Cryptanalysis

Lecture 2: The adversary joins the twentieth century

John Manferdelli
imanfer@microsoft.com
JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Dramatis persona

Users

- Alice (party A)
- Bob (party B)
- Trent (trusted authority)
- Peggy and Victor (authentication participants)

Users Agents

- Cryptographic designer
- Personnel Security
- Security Guards
- Security Analysts

Adversaries

- Eve (passive eavesdropper)
- Mallory (active interceptor)
- Fred (forger)
- Daffy (disruptor)
- Mother Nature
- Users (Yes Brutus, the fault lies in us, not the stars)

Adversaries Agents

- Dopey (dim attacker)
- Einstein (smart attacker --- you)
- Rockefeller (rich attacker)
- Klaus (inside spy)

Adversaries and their discontents

Wiretap Adversary (Eve)

Man in the Middle Adversary (Mallory)

Claude Shannon

Information Theory Motivation

- How much information is in a binary string?
- Game: I have a value between 0 and $2^{n}-1$ (inclusive), find it by asking the minimum number of yes/no questions.
- Write the number as $\left[b_{n-1} b_{n-2} \ldots b_{0}\right]_{2}$.
- Questions: Is $b_{n-1} 1$?, Is $b_{n-2} 1$?, ... Is $b_{0} 1$?
- So, what is the amount of information in a number between 0 and 2^{n-1} ?
- Answer: n bits
- The same question: Let X be a probability distribution taking on values between 0 and $2^{n}-1$ with equal probability. What is the information content of a observation?
- There is a mathematical function that measures the information in an observation from a probability distribution. It's denoted $H(X)$.
- $H(X)=\square_{i}-p_{i} \lg \left(p_{i}\right)$

What is the form of $\mathrm{H}(\mathrm{X})$?

- If H is continuous and satisfies:
$-H(1 / n, \ldots, 1 / n)<H(1 /(n+1), \ldots, 1 /(n+1))$
$-H\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, q_{j},(1-q) p_{j}, \ldots, p_{n}\right)$
$-H\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots, p_{n}\right)=1$ if $p_{j}=1 / n$ for all j
then $H(p)=\square_{i=1}^{n}-p_{i} \lg \left(p_{i}\right)$.
- $H\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots, p_{n}\right)$ is maximized if $p_{j}=1 / n$ for all j

Information Theory

- The "definition" of $\mathrm{H}(\mathrm{X})$ has two desireable properties:
- Doubling the storage (the bits your familiar with) doubles the information content
- $H(1 / 2,1 / 3,1 / 6)=H(1 / 2,1 / 2)+1 / 2 H(2 / 3,1 / 3)$
- It was originally developed to study how efficiently one can reliably transmit information over "noisy" channel.
- Applied by Shannon to Cryptography (BTSJ, 1949)
- Thus information learned about Y by observing X is

$$
I(Y, X)=H(Y)-H(Y \mid X)
$$

- Used to estimate requirements for cryptanalysis of a cipher.

Sample key distributions

- Studying key search
- Distribution A: 2 bit key each key equally likely
- Distribution B: 4 bit key each key equally likely
- Distribution $\mathrm{C}: \mathrm{n}$ bit key each key equally likely
- Distribution A': 2 bit key selected from distribution (1/2, 1/6, 1/6, 1/6)
- Distribution B': 4 bit key selected from distribution (1/2, 1/30, 1/30, ..., 1/30)
- Distribution C': n bit key selected from distribution (1/2, 1/2 1/(2n1), .., $\left.1 / 21 /\left(2^{n}-1\right)\right)$

H for the key distributions

- Distribution $A: H(X)=1 / 4 \lg (4)+1 / 4 \lg (4)+1 / 4 \lg (4)+1 / 4 \lg (4)=2$ bits
- Distribution $\mathrm{B}: \mathrm{H}(\mathrm{X})=16 \times(1 / 16 \lg (16))=4$ bits
- Distribution C: $H(X)=2^{n} \times\left(1 / 2^{n}\right) \lg \left(2^{n}\right)=n$ bits
- Distribution $A^{\prime}: H(X)=1 / 2 \lg (2)+3 \times(1 / 6 \lg (6))=1.79$ bits
- Distribution $B^{\prime}: H(X)=1 / 2 \lg (2)+15 \times(1 / 30 \lg (30))=2.95$ bits
- Distribution $C^{\prime}: H(X)=1 / 2 \lg (2)+1 / 22^{n}-1 \times\left(1 /\left(2^{n}-1\right) \lg \left(2^{n}-1\right)\right) \approx n / 2+1$ bits

Some Theorems

- Bayes: $P(X=x \mid Y=y) P(Y=y)=P(Y=y \mid X=x) P(X=x)=P(X=x, Y=y)$
- X and Y are independent iff $P(X=x, Y=y)=P(X=x) P(Y=y)$
- $H(X, Y)=H(Y)+H(X \mid Y)$
- $H(X, Y)] H(X)+H(Y)$
- $H(Y \mid X)] H(Y)$ with equality iff X and Y are independent.
- If X is a random variable representing an experiment in selecting one of N items from a set, $S, H(X) \square \llbracket g(N)$ with equality iff every selection is equally likely (Selecting a key has highest entropy off each key is equally likely).

