Next Quarter

- 2-4 weeks to cover 16, 17, 18 and results on boolean functions.
- Rest on major reports:
 - Full Linear cryptanalysis of DES.
 - Full Differential cryptanalysis of DES.
 - Full Linear and differential cryptanalysis of FEAL.
 - Intro Algebraic cryptanalysis (including SFLASH) John.
 - An algebraic cryptanalysis.
 - Dobbertin's attack on MD4.
 - Chinese (Wang et. al) attack on SHA-1.
- Other topics (final quarter?)
 - Full factoring attack.
 - Full Elliptic Curve crypto selection, attacks, etc (3 weeks).
 - Full Discrete Log attack.
 - Full Re-estimation attack.
 - Random number analysis.
 - NIST Hash analysis.
 - Full Stream cipher analysis.

Cryptanalysis

Lecture Block 5: Cryptographic Hashes

John Manferdelli jmanfer@microsoft.com JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

jlm20081024

Cryptographic Hashes

- A cryptographic hash ("CH") is a "one way function," h, from all binary strings (of arbitrary length) into a fixed block of size n (called the size of the hash) with the following properties:
 - 1. Computing h is relatively cheap.
 - 2. Given y=h(x) it is infeasible to calculate a x' \neq x such that y=h(x'). ("One way," "non-invertibility" or "pre-image" resistance). Functions satisfying this condition are called One Way Hash Functions (OWHF)
 - Given u, it is infeasible to find w such that h(u)=h(w). (weak collision resistance, 2nd pre-image resistance).
 - 4. It is infeasible to find u, w such that h(u)=h(w). (strong collision resistance). Note $3\rightarrow 2$. Functions satisfying this condition are called Collision Resistant Functions (CRFs).

Cryptographic Hashes

- h must be compressive (otherwise copy of original binary string satisfies requirement)
- Just like symmetric ciphers ratio of work factor for computation of hash vs work factor to break hash should be very high.
- Adversary has complete information on computing hash and (obviously) can compute as many hashes from the target as she wants.

Observations on Cryptographic Hashes

- Hashes are a strong "checksum"
- OWHF and CRF conditions make CHs satisfy many of the properties of "random functions"
 - Small changes should create large changes (otherwise the preimage of near neighbors are near neighbors making collisions easy to find)
 - Small input changes should be statistically unrelated (uncorrelated) to changes in a subset of the hash bits
 - Analysis of CHs very similar to Symmetric Cipher techniques
- Popular practical cryptographic hashes
 - MD4, MD5 (now "broken")
 - SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 (last 4 are "SHA-2")
 - RIPEMD

Observations

- Collision Resistance $\rightarrow 2^{nd}$ pre-image resistance
- Let $f(x) = x^2 1 \pmod{p}$.
 - f(x) acts like a random function but is not a OWHF since square roots are easy to calculate mod p.
- Let $f(x) = x^2 \pmod{pq}$.
 - f(x) is a OWHF but is neither collision nor 2nd pre-image resistant
- If either $h_1(x)$ or $h_2(x)$ is a CRHF so is $h(x) = h_1(x) || h_2(x)$
- MDC+signature & MAC+unknown Key require all three properties
- Ideal Work Factors:

Туре	Work	Property
OWHF	2 ⁿ	Pre-image
		2 nd Pre-image
CRHF	2 ^{n/2}	Collision
MAC	2 ^t	Key recovery, computational resistance

What are Hash Functions Good for?

- Modification Detection Codes (MDCs): This is a strong checksum (integrity check). Sometimes called "unkeyed" hashes.
- Message Authentication Code (MACs): If shared secret is part of the hash, two parties can determine authenticated integrity with CHs. Called "keyed hashes".
- Message Digests (MDs): Encrypting (with private key) the CH of a message (its MD) acts as a certification that the message was "approved" by possessor of private key. This is called a Digital Signature. [Note: you could "sign' the whole message rather than the hash but this would take oodles of time by comparison.]

What are Hash Functions Good for?

- Uniquely and securely identifies bit streams like programs. Hash is strong name for program.
- Entropy mixing: Since CHs are random functions into fixed size blocks with the properties of random functions, they are often used to "mix" biased input to produce a "seed" for a psuedo-random number generator.
- Password Protection: Store salted hash of password instead of password (Needham).
- Bit Committment

MACs using Hashes

- Prefix and suffix attacks
- Hash $(k_1, Hash(k_2, m))$
- Hash(k|p|m|k)
- $HMAC_{K}(x) = SHA-1(K \oplus opad || SHA-1(K \oplus ipad)||x)$

One-Way Functions

Hashes come from two basic classes of one-way functions

- Mathematical
 - Multiplication: Z=X•Y
 - Modular Exponentiation: Z = Y^X (mod n) (Chaum vP Hash)
- Ad-hoc (Symmetric cipher-like constructions)
 - Custom Hash functions (MD4, SHA, MD5, RIPEMD)

