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Block ciphers

• Complicated keyed invertible functions constructed from 

iterated elementary rounds.

• Confusion: non-linear functions (ROM lookup)

• Diffusion: permute round output bits

Characteristics:

• Fast

• Data encrypted in fixed “block sizes” (64,128,256 bit blocks are 

common).

• Key and message bits non-linearly mixed in cipher-text

JLM 20081006
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Mathematical view of block ciphers

• E(k, x)=y.

• E: GF(2m) x GF(2n)       GF(2n), often m=n.

• E(k,x) is a bijection in second variable.

• E(k, x) in SN, N= 2n.

• Each bit position is a balanced boolean function.

• E is easy to compute but inverse function (with k fixed) is 

hard to compute without knowledge of k.

• Implicit function hard to compute.

• Intersection of algebraic varieties.
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Guiding Theorems

• Implicit Function Theorem:  If F(x,y)= c, is a continuously differentiable 

function from Rn x Rm into Rm and the mxm Jacobian in the y variables 

is non zero in a region, there is a function g from Rn to Rm such that 

F(x, g(x))=c.  When F is linear, this function is very easy to compute.  

Think of g as mapping the plaintext to the key (for fixed ciphertext).

• Functions in over finite fields are polynomials: If f is a function from kn

to k, where k is a finite field, f can be written as a polynomial in the n 

variables.

• Reduction in dimension: Generally (pathological exceptions aside), if f 

is a function from kn to k, where k is a finite field, and f(x)=c, one 

variable can be written as a function of the other n-1 variables.  In 

other words, if g is a function from kn to k subject to the constraint 

f(x)=c, then g can be rewritten as a function of n-1 variables.
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What is a “safe” block cipher
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Data Encryption Standard

• Federal History

• 1972 study.

• RFP: 5/73, 8/74.

• NSA: S-Box influence, key size reduction.

• Published in Federal Register: 3/75.

• FIPS 46:  January, 1976.

• DES
• Descendant of Feistel’s Lucifer.

• Designers: Horst Feistel, Walter Tuchman, Don Coppersmith, Alan 

Konheim, Edna Grossman, Bill Notz, Lynn Smith, and Bryant 

Tuckerman.

• Brute Force Cracking
• EFS DES Cracker: $250K, 1998. 1,536 custom chips. Can brute 

force a DES key in days.

• Deep Crack and distributed.net break a DES key in 22.25 hours.
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Horst Feistel: Lucifer

• First serious needs for civilian encryption (in electronic banking), 1970’s

• IBM’s response: Lucifer, an iterated SP cipher

• Lucifer (v0):

– Two fixed, 4x4 s-boxes, S0 & S1

– A fixed permutation P

– Key bits determine

which s-box is to be 

used at each position

– 8 x 64/4 = 128 key bits

(for 64-bit block, 8 rounds) ..
.

. . . .
P

S0
S1 S0

S1S0
S1

. . . .S0
S1 S0

S1S0
S1

P

. . . .S0
S1 S0

S1S0
S1

x

EK(x)Graphic by cschen@cc.nctu.edu.tw
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From Lucifer to DES

• 8 fixed, 6x4 s-boxes (non-invertible)

• Expansion, E,  (simple duplication of 16 

bits) 

• Round keys are used only for xor with 

the input

• 56-bit key size

• 16 x 48 round key bits are selected 

from the  56-bit master key by the “key 

schedule”.

x

S1 S2 S8. . . .

P

f(x, ki)

ki

32



48

E

32 bits
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Feistel Ciphers

• A straightforward SP cipher needs twice the hardware: one for 

encryption (S, P), one for decryption (S-1, P-1).

• Feistel’s solution:

• Lucifer v1:  Feistel SP cipher; 64-bit block, 128-bit key, 16 rounds.

x

EK(x)

L R

f



...

...





f

f

f

where the

f function

is SP:

x

S S S. . . .

P

f(x, ki)

ki

(why?)

JLM 20081006



10

Iterated Feistel Cipher

Plaintext

Ciphertext

r Feistel

Rounds

k1

k2

kr

Key Schedule

Key
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f

Feistel Round

F(K,X)= non-linear function

ki

Graphic courtesy of Josh 

Benaloh

Note: If si(L,R)= (Lf(E(R) ki) ,R) and t(L,R)= (R,L), this 

round  is tsi(L,R).

To invert: swap halves and apply same transform with same key:

sittsi(L,R)=(L,R).
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DES Round Function

Sub-key

6/4-bit substitutions

32-bit permutation

32 bits

48 bits

Slide courtesy of Josh Benaloh
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Chaining Feistel Rounds

f

f

ki

ki+1
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DES

64-bit Plaintext

64-bit Ciphertext

56-bit Key 16 Feistel

Rounds

k1 (48 bits)
k2

k16
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f

DES Round

F(K,X)= non-linear function

ki (48 bits)

L (32 bits) R (32 bits)

L’ (32 bits) R’ (32 bits)
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DES Described Algebraically

si(L,R)= (Lf(E(R)ki) ,R) 

• ki is 48 bit sub-key for round i.

