)
- Linear complexity: ab+bc+c
- Simple non-linear filter.

Geffe Generator

• Note that x_c and $f(x_a, x_b, x_c)$ agree 75% of the time.

Correlation attack: breaking Geffe

- Guess $S_c(0)$ and check the agreement of $S_c(t)_{out}$ and y(t).
 - If guess is right, they will agree much more often than half the time
 - If guess is wrong, they will agree about half the time
 - In this way, we obtain $S_c(0)$.
- Now guess $S_b(0)$.
 - Compare y(t) and $x_a S_b(t)_{out}+S_b(t)_{out} S_c(t)_{out}+S_c(t)_{out}$.
 - If guess is right they will agree much more often than half the time.
 - If not they will agree about half the time.
 - In this way, we obtain $S_b(0)$.
- Now guess $S_a(0)$.
 - y(t) and $S_a(t) S_b(t)_{out} + S_b(t)_{out} S_c(t)_{out} + S_c(t)_{out}$ will be the same as y(t) for the correct guess.
- Complexity of attack (on average) is about 2^{a-1}+ 2^{b-1}+ 2^{c-1} rather than about 2^{a+b+c-1} which is what we'd hoped for.

Shrinking Generator

- Two LFSRs of maximal periods (2^s-1), (2^a-1) respectively. (a,s)=1.
- Output is output of A clocked by S.
- Period: (2^{s-1}-1)(2^a-1).
- Linear Complexity: a2^{s-2}<c<a2^{s-1}
- SEAL cipher from Coppersmith.

Observations

- Matching Alphabets as monotonic process.
- Statistics and Hill climbing.
- Polynomials over finite fields are easier to solve because there are no round-off errors.
- Polynomials over finite fields are harder to solve because there is no intermediate value theorem.
- We'll stop here with classical ciphers although we could go much further by examining some other systems like Lorenz, Purple, M-209 and SIGABA.

Applying Shannon's Design Principles

- Two basic building blocks for any cryptographic system
- Diffusion
 - statistical structure of the plain text is dissipated into long-range statistics of the ciphertext
 - each plaintext digit affects many ciphertext digits
 - each ciphertext digit is affected by many plaintext digits
 - achieved using permutation (P)
- Confusion
 - make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
 - this is achieved by the complex subkey generation algorithm and non-linear substitutions

Rise of the Machines

The "Machine" Ciphers

- Simple Manual Wheels
 - Wheatstone
 - Jefferson
- Rotor
 - Enigma
 - Heburn
 - SIGABA
 - TYPEX
- Stepping switches
 - Purple
- Mechanical Lug and cage
 - M209

Jefferson Cipher

I'd vote for Jefferson. The French have another name for this cipher. They liked Jefferson too but not that much.

Enigma

JLM 20080915

Enigma Cryptographic Elements (Army Version)

- Three moveable rotors
 - Select rotors and order
 - Set initial positions
- Moveable ring on rotor
 Determine rotor 'turnover'
- Plugboard (Stecker)
 - Interchanges pairs of letters
- Reversing drum (Umkehrwalze)
 - Static reflector
 - See next page

Three Rotors on axis

Diagrammatic Enigma Structure

Diagram courtesy of Carl Ellison

Enigma Data

Rotors

Input	ABCDEFGHIJKLMNOPQRSTUVWXYZ Ring Turnover	-
Rotor I Rotor II Rotor III Rotor IV Rotor V Rotor VI Rotor VII	EKMFLGDQVZNTOWYHXUSPAIBRCJ AJDKSIRUXBLHWTMCQGZNPYFVOE BDFHJLCPRTXVZNYEIWGAKMUSQO ESOVPZJAYQUIRHXLNFTGKDCMWB VZBRGITYUPSDNHLXAWMJQOFECK JPGVOUMFYQBENHZRDKASXLICTW NZJHGRCXMYSWBOUFAIVLPEKQDTRotor I Rotor V Rotors VI	R F W K A A/N
Reflector B	(AY) (BR) (CU) (DH) (EQ) (FS) (GL) (IP) (JX) (KN) (MO) (TZ) (VW)	
Reflector C	(AF) (BV) (CP) (DJ) (EI) (GO) (HY) (KR) (LZ) (MX) (NW) (TQ) (SU)	