Attacks on Cryptographic Hashes

- Birthday (Yuval) attacks
 - Probability of collision determined by "Birthday Paradox" calculation:
 - (1-1/n) (1-2/n) ... (1-(k-1)/n)= (n!/k!)/n^k
 - Probability of collision is >.5 when $k^2 > n$.
 - Need 2⁸⁰ blocks for SHA.
 - 1+x $\Box e^{x}$, $\Box_{i=1}^{i=k}$ (1-i/n) $\Box e^{-k(k-1)/(2n)}$
- Dobbertin Attacks on MD4
- Attacks on 2nd preimage
 - (Old) If you hash 2^t messages, the average work to find a 2nd primage is 2^{n-t}
 - (New) If you hash 2^t blocks, the average work to find a 2nd primage is t2^{n/2+1}+ 2^{n-t+1} [Kelsey Schneier]
 - Appending length doesn't help against 2nd pre-image attacks

Attacks on Hashes

- Selective and Existential Forgery
- Key Recovery for MAC
- Chaining
 - Meet in Middle
 - Fixed Point
- Padding
- Differential

Attacks on Cryptographic Hashes

- Berson (1992) using differential cryptanalysis on 1 round MD-5.
- Boer and Bosselaers (1993), Pseudo collision in MD5.
- Dobbertin (1996), Collisions in compression function. Attacks inspired RIPEMD proposal.
- Biham and Chen (2004), Collisions in SHA-0.
- Chabaud and Joux (2004), Collisions in SHA-0.
- Wang, Feng, Lai, Yu, (2004), MD4, MD5, RIPEMD
- Wang et al, (2004, 2005), SHA-1
- SHA-1 has stood up best: best known theoretical attack (11/05) requires 2⁶³ operations.

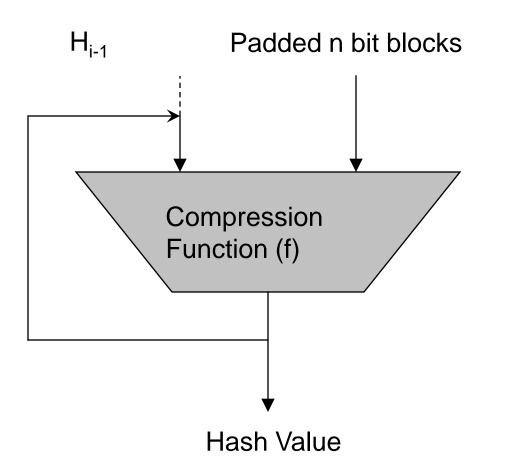
Birthday Attacks

- Probability of collision determined by "Birthday Paradox" calculation:
 - $(1-1/n) (1-2/n) \dots (1-(k-1)/n) = (n!/k!)/n^k$
 - Probability of collision is >.5 when $k^2 > n$.
 - Need 2⁸⁰ blocks for SHA.
 - 1+x $\Box e^x$, $\Box_{i=1}^{i=k}$ (1-i/n) $\Box e^{-k(k-1)/(2n)}$

Chaum-vanHeijst-Pfitzmann Compression Function

- Suppose p is prime, q=(p-1)/2 is prime, a is a primitive root in F_p, b is another primitive root so a^x=b (mod p) for some unknown x).
- g: {1,2,...,q-1}² → {1,2,...,p-1}, q=(p-1)/2 by:
 g(s, t) = a^s b^t (mod p)
- Reduction to discrete log: Suppose g(s, t)= g(u, v) can be found. Then a^s b^t (mod p)= a^u b^v (mod p).
 - So a^{s-u} (mod p)= b^{v-t} (mod p). Let b= a^x (mod p). Then (s-u)=x(y-t) (mod p-1).
 - But p-1= 2q so we can solve for x, thus determining the discrete log of b.

Merkle/Damgard Construction



Input: x=x₁||...||x_t Input is usually padded

 $H_0 = IV$ $H_i = f(H_{i-1}, x_i)$ $h(x) = g(h_t)$

JLM 20060105 12:16

Proofs about compression function

- Theorem: If g: {0,1}^m → {0,1}ⁿ, for a sequence of n bit blocks, x= x₁, x₂, ..., x_t, we can define a hash function h: {0,1}* → {0,1}ⁿ by H₀= c, H_{i+1}= g(H_i||x_i) with h(x)=H_t. h is collision resistant if g is.
 - Proof: Let $\mathbf{x} = x_1, x_2, ..., x_t$ and $\mathbf{x'} = x_1', x_2', ..., x_{t'}$ be two strings with $h(\mathbf{x}) = h(\mathbf{x'})$ and let H_i , $H_{i'}$ be the intermediate values. Suppose there is an i<t: $H_{t-i} = H_{t'-i}$ and $H_{t-i-1}! = H_{t'-i-1}'$. Then $g(H_{t-i-1}||x_i) = g(H_{t-i-1}'||x_i')$ so g is not collision resistant. Otherwise $H_i = H_i'$ and either $x_i = x_i'$, i<=t, in which case there is nothing to prove or some $x_i! = x_i'$ (but then $g(H_i||x_i) = g(H_i'||x_i')$ and again g is not collision resistant) or $g(H_{t-1}) = g(H_i'||x_i')$, j>t and again g is not collision resistant.

Technique for CHs from Block Ciphers

Let input be $x = x_1 || x_2 || ... || x_t$ where each x_i is n bits long. Let g be a function taking an n bit input to an m bit input. Let E(k, x) be a block cipher with m bit keyspace and n bit block. Let $H_0 = IV$.

<u>Construction 1:</u> $H_i = E(g(H_{i-1}), x_i) \oplus H_{i-1}$

<u>Construction 2:</u> $H_i = E(x_i, H_{i-1}) \oplus H_{i-1}$

<u>Construction 3:</u> $H_i = E(g(H_{i-1}), x_i) \oplus x_i \oplus H_{i-1}$

Note: Because of collisions n should be >64. Ideally, m=n and g= id. DES with n= 64 is too small. AES with n=m=128 is better.