• f(x)= P(S1S2S3 … S8(x)).  Each S –box operates on 6 bit 

quantities and outputs 4 bit quantities.  

• P permutes the resulting 32 output bits.

t(L,R)= (R,L).

Each round (except last) is  t si. Note that t t = t 2=1= si si= 

si
2.

Full DES is:  DESK(x)= IP-1 s16 t ...  s3 t  s2 t s1 IP(x).

So its inverse is:  DESK
-1(x)= IP-1 s1 t ...  s14 t  s15 t s16 IP(x).

JLM 20081006
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TEA

Tea(unsigned K[4], ref unsigned L, ref unsigned R) 

{

unsigned d= 0x9e3779b9;

unsigned s= 0;

for(int i=0; i<32;i++) {

s+= d;

L+= ((R<<4)+K[0])^(R+s)^((R>>5)+K[1]);

R+= ((L<<4)+K[2])^(L+s)^((L>>5)+K[3]);

}

}

JLM 20081006
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DES Key Schedule

C0D0= PC1(K)

Ci+1 = LeftShift(Shifti, Ci), Di+1 = LeftShift(Shifti, Di)

Ki= PC2(Ci ||Di)

Shifti= <1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1>

• Note: Irregular Key schedule protects against related key 

attacks. [Biham, New Types of Cryptanalytic Attacks 

using Related Keys, TR-753, Technion]

JLM 20081006



22

DES Key Schedule

pc1[64]

57 49 41 33 25 17 09 01 58 50 42 34 26 18 10 02 

59 51 43 35 27 19 11 03 60 52 44 36 63 55 47 39 

31 23 15 07 62 54 46 38 30 22 14 06 61 53 45 37

29 21 13 05 28 20 12 04 00 00 00 00 00 00 00 00

pc2[48]

14 17 11 24 01 05 03 28 15 06 21 10 23 19 12 04 

26 08 16 07 27 20 13 02 41 52 31 37 47 55 30 40 

51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32

JLM 20081006
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DES Key Schedule

Key schedule round 1
10 51 34 60 49 17 33 57  2  9 19 42  3 35 26 25 44 58 59

1 36 27 18 41 

22 28 39 54 37  4 47 30  5 53 23 29 61 21 38 63 15 20 45

14 13 62 55 31 

Key schedule round 2
2 43 26 52 41  9 25 49 59  1 11 34 60 27 18 17 36 50 51

58 57 19 10 33 

14 20 31 46 29 63 39 22 28 45 15 21 53 13 30 55  7 12 37

6  5 54 47 23 

JLM 20081006
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DES Data

S1 (hex)

e 4 d 1 2 f b 8 3 a 6 c 5 9 0 7 

0 f 7 4 e 2 d 1 a 6 c b 9 5 3 8 

4 1 e 8 d 6 2 b f c 9 7 3 a 5 0 

f c 8 2 4 9 1 7 5 b 3 e a 0 6 d 

S2 (hex)

f 1 8 e 6 b 3 4 9 7 2 d c 0 5 a 

3 d 4 7 f 2 8 e c 0 1 a 6 9 b 5 

0 e 7 b a 4 d 1 5 8 c 6 9 3 2 f 

d 8 a 1 3 f 4 2 b 6 7 c 0 5 e 9 

S3 (hex)

a 0 9 e 6 3 f 5 1 d c 7 b 4 2 8 

d 7 0 9 3 4 6 a 2 8 5 e c b f 1 

d 6 4 9 8 f 3 0 b 1 2 c 5 a e 7 

1 a d 0 6 9 8 7 4 f e 3 b 5 2 c 
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DES Data

S4 (hex)

7 d e 3 0 6 9 a 1 2 8 5 b c 4 f 

d 8 b 5 6 f 0 3 4 7 2 c 1 a e 9 

a 6 9 0 c b 7 d f 1 3 e 5 2 8 4 

3 f 0 6 a 1 d 8 9 4 5 b c 7 2 e 

S5 (hex)

2 c 4 1 7 a b 6 8 5 3 f d 0 e 9 

e b 2 c 4 7 d 1 5 0 f a 3 9 8 6 

4 2 1 b a d 7 8 f 9 c 5 6 3 0 e 

b 8 c 7 1 e 2 d 6 f 0 9 a 4 5 3 

S6 (hex)

c 1 a f 9 2 6 8 0 d 3 4 e 7 5 b 

a f 4 2 7 c 9 5 6 1 d e 0 b 3 8 

9 e f 5 2 8 c 3 7 0 4 a 1 d b 6 

4 3 2 c 9 5 f a b e 1 7 6 0 8 d 
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DES Data

E

32  1  2  3  4  5

4  5  6  7  8  9

8  9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32  1

S7 (hex)