Group Theory for Rotors

- Writing cryptographic processes as group operation can be very useful.
 For example, if R denotes the mapping of a "rotor" and C=(1,2,...,26), the mapping of the rotor "turned" one position is CRC⁻¹.
- A prescription for solving ciphers is to represent the cipher in terms of the basic operations and then solve the component transformations. That is how we will break Enigma.
- For most ciphers, the components are substitution and transposition; some of which are "keyed".
- For Enigma, you should know the following:
 - Theorem: If $D = (a_{11} \ a_{12} \ \dots \ a_{1i}) \ (a_{11} \ \dots \ a_{1j}) \ \dots \ (a_{11} \ \dots \ a_{1k})$ then $DD \ D^{-1} = (Da_{11} \ Da_{12} \ \dots \ Da_{1i}) \ (Da_{11} \ \dots \ Da_{1j}) \ \dots \ (Da_{11} \ \dots \ Da_{1k})$.
 - When permutations are written as products of cycles, it is very easy to calculate their order. It is the LCM of the length of the cycles.

Military Enigma

Encryption Equation

- c= (p) $P^{i}NP^{-i} P^{j}MP^{-j} P^{k}LP^{-k} U P^{k}L^{-1}P^{-k} P^{j}M^{-1}P^{-j} P^{i}N^{-1}P^{-i}$
 - K: Keyboard
 - P=(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
 - N: First Rotor
 - M: Second Rotor
 - L: Third Rotor
 - U: Reflector. Note: $U=U^{-1}$.
 - i,j,k: Number of rotations of first, second and third rotors respectively.
- Later military models added plugboard (S) and additional rotor (not included). The equation with Plugboard is:
- $c=(p)S P^{i}NP^{-i}P^{j}MP^{-j}P^{k}LP^{-k}U P^{k}L^{-1}P^{-k}P^{j}M^{-1}P^{-j}P^{i}N^{-1}P^{-i}S^{-1}$

Military Enigma Key Length

- Key Length (rotor order, rotor positions, plugboard)
 - 60 rotor orders. lg(60)= 5.9 bits.
 - 26*26*26 = 17576 initial rotor positions. lg(17576) = 14.1 bits of key
 - 10 exchanging steckers were specified yielding C(26,2)
 C(24,2)...C(8,2)/10! = 150,738,274,937,250.
 Ig(150,738,274,937,250)= 47.1 bits as used
 - Bits of key: 5.9 + 14.1 + 47.1 = 67.1 bits
 - Note: plugboard triples entropy of key!
- Rotor Wiring State
 - lg(26!) = 88.4 bits/rotor.
- Total Key including rotor wiring:
 - 67.1 bits + 3 x 88.4 bits = 312.3 bits

Method of Batons

- Applies to Enigma
 - Without plugboard
 - With fast rotor ordering known and only the fast rotor moving
 - With a "crib"
- Let N be the fast rotor and Z the combined effect of the other apparatus, then N⁻¹ZN(p)=c.
- Since ZN(p)=N(c), we know the wiring of N and a crib, we can play the crib against each of the 26 possible positions of N for the plaintext and the ciphertext. In the correct position, there will be no "scritches" or contradictions in repeated letters.
- This method was used to "analyze" the early Enigma variants used in the Spanish Civil War and is the reason the Germans added the plugboard. Countermeasure: Move fast rotor next to reflector.

