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Public Key (Asymmetric) Cryptosystems

• An asymmetric cipher is a pair of key dependant maps, 
(E(PK,-),D(pK,-)), based on related keys (PK, pK). 

• D(pK,(E(PK,x))=x, for all x.

• PK is called the public key.  pK is called the private key.  

• Given PK it is infeasible to compute pK and infeasible to 
compute x given y=E(PK,x).

Idea from Diffie, Hellman, Ellis, Cocks, Williamson. Diffie and Hellman, 
"New Directions in Cryptography“, IEEE Trans on IT 11/1976.  CESG work 
in 1/70-74.
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Uses of Public-Key Ciphers

• Symmetric Key Distribution 
• Key Exchange and other protocols
• Digital Signatures
• Sealing Symmetric Keys
• Authentication
• Proving Knowledge without disclosing secrets (used in 

anonymous authentication)
• Symmetric Key systems cannot do any of these.  

However, symmetric key systems are much faster than 
Public Key systems.
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Symmetric Key Distribution 

• Imagine you are the head of security for Microsoft and insist that all 
Microsoft financial communications transmitted over the Internet be 
encrypted for your finance machines.  You buy “black boxes” for 
every Internet egress point, each with a known Public Key (the 
private key is generated on the black box and is known only to that 
hardware).

• Every day, just before 0h Zulu, you generate a new symmetric key 
Kd, encrypt it and transmit E(PKi, Kd) to each black box, i, 
(Hopefully, using a mechanism that insures that it comes from you 
or what happens?)

• What’s good about this?  Keys are never touched by humans.
• What would you do if you were worried that some black boxes 

could be compromised (i.e.- private keys determined)?
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Diffie Hellman Key Exchange

Alice Bob
A1: s= min(p size),
Na in {0, … 2256-1}

s,Na

B1: Choose (p,q,g),
x in {0, … 2256-1}

(p,q,g), X=gx, 
AuthB

A2: Check (p,q,g) X, 
AuthB, pick y in 
{0,…q-1}

B2: Check  Y, AuthA
Y= gy, AuthA

K= Xy K= Yx
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Digital Signatures

• I want to send you messages you can rely from time to time, like: 
M=“I, John Manferdelli, promise on November 1, 2008, that (1) I will 
give everyone in CSE 599r an A, (2) I will eat my vegetables, (3) I 
won’t watch Apple ads.”

• How can I prove (electronically) they come from me?
• I generate a public/private key pair PKJLM, pKJLM.
• One day in class I personally give you PKJLM on a piece of paper.
• When I send a message like M I also transmit: D(pKJLM, SHA-

256(M)).
• When you get M, you calculate SHA-256(M) and compare it to 

E(PKJLM, SHA-256(M)), if it matches, you can tell it’s from me.
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Sealing Symmetric Keys

• I want to send you a confidential document, M (like an 
email).  I know your public key PKyou (maybe you told it 
to me, maybe it’s in a directory, maybe someone I trust 
gave it to me and vouched for it).

• I generate a new symmetric key, K, at random.
• I encrypt M with CBC-AES using K and transmit to you:

1. IV
2. CBC-AESK(IV,M)
3. E(PKyou, K)
4. I may also sign the message so you can be sure it came from 

me

• This is essentially how S/MIME mail works.
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Authentication

• I am on an physically secure line (no one can eavesdrop 
or modify messages between me and the other end 
point) so I’m not worried about confidentiality.

• I want to make sure you, my lawyer, is on the other end 
and I know your public key PKyou.

• Before I say anything I’d regret reading in the New York 
Times, I generate a (big) random number, N and 
append the date and time, calling this entire message, 
M.  I transmit M and ask you to apply D(pKyou, M).  If 
E(PKyou, M)=M, I can be sure it’s my attorney; otherwise, 
I take the fifth.
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Existing Public-Key Ciphers

• Public Key systems are based on “computationally hard”  
“trap door problems” (Not all NP complete problems are 
suitable).
– Factoring (n= ab, what is a, what is b?)
– Discrete Log (x= ya (mod n), what is a?)
– Elliptic curve discrete log. (Q=nP, what is n?)