Huffman Coding

- Uniquely readable
- Average length, L, satisfies
- H(X) LID H(X)+1

Morse Code

A	N
в	o
c	P
D	Q
E	R
F	s
G	T
H	u
1	v
J	w
к	x
L	Y
m	z

Long term equivocation

- $\left.H_{E}=\operatorname{Lim}_{n \rightarrow \infty}\right]_{(x[1], \ldots, x[n])}(1 / n) \operatorname{Pr}(X=(x[1], \ldots, x[n]))$ $\lg (\operatorname{Pr}(X=(x[1], \ldots, x[n])))$
- For random stream of letters
- $H_{R}=\square_{i}(1 / 26) \lg (26)=4.7004$
- For English
- $H_{E}=1.2-1.5$ (so English is about 75\% redundant)
- There are approximately $T(n)=2{ }^{\mathrm{nH}} n$ symbol messages that can be drawn from the meaningful English sample space.
- How many possible cipher-texts make sense?
- $\mathrm{H}\left(\mathrm{P}^{\mathrm{n}}\right)+\mathrm{H}(\mathrm{K})>\mathrm{H}\left(\mathrm{C}^{\mathrm{n}}\right)$
- $\mathrm{nH}_{\mathrm{E}}+\lg (|\mathrm{K}|)>\mathrm{n} \mathrm{Ig}(\mid$ 미 $)$
- $\lg (|\mathrm{K}|) /\left(\lg (\mid\right.$ 미 $\left.)-\mathrm{H}_{\mathrm{E}}\right)>n$
- $R=1-H_{E} / \lg \left(\left|{ }^{[\mid}\right|\right)$

Unicity and random ciphers

Question: How many messages do I need to trial decode so that the expected number of false keys for which all m messages land in the meaningless subset is less than 1?
Answer: The unicity point.

Nice application of Information Theory.

Theorem: Let H be the entropy of the source (say English) and let \square be the alphabet. Let K be the set of (equiprobable) keys. Then $u=\lg (|\mathrm{K}|) /(\lg (\mid[\mid]-\mathrm{H})$.

Unicity for random ciphers

Decoding with correct key
Decoding with incorrect key

Unicity distance for mono-alphabet

$H_{\text {Caeserkey }}=H_{\text {random }}=\lg (26)=4.7004$
$\mathrm{H}_{\text {English }} \approx 1.2$.

- For Caeser, u $\approx \lg (26) /(4.7-1.2) \approx 4$ symbols, for ciphertext only attack. For known plaintext/ciphertext, only 1 corresponding plain/cipher symbol is required for unique decode.
- For arbitrary substitution, $\mathrm{u} \approx \lg (26!) /(4.7-1.2) \approx 25$ symbols for ciphertext only attack. For corresponding plain/ciphertext attack, about 8-10 symbols are required.
- Both estimates are remarkably close to actual experience.

Information theoretic estimates to break mono-alphabet

Cipher	Type of Attack	Information Resources	Computational Resources
Caeser	Ciphertext only	$\mathrm{U}=4.7 / 1.2=4$ letters	26 computations
Caeser	Known plaintext	1 corresponding plain/cipher pair	1
Substitution	Ciphertext only	~ 30 letters	$\mathrm{O}(1)$
Substitution	Known plaintext	~ 10 letters	$\mathrm{O}(1)$

One Time Pad (OTP)

- The one time pad or Vernam cipher takes a plaintext consisting of symbols $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ and a keystream $\mathbf{k}=$ ($\mathrm{k}_{0}, \mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}}$) where the symbols come from the alphabet Z_{m} and produces the ciphertext $\mathbf{c}=\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)$ where $\mathrm{c}_{\mathrm{i}}=$ $\left(p_{i}+k_{i}\right)(\bmod m)$.
- Perfect security of the one time pad: If $P\left(k_{i}=j\right)=1 / m$ and is iid, $0<=\mathrm{j}<\mathrm{m}$, then $\mathrm{H}(\mathbf{c} \mid \mathbf{p})=\mathrm{H}(\mathbf{p})$ so the scheme is secure.
- $m=2$ in the binary case and $m=26$ in the case of the roman alphabet.
- Stream ciphers replace the 'perfectly random' sequence \mathbf{k} with a pseudo-random sequence \mathbf{k}^{\prime} (based on a much smaller input key $\mathbf{k}_{\mathbf{s}}$ and a stream generator R).

One-time pad alphabetic encryption

Plaintext + Key $(\bmod 26)=$ Ciphertext

	$\begin{array}{r} \mathbf{U} \\ 20 \end{array}$	$\begin{array}{r} \mathrm{L} \\ 11 \end{array}$	$\begin{array}{r} \mathrm{L} \\ 11 \end{array}$		$\begin{array}{r} I \\ 08 \end{array}$	$\begin{array}{r} N \\ 13 \end{array}$		$\begin{array}{r} \mathrm{L} \\ 11 \end{array}$	$\begin{gathered} E \\ 04 \end{gathered}$	$\begin{array}{r} I \\ 08 \end{array}$		$\begin{gathered} A \\ 00 \end{gathered}$					Plaintext
	$\begin{array}{r} 0 \\ 14 \end{array}$	$\begin{array}{r} W \\ 22 \end{array}$	$\begin{array}{r} \text { I } \\ 08 \end{array}$	$\begin{array}{r} \mathrm{S} \\ 18 \end{array}$	$\begin{array}{r} \mathbf{T} \\ 19 \end{array}$		E	T 19		$\begin{array}{r} \text { M } \\ 12 \end{array}$		$\begin{gathered} F \\ 05 \end{gathered}$					Key
14	8	$\begin{array}{r} 07 \\ \mathbf{H} \end{array}$	19	14	01	20	14	04	12	20	22	05 F	17		15		Ciphertext

Legend

```
A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12
    N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25
```


One-time pad alphabetic decryption

Ciphertext+26-Key $(\bmod 26)=$ Plaintext

14	8	07	19	14	01	20	14	04	12	20	22	05	17	05	15	15
O	S	H	T	0	B	U	0	E	M	U	W	F	R	F	P	P
N	O	W	I	S	T	H	E	T	I	M	E	F	O	R	A	L
13	14	22	08	18	19	07	04	19	08	12	04	05	14	17	00	11

Ciphertext

Key
B U L L W I N K L E I S A D O P
$\begin{array}{llllllllllllllll}1 & 20 & 11 & 11 & 22 & 08 & 13 & 10 & 11 & 04 & 08 & 18 & 00 & 03 & 14 & 15 \\ 04\end{array}$

