Cryptanalysis

Lecture Block 3: Block Ciphers

John Manferdelli
imanfer@microsoft.com JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Block ciphers

- Complicated keyed invertible functions constructed from iterated elementary rounds.
- Confusion: non-linear functions (ROM lookup)
- Diffusion: permute round output bits

Characteristics:

- Fast
- Data encrypted in fixed "block sizes" (64,128,256 bit blocks are common).
- Key and message bits non-linearly mixed in cipher-text

Mathematical view of block ciphers

- $E(k, x)=y$.
- E: GF(2m) $\times \operatorname{GF}\left(2^{n}\right) \longrightarrow G F\left(2^{n}\right)$, often $m=n$.
- $E(k, x)$ is a bijection in second variable.
- $E(k, x)$ in $S_{N}, N=2^{n}$.
- Each bit position is a balanced boolean function.
- E is easy to compute but inverse function (with k fixed) is hard to compute without knowledge of k.
- Implicit function hard to compute.
- Intersection of algebraic varieties.

Guiding Theorems

- Implicit Function Theorem: If $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{c}$, is a continuously differentiable function from $R^{n} \times R^{m}$ into R^{m} and the $m \times m$ Jacobian in the y variables is non zero in a region, there is a function g from R^{n} to R^{m} such that $F(x, g(x))=c$. When F is linear, this function is very easy to compute. Think of g as mapping the plaintext to the key (for fixed ciphertext).
- Functions in over finite fields are polynomials: If f is a function from k^{n} to k, where k is a finite field, f can be written as a polynomial in the n variables.
- Reduction in dimension: Generally (pathological exceptions aside), if f is a function from k^{n} to k, where k is a finite field, and $f(x)=c$, one variable can be written as a function of the other $n-1$ variables. In other words, if g is a function from k^{n} to k subject to the constraint $f(x)=c$, then g can be rewritten as a function of $n-1$ variables.

What is a "safe" block cipher

Data Encryption Standard

- Federal History
- 1972 study.
- RFP: 5/73, 8/74.
- NSA: S-Box influence, key size reduction.
- Published in Federal Register: 3/75.
- FIPS 46: January, 1976.
- DES
- Descendant of Feistel's Lucifer.
- Designers: Horst Feistel, Walter Tuchman, Don Coppersmith, Alan Konheim, Edna Grossman, Bill Notz, Lynn Smith, and Bryant Tuckerman.
- Brute Force Cracking
- EFS DES Cracker: \$250K, 1998. 1,536 custom chips. Can brute force a DES key in days.
- Deep Crack and distributed.net break a DES key in 22.25 hours.

Horst Feistel: Lucifer

- First serious needs for civilian encryption (in electronic banking), 1970's
- IBM's response: Lucifer, an iterated SP cipher
- Lucifer (v0):
- Two fixed, 4×4 s-boxes, $S_{0} \& S_{1}$
- A fixed permutation P
- Key bits determine which s-box is to be used at each position
$-8 \times 64 / 4=128$ key bits (for 64-bit block, 8 rounds)

From Lucifer to DES

- 8 fixed, 6x4 s-boxes (non-invertible)
- Expansion, E, (simple duplication of 16 bits)
- Round keys are used only for xor with the input
- 56-bit key size
- 16×48 round key bits are selected from the 56-bit master key by the "key schedule".

Feistel Ciphers

- A straightforward SP cipher needs twice the hardware: one for encryption (S, P), one for decryption ($\mathrm{S}^{-1}, \mathrm{P}^{-1}$).
- Feistel's solution:

- Lucifer v1: Feistel SP cipher; 64-bit block, 128-bit key, 16 rounds.

Iterated Feistel Cipher

Feistel Round

Note: If $\sigma_{i}(\mathrm{~L}, \mathrm{R})=\left(\mathrm{L} \oplus \mathrm{f}\left(\mathrm{E}(\mathrm{R}) \oplus \mathrm{k}_{\mathrm{i}}\right), \mathrm{R}\right)$ and $\tau(\mathrm{L}, \mathrm{R})=(\mathrm{R}, \mathrm{L})$, this round is $\tau \sigma_{i}(\mathrm{~L}, \mathrm{R})$.

To invert: swap halves and apply same transform with same key: $\sigma_{i} \tau \tau \sigma_{i}(\mathrm{~L}, \mathrm{R})=(\mathrm{L}, \mathrm{R})$.

DES Round Function

Chaining Feistel Rounds

DES

DES Round

$$
F(K, X)=\text { non-linear function }
$$

Figure 5.2. Electronic Code book (ECB) Mode-Calculation of $f(R, K)$.

DES Described Algebraically

$\sigma_{\mathrm{i}}(\mathrm{L}, \mathrm{R})=\left(\mathrm{L} \oplus \mathrm{f}\left(\mathrm{E}(\mathrm{R}) \oplus \mathrm{k}_{\mathrm{i}}\right), \mathrm{R}\right)$

- k_{i} is 48 bit sub-key for round i.
- $f(x)=P\left(S_{1} S_{2} S_{3} \ldots S_{8}(x)\right)$. Each S-box operates on 6 bit quantities and outputs 4 bit quantities.
- P permutes the resulting 32 output bits.
$\tau(\mathrm{L}, \mathrm{R})=(\mathrm{R}, \mathrm{L})$.
Each round (except last) is $\tau \sigma_{\mathrm{i} \text {. }}$ Note that $\tau \tau=\tau^{2}=1=\sigma_{\mathrm{i}} \sigma_{\mathrm{i}}=$ $\sigma_{\mathrm{i}}{ }^{2}$.

Full DES is: $\mathrm{DES}_{\mathrm{K}}(\mathrm{x})=\mathrm{IP}^{-1} \sigma_{16} \tau \ldots \sigma_{3} \tau \sigma_{2} \tau \sigma_{1} \operatorname{IP}(\mathrm{x})$.
So its inverse is: $\mathrm{DES}_{\mathrm{K}}{ }^{-1}(\mathrm{x})=\mathrm{IP}^{-1} \sigma_{1} \tau \ldots \sigma_{14} \tau \sigma_{15} \tau \sigma_{16} \mathrm{IP}(\mathrm{x})$.