• Rivest Shamir Andelman (1978)
– Based on factoring

• El Gamal (1984)
– Based on discrete log

• Elliptic Curve (1985, Miller-Koblitz)
– Based on elliptic curve discrete log (over finite fields).
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Some Number Theory

• Fundamental Theorem of Arithmetic
• Prime Number Theorem
• Euclidean Algorithm for GCD
• Solving congruences
• Chinese Remainder Theorem
• Continued Fractions
• Integer arithmetic mod n
• Fermat’s Theorem
• Euler’s Theorem
• Finding square root mod n
• Quadratic Reciprocity: Legendre and Jacobi symbols.
• Lattices
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Fundamental Theorem of Arithmetic

• Let n be any positive integer, n can be written as a 
product of primes in an essentially unique way (except 
for units and the order of the primes).

• It may be hard to actually carry out this factorization.
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Distribution of Primes

• Euclid: There are infinitely many primes

• Prime Number Theorem:  The number of primes, p(n), less 
than or equal to n is asymptotically equal to n/ln(n).
– Spookily accurate even for pretty small n.
– First proof using complex analysis sketched by Riemann, finished 

by Hadamard and de la Vallee-Poussin. “Elementary” proof by 
Erdos and Selberg

• Chebyshev’s Theorem: For x>200, 
c1(x/ln(x)<p(x)<c2(x/ln(x)). c1=2/3, c2= 1.7
– Pretty easy to prove.

• Bertrand’s Postulate: For all n>2 there is a prime between n 
and 2n
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Prime Distribution Example
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n p(n) n/ln(n) p(n)/ (n/ln(n))
10 4 4.34 .9217
50 14 12.78 1.10

100 25 21.71 1.15
500 95 80.46 1.17

1000 168 144.76 1.16
106 78498 72382 1.08
109 50847478 48254949 1.05
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Solving Congruences mod p 

• Solve ax=b (mod p)
– Procedure:  If (a,p) 1, there is no solution if b
0(mod p) and everything is a solution if b=0(mod p).  
This leaves us with (a,p)=1.  We find u,v such that 
au+pv=1. (ub) is the solution.

– This is very fast even if a, b and p are enormous 
integers.

• Note: See the Short Math reference notes.

• We can also solve recurrences of the form ax=b (mod pe)
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Solving Congruence Example

• Solve 5x=2 (mod 37)

• (15) 5 + (-2) 37 = 1 so the solution is (2 x 15)= 30 (mod 
37)

• 5 x 30= 150=  4 x 37 + 2 

• If only all problems were this easy
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Chinese Remainder Theorem

• If x= a1 (mod m1) and x= a2 (mod m2)  and (m1 , 
m2)= 1, then the simultaneous equations have a 
unique solution mod m1 m2.  

• Proof: k1m1 + k2 m2 =1.  Set a= a2k1m1 + a1k2 m2 .  
This is a solution.  Also a practical computational 
method.
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CRT Example

• N= 1517= 37 x 41, solve 5 x2 = 2 (mod 1517).

• First solve 5 x2 = 2 (mod 37) and 5 x2 = 2 (mod 41).
– (15) 5 + (-2) 37 = 1 and (-8) 5 + (1) 41 =1 so:
– x2 = 2 x 15 = 30 (mod 37) and x2 = 2 x (-8) = 25 (mod 41).
– 202 = 30 (mod 37) and 52 = 25 (mod 41).

• Use CRT
– (10) 37 + (-9) 41= 1
– (5) (10) (37) + (20) (-9) (41)= 538 =y (mod 1517)
– 5 (538)2 = 2 (mod 1517).
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Continued Fractions

• Continued Fraction: x0 = x, ai= xi. xi+1=  (xi-ai)-1.
• pn/qn= a0 + 1/(a1 + 1 / (a2 + …)).
• p-2= 0, p-1= 1, q-2= 1, q-1=0.
• pn+1= an+1 pn + pn-1.
• qn+1= an+1 qn + qn-1.