Nostradamus ("herding") attack

- Let h be a Merkle-Damgard hash with compression function f and initial value IV. Goal is to hash a prefix value (P) quickly by appending random suffixes (S).
- Procedure
 - Phase 1: Pick k, generate K=2^k random d_{0i} from each pair of the values $f(IV ||d_{i,i+1})$ and two messages $M_{0,j}$; $M_{1,j}$ which collide under f. Call this value $d_{1,j}$ this takes effort $2^{n/2}$ for each pair. Do this (colliding $d_{i,j}$; $d_{i+1,j}$ under $M_{i,j}$; $M_{i+1,j}$ to produce $d_{i,j+1}$ until you reach $d_{K,0}$). This is the diamond.
 - Publish $y = w(d_{K,0})$ where w is the final transformation in the hash as the hash (i.e. claim y = h(P||S).

Nostradamus ("herding") attack

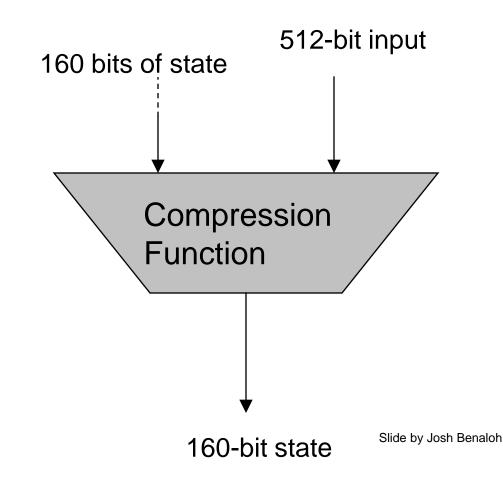
- The cost of phase 1 is $(2^k 1)2^{n/2}$.
- In phase 2, guess S' and compute T = f(IV||P||S').
- Keep guessing until T is one of the d_{ij}. Once you get a collision, follow a path through the M_{ij} to d_{K,0}, append these M_{ij} to P||S' and apply w to get right hash.
- Total cost: W= 2^{n-k-1} + 2^{n/2+k/2} + k2^{n/2+1}. k=(n-5)/3 is a good choice. For 160 bit hash, k=52.

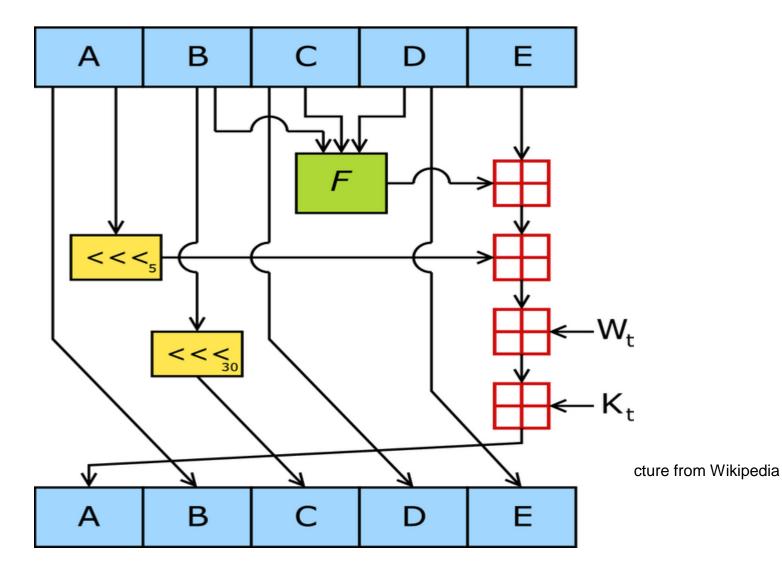
Multicollision (Joux)

- Iterative construction is vulnerable to multi-collision
- Suppose $M_1; M_1'; M_2; M_2'; \dots; M_t; M_t'$ all collide.
- From these we get 2^t collisions.
- If r people each have one of N possible birthdays, there is a greater than 50% chance of k collisions if r>N[□], □= k-1/k.

Random Oracle Model

- Let f be a OWF with trapdoor, (y₁, y₂) = (f(r); h(r)+m) is used as encryption.
- An oracle with *I requests L.*
- $Pr(guess right) = P(r in L) + \frac{1}{2} P(r not in L).$
- Set p = 1/2 + D,
- $\square <= \Pr(r \text{ in } L).$
- Canetti, Goldreich, Halevi constructed cryptosystem that is secure in the Random Oracle model but any secure for any concrete hash.