4 b 2 e f 0 8 d 3 c 9 7 5 a 6 1 

d 0 b 7 4 9 1 a e 3 5 c 2 f 8 6 

1 4 b d c 3 7 e a f 6 8 0 5 9 2 

6 b d 8 1 4 a 7 9 5 0 f e 2 3 c 

S8 (hex)

d 2 8 4 6 f b 1 a 9 3 e 5 0 c 7 

1 f d 8 a 3 7 4 c 5 6 b 0 e 9 2 

7 b 4 1 9 c e 2 0 6 a d f 3 5 8 

2 1 e 7 4 a 8 d f c 9 0 3 5 6 b 

JLM 20081006

• Note: DES can be made more secure against linear attacks by changing the 
order of the S-Boxes: Matsui, On Correlation between the order of S-Boxes 
and the Strength of DES.  Eurocrypt,94.
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DES Data

P

1   2   3   4   5   6    7   8  9  10  11  12  13  14  15  16 

16   7  20  21  29  12   28  17  1  15  23  26   5  18  31  10 

17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32 

2   8  24  14  32  27   3   9  19  13  30   6  22  11   4  25 

• Note on applying permutations:  For permutations of bit positions, like P above, 

the table entries consisting of two rows, the top row of which is “in order” 

means the following.  If t is above b, the bit at b is moved into position t in the 

permuted bit string.  For example, after applying  P, above, the most significant 

bit of the output string was at position 16 of the input string.

JLM 20081006
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S Boxes as Polynomials over GF(2)

1,1: 
56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+1
35+134+1346+1345+13456+125+1256+1245+123+12356+1234+12346

1,2: 
C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+2
34+2346+1+15+156+134+13456+12+126+1256+124+1246+1245+12456
+123+1236+1235+12356+1234+12346 

1,3: 
C+6+56+46+45+3+35+356+346+3456+2+26+24+246+245+236+16+15+1
45+13+1356+134+13456+12+126+125+12456+123+1236+1235+12356+
1234+12346 

1,4: 
C+6+5+456+3+34+346+345+2+23+234+1+15+14+146+135+134+1346+1
345+1256+124+1246+1245+123+12356+1234+12346 

Legend: C+6+56+46 means 1x6x5x6x4x6

JLM 20081006
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Decomposable Systems

• Ek1||k2(x)= E’k1(x) || E’’k2(x)

• Good mixing and avalanche condition

m t 2mt m2t

2 32 264 233

4 16 264 218

JLM 20081006
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Feistel Ciphers defeat simple attacks

• After 2 to 4 rounds to get flat statistics.

• Parallel system attack
– Solve for key bits or constrain key bits

ki(1)= a11(K)p1 c1 + a12(K)p2 c1 +…+ a1N(K)pncn

…            …            …           …

ki(m)= am1(K)p1 c1 + am2(K)p2 c1 +…+ amN(K)pncn

• Solving Linear equations for coefficients determining cipher
c1= f11(K)p1+ f12(K)p2+…+ f1n(K)pn

c2= f21(K)p1+ f22(K)p2+…+ f2n(K)pn

…            …            …           …

cm= fm1(K)p1+ fm2(K)p2+…+ fmn(K)pn

• Even a weak round function can yield a strong Feistel
cipher if iterated sufficiently.
– Provided it’s non-linear

JLM 20081006
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DES Attacks: Exhaustive Search

• Symmetry DES(k  1, x  1)=DES(k, x)  1

• Suppose we know plain/cipher text pair (p,c)
for(k=0;k<256;k++) {

if(DES(k,p)==c) {

printf(“Key is %x\n”, k);

break;

}

}

• Expected number of trials (if k was chosen at random) 

before success: 255

JLM 20081006
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DES Attacks: Exhaustive Search

• Poor random number generator: 20 bits of entropy

• How long does it take?

• 220 vs 256

• Second biggest real problem

• First biggest: bad key management

• Symmetric ciphers are said to be secure in practice if no 

known attack works more efficiently than exhaustive 

search.  Note that the barrier is computational not 

information theoretic.
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Suppose you decide the keyspace is 

too small?

• Can you increase security by encrypting twice or more?

– E’(k1 || k2, x)= E(k1, E(k2,x))

• Answer:  Maybe.

• Three times is the charm (triple DES).

• If you do it twice, TMTO attack reduces it to little more 

than one key search time (if you have a lot of memory).

JLM 20081006
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Random mappings

• Let Fn denote all functions (mappings) from a finite domain of size n to a 
finite co-domain of size n

• Every mapping is equally likely to be chosen, | Fn | = nn the probability 
of choosing a particular mapping is 1/ nn

• Example.  f : {1, 2, ….. 13}  {1, 2, …. 13}

• As n tends to infinity, the following are expectations of some parameters 
associated with a random point in {1, 2, … n} and a random function 
from Fn: 

(i) tail length: √(n/8) (ii) cycle length: √(  n/8) (iii) rho-length: √ ( n/2)

Graphic by Maithili Narasimha



Time memory trade off (“TMTO”)

• If we can pre-compute a table of (k, Ek(x)) for a fixed 

x, then given corresponding (x,c) we can find the key 

in O(1) time.