Legend

```
    A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12
    N O P Q R S T U V W X Y Z
```


Binary one-time pad

Plaintext \oplus Key = Ciphertext
Ciphertext \oplus Key = Plaintext

10101110011100000101110110110000	Plaintext
00101010011010110001010110010111	
10100100000110110100100000100111	Ciphertext
00101010011010110001010110010111	Key
10101110011100000101110110110000	Plaintext

The one time pad has perfect security

- E is perfect if $H(X \mid Y)=H(X)$ where X is a plaintext distribution and Y is the ciphertext distribution with respect to a cipher E .
- To show a one time pad on a (binary) plaintext message of length L with ciphertext output a message of length L with keys taken from a set K consisting of 2^{L} keys each occurring with probability $2^{-\mathrm{L}}$, we need to show $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=\mathrm{H}(\mathrm{X})$.

Proof:

$$
\begin{aligned}
& \left.H(X \mid Y)=-\square_{y \text { in } Y} P(Y=y) H(X \mid Y=y)\right)=-\square_{y \text { in } Y} P(Y=y) \square_{x \text { in } X} P(X=x \mid Y=y) \lg (P(X=x \mid Y=y)) . \\
& P(X=x \mid Y=y) P(Y=y)=P(X=x, Y=y) \text { and } P(X=x, Y=y)=P r(X=x, K=x+y)=P(X=x) P(K=k) . \\
& \text { So } H(X \mid Y)=-\square_{y \text { in } Y, x \text { in } x} P(X=x, Y=y)[\lg (P(X=x, Y=y)-P(Y=y)] \\
& = \\
& =-\square_{y \text { in } Y, x \text { in } x} P(X=x, Y=y) \lg (P(X=x, Y=y))+\square_{y \text { in } Y, x \text { in } x} P(X=x, Y=y) \lg (P(Y=y)) \\
& = \\
& -\square_{x \text { in } X, y \text { in } Y} P(X=x) P(K=x+y) \lg \left(P(X=x)-\square_{x \text { in } X, y \text { in } Y} P(X=x) P(Y=x+k) \lg (P(Y=x+k)\right. \\
& \\
& +\square_{y \text { in } Y, x \text { in } x} P(X=x) P(Y=Y) \lg (P(Y=y)) \\
& =
\end{aligned}
$$

Mixing cryptographic elements to produce strong cipher

- Diffusion - transposition
- Using group theory, the action of a transposition \square on $a_{1} a_{2} \ldots a_{k}$ could be written as $a_{\square(1)} a_{\mathrm{a}_{(2)}} \ldots \mathrm{a}_{\mathrm{\square}(\mathrm{k})}$.
- Confusion - substitution
- The action of a substitution \square on $a_{1} a_{2} \ldots a_{k}$ can be written as $\square\left(a_{1}\right) \square\left(a_{2}\right) \ldots$ $\square\left(a_{k}\right)$.
- Transpositions and substitutions may depend on keys. Keyed permutations may be written as $\square_{k}(x)$. A block cipher on b bits is nothing more than a keyed permutation on $2^{\text {b }}$ symbols.
- Iterative Ciphers - key dependant staged iteration of combination of basic elements is very effective way to construct cipher. (DES, AES)

Linear Feedback Shift Registers

Binary one-time pad

Plaintext \oplus Key = Ciphertext
Ciphertext \oplus Key = Plaintext

10101110011100000101110110110000	Plaintext
00101010011010110001010110010111	
10100100000110110100100000100111	Key
00101010011010110001010110010111	
10101110011100000101110110110000	

Linear Feedback Shift Registers (LFSR)

- State at time $\mathrm{t}: \mathrm{S}(\mathrm{t})=\left\langle\mathrm{Z}_{0}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}-1}\right\rangle=\left\langle\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}+1}, \ldots, \mathrm{~S}_{\mathrm{t}+\mathrm{m}-1}\right\rangle$.
- Recurrence is $\mathrm{s}_{\mathrm{j}+1}=\mathrm{c}_{1} \mathrm{~s}_{\mathrm{j}}+\ldots+\mathrm{c}_{\mathrm{m}} \mathrm{s}_{\mathrm{j}-\mathrm{m}-1}$,
- At time t, LFSR outputs $z_{0}=s_{t}$, shifts, and replaces Z_{m-1} with $\mathrm{C}_{1} \mathrm{z}_{\mathrm{m}-1}+\ldots+\mathrm{C}_{\mathrm{m}} \mathrm{z}_{0}$.

LFSR as linear recurrence

- $G(x)$ is power series representing the LFSR, coefficients are outputs.
- $\quad G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}+\ldots$
- Let $c(x)=c_{1} x+\ldots+c_{m} x^{m}$.
- Because of the recurrence, $a_{t+m}=\Pi \prod_{\ll i<m+1} c_{i} a_{t+m-1}$,
$-\quad G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m-1} x^{m-1}+x^{m}\left(c_{1} a_{m-1}+\ldots+c_{m} a_{0}\right)+x^{m+1}\left(c_{1} a_{m}+\right.$ $\left.\ldots+c_{m} a_{1}\right)+x^{m+2}\left(c_{1} a_{m+1}+\ldots+c_{m} a_{2}\right)+\ldots$
- After some playing around, this can be reduced to an equation of the form $G(x)=$ $K /(1-c(x))$, where K is a constant that depends on initial state only. Let $f(x)=1-c(x)$ be the called the connection polynomial. [1-c $(x)=1+c(x)(\bmod 2)$, of course].
$-\quad$ If the period of the sequence is $p, G(x)=\left(a_{0}+a_{1} x+\ldots+a_{p-1} x^{p-1}\right)+x^{p}\left(a_{0}+a_{1} x+\right.$

$$
\left.\ldots+a_{p-1} x^{p-1}\right)+\ldots=\left(a_{0}+a_{1} x+\ldots+a_{p-1} x^{p-1}\right)\left(1+x^{p}+x^{2 p}+\ldots\right)
$$

We get $\left(a_{0}+a_{1} x+\ldots+a_{p-1} x^{p-1}\right) /\left(1-x^{p}\right)=K /(f(x))$ so $f(x) \mid 1-x^{p}$ and $f(x)$ is the equation for a root of 1 . If $f(x)$ is a primitive root of $1 p$ will be as large as possible, namely, $\mathrm{p}=2^{\mathrm{m}}-1$.