• Theorem:  If |x-(r/s)| < 1/(2s2), r,s e Z, then r/s= pi/qi
for some i.
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Universal Exponent Theorem

• Suppose n is composite, say, n=pq.  Given r>0, ar = 1 
(mod n), for all a: (a,n)=1, we can factor n.

• Method:  Let r=2km; m, odd.  Put b0= am (mod n) and 
bi+1= bi

2 (mod n).

1. If b0= 1, pick another a.
2. If bi+1= 1 and bi= -1, pick another a.
3. If bi+1= 1 and bi ± 1, d=(bi-1,n) is a non-trivial factor 

of n.
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Universal Exponent Example

• Let n= 1517.  Note that a1440=1 (mod n).
• 1440= 25(45), m= 45.

• b0= 245=401 (mod 1517)
• b1= 4012 =1(mod 1517).  Try again.

• b0= 345=776 (mod 1517)
• b1= 7762=1444 (mod 1517)
• b2= 14442 =778(mod 1517).
• b3= 7782 =1(mod 1517).
• (778-1, 1517)= (777, 1517)=37.
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f(n)

• Definition: f(n)= |{a: (a,n)=1, 0<a<n}|.

n>2  f(n) is even
n is prime iff f(n)= n-1
f(pe)= (p-1)pe-1

If (m1, m2)= 1, f(m1 m2)= f(m1) f(m2)
Sd|n f(d)= n
If n= p1

e[1]p2e[2]…pk
e[k], then f(n)= P (1-1/pi)

Average value of f(n) is 6n/(p2)
f(n) is multiplicative if (n,m)=1  f(nm)=f(n)f(m)
If n= p1

e[1]p2e[2]…pk
e[k], m(n)= 0 if e[i]>1 for any I, otherwise m(n)= (-1)k

If f is multiplicative, so is F(n)= Sd|n f(d), f(n)= Sd|n m(d)F(n/d)
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f(n) Example

f(1)=1
f(5)=4
f(25)=20
f(125)=40
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Law of Quadratic Reciprocity

• If p and q are primes, define (a/p) = 1 if there is an x: 
x2=a (mod p), 0 of p|a, and -1 is there is no such x.

• (a/p)= a(p-1)/2 (mod p)
• ((ab)/p)= (a/p) (b/p)

• Gauss: (p/q)(q/p)= (-1)[(p-1)/2 (q-1)/2].

• This allows us to solve quadratic equations in a prime 
field.
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Quadratic Reciprocity Example

• Entry in row i, column j is 
p[i](p[j]-1)/2

JLM 20081102 24

7 11 13 17 29 31
7 -1 -1 -1 1 1

11 1 -1 -1 -1 -1
13 -1 -1 1 1 -1
17 -1 -1 1 -1 -1
29 1 -1 1 -1 -1
31 -1 1 -1 -1 -1

• (7/11)(11/7)=(-1)5 x 3=-1
• (7/13)(13/7)=(-1)6 x 3=1
• (7/17)(17/7)=(-1)8 x 3=1
• (11/31)(31/11)=(-1)15 x 5=-1
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Factoring and exponents

• Suppose n is the product of two (possibly unknown) 
primes, p and q.
1. If  p and q are known, we can calculate f(n).
2. If f(n) and n are known, we can factor n.

• Proof:  
– If p and q are known, f(n)= (p-1)(q-1).  
– If n and f(n) are known, set f(x)= x2 –Ax+1 where A=n-

f(n)+n+1.  p and q are the roots of f(x)=0.

• Note:  If (e, f(n))=1, we can calculate d: ed=1 (mod 
f(n)) if we know p and q, this theorem tells us if we 
know a universal exponent, we can calculate d.
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Large Integer Computation

• Almost all public key algorithms are based on “hard” 
number theory problems over enormous (e.g.- 2048 
bit) integers.