TEA

```
Tea(unsigned K[4], ref unsigned L, ref unsigned R)
{
```

```
unsigned d= 0x9e3779b9;
```

unsigned d= 0x9e3779b9;
unsigned s= 0;
unsigned s= 0;
for(int i=0; i<32;i++) {
for(int i=0; i<32;i++) {
s+= d;
s+= d;
L+= ((R<<4)+K[0])^(R+s)^ ((R>>5) +K[1]);
L+= ((R<<4)+K[0])^(R+s)^ ((R>>5) +K[1]);
R+= ((L<<4)+K[2])^(L+s)^((L>>5)+K[3]);
R+= ((L<<4)+K[2])^(L+s)^((L>>5)+K[3]);
}
}
}

```
}
```


DES Key Schedule

$\mathrm{C}_{0} \mathrm{D}_{0}=\mathrm{PC}_{1}(\mathrm{~K})$

$\mathrm{K}_{\mathrm{i}}=\mathrm{PC}_{2}\left(\mathrm{C}_{\mathrm{i}} \| \mathrm{D}_{\mathrm{i}}\right)$

Shift $=<1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1>$

- Note: Irregular Key schedule protects against related key attacks. [Biham, New Types of Cryptanalytic Attacks using Related Keys, TR-753, Technion]

DES Key Schedule

```
pc1[64]
    57 49 41 33 25 17 09 01 58 50 42 34 26 18 10 02
    59 51 43 35 27 19 11 03 60 52 44 36 63 55 47 39
    31 23 15 07 62 54 46 38 30 22 14 06 61 53 45 37
    29 21 13 05 28 20 12 04 00 00 00 00 00 00 00 00
pc2[48]
    14 17 11 24 01 05 03 28 15 06 21 10 23 19 12 04
    26 08 16 07 27 20 13 02 41 52 31 37 47 55 30 40
    51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32
```


DES Key Schedule

Key schedule round 1

```
10}515144 60 49 17 33 57 2 9 9 19 42 3 35 26 25 44 58 59
        1 36 27 18 41
22}228 39 54 37 4 47 30 5 53 23 29 61 21 38 63 15 20 45
14 13 62 55 31
```

Key schedule round 2

```
    2 43 26 52 41 9 25 49 59 1 11 34 60 27 18 17 36 50 51
    58 57 19 10 33
14 20 31 46 29 63 39 22 28 45 15 21 53 13 30 55 7 12 37
    6 5 54 47 23
```


DES Data

```
S1 (hex)
    e 4 d 1 2 f b 8 3 a 6 c 5 9 0 7
    O f 7 4 e 2 d 1 a 6 c b 9 5 3 8
    4 1 e 8 d 6 2 b f c 9 7 3 a 5 0
    f c 8 2 4 9 1 7 5 b 3 e a 0 6 d
S2 (hex)
    f 1 8 e 6 b 3 4 9 7 2 d c 0 5 a
    3 d 4 7 f 2 8 e c 0 1 a 6 9 b 5
    0 e 7 b a 4 d 1 5 8 c 6 9 3 2 f
    d 8 a 1 3 f 4 2 b 6 7 c 0 5 e 9
S3 (hex)
    a 0 9 e 6 3 f 5 1 d c 7 b 4 2 8
    d 7 0 9 3 4 6 a 2 8 5 e c b f 1
    d 6498f30bl 2 c 5 a e 7
    1 a d 0 6 9 8 7 4 f e 3 b 5 2 c
```


DES Data

```
S4 (hex)
    7 d e 3 0 6 9 a 1 2 8 5 b c 4 f
    d 8 b 5 6 f 0 3 4 7 2 c 1 a e 9
    a 6 9 0 c b 7 d f 1 3 e 5 2 8 4
    3f06a 1 d 8 9 4 5 b c 7 2e
S5 (hex)
    2 c 4 1 7 a b 6 8 5 3 f d 0 e 9
    e b 2 c 4 7 d 1 5 0 f a 3 9 8 6
    4 1 b a d 7 8 f 9 c 5 6 3 0 e
    b 8 c 7 1 e 2 d 6 f 0 9 a 4 5 3
S6 (hex)
    c 1 a f 9 2 6 8 0 d 3 4 e 7 5 b
    af427c 9 5 6 1 d e 0 b 3 8
    9 e f 5 2 8 c 3 7 0 4 a 1 d b 6
    4 3 2 c 9 5 f a b e 1 7 6 0 8 d
```


DES Data

```
S7 (hex)
    4 b 2 e f 0 8 d 3 c 9 7 5 a 6 1
    d 0 b 7 4 9 1 a e 3 5 c 2 f 8 6
    1 4 b d c 3 7 e a f 6 8 0 5 9 2
    6 b d 8 1 4 a 7 9 5 0 f e 2 3 c
```

```
S8 (hex)
```

S8 (hex)
d 2 8 4 6 f b 1 a 9 3 e 5 0 c 7
d 2 8 4 6 f b 1 a 9 3 e 5 0 c 7
1 f d 8 a 3 7 4 c 5 6 b 0 e 9 2
1 f d 8 a 3 7 4 c 5 6 b 0 e 9 2
7 b 4 1 9 ce e 0 6 a d f 3 5 8
7 b 4 1 9 ce e 0 6 a d f 3 5 8
2 1 e 7 4 a 8 d f c 9 0 3 5 6 b

```
    2 1 e 7 4 a 8 d f c 9 0 3 5 6 b
```

E

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29

$\begin{array}{lllll}28 & 29 & 30 & 31 & 32\end{array}$

- Note: DES can be made more secure against linear attacks by changing the order of the S-Boxes: Matsui, On Correlation between the order of S-Boxes and the Strength of DES. Eurocrypt,94.

DES Data

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	7	20	21	29	12	28	17	1	15	23	26	5	18	31	10
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
2	8	24	14	32	27	3	9	19	13	30	6	22	11	4	25

- Note on applying permutations: For permutations of bit positions, like P above, the table entries consisting of two rows, the top row of which is "in order" means the following. If t is above b, the bit at b is moved into position t in the permuted bit string. For example, after applying P , above, the most significant bit of the output string was at position 16 of the input string.

S Boxes as Polynomials over GF(2)

```
1,1:
    56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+1
    35+134+1346+1345+13456+125+1256+1245+123+12356+1234+12346
1,2:
    C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+2
    34+2346+1+15+156+134+13456+12+126+1256+124+1246+1245+12456
    +123+1236+1235+12356+1234+12346
1,3:
    C+6+56+46+45+3+35+356+346+3456+2+26+24+246+245+236+16+15+1
    45+13+1356+134+13456+12+126+125+12456+123+1236+1235+12356+
    1234+12346
1,4:
    C+6+5+456+3+34+346+345+2+23+234+1+15+14+146+135+134+1346+1
    345+1256+124+1246+1245+123+12356+1234+12346
```

Legend: $C+6+56+46$ means $1 \oplus x_{6} \oplus x_{5} x_{6} \oplus x_{4} x_{6}$

Decomposable Systems

- $E_{k 1 \mid k 2}(x)=E_{k 1}^{\prime}(x) \| E^{\prime \prime}{ }_{k 2}(x)$

m	t	2^{mt}	m^{t}
2	32	2^{64}	2^{33}
4	16	2^{64}	2^{18}

- Good mixing and avalanche condition

Feistel Ciphers defeat simple attacks

- After 2 to 4 rounds to get flat statistics.
- Parallel system attack
- Solve for key bits or constrain key bits

$$
\begin{gathered}
\mathrm{k}_{\mathrm{i}(1)}=\mathrm{a}_{11}(\mathrm{~K}) \mathrm{p}_{1} \mathrm{c}_{1}+\mathrm{a}_{12}(\mathrm{~K}) \mathrm{p}_{2} \mathrm{c}_{1}+\ldots+\mathrm{a}_{1 \mathrm{~N}}(\mathrm{~K}) \mathrm{p}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \\
\ldots \\
\ldots \\
\ldots
\end{gathered} \ldots \quad \ldots
$$