Padding

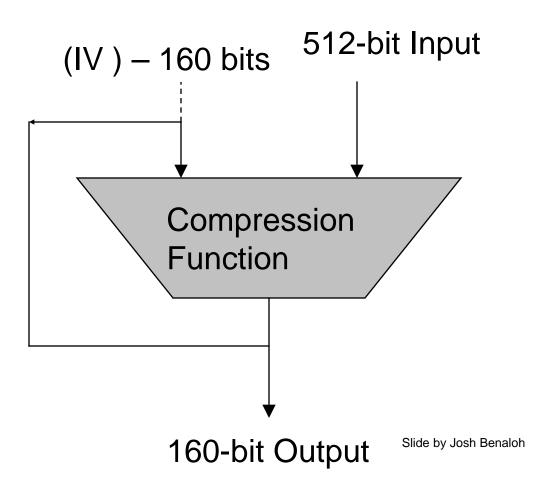
- Standard technique
 - Let last message block have k bits. If k=n, make a new block and set k= 0.
 - Append a 1 to last block leaving r=n-k-1 remaining bits in block.
 - If r>=64, append r-64 0s then append bit length of input expressed as 64 bit unsigned integer
 - If r<64, append n-r 0's (to fill out block), append n-64
 0's at beginning of next block then append bit length of input expressed as 64 bit unsigned integer

Winnowing and Chaffing (Rivest)

- Want to send 1001. Pick random stream (m_i) and embed message at positions (say) 3, 7, 8 14 MAC each packet (mm_i).
- Make sure MAC is correct only in message positions

Lai-Massey

 Assume the padding contains the length of the input string and that the input to the CH function, h, is at least two blocks long. Finding a 2nd pre-image for h with fixed IV requires 2ⁿ operations iff finding a 2nd pre-image for the compression function, f, with arbitrarily chosen H_{i-1} requires 2ⁿ operations where n is the number of bits of h's output.

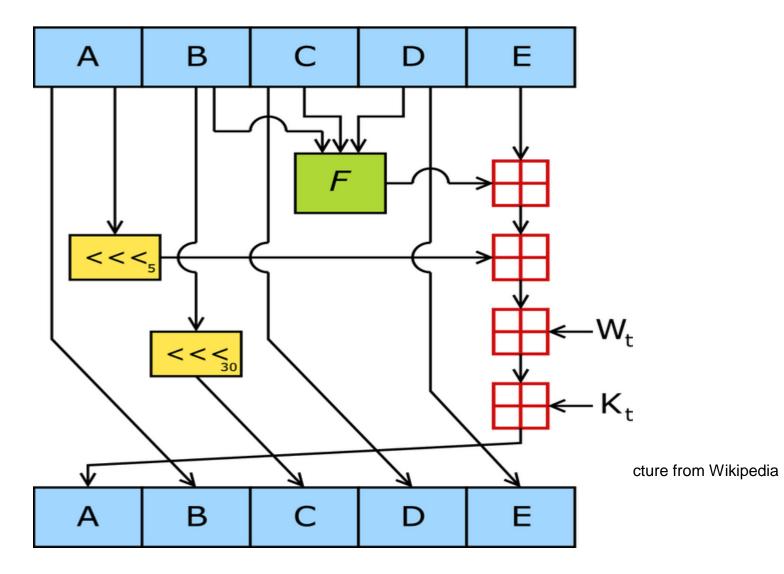


Depending on the round, the "non-linear" function f is one of the following.

 $f(X,Y,Z) = (X \land Y) \lor ((\neg X) \land Z)$ $f(X,Y,Z) = (X \land Y) \lor (X \land Z) \lor (Y \land Z)$ $f(X,Y,Z) = X \oplus Y \oplus Z$

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.
- Add in a round-dependent constant.
- Add in a portion of the 512-bit message.



SHA-1

A = 0x67452301, B = 0xefcdab89, C= 0x98badcfe, D= 0x10325476 E = 0xc3d2e1f0 $\mathbf{F}_{+}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = (\mathbf{X}\wedge\mathbf{Y})\vee((\neg\mathbf{X})\wedge\mathbf{Z}),$ t = 0, ..., 19 $F_+(X,Y,Z) = X \oplus Y \oplus Z$, t = 20, ..., 39 $\mathbf{F}_{+}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = (\mathbf{X}\wedge\mathbf{Y})\vee(\mathbf{X}\wedge\mathbf{Z})\vee(\mathbf{Y}\wedge\mathbf{Z}),$ t = 40, ..., 59 $F_{+}(X,Y,Z) = X \oplus Y \oplus Z, t = 60,...,79$ $K_{+}= 0x5a827999$, t= 0,...,19 $K_{+}= 0x6ed9eba1, t=20,...,39$ $K_{+} = 0 \times 8 f 1 b b c d c$, t = 40, ..., 59 $K_{+} = 0xca62c1d6, t=60,...,79$

JLM 20060105 12:16

Do until no more input blocks { If last input block Pad to 512 bits by adding 1 then 0s then 64 bits of length. M_i = input block(32 bits) i= 0,...,15 $W_{+} = M_{+}$, t= 0,...,15; $W_{+} = (W_{+-3} \oplus W_{+-8} \oplus W_{+-14} \oplus W_{+-16}) < < 1$ t = 16, ..., 79a= A; b= B; c= C; d= D; e= E; for(t=0 to 79) { $x = (a < <5) + f_+(b,c,d) + e + W_+ + K_+$ e= d; d=c; c= b<<<30; b=a; a=x;A+= a; B+=b; C+= c; D+= d; E+= e; 32