• We need to know how to do arithmetic on computers 
with huge numbers
– Addition/subtraction
– Multiplication
– Modulus
– Modular inverses
– Exponentiation
– Testing Primality
– Factoring
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Algorithm Timings

• Adding two m-bit numbers takes O(m) time.
• Multiplying two m-bit numbers takes <O(m2).
• Multiplying a 2m-bit number and reducing modulo and 

m-bit number takes O(m2).
• Computing (a, b) for a, b< n  takes O(ln2(n)) time (i.e.-

fast).  This is Euclid’s Algorithm and it started Knuth, 
Euclid and everyone else off on computational 
complexity.  If n has m bits this is O(m2).

• Testing an number n for primality takes 
O(nclg(lg(n)))=O(2cmlg(m)).

• Best known factoring: 
O(nc(lg(n)^(1/3)(lg(lg(n))^(2/3)))=O(2cm(m^(1/3)(lg(m)^(2/3))). [a lot 
longer].
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The Multiplicative Group (mod n)

• Gn= {a: (a,n)= 1, 0<a<n} is the multiplicative group mod n
• |Gn|= f(n) so (a,n)=1  a f(n) =1 (mod n)
• a is called a primitive root if ordn(a)= f(n)
• If a is a primitive root, ab= 1 (mod n) b| f(n)
• ordn(au)= ordn(a)/(u, ordn(a)).  If m has a primitive root, 

there are exactly f(f((m)) such primitive roots. 
• Theorem: If n=pj, p an odd prime and b is a primitive root 

mod n then n is not b-pseudoprime
• If n is prime, n has a primitive root.
• n has a primitive root iff n = 2, 4, pk, 2pk where p is an 

odd prime.

JLM 20081102



29

Finding generators

• For a cyclic group, G of order find a generator, g

• while ()
a: choose a random g∈G

for i = 1 to k
b = gn/pi

if (b = 1) goto a:
return g

• G has φ(n) generators.  Using the lower bound for φ(n), 
the probability that g in line 2 is a generator is at least 
1/(6 ln ln n)

ke
k

e ppn ...1
1=

JLM 20081102
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Representing Large Integers

• Numbers are represented in base 2ws where ws is the 
number of bits in the “standard” unsigned integer 
(e.g. – 32 on IA32, 64 on AMD-64)

• Each number has three components:
– Sign
– Size in 2ws words
– 2ws words where n= i[ws-1]2ws(size-1) + …+ i[1]2ws + i[0]
– Assembly is often used in inner loops to take advantage of 

special arithmetic instructions like “add with carry”
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Classical Algorithms Speed

• For two numbers of size s1 and s2 (in bits)
– Addition/Subtraction: O(s1)+ O(s2)  time and max(s1, s2)+1 

space
– Multiplication/Squaring: O(s1) x O(s2)  time and space (you can 

save roughly half the multiplies on squaring)
– Division: O(s1) x O(s2)  time and space

• Uses heuristic for estimating iterative single digit divisor: less 
than 1 high after normalization

– Extended GCD: O(s1) x O(s2) 
– Modular versions use same time (plus time for one division by 

modulus) but smaller space
– Modular Exponentiation (ae (mod n)): O((size e)(size n)2) using 

repeated squaring
– Solve simultaneous linear congruence's (using CRT): O(m2) x 

time to solve 1 where m = number of prime power factors of n
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Karasuba Multiplication

• (a2k+b) (c2k+d)= ac22k+(ad+bc)2k+bd
– 4 multiplies
– Asymptotically n2

• To save 1 multiply compute
– t= (a+b)(c+d)= ac+ad+bc+bd
– ac
– bd
– t-ac-bd= ad+bc
– 3 multiplies, 2 adds
– Asymptotically nlg(3), lg(3) is about 1.58
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Integer Squaring

• Reduced number of multiplies because of symmetry
– a= 2n a1 + a0, b= 2n b1 + b0

– ab= 22n a1 b1 + 2n (a1 b0 + b1 a0 )+ b0 a0

• 4 multiplies
– a2= 22n a1

2 + 2n+1 a1 a0 + a0
2

• 3 multiplies
• Cost:  If a is t words long, a2 takes (t+1)t/2 single 

precision multiplies

JLM 20081102
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Integer Division Algorithm