- Solving Linear equations for coefficients determining cipher

$$
\begin{gathered}
c_{1}=f_{11}(K) p_{1}+f_{12}(K) p_{2}+\ldots+f_{1 n}(K) p_{n} \\
c_{2}=f_{21}(K) p_{1}+f_{22}(K) p_{2}+\ldots+f_{2 n}(K) p_{n} \\
\ldots \\
\ldots \\
c_{m}=f_{m 1}(K) p_{1}+f_{m 2}(K) p_{2}+\ldots+f_{m n}(K) p_{n}
\end{gathered}
$$

- Even a weak round function can yield a strong Feistel cipher if iterated sufficiently.
- Provided it's non-linear

DES Attacks: Exhaustive Search

- Symmetry DES(k $\oplus \mathbf{1}, \mathbf{x} \oplus \mathbf{1})=\operatorname{DES}(\mathbf{k}, \mathbf{x}) \oplus \mathbf{1}$
- Suppose we know plain/cipher text pair (p,c)

```
for(k=0;k<256;k++) {
        if(DES (k,p)==c) {
                printf("Key is %x\n", k);
                break;
        }
    }
```

- Expected number of trials (if k was chosen at random) before success: 2^{55}

DES Attacks: Exhaustive Search

- Poor random number generator: 20 bits of entropy
- How long does it take?
- 2^{20} vs 2^{56}
- Second biggest real problem
- First biggest: bad key management
- Symmetric ciphers are said to be secure in practice if no known attack works more efficiently than exhaustive search. Note that the barrier is computational not information theoretic.

Suppose you decide the keyspace is too small?

- Can you increase security by encrypting twice or more?
$-\quad E^{\prime}\left(k_{1} \| k_{2}, x\right)=E\left(k_{1}, E\left(k_{2}, x\right)\right)$

Answer: Maybe.

- Three times is the charm (triple DES).
- If you do it twice, TMTO attack reduces it to little more than one key search time (if you have a lot of memory).

Random mappings

- Let F_{n} denote all functions (mappings) from a finite domain of size n to a finite co-domain of size n
- Every mapping is equally likely to be chosen, $\left|F_{n}\right|=n^{n}$ the probability of choosing a particular mapping is $1 / \mathrm{n}^{\mathrm{n}}$
- Example. $f:\{1,2, \ldots . .13\} \rightarrow\{1,2, \ldots .13\}$

- As n tends to infinity, the following are expectations of some parameters associated with a random point in $\{1,2, \ldots \mathrm{n}\}$ and a random function from F_{n} :
(i) tail length: $\sqrt{ }(\pi n / 8)$ (ii) cycle length: $\sqrt{ }(\pi n / 8)$ (iii) rho-length: $\sqrt{ }(\pi n / 2)$

Time memory trade off ("TMTO")

- If we can pre-compute a table of $\left(k, E_{k}(x)\right)$ for a fixed x , then given corresponding (x, c) we can find the key in O(1) time.
- Trying random keys takes $\mathrm{O}(\mathrm{N})$ time (where N , usually, $=2^{\mathrm{k}}$ is the number of possible keys)
- Can we balance "memory" and "time" resources?
- It is not a $50-50$ proposition. Hellman showed we could cut the search time to $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ by precomputing and storing $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ values.

Chain of Encryptions

- Assume block length n and key length k are equal: $n=k$
- Construct chain of encryptions:

$$
\begin{aligned}
& S P=K_{0} \\
& K_{1}=E(P, S P) \\
& K_{2}=E\left(P, K_{1}\right)
\end{aligned}
$$

- Pre-compute m encryption chains, each of length $t+1$
- Save only the start and end points

TMTO Attack

- To attack a particular unknown key K
- For the same chosen P used to find chains, we know C where $C=E(P, K)$ and K is unknown key
- Compute the chain (maximum of t steps)

$$
X_{0}=C, X_{1}=E\left(P, X_{0}\right), X_{2}=E\left(P, X_{1}\right), \ldots
$$

- Suppose for some i we find $X_{i}=E p_{j}$
- Since $C=E(P, K)$ key K should lie before ciphertext C in chain!

DES TMTO

- Suppose block cipher has $k=56$
- \quad Suppose we find $m=2^{28}$ chains each of length $t=2^{28}$ and no chains overlap (unrealistic)
- Memory: 2^{28} pairs $\left(S P_{j}, E P_{i}\right)$
- Time: about 2^{28} (per attack)
- Start at C, find some $E P_{j}$ in about 2^{27} steps
- Find K with about 2^{27} more steps
- Attack never fails!

But things are a little more complicated

- Chains can cycle and merge
- False alarms, etc.
- What if block size not equal key length?

- This is easy to deal with
- To reduce merging
- Compute chain as $F\left(E\left(P, K_{i-1}\right)\right)$ where F permutes the bits
- Chains computed using different functions can intersect, but they will not merge

TMTO in Practice

- Let
- $m=$ random starting points for each F
- $t=$ encryptions in each chain
$-r=$ number of "tables", i.e., random functions F
- Then $m t r=$ total pre-computed chain elements
- Pre-computation is about mtr work
- Each TMTO attack requires
- About $m r$ "memory" and about $t r$ "time"
- If we choose $m=t=r=2^{k / 3}$ then probability of success is at least 0.55.

Success Probability

- Throw n balls into m urns
- What is expected number of urns that have at least one ball?
- See Feller, Intro. to Probability Theory
- Why is this relevant to TMTO attack?
- "Urns" correspond to keys
- "Balls" correspond to constructing chains
- Assuming k-bit key and m, t, r defined as previously discussed
- Then, approximately,

$$
P(\text { success })=1-e^{-m t r / k}
$$

$m t r$	P (success)
0	0
2^{k-5}	0.03
2^{k-4}	0.06
2^{k-3}	0.12
2^{k-2}	0.22
2^{k-1}	0.39
2^{k}	0.63
2^{k+1}	0.86
2^{k+2}	0.98
2^{k+3}	0.99
∞	1.00

Group theory and DES

- What is the minimum length of a product of involutions from a fixed set required to generate S_{n} ?
- What does this have to do with the number of rounds in a cipher?
- How does this affect the increased security by "enciphering twice" with different keys?
- Theorem (Coppersmith and Grossman): If $\sigma_{\mathrm{K}}(\mathrm{L}, \mathrm{R})=$ $\left(\mathrm{L} \oplus \mathrm{f}(\mathrm{E}(\mathrm{R}) \oplus \mathrm{K}, \mathrm{R}),<\tau, \sigma_{\mathrm{K}}>=\mathrm{A}_{\mathrm{N}}, \mathrm{N}=2^{\mathrm{n}}\right.$.
- \quad Note (Netto): If a and b are chosen at random from S_{n} there is a good chance $(\sim 3 / 4)$ that $\langle a, b\rangle=A_{n}$ or S_{n}.