LFSR performance metrics

- The output sequence of and LFSR is periodic for all initial states. The maximal period is $2^{\mathrm{m}}-1$.
- A non-singular LFSR with primitive feedback polynomial has maximal period of all non-zero initial states
- A length m LFSR is determined by 2 m consecutive outputs
- Linear complexity of sequence $\mathrm{z}_{0}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ is the length of the smallest LFSR that generates it
- Berlekamp-Massey: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm for determining linear complexity

Linear Complexity, simple $O\left(n^{3}\right)$ algorithm

- There is a non-singular LFSR of length m which generates $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}} \ldots$ iff there are $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}$ such that:

$$
\begin{aligned}
& s_{m+1}=c_{1} s_{m}+c_{2} s_{m-1}+\ldots+c_{m} s_{1} \\
& s_{m+2}=c_{1} s_{m+1}+c_{2} s_{m}+\ldots+c_{m} s_{2} \\
& \ldots \\
& s_{2 m}=c_{1} s_{2 m-1}+c_{2} s_{2 m-2}+\ldots+c_{m} s_{m+1}
\end{aligned}
$$

- To solve for the c, 's just use Gaussian Elimination (see math summary) which is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
- But there is a more efficient way!

Berlekamp-Massey

- Given output of LFSR, $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}-1}$, calculate length, L , of smallest LFSR that produces $\left\langle\mathrm{s}_{\mathrm{i}}\right\rangle$. Algorithm below is $\mathrm{O}\left(\mathrm{n}^{2}\right)$. In the algorithm below, the connection polynomial is: $c(x)=c_{0}+c_{1} x+\ldots+c_{\llcorner } x^{L}$ and $\mathrm{c}_{0}=1$ always.

```
\(c(x)=1 ; ~ L=~ 0 ; ~ m=~-1 ; ~ b(x)=1 ; ~\)
for ( \(\mathrm{n}=0\); \(\mathrm{n}<\mathrm{N}\); \(\mathrm{n}++\) )
    \(d=s_{n}+\square_{i=1}^{L-1} c_{i} s_{n-i} \quad / / d\) is the "discrepency"
    if(d!=0) \{
        \(t(x)=c(x)\);
        \(c(x)=c(x)+b(x) x^{n-m} ;\)
        if(L<=n/2)) \{
            \(\mathrm{L}=\mathrm{n}+1-\mathrm{L}\);
            \(\mathrm{m}=\mathrm{n}\);
            \(b(x)=t(x)\);
            \}
    \}
\}
```


Berlekamp-Massey example

- $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}-1}=001101110, \mathrm{~N}=9$

| \mathbf{n} | $\mathbf{s}_{\mathbf{n}}$ | $\mathbf{t}(\mathbf{x})$ | $\mathbf{c}(\mathbf{x})$ | \mathbf{L} | \mathbf{m} | $\mathbf{b}(\mathbf{x})$ | \mathbf{d} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| - | - | - | 1 | 0 | -1 | 1 | - |
| 0 | 0 | - | 1 | 0 | -1 | 1 | 0 |
| 1 | 0 | - | 1 | 0 | -1 | 1 | 0 |
| 2 | 1 | 1 | $1+x^{3}$ | 3 | 2 | 1 | 1 |
| 3 | 1 | $1+x^{3}$ | $1+x+x^{3}$ | 3 | 2 | 1 | 1 |
| 4 | 0 | $1+x+x^{3}$ | $1+x+x^{2}+x^{3}$ | 3 | 2 | 1 | 1 |
| 5 | 1 | $1+x+x^{2}+x^{3}$ | $1+x+x^{2}$ | 3 | 2 | 1 | 1 |
| 6 | 1 | $1+x+x^{2}+x^{3}$ | $1+x+x^{2}$ | 3 | 2 | 1 | 0 |
| 7 | 1 | $1+x+x^{2}$ | $1+x+x^{2}+x^{5}$ | 5 | 7 | $1+x+x^{2}$ | 1 |
| 8 | 0 | $1+x+x^{2}+x^{5}$ | $1+x^{3}+x^{5}$ | 5 | 7 | $1+x+x^{2}$ | 1 |

Linear complexity and linear profile

- "Best" (i.e.-highest) linear complexity for $\mathrm{S}_{\mathrm{N}}=\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~S}_{\mathrm{N}-1}$ is $\mathrm{L}=\mathrm{N} / 2$.
- Complexity profile for S is the sequence of linear complexities $L_{1}, L_{2}, \ldots, L_{N-1}$ for $S_{1}, S_{1}, \ldots, S_{N}$.
- For a "strong" shift register, we want not just large L but large L_{k} for subsequences (thus hug the line $L=N / 2$).
- $E\left(L\left(<s_{0}, s_{1}, \ldots, s_{N-1}>\right)\right)=N / 2+\left(4+\left(\square_{i=0}^{N-1} s_{i}\right)(\bmod 2)\right) / 18-2^{-N}(N / 3+2 / 9)$

Example: Breaking a LFSR

- $z_{n+1}=c_{1} z_{n}+\ldots+c_{m} z_{n-m-1} . m=8$.
- Plain: 100111101011110010111
- Cipher: 1111001010101100010
- LFSR Output: 0110001111110111100101