SHA-0

Absence of this term is only difference between SHA-0 and SHA-1

A = 0x67452301, B = 0xefcdab89, C= 0x98badcfe, D= 0x10325476 E = 0xc3d2e1f0 $\mathbf{F}_{+}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = (\mathbf{X}\wedge\mathbf{Y})\vee((\neg\mathbf{X})\wedge\mathbf{Z}),$ t = 0, ..., 19 $F_+(X,Y,Z) = X \oplus Y \oplus Z$, t = 20, ..., 39 $\mathbf{F}_{+}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = (\mathbf{X}\wedge\mathbf{Y})\vee(\mathbf{X}\wedge\mathbf{Z})\vee(\mathbf{Y}\wedge\mathbf{Z}),$ t = 40, ..., 59 $F_{+}(X,Y,Z) = X \oplus Y \oplus Z, t = 60,...,79$ $K_{+}= 0x5a827999, t= 0,...,19$ $K_{+}= 0x6ed9eba1, t=20,...,39$ $K_{+} = 0 \times 8 f 1 b b c d c$, t = 40, ..., 59 $K_{+} = 0xca62c1d6, t=60,...,79$ JLM 20060105 12:16

Do until no more input blocks { If last input block Pad to 512 bits by adding 1 then 0s then 64 bits of length. M_i = input block(32 bits) i= 0,...,15 $W_{+} = M_{+}, t = 0, ..., 15;$ $W_{t} = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) | < < 1,$ t = 16, ..., 79a= A; b= B; c= C; d= D; e= E; for(t=0 to 79) { $x = (a < < 5) + f_{t}(b,c,d) + e + W_{t} + K_{t}$ e= d; d=c; c= b<<<30; b=a; a=x;A+= a; B+=b; C+= c; D+= d; E+= e; 33

SHA-0 Strategy (Chabaud and Joux)

- Basic idea is to look for small differences that can be tracked through rounds like differential cryptanalysis.
- Consider three approximations to the SHA-0 compression function.
 - SHI-1
 - Use Xor instead of Add
 - Make f⁽ⁱ⁾ linear
 - SHI-2
 - Use Xor instead of Add
 - Restore f⁽ⁱ⁾ to original values
 - SHI-3
 - Restore Add
 - Make f⁽ⁱ⁾ linear

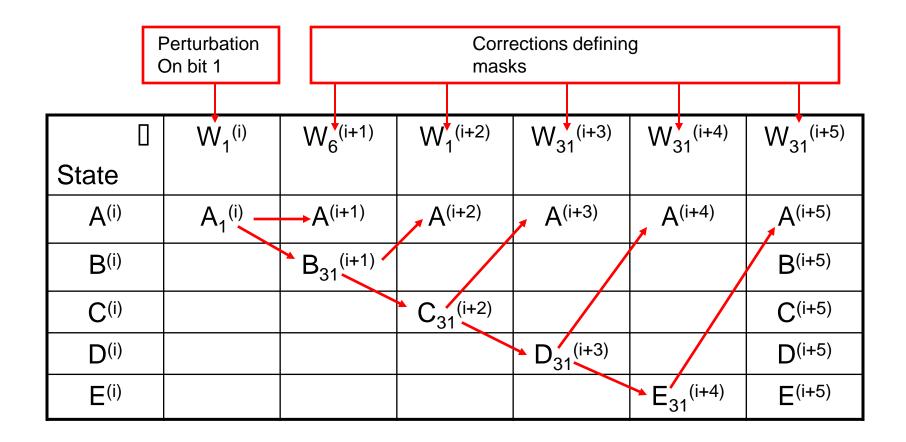
JLM 20060105 12:16

SHI-1 Finding Collisions

• Assume the W⁽ⁱ⁾ are unrelated and follow progress of a change to W⁽¹⁾.

	А	В	С	D	E
1	W ¹ +ROL ₅ (A)+f(B,C,D)+ E+K	A	ROL ₃₀ (B)	С	D
2	W ² +				
3			ROL ₃₀ (-)		
4					
5					ROL ₃₀ (W ¹ +ROL5(A)+ f(B,C,D)+E+K)
6	W ⁶ + fixes W ¹				

SHI-1 Error Propagation in Hash



SHI-1 Restoring Expansion

- Flip bit 1 of W¹. This modified A in round "0" resulting, potentially to different (A, B, C, D, E) in round 6. By following linear process we can determine bits in W¹, , W⁶ which, when flipped, produce the same (A,B,C,D,E) in round 6.
- Let M⁽ⁱ⁾ be 0 in all positions that are unchanged in round i and 1 where bits are flipped to restore the result in round 6. This is called a local collision.
- This is easy to do, as we've seen if there is no expansion.
- Question: If there is expansion, what successful masks are preserved by expansion if bits are flipped in W⁽¹⁾?
- Answer: $M^{(i)} = M^{(i-3)} \oplus M^{(i-8)} \oplus M^{(i-14)} \oplus M^{(i-16)}$, 10<i<80
- Because SHA-0 expansion doesn't interleave bits, we can consider each of the 32 bits independently and exhaustively search for a successful pattern

JLM 20060105 12:16

SHI-2

• Restore f⁽ⁱ⁾ and note that rounds 0-19, 40-59 are no longer Xors

Round	Name	$f^{(i)}(X,Y,Z)$	K ⁽ⁱ⁾
0-19	IF	(X/Y) V (X/Z)	0x5a827999
20-39	XOR	X 🕀 Y 🕀 Z	0x6ed9eba1
40-59	MAJ	$(X \land Y) \lor (X \land Z) \lor (Y \land Z)$	0x8f1bbcdc
60-79	XOR	X 🕀 Y 🕀 Z	0xca62c1d6

- When does f⁽ⁱ⁾ behave like an Xor for IF and MAJ?
- Again the action on each of the 32 bits is independent