DES is not a group

- Set $E_{1}(x)=D E S_{0 x \text { xffiffiffiffiff }}(x), E_{0}(x)=D E S_{0 \times 00000000000000}(x)$.
- $\quad F(x)=E_{1}\left(E_{0}(x)\right)$.
- There is an $x: F^{m}(x)=x, m \sim 2^{32}$, a cycle length.

If $|\mathrm{F}|=\mathrm{n}, \mathrm{m} \mid \mathrm{n}$.

- Suppose DES is closed under composition so $\mathrm{F}=\mathrm{E}_{\mathrm{k}}=\mathrm{DES}_{\mathrm{k}}$.
- $E_{k}{ }^{i}=E_{k}{ }^{j}, E_{k}{ }^{(j-i)}=I .0<=i<j<=2^{56}$.

Coppersmith found lengths of cycles for 33 plaintexts and the LCM of these cycle lengths $>2^{277}$.

If DES were a group...

- Suppose $\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}(\mathrm{x})\right)=\mathrm{E}_{\mathrm{K} 3}(\mathrm{x})$, that there are N possible keys, plaintexts and ciphertexts and that for a given plaintext-ciphertext pair there is only one possible key then there is a birthday attack that finds the key in $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$.
- Construct $\mathrm{D}_{\mathrm{K} 1}(\mathrm{x})$ for $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ random keys, K 1 and $\mathrm{E}_{\mathrm{K} 2}(\mathrm{x})$ for $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ random keys, K 2 . If there is a match, $\mathrm{c}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}(\mathrm{x})\right)$. This has the same effect as finding K3.

DES Key Schedule

$\mathrm{C}_{0} \mathrm{D}_{0}=\mathrm{PC}_{1}(\mathrm{~K})$
$\left.\mathrm{C}_{i+1}=\operatorname{LeftShift}^{(S h i f t}, \mathrm{C}_{\mathrm{i}}\right), \mathrm{D}_{\mathrm{i}+1}=\operatorname{LeftShift}\left(\right.$ Shift $\left._{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}\right)$,
$\mathrm{K}_{\mathrm{i}}=\mathrm{PC}_{2}\left(\mathrm{C}_{\mathrm{i}} \| \mathrm{D}_{\mathrm{i}}\right)$
Shift $=<1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1>$
Note: Irregular Key schedule protects against related key attacks. [Biham, New Types of Cryptanalytic Attacks using Related Keys, TR-753, Technion]

Weak Keys

- DES has:
- Four weak keys k for which $E_{k}\left(E_{k}(m)\right)=m$.
- Twelve semi-weak keys which come in pairs k_{1} and k_{2} and are such that $E_{k 1}\left(E_{k 2}(m)\right)=m$.
- Weak keys are due to "key schedule" algorithm

How Weak Keys Arise

- A 28 bit quantity has potential symmetries of period $1,2,4,7$, and 14.
- Suppose each of C_{0} and D_{0} has a symmetry of period 1 ; for example $\mathrm{C}_{0}=0 \times 0000000, \mathrm{D}_{0}=0 \times 1111111$. We can easily figure out a master key (K) that produces such a C_{0} and D_{0}.
- Then $\operatorname{DES}_{\mathrm{K}}\left(\mathrm{DES}_{\mathrm{K}}(\mathrm{x})\right)=\mathrm{x}$.

Interlude: Useful Math for Boolean Functions

- Algebraic Representations
- Linear Functions
- Affine approximations
- Bent Functions: functions furthest from linear
- Hadamard transforms
- MDS, linear codes, RS codes
- Random Functions
- Correlation and Correlation Immunity
- Some Notation:
- Let $L_{1}(P) \oplus L_{2}(C)=L_{3}(K) \oplus C$ with probability p_{i}
- $\epsilon_{i}=\left|1-p_{i}\right|$ called the "bias"

Boolean Functions

- For a set of Boolean functions $\Delta, d(f, g)=\#\{X \mid f(X) \neq g(X)\}$.
- Distance: For Boolean function $f(X)$ and $g(X), d(f, \Delta)=$ $\min _{[g(\mathrm{X}) \in \mathrm{s}]} \mathrm{d}(\mathrm{f}, \mathrm{g})$
- Affine function: $\mathrm{h}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}_{1} \oplus \mathrm{a}_{2} \mathrm{x}_{2} \oplus \ldots \oplus \mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\mathrm{C}$
- $n l(f)$ denotes the minimum distance between $f(X)$ and the set of affine functions $\Delta_{\text {affine }} . n l(f)=d\left(f, \Delta_{\text {affine }}\right), \Delta_{\text {affine }}=$ RM(1,n).
- Balance: $f(X)$ is balanced iff there is an equal number of 0 's and 1 's in the output of $f(X)$.

Algebraic Representations

- Algebraic normal form (ANF):

$$
\begin{aligned}
f(X)= & a_{0} \oplus\left(\oplus_{i=1}^{i i n} a_{i} x_{i}\right) \\
& \oplus\left(\oplus_{1 \leq i j j \leq n} a_{i j} x_{i} x_{j}\right) \oplus \ldots \oplus a_{12 \ldots n} x_{1} x_{2} \ldots x_{n}
\end{aligned}
$$

- Degree: $\operatorname{deg}(\mathrm{f})$,the highest degree term in ANF.
- Example

$$
\begin{aligned}
& f(X)=x_{1}+x_{2}, \operatorname{deg}(f)=1 \\
& g(X)=x_{1} x_{2}, \operatorname{deg}(g)=2
\end{aligned}
$$

- Lagrange Interpolation Theorem: Every function in n variables can be expressed as a polynomial (hence ANF).
- Degree is not the best measure of nonlinearity.
$\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}_{1} \oplus \ldots \oplus \mathrm{x}_{\mathrm{n}} \oplus \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$ has high degree but differs from a perfectly linear function at only 1 of 2^{n} possible arguments.