• x= (xn xn-1 … x0)b, y= (yn yn-1 … y0)b

• x/y=q= (qn-t qn-1 … q0)b, x mod y= r = (rn rn-1 … r0)b

• Key Step: Estimate Quotient
– If yt s [b/2], the estimate
– qi-t-1= (xib+xi-1)/yt is at most 2 greater than the correct 

value
– If qi-t-1= (xib2+xi-1b+xi-2)/(ytb+yt-1) is at most 1 greater 

than the correct value
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Integer Division

1. Normalize: while(x>=ybn-t) qn-t++; x-= ybn-t;

2. For(i=n, downto t+1)

2.1   if(xi=yt) qi-t-1= b-1

else     qi-t-1= [xib+xi-1/yt]

2.2  while(qi-t-1(ytb+yt-1)>(xib2+xi-1b+xi-2)) qi-t-1--

2.3  x-= qi-t-1 ybi-t-1

2.4  if (x>0) x+= ybi-t-1; qi-t-1++;

3. r= x

4. return(q,r)

Cost: (n-t)(t+3) multiplies, (n-t) divisions.
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Extended Binary GCD

Input: x= (xn xn-1 … x0)b, y= (yn yn-1 … y0)b.  Output: a, b, v:  ax+by=v= gcd(x,y).
1. g=1

2. while(x&1==y&1==0) x/= 2, y/= 2, g*=2

3. u=x, v=y, A=1, B=0, C=0, D=1

4. while (u&1==0) 

u/= 2

if(A=B=0 (mod 2))  A/=2, B/=2

else A= (A+y)/2, B= (B-x)/2

5. while (v&1==0) 

v/= 2

if(C=D=0 (mod 2))  C/=2, D/=2

else C= (C+y)/2, D= (D-x)/2

6. if(u>=v) u-=v, A-=C, B-=D

else     v-= u, C-=A, D-=B

7.    if (u==0) a= C, b= D, return(a,b,gv)

else goto 4

Cost: 2 ([lg(x)]+[lg(y)]+2) iterations
JLM 20081102
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Montgomery Multiplication

• Motivation: Modular reduction is expensive (a divide 
operation).  Can we replace the divide with some cheap 
operation (like shifting?)

• Let A, B, and M be n-block integers represented in base x
with 0 ≤ M < xn.

• Let R = xn.  gcd(R,M) = 1.
• The Montgomery Product of A and B modulo M is the 

integer ABR–1 mod M.
• Let M′ = –M–1 mod R and S = ABM′ mod R.
• Fact:  (AB+SM)/R ≡ ABR–1 (mod M).
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Montgomery Multiplication and Timing

• (r, n)= 1, r= ab (mod n), a#=ar (mod n), rr’-nn’=1, all t words long.

MontPro(a#, b#)
t= a# b# ,m= rn’ (mod n), u= (mn+t)/r
if(n>u) u-= n;
return(u)

MontMult(a,b,n)
Compute n’, a#, b#

x#= MontPro(a#, b#)
return(MontPro(x#,1))

Cost: Reduction takes 2t(t+1) multiplies, no divisions.  Multiply takes 
4t(t+1). vs 2t(t+1) for classical.
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Exponentiation and Timing

• Right to left squaring and multiplication
• Left to right squaring and multiplication
• Left to right k-ary

• Square and multiply exponentiation (SME) timing, if 
bitlen(e)=t+1 and wt(e) is the Hamming wt, SME 
takes t squarings and wt(e) multiplies.

JLM 20081102



40

Montgomery Exponentiation and Timing

x= (xl xl-1 … x0)b, e= (et et-1 … e0)b, m = (ml-1 ml-2 … m0)b, 
R= bl, m’= -m-1 (mod b)

MontExp(x,e,m)
1. x#= MontMult(x, R2, m), A= R (mod m)
2. for(i= t downto 0)

2.1   A= MontMult(A,A)
2.2    if (ei==1)  A= MontMult(A, x#)

3 return(MontMult(A,1))

Cost: Total:  3l(l+1)(t+1).  [For Classical: 2l(l+1) plus l divisions.]