• Trying random keys takes O(N) time (where N, 

usually, = 2k is the number of possible keys)

• Can we balance “memory” and “time” resources?

• It is not a 50-50 proposition.  Hellman showed we 

could cut the search time to O(N(1/2)) by precomputing

and storing O(N(1/2)) values.

35
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Chain of Encryptions

• Assume block length n and key length k are equal: n = k

• Construct chain of encryptions:

SP = K0

K1 = E(P, SP)

K2 = E(P, K1)

:

:

EP = Kt = E(P, Kt1)

• Pre-compute m encryption chains, each of length t +1

• Save only the start and end points

36JLM 20081006 Slide adapted from 

Mark Stamp
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TMTO Attack

• To attack a particular unknown key K

– For the same chosen P used to find chains, we know 

C where C = E(P, K) and K is unknown key

– Compute the chain (maximum of t steps)

X0 = C,  X1 = E(P, X0),  X2 = E(P, X1),…

• Suppose for some i we find Xi = Epj

• Since C = E(P, K) key K should lie before ciphertext C in 

chain!

37JLM 20081006 Slide adapted from 
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DES TMTO

• Suppose block cipher has k = 56

• Suppose we find m = 228 chains each of length t = 228

and no chains overlap (unrealistic)

• Memory: 228 pairs (SPj, EPi)

• Time: about 228 (per attack)

– Start at C, find some EPj in about 227 steps

– Find K with about 227 more steps

• Attack never fails!

38
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But things are a little more complicated

• Chains can cycle and merge

• False alarms, etc.

• What if block size not equal key length?

– This is easy to deal with

• To reduce merging

– Compute chain as F(E(P, Ki1)) where F permutes the bits

– Chains computed using different functions can intersect, but they will 

not merge

EP

SP

CK

39
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TMTO in Practice

• Let

– m = random starting points for each F

– t = encryptions in each chain

– r = number of “tables”, i.e., random functions F

• Then mtr = total pre-computed chain elements

• Pre-computation is about mtr work

• Each TMTO attack requires 

– About mr “memory” and about tr “time”

• If we choose m = t = r = 2k/3 then probability of success is 

at least 0.55.

40
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Success Probability

• Throw n balls into m urns

• What is expected number of urns 

that have at least one ball?

– See Feller, Intro. to Probability Theory

• Why is this relevant to TMTO 

attack?

– “Urns” correspond to keys

– “Balls” correspond to constructing 

chains

• Assuming k-bit key and m,t,r

defined as previously discussed 

• Then, approximately,

P(success) = 1  emtr/k

41
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Group theory and DES

• What is the minimum length of a product of involutions 

from a fixed set required to generate Sn?

• What does this have to do with the number of rounds in 

a cipher?

• How does this affect the increased security by 

“enciphering twice” with different keys?

• Theorem (Coppersmith and Grossman): If sK(L,R)= 

(Lf(E(R) K ,R), < t , sK >= AN, N= 2n.

• Note (Netto): If a and b are chosen at random from Sn

there is a good chance (~¾) that <a,b>= An or Sn .

JLM 20081006



43

DES is not a group

• Set E1(x)= DES0xffffffffffffff(x), E0(x)= DES0x00000000000000(x).

• F(x)= E1(E0(x)). 

• There is an x: Fm(x)=x, m~232, a cycle length.

• If |F|=n, m | n.

• Suppose DES is closed under composition so 

F=Ek=DESk.

• Ek
i= Ek

j, Ek
(j-i)= I. 0<=i<j<=256.

• Coppersmith found lengths of cycles for 33 plaintexts 

and the LCM of these cycle lengths > 2277.
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If DES were a group…

• Suppose EK1(EK2(x))=EK3(x), that there are N possible 

keys, plaintexts and ciphertexts and that for a given 

plaintext-ciphertext pair there is only one possible key 

then there is a birthday attack that finds the key in 

O(N(1/2)).

• Construct DK1(x) for O(N(1/2)) random keys, K1 and EK2(x) 

for O(N(1/2)) random keys, K2.  If there is a match, 

c=EK1(EK2(x)).  This has the same effect as finding K3.

JLM 20081006
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DES Key Schedule

C0D0= PC1(K)

Ci+1 = LeftShift(Shifti, Ci), Di+1 = LeftShift(Shifti, Di),

Ki= PC2(Ci ||Di)

Shifti= <1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1>

Note: Irregular Key schedule protects against related key 
attacks. [Biham, New Types of Cryptanalytic Attacks 
using Related Keys, TR-753, Technion]

JLM 20081006
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Weak Keys

• DES has:

– Four weak keys k for which Ek(Ek(m)) = m.

– Twelve semi-weak keys which come in pairs k1

and k2 and are such that Ek1(Ek2(m)) = m. 

– Weak keys are due to “key schedule” algorithm

JLM 20081006
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How Weak Keys Arise

• A 28 bit quantity has potential symmetries of period 

1,2,4,7, and 14.