Correlation Immunity

- $f(X)$ is correlation immune of order t if $f(X)$ is not correlated with any t -subset of $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$. That is,

$$
\operatorname{Pr}\left(f(X)=0 \mid x_{i_{1}}=b_{i_{1}}, \ldots, x_{i_{t}}=b_{i_{t}}\right)=\operatorname{Pr}(f(X)=0)
$$

- $f(X)$ is t-resilient if $f(X)$ is balanced and $f(X)$ is correlation immune of order t.

$$
\operatorname{Pr}\left(f(X)=0 \mid x_{i_{1}}=b_{i_{i}}, \ldots, x_{i_{i}}=b_{i_{i}}\right)=\operatorname{Pr}(f(X)=0)=\frac{1}{2}
$$

- Theorem: Let $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ be a balanced boolean function of algebraic degree d in n variables which is t -th order correlation immune then
$-d+t \leqq n-1,1 \leqq t \leqq n-2$
$-d+t \leqq n, t=n-1$

Mathematics of Boolean Functions

- Correlation
$-c(f, g)=P[f(x)=g(x)]-P[f(x) \neq g(x)]$.
- $P[f(x)=g(x)]=.5(1+c(f, g))$
- Hadamard
$-S_{f}(w)=2^{-n} \Sigma_{x}(-1)^{f(x)+w . x}$
- Parseval
$-. \Sigma_{\mathrm{w}} \mathrm{S}_{\mathrm{f}}(\mathrm{w})^{2}=1$
- Bent functions
- Furthest from linear (all Hadamard coefficients are equal)

Simplified DES

- $L_{i+1}=R_{i}$, each 6 bits.
- $R_{i+1}=L_{i} \oplus f\left(R_{i}, K_{i}\right)$
- K is 9 bits.
- $E(x)=\left(x_{1} x_{2} x_{4} x_{3} x_{4} x_{3} x_{5} x_{6}\right)$
- S_{1}
- 101010001110011100111000
- 001100110010000111101011
- S_{2}

$$
\begin{aligned}
& -100 \\
& - \\
& - \\
& -
\end{aligned} 01000110 \quad 101 \quad 111001011010
$$

- K_{i} is 8 bits of K starting at $\mathrm{ith}^{\text {th }}$ bit.

Differential Cryptanalysis - 3R

- $\mathrm{L}_{4} \oplus \mathrm{R}_{1}=\mathrm{f}\left(\mathrm{k}_{3}, \mathrm{R}_{2}\right)$.
- $R_{4} \oplus L_{3}=f\left(k_{4}, R_{3}\right)$.
- $\mathrm{L}_{4}=\mathrm{R}_{3}, \mathrm{~L}_{2}=\mathrm{R}_{1}, \mathrm{~L}_{3}=\mathrm{R}_{2}$.
- 1\& $2 \rightarrow \mathrm{R}_{4} \oplus \mathrm{~L}_{3} \oplus \mathrm{R}_{2} \oplus \mathrm{~L}_{1}=\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right)$.
- $\mathrm{L}_{3}=\mathrm{R}_{2} \rightarrow \mathrm{R}_{4} \oplus \mathrm{~L}_{1}=\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right)$.
- $R_{4} \oplus L_{1}=f\left(k_{2}, R_{1}\right) \oplus f\left(k_{4}, R_{3}\right)$.
- $\mathrm{R}_{4}{ }^{*} \oplus \mathrm{~L}_{1}{ }^{*}=\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right)$.
- $3 \& 4 \rightarrow \mathrm{R}_{4}{ }^{\text {}} \oplus \mathrm{L}_{1}{ }{ }^{=} \mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right) \oplus$ $\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right)$.
- $R_{1}=R_{1}{ }^{*} \rightarrow R_{4}{ }^{\prime} \oplus \mathrm{L}_{1}{ }^{\prime}=\mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right)$.

54
JLM 20081006

Differential Cryptanalysis - 3R

```
L
L
L
L
L
L
E(L4}): : 0000 001
E( (L4}\mp@subsup{}{}{\prime}):1010101
\mp@subsup{R}{4}{\prime}}\mp@subsup{}{}{\prime}\mp@subsup{L}{1}{\prime}\mp@subsup{}{}{\prime}:111 101\oplus101 001= 010 100
S1': 1010 -> 010(1001,0011).
S}\mp@subsup{}{2}{\prime}:1011->100(1100,0111)
    (E ( L L4 ) \oplus\mp@subsup{k}{4}{}\mp@subsup{)}{1..4}{\prime}=1001|0011, k
    (E ( L L4 ) \oplus\mp@subsup{k}{4}{}\mp@subsup{)}{5..8}{\prime}=1100|0111, k
K= 00x001101
```


Differential Cryptanalysis 4R

Pick

$$
\mathrm{L}_{0}^{\prime}, \mathrm{R}_{0}^{\prime}: 011010001100
$$

Then

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{R}^{\prime}{ }^{\prime}\right): 0011 \text { 1100. } \\
& 0011 \rightarrow 011 \text { with } \mathrm{p}=3 / 4 \\
& 1100 \rightarrow 010 \text { with } \mathrm{p}=1 / 2
\end{aligned}
$$

So

$$
f\left(R_{0}^{\prime}, k_{1}\right)=011010, p=3 / 8
$$

Thus

$$
\mathrm{L}_{1}^{\prime}, \mathrm{R}_{1}^{\prime}: 001100000000, \mathrm{p}=3 / 8
$$

- $3 / 8$ of the pairs with this differential produce this result. 5/8 scatter the output differential at random. These "vote" for 1100 and 0010.

Differential Cryptanalysis of DES

- Best 16 rounds attack uses 13 round approximation
- Requires 2^{47} texts
- Not much better than exhaustive search
- Converting Chosen Plaintext to Corresponding plaintext attack
- If m pairs are required for chosen plaintext attack then $\sqrt{ }(2 \mathrm{~m}) 2^{32}$ are required for corresponding plaintext

Comments on Differential Cryptanalysis of full DES

$\#$ Rounds	Needed pairs	Analyzed Pairs	Bits Found	\# Char rounds	Char prob	S/N	Chosen Plain
4	2^{3}	2^{3}	42	1	1	16	2^{4}
6	2^{7}	2^{7}	30	3	$1 / 16$	2^{16}	2^{8}
8	2^{15}	2^{13}	30	5	$1 / 1048$ 6	15.6	2^{16}
16	2^{57}	2^{5}	18	15	$2^{-55.1}$	16	2^{58}

DES S-Box Design Criteria

- No S-box is linear or affine function of its input.
- Changing one bit in the input of an S-Box changes at least two output bits.
- S-boxes were chosen to minimize the difference between the number of 1's and 0's when any input bit is held constant.
- $S(X)$ and $S(X \oplus 001100)$ differ in at least 2 bits
- $S(X) \neq S(X \oplus 11 x y 00)$