Changes German use of Enigma

- 1. Plugboard added– 6/30
- 2. Key setting method 1/38
- 3. Rotors IV and V 12/38
- 4. More plugs 1/39
- 5. End of message key pair encipherment 5/40

German Key Management before 5/40

- The Germans delivered a global list of keys. This was big advantage in terms of simplicity but introduced a problem.
- Each daily key consisted of a line specifying:
 - (date, rotor order, ring settings, plug settings -10)
- Daily keys were distributed on paper monthly by courier.
- If everyone used the keys for messages, the first letter (and in general the kth letter) in every message would form a mono-alphabet which is easily broken by techniques we've seen.
- To address this weakness, the Germans introduced ephemeral keys as follows:
 - 1. Operator chose a 3-letter sequence ("indicator").
 - 2. Operator set rotor positions to indicator and encrypted text *twice*.
 - 3. Machine rotor positions were reset to indicator position and the message encrypted..

The basic theorems: prelude to the Polish attack

• <u>Theorem 1</u>: If S= $(a_1, a_2, ..., a_{n1})$ $(b_1, b_2, ..., b_{n2})$... and T is another permutation, then the effect of T⁻¹ST, operating from the left, is T⁻¹ST = $(a_1T, a_2T, ..., a_{n1}T)$ $(b_1T, b_2T, ..., b_{n2}T)$...

• <u>Theorem 2</u>: Let S be a permutation of even degree. S can be decomposed into pairs of cycles of equal length if and only if it can be written as the product of two transpositions.

Plan for the Polish attack

• Define

 $E(i,j,k) = P^{i}NP^{-i} P^{j}MP^{-j} P^{k}LP^{-k} U P^{k}L^{-1}P^{-k} P^{j}M^{-1}P^{-j} P^{i}N^{-1}P^{-i}$

Let A= E(1,j,k), B= E(2,j,k), C= E(3,j,k), D= E(4,j,k), E= E(5,j,k), F= E(6,j,k) and suppose the six letter indicator for a message is ktz svf. Then,

 $\Box A=k$, $\Box D=s$; $\Box B=t$, $\Box E=v$; and $\Box C=z$, $\Box F=f$, for unknown letters $\Box \Box \Box \Box \Box$. Since, $A=A^{-1}$, etc., we obtain t(AD)=s, v(BE)= z(CF).

- The attack proceeds as follows.
 - Use message indicators to construct (AD), (BE) and (CF).
 - Use the knowledge of (AD), (BE) and (CF) to find A, B, C, D, E, F.
- Set
 - Set $Q = MLRL^{-1}M^{-1}$, $U = NP^{-1}QPN^{-1}$, $V = NP^{-2}QP^2N^{-1}$, $W = NP^{-3}QP^3N^{-1}$, X = NP^{-4}QP^4N^{-1}, Y = NP^{-5}QP^5N^{-1}, Z = NP^{-6}QP^6N^{-1}, H=NPN⁻¹.

Plan for the Polish attack - continued

- Note that
 - $U=P^{-1}S^{-1}ASP^{1}$
 - V=P⁻²S⁻¹ASP²
 - W=P⁻³S⁻¹ASP³
 - X=P⁻⁴S⁻¹ASP⁴
 - Y=P⁻⁵S⁻¹ASP⁵
 - Z=P⁻⁶S⁻¹ASP⁶
- Now suppose we have obtained S somehow (say, by stealing it). Then we can calculate:
 - $UV = NP^{-1}(QP^{-1}QP)P^{1}N^{-1}, VW = NP^{-2}(QP^{-1}QP)P^{2}N^{-1}.$
 - $WX = NP^{-3}(QP^{-1}QP)P^{3}N^{-1}, XY = NP^{-4}(QP^{-1}QP)P^{4}N^{-1},$
 - $YZ = NP^{-5}(QP^{-1}QP)P^{5}N^{-1}.$
 - $(VW) = H^{-1}(UV)H, (WX) = H^{-1}(VW)H,$
 - $(XY) = H^{-1}(WX)H, (YZ) = H^{-1}(XY)H.$
- Now we can calculate H and thus N.