• Suppose each of C0 and D0 has a symmetry of period 

1; for example C0 =0x0000000, D0= 0x1111111.  We 

can easily figure out a master key (K) that produces 

such a C0 and D0.  

• Then DESK(DESK(x))=x.

JLM 20081006
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Interlude: Useful Math for Boolean 

Functions

• Algebraic Representations

• Linear Functions

• Affine approximations

• Bent Functions: functions furthest from linear

• Hadamard transforms

• MDS, linear codes, RS codes

• Random Functions

• Correlation and Correlation Immunity

• Some Notation:
– Let L1(P)  L2 (C) = L3(K) c with probability pi

– ei= |1- pi| called the “bias”

JLM 20081006
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Boolean Functions

• For a set of Boolean functions D, d(f,g)=#{X|f(X)  g(X)}.

• Distance: For Boolean function f(X) and g(X),  d(f,D)= 

min[g(X)eD] d(f,g)

• Affine function: h(x)= a1x1 a2x2  … anxn+c

• nl(f) denotes the minimum distance between f(X) and the 

set of affine functions  Daffine. nl(f)= d(f, Daffine), Daffine= 

RM(1,n).

• Balance: f(X) is balanced iff there is an equal number of 0’s 

and 1’s in the output of f(X).

JLM 20081006
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Algebraic Representations

• Algebraic normal form (ANF):

• Degree: deg(f),the highest degree term in ANF.

– Example 

f(X)= x1+x2, deg(f)=1

g(X)=x1x2, deg(g)=2

• Lagrange Interpolation Theorem: Every function in n 
variables can be expressed as a polynomial (hence ANF).

• Degree is not the best measure of nonlinearity.  

f(x1,…,xn)=  x1  …  xn  x1…xn has high degree but 
differs from a perfectly linear function at only 1 of 2n possible 
arguments.
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)()(

21...121

10


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


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Correlation Immunity

• f(X) is correlation immune of order t if f(X) is not correlated 

with any t-subset of {x1,x2,…,xn}. That is,

• f(X) is t-resilient if f(X) is balanced and f(X) is correlation 

immune of order t.

• Theorem:  Let f(x1,x2,…xn) be a balanced boolean function 

of algebraic degree d in n variables which is t-th order 

correlation immune then 

– d+tcn-1, 1c tcn-2

– d+tcn, t=n-1

)0)(Pr(),...,|0)(Pr(
11

 XfbxbxXf
tt iiii

2

1
)0)(Pr(),...,|0)(Pr(

11
 XfbxbxXf

tt iiii
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Mathematics of Boolean Functions

• Correlation

– c(f,g) = P[f(x)=g(x)]- P[f(x)  g(x)]. 

– P[f(x)=g(x)]= .5(1+c(f,g))

• Hadamard

– Sf(w)= 2-nSx (-1)f(x)+w·x

• Parseval

– .Sw Sf(w)2=1

• Bent functions

– Furthest from linear (all Hadamard coefficients are 

equal)

JLM 20081006
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Simplified DES

• Li+1= Ri, each 6 bits.

• Ri+1= Li  f(Ri,Ki)

• K is 9 bits.

• E(x)=  (x1 x2 x4 x3 x4 x3 x5 x6)

• S1

– 101 010 001 110 011 100 111 000

– 001 100 110 010 000 111 101 011

• S2

– 100 000 110 101 111 001 011 010

– 101 011 000 111 110 010 001 100

• Ki is 8 bits of K starting at ith bit.



L0R0

L4 R4

F

F

F

F

L0

L1

L2

L3

R0

R1

R2

R3

L4 R4
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Differential Cryptanalysis – 3R

• L4 R1=f(k3,R2).            ………. (1)

• R4 L3=f(k4,R3).            ………. (2)

• L4=R3, L2=R1, L3=R2.

• 1& 2 R4L3R2L1=f(k2,R1)f(k4,R3).

• L3=R2 R4L1=f(k2,R1)f(k4,R3).

• R4L1=f(k2,R1)f(k4,R3).  ……..(3)

• R4*L1*=f(k2,R1*)f(k4,R3*). ....(4)

• 3&4 R4
‘L1

‘=f(k2,R1
*) f(k4,R3

*) 
f(k2,R1

*)f(k4,R3
*).

• R1=R1
*
R4

’L1
’=f(k4,R3)f(k4,R3

*).
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

L1 R1

F

F

F

L4 R4

R2

R3

R1L1

L2

L3
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Differential Cryptanalysis – 3R

L1, R1   : 000111 011011

L1*, R1*: 101110 011011

L1’, R1’: 101001 000000

L4, R4   : 000011 100101

L4*, R4*: 100100 011000

L4’, R4’: 100111 111101

E(L4)   : 0000 0011

E(L4’)  : 1010 1011

R4’L1’ : 111 101  101 001= 010 100.

S1’: 1010  010(1001,0011).

S2’: 1011  100(1100,0111).

(E(L4)k4)1..4=1001|0011, k4= 1001|0011.