Comments on effect of components on Differential Cryptanalysis

- E
- Without expansion, there is a 4 round iterative characteristic with $p=1 / 256$
- P
- Major influence. If $\mathrm{P}=\mathrm{l}$, there is a 10 round characteristic with $\mathrm{p}=$ $2^{-14.5}$ (but other attacks would be worse).
- S order
- If S1, S7 and S4 were in order, there would be a 2 round iterative characteristic with $p=1 / 73$. However, Matsui found an order (24673158) that is better and also better against Linear crypto. Optimum order for LC resistance: 27643158.
- S properties
- S boxes are nearly optimum against differential crypto

Linear Cryptanalysis

- Invented by Mitsuru Matsui in 1993.
- 16 -round DES can be attacked using 2^{43} known plaintexts
- get 26 bits, brute force the remaining 30 bits
$-2^{43}=9 \times 10^{12}=9$ trillion known plaintext blocks
- Also exploits biases in S-boxes, which were not designed against the attack
- A DES key was recovered in 50 days using 12 HP9735 workstations in a lab setting

Linear Cryptanalysis

- Basic idea:
- Suppose $\alpha_{\mathrm{i}}(\mathrm{P}) \oplus \beta_{\mathrm{i}}(\mathrm{C})=\gamma_{\mathrm{i}}(\mathrm{k})$ holds with γ_{i}, linear, for $\mathrm{i}=$ 1,2,..., m.
- Each equation imposes a linear constraint and reduces key search by a factor of 2 .
- Guess (n-m-1) bits of key. There are $2^{(n-m-1)}$. Use the constraints to get the remaining keys.
- Can we find linear constraints in the "per round" functions and knit them together?
- No! Per Round functions do not have linear constraints.

Linear Cryptanalysis

- Next idea
- Can we find $\alpha(\mathrm{P}) \oplus \beta(\mathrm{C})=\gamma(\mathrm{k})$ which holds with γ, linear, with probability p ?
- Suppose $\alpha(\mathrm{P}) \oplus \beta(\mathrm{C})=\gamma(\mathrm{k})$, with probability $\mathrm{p}>.5$.
- Collect a lot of plain/cipher pairs.
- Each will "vote" for $\gamma(k)=0$ or $\gamma(k)=1$.
- Pick the winner.
$p=1 / 2+\epsilon$ requires $c \epsilon^{-2}$ texts (we'll see why later). ϵ is called "bias".

Linear Cryptanalysis Notation

- Matsui numbers bits from right to left, rightmost bit is bit 0 . FIPS (and everyone else) goes from left to right starting at 1. I will use the FIPS conventions. To map Matsui positions to everyone else's:
$-M(i)=64-E E(i)$. For 32 bits make the obvious change.
- Matsui also refers to the two potions of the plan and ciphertext as
- $\underset{\text { with }}{\left(P_{H}, P_{L}\right),\left(P_{L},\left(P_{R}\right),\left(C_{L}, C_{L}\right) \text { we'll stick }\right.}$

Linear and near linear dependence

- Here is a linear relationship over GF(2) in S5 that holds with probability 52/64 (from $\mathrm{NS}_{5}(010000,1111)=12$:

- $\mathrm{X}[2] \oplus \mathrm{Y}[1] \oplus \mathrm{Y}[2] \oplus \mathrm{Y}[3] \oplus \mathrm{Y}[4]=\mathrm{K}[2] \oplus 1$,
- Sometimes written: $\mathrm{X}[2] \oplus \mathrm{Y}[1,2,3,4]=\mathrm{K}[2] \oplus 1$
- You can find relations like this using the "Boolean Function" techniques we describe a little later
- Inside full round (after applying P), this becomes $X[17] \oplus F(X, K)[3,8,14,25]=K[26] \oplus 1$

Linear Cryptanalysis of 3 round DES

$X[17] \oplus Y[3,8,14,25]=K[26] \oplus 1, p=52 / 64$

- Round 1
$\mathrm{X}_{1}[17] \oplus \mathrm{Y}_{\mathrm{i}}[3,8,14,25]=\mathrm{K}_{\mathrm{t}}[26] \oplus 1$
$\mathrm{P}_{\mathrm{R}}[17] \oplus \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{R}_{1}[3,8,14,25]=$ $\mathrm{K}_{1}[26] \oplus 1$

- Round 3
$\mathrm{X}_{3}[17] \oplus \mathrm{Y}_{3}[3,8,14,25]=\mathrm{K}_{3}[26] \oplus 1$
$\mathrm{R}_{1}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]=$ $\mathrm{K}_{3}[26] \oplus 1$
- Adding the two get:
$\mathrm{P}_{\mathrm{R}}[17] \oplus \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus$ $\mathrm{C}_{\mathrm{R}}[17]=\mathrm{K}_{1}[26] \oplus \mathrm{K}_{3}[26]$
Thus holds with $\mathrm{p}=(52 / 64)^{2}+(12 / 64)^{2}=.66$

Piling Up Lemma

- Let $X_{i}(1 \leqq i \leqq n)$ be independent random variables whose values are 0 with probability p_{i}. Then the probability that X_{1} $\oplus X_{2} \oplus \ldots \oplus X_{n}=0$ is

$$
1 / 2+2^{n-1} \Pi_{[1, n]}\left(p_{i}-1 / 2\right)
$$

Proof:
By induction on n . It's tautological for $\mathrm{n}=1$.
Suppose $\operatorname{Pr}\left[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{n-1}=0\right]=q=1 / 2+2^{n-2} \prod_{[1, n-1]}\left(p_{i}-1 / 2\right)$. Then $\operatorname{Pr}\left[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{n}=0\right]=q p_{n}+(1-q)\left(1-p_{n}\right)=1 / 2+2^{n-1} \prod_{[1, n]}\left(p_{i}-1 / 2\right)$ as claimed.

Mathematics of biased voting

Central Limit Theorem. Let $\mathrm{X}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ be independent, identically distributed random variables and let $\mathrm{S}_{\mathrm{n}}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$. Let $\mu=\mathrm{E}(\mathrm{X})$ and $\sigma^{2}=\mathrm{E}\left((\mathrm{X}-\mu)^{2}\right)$. Finally set $\mathrm{T}_{\mathrm{n}}=\left(\mathrm{S}_{\mathrm{n}}-\mathrm{n} \mu\right) /(\sigma \sqrt{ } \mathrm{n}), \mathrm{n}(\mathrm{x})=1 /(\sqrt{ } 2 \pi) \exp \left(-\mathrm{x}^{2} / 2\right)$ and

$$
N(a, b)=\int_{[a, b]} n(x) d x .
$$

Then

$$
\operatorname{Pr}\left(a \leqq T_{n} \leqq b\right)=N(a, b) .
$$

n is called the Normal Distribution and is symmetric around $x=0 . N(-\infty, 0)=$ $1 / 2$.
$N(-.5, .5)=.38, N(-.75, .75)=.55, N(-1,1)=.68, N(-2,2)=.9546, N(-3,3)=.9972$