	C_{8}	C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	
i	Z_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}	S_{i+8}
0	0	1	1	0	0	1	1	1	1
1	1	1	0	0	1	1	1	1	1
2	1	0	0	1	1	1	1	1	0
3	0	0	1	1	1	1	1	0	1
4	0	1	1	1	1	1	0	1	1
5	1	1	1	1	1	0	1	1	1
6	1	1	1	1	0	1	1	1	1
7	1	1	1	0	1	1	1	1	0

- GE gives solution $\left(c_{1}, c_{2}, \ldots, c_{8}\right): 10110011$

Geffe Generator

 ($2^{\mathrm{c}}-1$) respectively.
Output filtered by $f\left(x_{a}, x_{b}, x_{c}\right)=x_{a} x_{b}+x_{b} x_{c}+x_{c}$

- Period: $\left(2^{\mathrm{a}}-1\right)\left(2^{\mathrm{b}}-1\right)\left(2^{\mathrm{c}}-1\right)$
- Linear complexity: $a b+b c+c$
- Simple non-linear filter.

Geffe Generator

- Note that x_{c} and $f\left(x_{a}, x_{b}, x_{c}\right)$ agree 75% of the time.

Correlation attack: breaking Geffe

- Guess $S_{c}(0)$ and check the agreement of $S_{c}(t)_{\text {out }}$ and $y(t)$.
- If guess is right, they will agree much more often than half the time
- If guess is wrong, they will agree about half the time
- In this way, we obtain $\mathrm{S}_{\mathrm{c}}(0)$.
- Now guess $\mathrm{S}_{\mathrm{b}}(0)$.
- Compare $y(t)$ and $x_{a} S_{b}(t)_{\text {out }}+S_{b}(t)_{\text {out }} S_{c}(t)_{\text {out }}+S_{c}(t)_{\text {out }}$.
- If guess is right they will agree much more often than half the time.
- If not they will agree about half the time.
- In this way, we obtain $S_{b}(0)$.
- Now guess $\mathrm{S}_{\mathrm{a}}(0)$.
$-\mathrm{y}(\mathrm{t})$ and $\mathrm{S}_{\mathrm{a}}(\mathrm{t}) \mathrm{S}_{\mathrm{b}}(\mathrm{t})_{\text {out }}+\mathrm{S}_{\mathrm{b}}(\mathrm{t})_{\text {out }} \mathrm{S}_{\mathrm{c}}(\mathrm{t})_{\text {out }}+\mathrm{S}_{\mathrm{c}}(\mathrm{t})_{\text {out }}$ will be the same as $\mathrm{y}(\mathrm{t})$ for the correct guess.
- Complexity of attack (on average) is about $2^{\mathrm{a}-1}+2^{\mathrm{b}-1}+2^{\mathrm{c}-1}$ rather than about $2^{a+b+c-1}$ which is what we'd hoped for.

Shrinking Generator

- Two LFSRs of maximal periods ($2^{\mathrm{s}}-1$), ($2^{\mathrm{a}}-1$) respectively. $(a, s)=1$.
- Output is output of A clocked by S.
- Period: $\left(2^{\mathrm{s}-1}-1\right)\left(2^{\mathrm{a}}-1\right)$.
- Linear Complexity: $2^{s-2}<c<a 2^{s-1}$
- SEAL cipher from Coppersmith.

Observations

- Matching Alphabets as monotonic process.
- Statistics and Hill climbing.
- Polynomials over finite fields are easier to solve because there are no round-off errors.
- Polynomials over finite fields are harder to solve because there is no intermediate value theorem.
- We'll stop here with classical ciphers although we could go much further by examining some other systems like Lorenz, Purple, M-209 and SIGABA.

Applying Shannon's Design Principles

- Two basic building blocks for any cryptographic system
- Diffusion
- statistical structure of the plain text is dissipated into long-range statistics of the ciphertext
- each plaintext digit affects many ciphertext digits
- each ciphertext digit is affected by many plaintext digits
- achieved using permutation (P)
- Confusion
- make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
- this is achieved by the complex subkey generation algorithm and non-linear substitutions

Rise of the Machines

The "Machine" Ciphers

- Simple Manual Wheels
- Wheatstone
- Jefferson
- Rotor
- Enigma
- Heburn
- SIGABA
- TYPEX
- Stepping switches
- Purple
- Mechanical Lug and cage
- M209

Jefferson Cipher

I'd vote for Jefferson. The French have another name for this cipher. They liked Jefferson too but not that much.

Enigma

Enigma Cryptographic Elements (Army Version)

- Three moveable rotors
- Select rotors and order
- Set initial positions
- Moveable ring on rotor
- Determine rotor 'turnover'

- Plugboard (Stecker)
- Interchanges pairs of letters

Three Rotors on axis

- Reversing drum (Umkehrwalze)
- Static reflector
- See next page

Diagrammatic Enigma Structure

Enigma Data

Rotors

Input	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Rotor I	EKMFLGDQVZNTOWYHXUSPAIBRCJ
Rotor II	AJDKSIRUXBLHWTMCQGZNPYFVOE
Rotor III	BDFHJLCPRTXVZNYEIWGAKMUSQO
Rotor IV	ESOVPZJAYQUIRHXLNFTGKDCMWB
Rotor V	VZBRGITYUPSDNHLXAWMJQOFECK
Rotor VI	JPGVOUMFYQBENHZRDKASXLICTW
Rotor VII	NZJHGRCXMYSWBOUFAIVLPEKQDT

Ring Turnover

Reflector B	(AY)	(BR)	(CU)	(DH)	(EQ)	(FS)	(GL)	(IP)
	(JX)	(KN)	(MO)	(TZ)	(VW)			
Reflector C	(AF)	(BV)	(CP)	(DJ)	(EI)	(GO)	(HY)	(KR)
	(LZ)	(MX)	(NW)	(TQ)	(SU)			

Group Theory for Rotors

- Writing cryptographic processes as group operation can be very useful. For example, if R denotes the mapping of a "rotor" and $C=(1,2, \ldots, 26)$, the mapping of the rotor "turned" one position is CRC^{-1}.
- A prescription for solving ciphers is to represent the cipher in terms of the basic operations and then solve the component transformations. That is how we will break Enigma.
- For most ciphers, the components are substitution and transposition; some of which are "keyed".
- For Enigma, you should know the following:

- When permutations are written as products of cycles, it is very easy to calculate their order. It is the LCM of the length of the cycles.