(E(L4)k4)5..8= 1100|0111,k4= 1111|0100.

K= 00x001101

JLM 20081006



L1 R1

F

F

F

L4 R4

R2

R3

R1L1

L2

L3
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Differential Cryptanalysis 4R

Pick 

L0’, R0’: 011010 001100.

Then

E(R0’):   0011 1100.

0011  011 with p=3/4

1100  010 with p=1/2

So

f(R0’, k1)= 011 010, p=3/8.

Thus

L1’, R1’: 001100 000000, p=3/8.

• 3/8 of the pairs with this differential produce 

this result. 5/8 scatter the output differential 

at random.  These “vote” for 1100 and 0010.



L0R0

L4 R4

F

F

F

F

L0

L1

L2

L3

R0

R1

R2

R3

L4 R4
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Differential Cryptanalysis of DES

• Best 16 rounds attack uses 13 round approximation

– Requires 247 texts

– Not much better than exhaustive search

• Converting Chosen Plaintext to Corresponding plaintext 

attack

– If m pairs are required for chosen plaintext attack then 

√(2m) 232 are required for corresponding plaintext
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Comments on Differential 

Cryptanalysis of full DES

# 

Rounds

Needed 

pairs

Analyzed 

Pairs

Bits 

Found

# Char 

rounds

Char 

prob

S/N Chosen 

Plain

4 23 23 42 1 1 16 24

6 27 27 30 3 1/16 216 28

8 215 213 30 5 1/1048

6

15.6 216

16 257 25 18 15 2-55.1 16 258
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DES S-Box Design Criteria

• No S-box is linear or affine function of its input.

• Changing one bit in the input of an S-Box changes at 
least two output bits.

• S-boxes were chosen to minimize the difference 
between the number of 1’s and 0’s when any input bit is 
held constant.

• S(X) and S(X001100) differ in at least 2 bits

• S(X)  S(X11xy00)
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Comments on effect of components 

on Differential Cryptanalysis

• E

– Without expansion, there is a 4 round iterative characteristic with 

p= 1/256

• P

– Major influence.  If P=I, there is a 10 round characteristic with p= 

2-14.5 (but other attacks would be worse).

• S order

– If S1, S7 and S4 were in order, there would be a 2 round iterative 

characteristic with p= 1/73.  However, Matsui found an order 

(24673158) that is better and also better against Linear crypto.  

Optimum order for LC resistance: 27643158.

• S properties

– S boxes are nearly optimum against differential crypto
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Linear Cryptanalysis

• Invented by Mitsuru Matsui in 1993.

• 16-round DES can be attacked using 243 known plaintexts 

- get 26 bits, brute force the remaining 30 bits

– 243 = 9 x 1012 = 9 trillion known plaintext blocks

• Also exploits biases in S-boxes, which were not designed 

against the attack

• A DES key was recovered in 50 days using 12 HP9735 

workstations in a lab setting
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Linear Cryptanalysis

• Basic idea:

– Suppose ai(P)  i(C) = gi(k) holds with gi, linear, for i= 

1,2,…,m.

– Each equation imposes a linear constraint and reduces 

key search by a factor of 2.  

– Guess (n-m-1) bits of key.  There are 2(n-m-1).  Use the 

constraints to get the remaining keys.

• Can we find linear constraints in the “per round” functions 

and knit them together?

• No!  Per Round functions do not have linear constraints.
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Linear Cryptanalysis

• Next idea 
– Can we find a(P)  (C) = g(k) which holds with g, linear, 

with probability p?

– Suppose a(P)  (C) = g(k), with probability p>.5.

– Collect a lot of plain/cipher pairs.  

– Each will “vote” for g(k)=0 or g(k)=1.

– Pick the winner.

p= 1/2+e requires ce-2 texts (we’ll see why later). e  is called 
“bias”.
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Linear Cryptanalysis Notation

• Matsui numbers bits from 
right to left, rightmost bit is bit 
0.  FIPS (and everyone else) 
goes from left to right starting 
at 1.  I will use the FIPS 
conventions.  To map Matsui 
positions to everyone else’s:
– M(i)= 64-EE(i).  For 32 bits 

make the obvious change.

• Matsui also refers to the two 
potions of the plan and 
ciphertext as

• (PH, PL), (CH, CL) we’ll stick 
with (PL, PR), (CL, CR).