Application of CLT to LC

- $p=1 / 2+\epsilon, 1-p=1 / 2-\epsilon$. Let $L\left(k, P, E_{k}(P)\right)=0$ be an equation over $G F(2)$ that holds with probability p. Let X_{i} be the outcome (1 if true, 0 if false) of an experiment picking P and testing whether L holds for the real k.
- $E\left(X_{i}\right)=p, E\left(\left(X_{i}-p\right)^{2}\right)=p(1-p)^{2}+(1-p)(0-p)^{2}=p(1-p)$. Let T_{n} be as provided in the CLT.
- Fixing n, what is the probability that more than half the X_{i} are 1 (i.e.What is the probability that n random equations vote for the right key)?
- This is just $\operatorname{Pr}\left(T_{n} \geqq-\epsilon \sqrt{ } n / \sqrt{ }\left(1 / 4-\epsilon^{2}\right)\right)$. If $n=\delta^{2} \epsilon^{-2}$, this is just

$$
\operatorname{Pr}\left(\mathrm{T}_{\mathrm{n}} \geqq-\delta / \sqrt{ }\left(1 / 4-\epsilon^{2}\right)\right) \text { or, if } \epsilon \text { is small } \operatorname{Pr}\left(\mathrm{T}_{\mathrm{n}} \geqq-2 \delta\right) \text {. }
$$

- Some numerical values: $\delta=.25, \mathrm{~N}(-.5, \infty)=.69, \delta=.5, \mathrm{~N}(-1, \infty)=.84$, $\delta=1, \mathrm{~N}(-2, \infty)=.98, \delta=1.5, \mathrm{~N}(-3, \infty)=.999$.

Matsui's Per Round Constraints

Label	Equation	Pr
A	$X[17] \oplus Y[3,8,14,25]=\mathrm{K}[26]$	$12 / 64$
B	$X[1,2,4,5] \oplus Y[17]=\mathrm{K}[2,3,5,6]$	$22 / 64$
C	$\mathrm{X}[3] \oplus \mathrm{Y}[17]=\mathrm{K}[4]$	$30 / 64$
D	$\mathrm{X}[17] \oplus \mathrm{Y}[8,14,25]=\mathrm{K}[26]$	$42 / 64$
E	$\mathrm{X}[16,20] \oplus \mathrm{Y}[8,14,25]=\mathrm{K}[25,29]$	$16 / 64$

Matsui: Linear Cryptanalysis Method for DES Cipher. Eurocrypt, 98.

15 Round Linear Approximation

1	$\mathrm{P}_{\mathrm{L}}[8,14,25] \oplus$	$\oplus \mathrm{R}_{2}[8,14,25] \oplus$	$\mathrm{P}_{\mathrm{R}}[16,20]$	$=\mathrm{K}_{1}[23,25]$
3	$\mathrm{L}_{3}[8,14,25] \oplus$	$\oplus \mathrm{R}_{4}[8,14,25] \oplus$	$\mathrm{R}_{3}[17]$	$=\mathrm{K}_{3}[26]$
4	$\mathrm{L}_{4}[17] \quad \oplus$	$\oplus \mathrm{R}_{5}[17] \quad \oplus$	$\mathrm{R}_{4}[3]$	$=\mathrm{K}_{4}[4]$
5	$\mathrm{L}_{5}[3,8,14,25] \oplus$	$\oplus \mathrm{R}_{6}[3,8,14,25] \oplus$	$\mathrm{R}_{5}[17]$	$=\mathrm{K}_{5}[26]$
7	$L_{7}[3,8,14,25] \oplus$	$\oplus \mathrm{R}_{8}[3,8,14,25] \oplus$	$\mathrm{R}_{7}[17]$	$=\mathrm{K}_{7}[26]$
8	$\mathrm{L}_{8}[17] \quad \oplus$	$\oplus \mathrm{R}_{9}[17] \quad \oplus$	$\mathrm{R}_{8}[3]$	$=\mathrm{K}_{8}[4]$
9	$L_{9}[8,14,25] \oplus$	$\oplus \mathrm{R}_{10}[8,14,25] \oplus$	$\mathrm{R}_{9}[17]$	$=\mathrm{K}_{9}[26]$
11	$L_{11}[8,14,25] \oplus$	$\oplus \mathrm{R}_{12}[8,14,25] \oplus$	$\mathrm{R}_{11}[17]$	$=\mathrm{K}_{11}[26]$
12	$L_{12}[17] \quad \oplus$	$\oplus \mathrm{R}_{13}[17] \quad \oplus$	$\mathrm{R}_{12}[3]$	$=\mathrm{K}_{12}[4]$
13	$\mathrm{L}_{13}[3,8,14,25] \oplus$	$\oplus \mathrm{R}_{14}[3,8,14,25] \oplus$	$\mathrm{R}_{13}[17]$	$=\mathrm{K}_{13}[26]$
15	$\mathrm{L}_{15}[3,8,14,25] \oplus$	$\oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus$	$\mathrm{C}_{\mathrm{R}}[17]$	$=\mathrm{K}_{15}[26]$

15 Round Linear Approximation

Adding and canceling:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{L}}[8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[16,20] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]= \\
& \mathrm{K}_{\mathrm{H}}[23,25] \oplus \mathrm{K}_{3}[26] \oplus \mathrm{K}_{4}[4] \oplus \mathrm{K}_{5}[26] \oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{8}[4] \\
& \quad \oplus \mathrm{K}_{9}[26] \oplus \mathrm{K}_{11}[26] \oplus \mathrm{K}_{12}[4] \oplus \mathrm{K}_{13}[26] \oplus \mathrm{K}_{15}[26]
\end{aligned}
$$

which holds (by Piling-up Lemma) with the indicated probability.