SHI-2 Finding Collisions

- What inputs make IF and MAJ act like and XOR
 - $B^{(i)} = B^{(i)}, C^{(i)} = C^{(i)}, D^{(i)} = D^{(i)}$
 - Single bit change in $B^{(i)}$, e.g. $B^{(i)} \oplus 2^1$.
 - − Single bit change in $C^{(i)}_{31}$ or $D^{(i)}_{31}$, e.g. $C^{(i)} \oplus 2^{31}$ or $D^{(i)} \oplus 2^{31}$ or both.
- The mask becomes probabilistic: We can find a pattern that has the probability with p=2⁻²⁴ from these. Must check every perturbation has foregoing effect: 2,6,14,16,17,18,19,21,22,26,27,28,35,37,41,45,48, 51,54,55,56,58,59,62,63,68,69,70,71,72.
- Perturbations in positions 2, 6 occurs with $p=2^{-6}$. Try many W⁽¹⁵⁾.
- Collision!

```
1a6191b03c4a331c1f228ea2403b760904062ec49648611ca8583401bc399879d04d92270fdbd2a8090f04b12fd98473cc7a1acc002831a950fe153561ac0d3df26700ecfa
```

SHI-3

- Change the Xor back to add and f back to linear
- Perturbation in bit 1 of W⁽ⁱ⁾ leading to corrections in W₃₁⁽ⁱ⁺³⁾, W₃₁⁽ⁱ⁺⁴⁾, W₃₁⁽ⁱ⁺⁵⁾.
- To prevent carries, non linear constraints must hold on $W_1^{(i)}$, $W_6^{(i+1)}$, $W_1^{(i+2)}$.
- So we fix these.
- Collision

53c29e14	44fe051 <mark>b</mark>	4a8ce882	576e194 <mark>3</mark>	91
0c0abc30	<u>3</u> 806260d	<u>7</u> 6cbeb2f	1b8379 <mark>a</mark> 8	8bfe
0da433ac	<u>6</u> 337b0 <u>1</u> 1	<u>1</u> 041e2a <mark>9</mark>	20b4436 <mark>4</mark>	e596
<u>1</u> a3f8b <u>7</u> 0	<u>0</u> e7a462 <mark>0</mark>	<u>2</u> 5e81245	<mark>2</mark> 89acb2 <mark>b</mark>	9382aa9

- Perturbations must be inserted without carry.
- Case in SHI-2 where bit 31 in both C and D flip doesn't work
- Yields two good patterns with probability 2⁻⁶⁹.
- Trick to suppress perturbations in rounds 16 and 17 reduces probability to 2⁻⁶¹.
- Probability of finding on is 2⁻²² using basic 2⁻¹⁴ collision
- Partial Collision (35 rounds)

 78fb1285 77a2dc84 4035a90b b61f0b39 97
 4a4d1c83 186e8429 74326988 7f220f79 19fa7
 a08e7920 16a3e469 2ed4213d 4a75b904 29ac
 38bef788 2274a40c 4c14e934 cee12cec 6a
- None of this works in SHA-1 because of interleaved bits.

SHA-0 Finding Collisions

- Change the Xor back to add
- Prob of finding on is 2⁻²² using basic 2⁻¹⁴ collision
- Partial Collision (35 rounds)

 78fb1285 77a2dc84 4035a90b b61f0b39 97
 4a4d1c83 186e8429 74326988 7f220f79 19fa7
 a08e7920 16a3e469 2ed4213d 4a75b904 29ac
 38bef788 2274a40c 4c14e934 cee12cec 6a

SHA-0 Collisions --- Comments

- Message Expansion: $W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}$ means any round can be determined from any consecutive 16 rounds of message expansion.
- The expanded rounds (all 80) can be represented using a linear transformation, A on 512 bits: (w, Aw, A²w, A³w, A⁴w)^T.
- When the round functions are linearized, a change in bit j of word W_i can be "corrected" by changes in bits j+6, j, j+30, j+30, j+30 in rounds i+1, i+2, i+3, i+4 and i+5.
- When the round functions are replaced by their non-linear versions a change in bit 1 can be corrected by the same pattern with probability between 2⁻² and 2⁻⁵. If change is made to position j≠ 1, the probability of correction is reduced by 2⁻³.
- For SHA-1, because of rotation, one bit change propagates to 107 bits in expansion.

SHA-0 Biham and Chen

- Introduces "disturbance vectors"
 - Collision when last 5 vectors is 0
- Full collision on 65 rounds
- 82 round SHA-0 is weaker than 80 round
- Neutral Bits: Bit i is neutral if disturbance pattern unchanged with complemented i.
- 2-neutral set. Size k(r) of maximal 2-neutral set.