Polish (Rejewski) Attack

- Rejewski exploited weakness in German keying procedure to determine rotor wiring
 - Rejewski had ciphertext for several months but no German Enigma.
 - Rejewski had Stecker settings for 2 months (from a German spy via the French in 12/32), leaving 265.2 bits of key (the wirings) to be found. He did.
- Poles determined the daily keys
 - Rejewski catalogued the characteristics of rotor settings to detect daily settings. He did this with two connected Enigmas offset by 3 positions (the "cyclotometer").
 - In 9/38, when the "message key" was no longer selected from standard setting (the Enigma operator to choose a different encipherment start called the indicator), Rejewski's characteristics stopped working.
 - Zygalski developed a new characteristic and computation device ("Zygalski sheets") to catalog characteristics which appeared when 1st/4th, 2nd/5th, 3rd/6th ciphertext letters in encrypted message keys ("Females") were the same.

Calculate (AD), (BE), (CF)

 $C = (P)S P^{i}NP^{-i} P^{j}MP^{-j} P^{k}LP^{-k} U P^{k}L^{-1}P^{-k} P^{j}M^{-1}P^{-j} P^{i}N^{-1}P^{-1} S^{-1}$

- Using the message indicators and:
 - AD= $SP^1NP^{-1}QP^1N^{-1}P^3NP^{-4}QP^4N^{-1}P^{-4}S^{-1}$ (c₁)AD= c₄.
 - BE= $SP^2NP^{-2}QP^2N^{-1}P^3NP^{-5}QP^5N^{-1}P^{-5}S^{-1}$. (c₂)BE= c₅.
 - $CF = SP^{3}NP^{-3}QP^{3}N^{-1}P^{3}NP^{-6}QP^{6}N^{-1}P^{-6}S^{-1}$. $(c_{3})CF = c_{6}$.
- We can find AD, BE and CF after about 80 messages.

Calculate A, B, C, D, E, F

- Suppose
 - AD= (dvpfkxgzyo)(eijmunqlht)(bc)(rw)(a)(s)
 - BE= (blfqveoum)(hjpswizrn)(axt)(cgy)(d)(k)
 - CF= (abviktjgfcqny)(duzrehlxwpsmo)
- Cillies
 - syx scw
 - Arises from "aaa" encipherments (look for popular indicators)
 - (as) in A, (ay) in B, (ax) in C, (as) in D, (ac) in E, (aw) in F
 - With Theorem 2, this allows us to calculate A,B,C,D,E,F.
 - **Example (C):** (abviktjgfcqny)(duzrehlxwpsmo)
 - **a**bviktjgfcqny
 - **x**lherzudomspw
 - C= (ax)(bl)(vh)(ie)(kr)(tz)(ju)

(gd)(fo)(cm)(qs)(np)(yw)

Calculate A, B, C, D, E, F

A= (as)(bw)(cr)(dt)(vh)(pl)(fq)(kn)(xu)(gm)(zj)(yi)(oe)

B= (dk)(ay)(xg)(tc)(bj)(lh)(fn)(qr)(vz)(ei)(ow)(us)(mp)

C = (ax)(bl)(vh)(ie)(kr)(tz)(ju)(gd)(fo)(cm)(qs)(np)(yw)

D= (as)(bw)(cr)(ft)(kh)(xl)(gq)(zn)(yu)(om)(dj)(vi)(pe)

E= (dh)(xy)(tg)(ac)(qn)(vr)(ez)(oi)(uw)(ms)(bp)(lj)(fh)

F= (co)(qm)(ns)(xp)(aw)(bx)(vl)(ih)(ke)(tr)(jz)(yu)(fd)

U, V, W, X, Y, Z

- A= SPUP⁻¹S⁻¹ so U= P⁻¹S⁻¹ASP¹. This and similar equations yield:
- U= $P^{-1}S^{-1}ASP^{1}$
- V= $P^{-2}S^{-1}BSP^2$
- W= $P^{-3}S^{-1}CSP^{3}$
- $X = P^{-4}S^{-1}DSP^4$
- $Y = P^{-5}S^{-1}ESP^{5}$
- $Z = P^{-6}S^{-1}FSP^{6}$
- S was obtained through espionage.
- S= (ap)(bl)(cz)(fh)(jk)(qu)
- Putting this all together, we get U, V, W, X, Y, Z.