Military Enigma

Encryption Equation

- K: Keyboard
- P=(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
- N: First Rotor
- M: Second Rotor
- L: Third Rotor
- U: Reflector. Note: U=U-1.
- i,j,k: Number of rotations of first, second and third rotors respectively.
- Later military models added plugboard (S) and additional rotor (not included). The equation with Plugboard is:

Military Enigma Key Length

- Key Length (rotor order, rotor positions, plugboard)
- 60 rotor orders. $\lg (60)=5.9$ bits.
- 26*26*26 = 17576 initial rotor positions. $\lg (17576)=14.1$ bits of key
- 10 exchanging steckers were specified yielding C(26,2) $C(24,2) \ldots C(8,2) / 10!=150,738,274,937,250$. $\lg (150,738,274,937,250)=47.1$ bits as used
- Bits of key: $5.9+14.1+47.1=67.1$ bits
- Note: plugboard triples entropy of key!
- Rotor Wiring State
- $\lg (26!)=88.4$ bits/rotor.
- Total Key including rotor wiring:
-67.1 bits $+3 \times 88.4$ bits $=312.3$ bits

Method of Batons

- Applies to Enigma
- Without plugboard
- With fast rotor ordering known and only the fast rotor moving
- With a "crib"
- Let N be the fast rotor and Z the combined effect of the other apparatus, then $\mathrm{N}^{-1} \mathrm{ZN}(\mathrm{p})=\mathrm{c}$.
- Since $Z N(p)=N(c)$, we know the wiring of N and a crib, we can play the crib against each of the 26 possible positions of N for the plaintext and the ciphertext. In the correct position, there will be no "scritches" or contradictions in repeated letters.
- This method was used to "analyze" the early Enigma variants used in the Spanish Civil War and is the reason the Germans added the plugboard. Countermeasure: Move fast rotor next to reflector.

Changes German use of Enigma

1. Plugboard added- $6 / 30$
2. Key setting method $-1 / 38$
3. Rotors IV and V-12/38
4. More plugs - $1 / 39$
5. End of message key pair encipherment - 5/40

German Key Management before 5/40

- The Germans delivered a global list of keys. This was big advantage in terms of simplicity but introduced a problem.
- Each daily key consisted of a line specifying:
- (date, rotor order, ring settings, plug settings -10) Daily keys were distributed on paper monthly by courier.
- If everyone used the keys for messages, the first letter (and in general the kth letter) in every message would form a mono-alphabet which is easily broken by techniques we've seen.
- To address this weakness, the Germans introduced ephemeral keys as follows:

1. Operator chose a 3-letter sequence ("indicator").
2. Operator set rotor positions to indicator and encrypted text twice.
3. Machine rotor positions were reset to indicator position and the message encrypted..

The basic theorems: prelude to the Polish attack

- Theorem 1: If $\mathrm{S}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n} 1}\right)\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n} 2}\right) \ldots$ and T is another permutation, then the effect of $\mathrm{T}^{-1} \mathrm{ST}$, operating from the left, is $\mathrm{T}^{-1} \mathrm{ST}=\left(\mathrm{a}_{1} \mathrm{~T}, \mathrm{a}_{2} \mathrm{~T}, \ldots, \mathrm{a}_{\mathrm{n} 1} \mathrm{~T}\right)$ $\left(b_{1} T, b_{2} T, \ldots, b_{n 2} T\right) \ldots$
- Theorem 2: Let S be a permutation of even degree. S can be decomposed into pairs of cycles of equal length if and only if it can be written as the product of two transpositions.

Plan for the Polish attack

Define
$E(i, j, k)=P^{i} N P^{-i} P^{j} M P^{-j} P^{k} L P^{-k} U P^{k} L^{-1} P^{-k} P^{j} M^{-1} P^{-j} P^{i} N^{-1} P^{-i}$
Let $A=E(1, j, k), B=E(2, j, k), C=E(3, j, k), D=E(4, j, k), E=E(5, j, k), F=$ $E(6, j, k)$ and suppose the six letter indicator for a message is $k t z ~ s v f$. Then,

Since, $A=A^{-1}$, etc., we obtain $t(A D)=s, v(B E)=z(C F)$.

The attack proceeds as follows.

- Use message indicators to construct (AD), (BE) and (CF).
- Use the knowledge of (AD), (BE) and (CF) to find A, B, C, D, E, F. Set
- \quad Set $\mathrm{Q}=\mathrm{MLRL}^{-1} \mathrm{M}^{-1}, \mathrm{U}=\mathrm{NP}^{-1} \mathrm{QPN}^{-1}, \mathrm{~V}=\mathrm{NP}^{-2} \mathrm{QP}^{2} \mathrm{~N}^{-1}, \mathrm{~W}=\mathrm{NP}^{-3} \mathrm{QP}^{3} \mathrm{~N}^{-1}$, $X=N P^{-4} Q^{4} N^{-1}, Y=N P^{-5} Q^{5} N^{-1}, Z=N P^{-6} Q^{6} N^{-1}, H=N P N^{-1}$.