PL PR

CL CR

F
X1

F

X2



F

X3



k1

k2

k3

Y1

Y2

Y
3
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Linear and near linear dependence 

• Here is a linear relationship over GF(2) in S5 that holds with 

probability 52/64 (from NS5(010000,1111)= 12:

• X[2]  Y[1]  Y[2]  Y[3] Y[4]=K[2] 1,

• Sometimes written: X[2]  Y[1,2,3,4]=K[2] 1

• You can find relations like this using the “Boolean Function” 

techniques we describe a little later

• Inside full round (after applying P), this becomes

X[17]F(X,K)[3,8,14,25]= K[26]1

S5
K[1..6]

Y[1..4]

X[1..6]
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Linear Cryptanalysis of 3 round DES

X[17] Y[3,8,14,25]= K[26] 1,  p= 52/64

• Round 1

X1[17] Y1[3,8,14,25]= K1[26] 1

PR[17]  PL[3,8,14,25] R1[3,8,14,25]= 
K1[26] 1

• Round 3

X3[17] Y3[3,8,14,25]= K3[26] 1

R1[3,8,14,25]  CL[3,8,14,25]  CR[17] = 
K3[26] 1

• Adding the two get:

PR[17]  PL[3,8,14,25]  CL[3,8,14,25] 
CR[17] = K1[26]  K3[26]

Thus holds with p= (52/64)2+ (12/64)2=.66



PL PR

CL CR

F
X1

F
X2



F
X3

k1

k2

k3

Y1

Y2

Y3

L1

L2

L0 R0

R1

R2
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Piling Up Lemma

• Let Xi (1c icn) be independent random variables whose 

values are 0 with probability pi.  Then the probability that X1

 X2  ...  Xn = 0 is 

½+2n-1 P [1,n] (pi-1/2)

Proof:  

By induction on n.  It’s tautological for n=1.  

Suppose Pr[X1  X2  ...  Xn-1= 0]= q= ½+2n-2 P [1,n-1] (pi-1/2).  Then

Pr[X1  X2  ...  Xn= 0]= qpn +(1-q)(1-pn)=½+2n-1 P [1,n] (pi-1/2) as 

claimed.
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Mathematics of biased voting

Central Limit Theorem.  Let X, X1 , … , Xn be independent, identically 

distributed random variables and let Sn = X1 + X2 + … + Xn.  Let m= E(X) 

and s2=E((X-m)2). Finally set Tn= (Sn-nm)/(sn), n(x)= 1/(2 exp(-x2/2)

and 

N(a,b)= [a,b] n(x) dx.  

Then 

Pr(ac Tncb)= N(a,b).

n is called the Normal Distribution and is symmetric around x=0. N(-,0)= 

½.

N(-.5, .5)=.38, N(-.75,.75)= .55, N(-1,1)= .68, N(-2,2)=.9546, N(-3,3)= .9972
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Application of CLT to LC

• p= ½+e, 1-p= ½-e.  Let L(k,P,Ek(P))=0 be an equation over GF(2) that 

holds with probability p. Let Xi be the outcome (1 if true, 0 if false) of 

an experiment picking P and testing whether L holds for the real k. 

• E(Xi)= p, E((Xi-p)2)= p(1-p)2 + (1-p)(0-p)2= p(1-p). Let Tn be as 

provided in the CLT.  

• Fixing n, what is the probability that more than half the Xi are 1 (i.e.-

What is the probability that n random equations vote for the right key)?

• This is just Pr(Tns –en/ (1/4 – e2)).  If n=d2e -2, this is just 

• Pr(Tns –d/ (1/4 – e2)) or, if e is small Pr(Tns-2d.

• Some numerical values: d= .25, N(-.5,  = ., d= .5, N(-1,  = .,

d= 1, N(-2,  = ., d= 1.5, N(-3,  = ..
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Matsui’s Per Round Constraints

Label Equation Pr

A X[17] Y[3,8,14,25]=K[26] 12/64

B X[1,2,4,5] Y[17]=K[2,3,5,6] 22/64

C X[3] Y[17]=K[4] 30/64

D X[17] Y[8,14,25]=K[26] 42/64

E X[16,20] Y[8,14,25]=K[25,29] 16/64

Matsui: Linear Cryptanalysis Method for DES Cipher.  Eurocrypt, 98.
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15 Round Linear Approximation

Pattern: E-DCA-ACD-DCA-A.  Note Li=Ri-1, Li  Ri+1=Li  Li+2.

1 PL[8,14,25]      R2[8,14,25]    PR[16,20]   =   K1[23,25]

3 L3[8,14,25]    R4[8,14,25]    R3[17] =   K3[26]

4 L4[17]    R5[17]    R4[3] =   K4[4]

5 L5[3,8,14,25]    R6[3,8,14,25]    R5[17] =   K5[26]

7 L7[3,8,14,25]    R8[3,8,14,25]    R7[17] =   K7[26]

8 L8[17]    R9[17]    R8[3] =   K8[4]

9 L9[8,14,25]    R10[8,14,25]    R9[17] =   K9[26]

11 L11[8,14,25]    R12[8,14,25]    R11[17] =  K11[26]

12 L12[17]    R13[17]    R12[3] =  K12[4]

13 L13[3,8,14,25]   R14[3,8,14,25]   R13[17] =  K13[26]

15 L15[3,8,14,25]   CL[3,8,14,25]    CR[17]        =  K15[26]
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15 Round Linear Approximation

Adding and canceling:

PL[8,14,25]  PR[16,20]   CL[3,8,14,25]    CR[17] =  

K1[23,25]  K3[26]  K4[4]  K5[26]  K7[26]  K8[4]