Other Cryptographic Hashes and Performance

Hash Name	Block Size	Relative Speed
MD4	128	1
MD5	128	.68
RIPEMD-128	128	.39
SHA-1	160	.28
RIPEMD-160	160	.24

Breaking news on "Chinese" Attacks on Hashes

- Don't use MD4 or you'll look really really silly.
- Don't use MD5.
- Don't use RIPEMD-128
- SHA-1 appears to have collision attacks of the order 2⁶⁴
- Use SHA-2 functions
 - Truncate to provide legacy compatibility if you have to (i.e. gun to head)
 - Required by "Suite B" Standards

Message Expansion

- Process of expanding from 16 32 bit words to 80 32 bit words in the compression function is called message expansion
 - MD5
 - Permutations
 - SHA-0
 - Linear code (LFSR)
 - SHA-1
 - Linear code with rotation
- Has profound effect on possible disturbance vectors in Differential attacks
- Being studied to provide greater protection
- Replace xor with modular addition to prevent codeword difference propagation
- Conditions on chaining variables for local collision (Prob between 2⁻³⁹ and 2⁻⁴²)

- FIPS 180-2, 8/02.
 - Defines SHA-256, SHA-384, SHA-512.
 - SHA-224 (truncated) added 2/04
- Great increase in mixing between bits of the words compared to SHA-1.
- US Patent *6,829,355*
- Inventor: Glenn Lilly
- Assignee: NSA
- Can obtain source from
 - http://en.wikipedia.org/wiki/SHA-2

//Initialize variables:

- h0 := 0x6a09e667 //232 times the square root of the first 8 primes 2..19
- h1 := 0xbb67ae85, h2 := 0x3c6ef372, h3 := 0xa54ff53a, h4 := 0x510e527f
- h5 := 0x9b05688c, h6 := 0x1f83d9ab, h7 := 0x5be0cd19
- //Initialize table of round constants:
- k(0..63) := //232 times the cube root of the first 64 primes 2..311
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
 - 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
 - 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
 - 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
 - 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
 - 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
 - 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
 - 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

JLM 20060105 12:16

```
//Pre-processing:
append a single "1" bit to message
append "0" bits until message length \equiv 448 \equiv -64 \pmod{512}
append length of message (before pre-processing), in bits as 64-bit big-endian
                    integer to message
//Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
             break chunk into sixteen 32-bit big-endian words w(i), 0 \le i \le 15
              //Extend the sixteen 32-bit words into sixty-four 32-bit words:
              for i from 16 to 63
                            s0 := (w(i-15) rightrotate 7) xor (w(i-15) rightrotate 18) xor (w(i-15) 
                    15) rightshift 3)
                            s1 := (w(i-2) \text{ rightrotate } 17) \text{ xor } (w(i-2) \text{ rightrotate } 19) \text{ xor } (w(i-2))
                    rightshift 10)
                            w(i) := w(i-16) + s0 + w(i-7) + s1
              //Initialize hash value for this chunk:
              a := h0, b := h1, c := h2, d := h3, e := h4, f := h5, g := h6, h := h7
            JLM 20060105 12:16
                                                                                                                                                                                                                                                                      50
```

```
//Main loop:
    for i from 0 to 63
        s0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
        maj := (a and b) or (b and c) or (c and a)
        t0 := s0 + maj
        s1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
        ch := (e and f) or ((not e) and g)
        t1 := h + s1 + ch + k(i) + w(i)
       h := q, q := f, f := e, e := d + t1,
       d := c, c := b, b := a, a := t0 + t1
    //Add this chunk's hash to result so far:
   h0 := h0 + a, h1 := h1 + b, h2 := h2 + c, h3 := h3 + d
   h4 := h4 + e, h5 := h5 + f, h6 := h6 + g, h7 := h7 + h
//Output the final hash value (big-endian):
digest = hash = h0 append h1 append h2 append h3 append h4
```

append h5 append h6 append h7

JLM 20060105 12:16

Chinese Attack-1

Chinese attack on MD5: Find M, M': H(M)=H(M'). Select message difference M'=M \oplus \Delta and differential path b i'=b i \oplus \Delta b i together with sufficient conditions. For MD5: H $i = f(H \{i-1\}, M i), 0 \le i < 16$, f: (a,b,c,d, w_i, w_{i+1}, w_{i+2}, w_{i+3}) is computed as follows, a = b + ((a + b i i(b,c,d) + w i + t i) < < s i), $d = a + ((d + b_{i+1})(a,b,c) + w \{i+1\} + t \{i+1\}) <<< s \{i+1\},$ $c = d + ((c + bi_{i+2})(d,a,b) + w_{i+2} + t_{i+2}) <<< s_{i+2}),$ $b = c + ((b + phi_{i+3})(c,d,a) + w_{i+3} + t_{i+3}) <<< s_{i+3})$ with $\frac{(X,Y,Z)}{(X,Y,Z)} = (X \vee e Y) \vee edge (\log X \vee e Z), 0 \vee e i \vee e 15,$ $\phi i(X,Y,Z) = (X \lor Z) \lor (Y \lor Z), 16 \lor i \lor 31,$ $\phi i(X,Y,Z) = (X \phi I x \phi I x), 32 e i 47,$ $\phi i(X,Y,Z) = Y \phi X \vee e \rho Z$, 48 \le i \le 63 and w i is the expanded message, w i, t i are round dependant constants. Define $\Delta = X' - X$. \Delta H_0 \rightarrow_{(M_0, M_0')} \Delta H_1 \rightarrow_{(M_1, M_1')} \Delta H_2 \ldots $rightarrow_{(M_{i-1}, M_{i-1}')} \to H with each composed of$ \Delta H_i \rightarrow_{P_2} \Delta R_{i+1,1} \rightarrow {P 2} \Delta R {i+1,2} \rightarrow {P 3} \Delta R {i+1,3} $\operatorname{P} 4$ \Delta R {i+1,4} = \Delta H {i+1}.