Plan for the Polish attack - continued

- Note that

$$
\begin{array}{ll}
- & \mathrm{U}=\mathrm{P}^{-1} \mathrm{~S}^{-1} A S P^{1} \\
- & \mathrm{V}=\mathrm{P}^{-2} \mathrm{~S}^{-1} A S P^{2} \\
- & \mathrm{W}=\mathrm{P}^{-3} \mathrm{~S}^{-1} A S P^{3} \\
- & \mathrm{X}=\mathrm{P}^{-4} \mathrm{~S}^{-1} A S P^{4} \\
- & \mathrm{Y}=\mathrm{P}^{-5} \mathrm{~S}^{-1} \mathrm{SP}^{5} \\
- & \mathrm{Z}=\mathrm{P}^{-6} \mathrm{~S}^{-1} A S P^{6}
\end{array}
$$

- Now suppose we have obtained S somehow (say, by stealing it). Then we can calculate:

```
\(-\quad U V=N P^{-1}\left(Q^{-1} Q P\right) P^{1} N^{-1}, V W=N P^{-2}\left(Q^{-1} Q P\right) P^{2} N^{-1}\).
\(-\quad W X=N P^{-3}\left(Q P^{-1} Q P\right) P^{3} N^{-1}, X Y=N P^{-4}\left(Q P^{-1} Q P\right) P^{4} N^{-1}\),
- \(\quad Y Z=N^{-5}\left(Q P^{-1} Q P\right) P^{5} N^{-1}\).
- \(\quad(V W)=H^{-1}(U V) H,(W X)=H^{-1}(V W) H\),
- \(\quad(X Y)=H^{-1}(W X) H,(Y Z)=H^{-1}(X Y) H\).
```

Now we can calculate H and thus N .

Polish (Rejewski) Attack

- Rejewski exploited weakness in German keying procedure to determine rotor wiring
- Rejewski had ciphertext for several months but no German Enigma.
- Rejewski had Stecker settings for 2 months (from a German spy via the French in 12/32), leaving 265.2 bits of key (the wirings) to be found. He did.
- Poles determined the daily keys
- Rejewski catalogued the characteristics of rotor settings to detect daily settings. He did this with two connected Enigmas offset by 3 positions (the "cyclotometer").
- In 9/38, when the "message key" was no longer selected from standard setting (the Enigma operator to choose a different encipherment start called the indicator), Rejewski's characteristics stopped working.
- Zygalski developed a new characteristic and computation device ("Zygalski sheets") to catalog characteristics which appeared when $1^{\text {stt }} / 4^{\text {th }}$, $2^{\text {nd }} / 5^{\text {th }}, 3^{\text {rd }} / 6^{\text {th }}$ ciphertext letters in encrypted message keys ("Females") were the same.

Calculate (AD), (BE), (CF)

$c=(p) S P^{i} N P^{-i} P^{j} M P^{-j} P^{k} L P^{-k} U P^{k} L^{-1} P^{-k} P^{j} M^{-1} P^{-j} P^{i} N^{-1} P^{-I} S^{-1}$

- Using the message indicators and:
- $A D=S P^{1} N^{-1} Q^{1} N^{-1} P^{3} N^{-4} Q^{4} N^{-1} P^{-4} S^{-1}$. ($\left.C_{1}\right) A D=C_{4}$.
- $\quad B E=S P^{2} N P^{-2} Q^{2} N^{-1} P^{3} N P^{-5} Q^{5} N^{-1} P^{-5} S^{-1}$. ($\left.C_{2}\right) B E=C_{5}$.
- $\mathrm{CF}=\mathrm{SP}^{3} \mathrm{NP}^{-3} \mathrm{QP}^{3} \mathrm{~N}^{-1} \mathrm{P}^{3} \mathrm{NP}^{-6} \mathrm{QP}^{6} \mathrm{~N}^{-1} \mathrm{P}^{-6} \mathrm{~S}^{-1}$. $\left(\mathrm{C}_{3}\right) \mathrm{CF}=\mathrm{C}_{6}$.
- We can find AD, BE and CF after about 80 messages.

Calculate A, B, C, D, E, F

- Suppose

```
- \(\quad A D=(d v p f k x g z y o)(e i j m u n q l h t)(b c)(r w)(a)(s)\)
- \(\quad B E=(b l f q v e o u m)(h j p s w i z r n)(a x t)(c g y)(d)(k)\)
- CF= (abviktjgfcqny)(duzrehlxwpsmo)
```

Cillies

- syx scw
- Arises from "aaa" encipherments (look for popular indicators)
- (as) in A, (ay) in B, (ax) in C, (as) in D, (ac) in E, (aw) in F
- With Theorem 2, this allows us to calculate A,B,C,D,E,F.
- Example (C): (abviktjgfcqny)(duzrehlxwpsmo)
- abviktjgfcqny
- xlherzudomspw
- C= (ax)(bl)(vh)(ie)(kr)(tz)(ju) (gd)(fo)(cm)(qs)(np)(yw)

Calculate A, B, C, D, E, F

```
A= (as)(bw)(cr)(dt)(vh)(pl)(fq)(kn)(xu)(gm)(zj)(yi)(oe)
B= (dk)(ay)(xg)(tc)(bj)(lh)(fn)(qr)(vz)(ei)(ow)(us)(mp)
C= (ax)(bl)(vh)(ie)(kr)(tz)(ju)(gd)(fo)(cm)(qs)(np)(yw)
D= (as)(bw)(cr)(ft)(kh)(xl)(gq)(zn)(yu)(om)(dj)(vi)(pe)
E= (dh)(xy)(tg)(ac)(qn)(vr)(ez)(oi)(uw)(ms)(bp)(lj)(fh)
F=(co)(qm)(ns)(xp)(aw)(bx)(vl)(ih)(ke)(tr)(jz)(yu)(fd)
```


U, V, W, X, Y, Z

- $A=S P U P^{-1} S^{-1}$ so $U=P^{-1} S^{-1} A S P^{1}$. This and similar equations yield:
- $\mathrm{U}=\mathrm{P}^{-1} \mathrm{~S}^{-1} \mathrm{ASP}^{1}$
- $V=P^{-2} S^{-1} B S P^{2}$
- $W=P^{-3} S^{-1} C S P^{3}$
- $X=P^{-4} S^{-1} D^{-1} P^{4}$
- $Y=P^{-5} S^{-1} E S P^{5}$
- $Z=P^{-6} S^{-1} F S P^{6}$
- $\quad \mathrm{S}$ was obtained through espionage.
- $\quad S=(a p)(b l)(c z)(f h)(j k)(q u)$
- Putting this all together, we get $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$.