K9[26]  K11[26]  K12[4]  K13[26] K15[26]

which holds (by Piling-up Lemma) with the indicated 

probability.
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Matsui’s Use of Constraints

Rounds Equation Pr Equations 

Used

3 PL[3,8,14,25] PR[17] CL[3,8,14,25] 

CR[17]=K1[26]  K3[26] 

½+1.56x2-3 A-A

5 PL[17] PR[1,2,4,5,3,8,14,25] CL[17] 

CR[1,2,4,5,3,8,14,25]=K1[2,3,5,6]  
K2[26]  K4[26]  K5[2,3,5,6] 

½+1.22x2-6 BA-AB

15 PL[8,14,25] PR[16,20] CL[3,8,14,25] 

CR[17]=K1[9,13]  K3[26]  K4[26]  
K5[26]  K7[26]  K8[26]  K9[26]  K11[26] 

 K12[26]  K13[26]  K15[26] 

½+1.19x2-22 E-DCA-ACD-

DCA-A

16 PL[8,14,25] PR[16,20] CL[17] 

CR[1,2,4,5,3,8,14,25]=K1[9,13]  K3[26] 

 K4[26]  K5[26]  K7[26]  K8[26]  
K9[26]  K11[26]  K12[26]  K13[26]  
K15[26]  K16[2,3,5,6] 

½-1.49x2-24 E-DCA-ACD-

DCA-AB
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Linear Cryptanalysis of full DES

Can be accomplished with ~247 known plaintexts

• Using a slightly more sophisticated estimation 15 

round approximation (with 247 work factor)

– For each 48 bit last round subkey, decrypt ciphertext

backwards across last round for all sample ciphertexts

– Increment count for all subkeys whose linear expression 

holds true to the penultimate round

– This is done for the first and last round yielding 7 key bits 

each (total: 14) 
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Linear Cryptanalysis of full DES

• Can be accomplished with ~243 known plaintexts, using a more 
sophisticated estimation 14 round approximation

– For each 48 bit last round subkey, decrypt ciphertext backwards 
across last round for all sample ciphertexts

– Increment count for all subkeys whose linear expression holds 
true to the penultimate round

– This is done for the first and last round yielding 13 key bits each 
(total: 26) 

• Here they are:

PR[8,14,25] CL[3,8,14,25] CR[17]=K1[26]  K3[4]  K4[26]  K6[26]  
K7[4]  K8[26]  K10[26]  K11[4]  K12[26]  K14[26] 

with probability ½ -1.19x2-21

CR[8,14,25] PL[3,8,14,25] PR[17]=K13[26]  K12[24]  K11[26]  K9[26]  
K8[24]  K7[26]  K5[26]  K4[4]  K3[26]  K1 [26] 

with probability ½ -1.19x2-21
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Block Cipher Modes of Operation

• ECB: y i = EK(xi ), 

• CBC: y0 = IV, yi = EK(xi  y i-1).

• OFB: z0 = IV, z i+1 = EK(zi ), yi = xi  zi.

• CFB: y0 = IV, zi= EK(y i-1), y i = x i  z I

• CTR: xj= xj-1+1, oj= L8(EK(xj-1)), cj= xj  oj

Avoid ECB since it leaks too much information
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Review: Arithmetic of GF(2n)

• Suppose m(x) is an irreducible polynomial of degree n over GF(2): 

m(x)= xn + mn-1 xn-1 + … + m0.

• Let a(x) and b(x) be polynomials of degree <n.  They form a vector 

space of dimension n over GF(2).  Coefficients of like exponent 

“add”: (an-1 xn-1 + … + a0)+ (bn-1 xn-1 + … + b0)= (an-1+ bn-1)x
n-1 + … + 

a0 + b0)

• Euclidean algorithm: for a(x), b(x) polynomials of degrees mcn, there 

are polynomials q(x), r(x), deg r(x) <n such that a(x)=q(x)b(x)+r(x)

• Polynomials over GF(2) modulo m(x) form a field (with 2n elements).  

Multiplication is multiplication of polynomials mod m(x).

• Inverses exist :  If a(x) and b(x) are polynomials their greatest 

common denominator d(x) can be written as

d(x)= a(x)u(x)+b(x)v(x) for some u(x), v(x).

In particular if a(x) and b(x) are co-prime: 1= a(x)u(x)+b(x)v(x) for some 

u(x), v(x).
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Example of multiplication and inverse

• m(x)= x2 +x +1.  m(x) is irreducible (otherwise it would 

have a root in GF(2)

• x+(x+1) =1, 1+(x+1)= x

• (x+1)(x+1)= x2+2x+1=x2+1= (x) + (x2 +x +1)= x (mod 

m(x))

• (x+1) and m(x) are co-prime in fact,

1= (x+1) (x) + (x2 +x +1)(1)

• So “x” is the multiplicative inverse of “x+1” in GF(4).

• Usually elements of GF(2n) are written in place notation 

so x5+x3 +x2 +1=  101101.
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End
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