U, V, W, X, Y, Z as cycles

U=(ax)(bh)(ck)(dr)(ej)(fw)(gi)(lp)(ms)(nz)(oh)(qt)(uy)

V=(ar)(bv)(co)(dh)(fl)(gk)(iz)(jp)(mn)(qy)(su)(tw)(xe)

W=(as)(bz)(cp)(dg)(eo)(fw)(gj)(hl)(iy)(kr)(mu)(nt)(vx)

X=(ap)(bf)(cu)(dv)(ei)(gr)(ho)(jn)(ky)(lx)(mz)(qf)(tw)

Calculate (UV), (VW), (WX), (XY), (YZ)

UV= (aepftybsnikod)(rhcgzmuvqwljy)

- VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)
- VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)
- WX= (uzftjryehxdsp)(caqvloikgnwbm)
- H= (ayuricxqmgovskedzplfwtnjhb)
- N: abcdefghijklmnopqrstuvwxyz azfpotjyexnsiwkrhdmvclugbq
- N= (a)(bzqhy)(cftvlsmieoknwu)(dpr)(gjx)

JLM 20080915

Turing Bombe - Introduction

- Assume we know all rotor wirings and the plaintext for some received cipher-text. We do not know plugboard, rotor order, ring and indicator.
- We need a crib characteristic that is plugboard invariant.
 Position 123456789012345678901234

 Plain Text OBERKOMMANDODERWEHRMACHT
 CipherText ZMGERFEWMLKMTAWXTSWVUINZ
 Observe the loop A[9]→M[7]→E[14]→A.
- If M_i is the effect of the machine at position i and S is the Stecker, for the above we have "E" = ("M")S M₇S and ("E")M₇M₉M₁₄="E". This return could happen by accident so we use another (E[4]→R[15]→W[8]→M[7]→E) to confirm as C("E")M₄M₁₅M₈M₇("E").

Turing Bombe – the menu

Want short enough text for no "turnovers".
 Position 123456789012345678901234
 Plain Text ABSTIMMSPRUQYY
 CipherText ISOAOGTPCOGNYZ

Turing Bombe -1

- Each cycle can be turned into a ring of Enigma machines.
- In a ring of Enigmas, *all* the S cancel each other out!
- The key search problem is now reduced from 67.5 to 20 bits !!!!
- At 10 msec/test, 20 bits takes 3 hours.
- Turing wanted ~4 loops to cut down on "false alarms."
- About 20 letters of "crib" of know plaintext were needed to fine enough loops.
- Machines which did this testing were called "Bombe's".
- Built by British Tabulating Machine Company.

Courtesy of Carl Ellison

Test Register in Bombes

In the diagram below, each circle is a 26-pin connector and each line a 26-wire cable. The connector itself is labeled with a letter from the outside alphabet while its pins are labeled with letters from the inside alphabet. Voltage on X(b) means that **X** maps to **b** through the plugboard.

Welchman's Improvement

- Gordon Welchman realized that if X(b) then B(x), because the plugboard was a self-inverse (S == S⁻¹).
- His diagonal board wired X(a) to A(x), D(q) to Q(d), etc.
- With that board, the cryptanalyst didn't need loops -- just enough text
- This cut the size of the required crib in half.

Courtesy of Carl Ellison

Sigaba Wiring Diagram

 Control and index rotors determine stepping of cipher rotors

Purple

Switched permutations Not rotors!!!

- S,L,M, and R are switches
 - Each step, one of the perms switches to a different permutation

Purple

- Input letter permuted by plugboard, then...
- Vowels and consonants sent thru different switches
- The "6-20 split"

Purple

- Switch S
 - Steps once for each letter typed
 - Permutes vowels
- Switches L,M,R
 - One of these steps for each letter typed
 - L,M,R stepping determined by S

End

JLM 20080915