$\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ as cycles

$$
\begin{aligned}
& U=(\mathrm{ax})(\mathrm{bh})(\mathrm{ck})(\mathrm{dr})(\mathrm{ej})(\mathrm{fw})(\mathrm{gi})(\mathrm{lp})(\mathrm{ms})(\mathrm{nz})(\mathrm{oh})(\mathrm{qt})(\mathrm{uy}) \\
& \mathrm{V}=(\mathrm{ar})(\mathrm{bv})(\mathrm{co})(\mathrm{dh})(\mathrm{fl})(\mathrm{gk})(\mathrm{iz})(\mathrm{jp})(\mathrm{mn})(\mathrm{qy})(\mathrm{su})(\mathrm{tw})(\mathrm{xe}) \\
& \mathrm{W}=(\mathrm{as})(\mathrm{bz})(\mathrm{cp})(\mathrm{dg})(\mathrm{eo})(\mathrm{fw})(\mathrm{gj})(\mathrm{hl})(\mathrm{iy})(\mathrm{kr})(\mathrm{mu})(\mathrm{nt})(\mathrm{vx}) \\
& \mathrm{X}=(\mathrm{ap})(\mathrm{bf})(\mathrm{cu})(\mathrm{dv})(\mathrm{ei})(\mathrm{gr})(\mathrm{ho})(\mathrm{jn})(\mathrm{ky})(\mathrm{lx})(\mathrm{mz})(\mathrm{qf})(\mathrm{tw})
\end{aligned}
$$

Calculate (UV), (VW), (WX), (XY), (YZ)

UV= (aepftybsnikod)(rhcgzmuvqwljy)
VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)
VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)
WX= (uzftjryehxdsp)(caqvloikgnwbm)
H= (ayuricxqmgovskedzplfwtnjhb)

N: abcdefghijklmnopqrstuvwxyz azfpotjyexnsiwkrhdmvclugbq

N= (a)(bzqhy)(cftvlsmieoknwu)(dpr)(gjx)

Turing Bombe - Introduction

- Assume we know all rotor wirings and the plaintext for some received cipher-text. We do not know plugboard, rotor order, ring and indicator.
- We need a crib characteristic that is plugboard invariant.

$$
\begin{array}{ll}
\text { Position } & 123456789012345678901234 \\
\text { Plain Text } & \text { OBERKOMMANDODERWEHRMACHT } \\
\text { CipherText ZMGERFEWMLKMTAWXTSWVUINZ }
\end{array}
$$

Observe the loop $A[9] \rightarrow M[7] \rightarrow E[14] \rightarrow A$.

- If M_{i} is the effect of the machine at position i and S is the Stecker, for the above we have " E " = (" M ") $S M_{7} S$ and (" E ") $M_{7} M_{9} M_{14}=" E$ ".
This return could happen by accident so we use another $(E[4] \rightarrow R[15] \rightarrow W[8] \rightarrow M[7] \rightarrow E)$ to confirm as $C(" E ") M_{4} M_{15} M_{8} M_{7}\left({ }^{(" E ")}\right.$).

Turing Bombe - the menu

- Want short enough text for no "turnovers".

Position 123456789012345678901234
Plain Text ABSTIMMSPRUQYY
CipherText ISOAOGTPCOGNYZ

Turing Bombe -1

- Each cycle can be turned into a ring of Enigma machines.
- In a ring of Enigmas, all the S cancel each other out!
- The key search problem is now reduced from 67.5 to 20 bits !!!!
- At $10 \mathrm{msec} / \mathrm{test}, 20$ bits takes 3 hours.
- Turing wanted ~ 4 loops to cut down on "false alarms."
- About 20 letters of "crib" of know plaintext were needed to fine enough loops.
- Machines which did this testing were called "Bombe's".
- Built by British Tabulating Machine Company.

Test Register in Bombes

In the diagram below, each circle is a 26-pin connector and each line a 26 -wire cable. The connector itself is labeled with a letter from the outside alphabet while its pins are labeled with letters from the inside alphabet. Voltage on $X(b)$ means that X maps to b through the plugboard.

X: \quad abcdefghijklmopqustuveyz

Welchman's Improvement

- With enough interconnected loops, when you apply voltage to $X(b)$, you will see one of three possibilities on the pins of connector X :

01000000000000000000000000 X maps to b
11101111111111111111111111 X really maps to \mathbf{d}
11111111111111111111111111 wrong Enigma key

- Gordon Welchman realized that if $X(b)$ then $B(x)$, because the plugboard was a self-inverse ($\mathrm{S}=\mathrm{S}^{-1}$).
- His diagonal board wired $X(a)$ to $A(x), D(q)$ to $Q(d)$, etc.
- With that board, the cryptanalyst didn't need loops -- just enough text
- This cut the size of the required crib in half.

Sigaba Wiring Diagram

- Control and index rotors determine stepping of cipher rotors

Slide by Mark Stamp

Purple

- Switched permutations
- Not rotors!!!
- S,L,M, and R are switches
- Each step, one of the perms switches to a different permutation

Purple

- Input letter permuted by plugboard, then...
- Vowels and consonants sent thru different switches
- The "6-20 split"

Slide by Mark Stamp

Purple

- Switch S
- Steps once for each letter typed
- Permutes vowels
- Switches L,M,R
- One of these steps for each letter typed
- L,M,R stepping determined by S

Slide by Mark Stamp

End