Matsui's Use of Constraints

Rounds	Equation	Pr	Equations Used
3	$\begin{aligned} & \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[17] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \\ & \oplus \mathrm{C}_{\mathrm{R}}[17]=\mathrm{K}_{1}[26] \oplus \mathrm{K}_{3}[26] \end{aligned}$	$1 / 2+1.56 \times 2^{-3}$	A-A
5	$\begin{aligned} & \mathrm{P}_{\mathrm{L}}[17] \oplus \mathrm{P}_{\mathrm{R}}[1,2,4,5,3,8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[17] \\ & \oplus \mathrm{C}_{\mathrm{R}}[1,2,4,5,3,8,14,25]=\mathrm{K}_{[}[2,3,5,6] \oplus \\ & \mathrm{K}_{2}[26] \oplus \mathrm{K}_{4}[26] \oplus \mathrm{K}_{5}[2,3,5,6] \end{aligned}$	$1 / 2+1.22 \times 2^{-6}$	BA-AB
15	$\begin{aligned} & \mathrm{P}_{\mathrm{L}}[8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[16,20] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \\ & \oplus \mathrm{C}_{\mathrm{R}}[17]=\mathrm{K}_{1}[9,13] \oplus \mathrm{K}_{3}[26] \oplus \mathrm{K}_{4}[26] \oplus \\ & \mathrm{K}_{5}[26] \oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{8}[26] \oplus \mathrm{K}_{9}[26] \oplus \mathrm{K}_{11}[26] \\ & \oplus \mathrm{K}_{12}[26] \oplus \mathrm{K}_{13}[26] \oplus \mathrm{K}_{15}[26] \end{aligned}$	$1 / 2+1.19 \times 2^{-22}$	$\begin{aligned} & \text { E-DCA-ACD- } \\ & \text { DCA-A } \end{aligned}$
16	$\begin{aligned} & \mathrm{P}_{[}[8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[16,20] \oplus \mathrm{C}_{[}[17] \\ & \oplus \mathrm{C}_{\mathrm{R}}[1,2,2,5,5,3,8,14,25]=\mathrm{K}_{\mathrm{H}}[9,13] \oplus \mathrm{K}_{3}[26] \\ & \oplus \mathrm{K}_{4}[26] \oplus \mathrm{K}_{5}[26] \oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{8}[26] \oplus \\ & \mathrm{K}_{9}[26] \oplus \mathrm{K}_{11}[26] \oplus \mathrm{K}_{12}[26] \oplus \mathrm{K}_{13}[26] \oplus \\ & \mathrm{K}_{15}[26] \oplus \mathrm{K}_{16}[2,3,5,6] \end{aligned}$	$1 / 2-1.49 \times 2{ }^{-24}$	$\begin{aligned} & \text { E-DCA-ACD- } \\ & \text { DCA-AB } \end{aligned}$

Linear Cryptanalysis of full DES

Can be accomplished with $\sim 2^{47}$ known plaintexts

- Using a slightly more sophisticated estimation 15 round approximation (with 2^{47} work factor)
- For each 48 bit last round subkey, decrypt ciphertext backwards across last round for all sample ciphertexts
- Increment count for all subkeys whose linear expression holds true to the penultimate round
- This is done for the first and last round yielding 7 key bits each (total: 14)

Linear Cryptanalysis of full DES

- Can be accomplished with $\sim 2^{43}$ known plaintexts, using a more sophisticated estimation 14 round approximation
- For each 48 bit last round subkey, decrypt ciphertext backwards across last round for all sample ciphertexts
- Increment count for all subkeys whose linear expression holds true to the penultimate round
- This is done for the first and last round yielding 13 key bits each (total: 26)
- Here they are:
$P_{\mathrm{R}}[8,14,25] \oplus \mathrm{C}_{[}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]=\mathrm{K}_{4}[26] \oplus \mathrm{K}_{3}[4] \oplus \mathrm{K}_{4}[26] \oplus \mathrm{K}_{6}[26] \oplus$ $\mathrm{K}_{7}[4] \oplus \mathrm{K}_{8}[26] \oplus \mathrm{K}_{10}[26] \oplus \mathrm{K}_{11}[4] \oplus \mathrm{K}_{12}[26] \oplus \mathrm{K}_{14}[26]$
with probability $1 / 2-1.19 \times 2^{-21}$
$\mathrm{C}_{\mathrm{R}}[8,14,25] \oplus \mathrm{P}_{\mathrm{P}}[3,8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[17]=\mathrm{K}_{11}[26] \oplus \mathrm{K}_{12}[24] \oplus \mathrm{K}_{11}[26] \oplus \mathrm{K}_{9}[26] \oplus$ $\mathrm{K}_{8}[24] \oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{5}[26] \oplus \mathrm{K}_{4}[4] \oplus \mathrm{K}_{3}[26] \oplus \mathrm{K}_{1}[26]$
with probability $1 / 2-1.19 \times 2^{-21}$

Block Cipher Modes of Operation

- ECB: $y_{i}=E_{K}\left(x_{i}\right)$,
- CBC: $y_{0}=I V, y_{i}=E_{K}\left(x_{i} \oplus y_{i-1}\right)$.
- OFB: $z_{0}=I V, z_{i+1}=E_{K}\left(z_{i}\right), y_{i}=x_{i} \oplus z_{i}$.
- CFB: $\mathrm{y}_{0}=I V, \mathrm{z}_{\mathrm{i}}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{y}_{\mathrm{i}-1}\right), \mathrm{y}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \oplus \mathrm{z}_{\text {I }}$
- CTR: $x_{j}=x_{j-1}+1, o_{j}=\operatorname{L8}\left(E_{K}\left(x_{j-1}\right)\right), c_{j}=x_{j} \oplus o_{j}$

Avoid ECB since it leaks too much information

Review: Arithmetic of GF(2²)

- Suppose $m(x)$ is an irreducible polynomial of degree n over GF(2): $m(x)=x^{n}+m_{n-1} x^{n-1}+\ldots+m_{0}$.
- Let $a(x)$ and $b(x)$ be polynomials of degree $<n$. They form a vector space of dimension n over GF(2). Coefficients of like exponent "add": $\left(a_{n-1} x^{n-1}+\ldots+a_{0}\right)+\left(b_{n-1} x^{n-1}+\ldots+b_{0}\right)=\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\ldots+$ $\mathrm{a}_{0}+\mathrm{b}_{0}$)
- Euclidean algorithm: for $a(x), b(x)$ polynomials of degrees $m \leqq n$, there are polynomials $q(x), r(x)$, deg $r(x)<n$ such that $a(x)=q(x) b(x)+r(x)$
- Polynomials over GF(2) modulo $m(x)$ form a field (with 2^{n} elements). Multiplication is multiplication of polynomials mod $m(x)$.
- Inverses exist : If $a(x)$ and $b(x)$ are polynomials their greatest common denominator $d(x)$ can be written as

$$
d(x)=a(x) u(x)+b(x) v(x) \text { for some } u(x), v(x) .
$$

In particular if $a(x)$ and $b(x)$ are co-prime: $1=a(x) u(x)+b(x) v(x)$ for some $u(x), v(x)$.

Example of multiplication and inverse

- $m(x)=x^{2}+x+1 . m(x)$ is irreducible (otherwise it would have a root in GF(2)
- $x+(x+1)=1,1+(x+1)=x$
- $(x+1)(x+1)=x^{2}+2 x+1=x^{2}+1=(x)+\left(x^{2}+x+1\right)=x(\bmod$ $\mathrm{m}(\mathrm{x})$)
- $(x+1)$ and $m(x)$ are co-prime in fact,

$$
1=(x+1)(x)+\left(x^{2}+x+1\right)(1)
$$

- So " x " is the multiplicative inverse of " $x+1$ " in GF(4).
- Usually elements of $\operatorname{GF}\left(2^{n}\right)$ are written in place notation so $x^{5}+x^{3}+x^{2}+1=101101$.

End