Chinese Attack-2

Let \Delta{i,j}= x_{i,j}' - x_{i,j} = \pm 1 and \Delta x_{i}[j_1, j_2, ..., j_1] = x_{i}[j_1, j_2, ..., j_1] - x_i. Collision is caused by 1024 bit input: (M₀, M₁) with \Delta M₀= (0,0,0,0,2³¹, 0,0,0,0,0,0,2¹⁵,0,0,2³¹,0) and \Delta M₁= (0,0,0,0,2³¹, 0,0,0,0,0,0,-2¹⁵,0,0,2³¹,0). Sufficient conditionsinsure that differential holds with high probability. At 8th iteration, b₂= $c_2+(b_1+F(c_2,d_2,a_2)+m_7+t_7)<<<22$, we try to control (\Delta c₂, \Delta d₂, \Delta a₂, \Delta b₁) \rightarrow \Delta b₂ with the following (A) non-zero bits of \Delta b₂: $d_{\{2,11\}=1, b_{\{2,1\}=0, d_{\{2,26\}}=\{\text{overline } \{a_{\{2,26\}}\}\}=1, b_{\{2,16\}=0, d_{\{2,11\}=1, b_{\{2,24\}=0; (B) zero bits of \Delta b_2:$

```
c_{2,i}=0,

d_{2,i}=a_{2,i},

c_{2,1}=1,

d_{2,6}=\{verline \{a_{2,6}\}\}=0,

d_{2,i}=0,

d_{2,12}=1,

a_{2,24}=0,

whit of a result in parabapta in
```

7th bit of c_2 , d_2 , a_2 result in no change in b_2 .

Chinese Attack-3

Algorithm

1: Repeat until first block is found

- (a) Select random M₀,
- (b) Modify M₀,
- (c) M_0 , $M_0'= M_0 + Delta M_0$ produce $Delta M_0$ rightarrow ($Delta H_1$, $Delta M_1$) with probability 2⁻³⁷,
- (d) Test characteristics.

2: Repeat until first block is found

- (a) Select random M₁,
- (b) Modify M₁,
- (c) M_1 , $M_1'= M_1 + Delta M_1$ produce $Delta M_1$ rightarrow 0 with probability 2⁻³⁰
- (d) Test characteristics.

Breaking news on "Chinese" Attacks on Hashes

- Don't use MD4 or you'll look really really silly.
- Don't use MD5.
- Don't use RIPEMD-128
- SHA-1 appears to have collision attacks of the order 2⁶⁴
- Use SHA-2 functions
 - Truncate to provide legacy compatibility if you have to (i.e. gun to head)
 - Required by "Suite B" Standards

- FIPS 180-2, 8/02.
 - Defines SHA-256, SHA-384, SHA-512.
 - SHA-224 (truncated) added 2/04
- Great increase in mixing between bits of the words compared to SHA-1.
- US Patent *6,829,355*
- Inventor: Glenn Lilly
- Assignee: NSA
- Can obtain source from
 - http://en.wikipedia.org/wiki/SHA-2

SHA-2 Definitions

SHA-256 definitions:

 $\begin{array}{l} \mathsf{Ch}(x,y,z) = (x \mid v \neq g \; y) \mid v \in (x \mid v \neq g \; z), \\ \mathsf{Maj}(x,y,z) = (x \mid v \neq g \; y) \mid v \in (x \mid v \neq g \; z) \mid v \in (y \mid v \neq g \; z). \\ \mathsf{Nsi}_{256} \stackrel{\{i, j, k\}}{(x)} = \mathsf{ROTR}^i(x) \mid \mathsf{Oplus} \; \mathsf{ROTR}^j(x) \mid \mathsf{Oplus} \; \mathsf{ROTR}^k(x), \\ \mathsf{Nphi}_{256} \stackrel{\{i, j, k\}}{(x)} = \mathsf{ROTR}^i(x) \mid \mathsf{Oplus} \; \mathsf{ROTR}^j(x) \mid \mathsf{Oplus} \; \mathsf{SHR}^k(x). \\ \mathsf{Nsigma}_0^{256}(x) = \mathsf{Nsi}_{256}^{\{2, 13, 22\}}(x), \\ \mathsf{Nsigma}_1^{256}(x) = \mathsf{Npsi}_{256}^{\{6, 11, 25\}}(x). \\ \mathsf{Nsigma}_1^{256}(x) = \mathsf{Nphi}_{256}^{\{17, 18, 3\}}(x), \\ \mathsf{Nsigma}_1^{256}(x) = \mathsf{Nphi}_{256}^{\{17, 19, 10\}}(x). \end{array}$

SHA-512 definitions:

JLM 20051124 14:16

SHA-512 is the same except there are 79 rounds and the words are 64 bits long.

Other Cryptographic Hashes and Performance

Hash Name	Block Size	Relative Speed
MD4	128	1
MD5	128	.68
RIPEMD-128	128	.39
SHA-1	160	.28
RIPEMD-160	160	.24

What to take home

- Symmetric ciphers and hashes provide key ingredients for "distributed security"
 - Fast data transformation to provide confidentiality
 - Integrity
 - Public key crypto provides critical third component (trust negotiation, key distribution)
- It's important to know properties of cryptographic primitives and how likely possible attacks are, etc.
 - Most modern ciphers are designed so that knowing output of n-1 messages provides no useful information about nth message.
 - This has an effect on some modes of operation.

End