Step 1 2 3
# MontMult 1 3/2 t 1

# SP Mult 2l(l+1) 3tl(l+1) l(l+1)

JLM 20081102



Montgomery Example

• Suppose N = 79, a = 61 and b = 5
• R = 102 = 100.  RR’-NN’=1, R’=64, N’=81.

– a′ = 61 ⋅ 100 = 17 (mod 79)
– b′ = 5 ⋅ 100 = 26 (mod 79)
– abR (mod 79)=  61 x 5 x 100 (mod 79)= 6
– X= a’b’=442= abR2 (mod N)
– m= (X (mod R))(N’ (mod R))= 42 x 81 =2 (mod R)
– x= (X+mN)/R= (442+2x79)/100 = 6

JLM 20081102 41
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Exponentiation Optimizations

• Arbitrary g, e
• Fixed g

– RSA

• Fixed e
– DH
– El Gamal

• Useful in El  Gamal verify
– Example: a h(m)(a -a)r

JLM 20081102
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RSA Public-Key Cryptosystem

Alice (Private Keyholder)

• Select two large 
random primes p & q.

• Publish the product 
n=pq.

• Use knowledge of p & q 
to compute Y.

Anyone (Public Key Holder)

• To send message Y to 
Alice, compute   Z=YX

mod n.
• Send Z and X to Alice.

Rivest, Shamir and Adleman, “On Digital Signatures and Public 
Key Cryptosystems.”  CACM, 2/78.
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RSA Details

• Encryption:  E(Y) = Ye mod n.
• Decryption:  D(Y) = Yd mod n.

– D(E(Y)) = (Ye mod n)d (mod n) = Yed (mod n) = Y

• Speedup: Compute mod p and mod q then assemble 
using CRT

• Remember (p,q)= 1  there are p’, q’: p’p+q’q=1
• Saves roughly factor of 4 in time
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RSA Example
• p=691, q=797, n=pq=550727. f(n)= 690 x 796= 23x3x5x23x199.
• Need (e, f(n))=1, pick e=7.
• 1= 7 x 78463 + (-1) f(n), so d= 78463.

• 78463= 216+ 213+ 212+ 29+ 26+ 25+ 24+ 23+ 22+ 21+ 20 = 
65536+8192+4096+512+64+32+16+8+4+2+1.  Use this in the 
successive squaring calculation.

• Public Key: <n=550727, e=7>
• Private Key: <p=691, q=797, d=78463>.

• Encrypt 10.  107 (mod n)= 86914.
• Decrypt: (86914)78463 (mod n)=10.
• Successive squares: 86914, 271864, 268188, 407871, 97024, 79965, 

460755, 375388,444736, 362735, 289747, 500129, 378508,532103, 
446093, 371923, 66612.
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RSA Signatures

An additional property
D(E(Y)) = Yed mod n = Y 
E(D(Y)) = Yde mod n = Y

Only Alice (knowing the factorization of n) knows D.  
Hence only Alice can compute D(Y) = Yd mod n.

This D(Y) serves as Alice’s signature on Y.
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Generating Primes

• Probabilistic testing for primality is faster than factoring.
• T(n, p, t) is a test, depending on a parameter, t, which 

results in a “yes/no” answer to the question: “Is n prime?”  
– If “yes”, the answer is true with probability p.  
– If “no,” n is definitely not prime.

• Fermat Test.  If (n,t)=1, 
– T(n, .5, t):= “yes” if t(n-1) =1 (mod n).

• Note for most tests trial divide by all primes p cB, first.
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Pseudoprimes

• Recall Fermat’s Little Theorem: If n is a prime a(n-1)= 1 (mod n) for all 
a with (a, n)= 1. 

• n is a b-pseudoprime iff b(n-1)=1 (mod n) and n is not prime.
– There are 3 2-psuedo primes <1000: 341, 561, 645.
– Theorem:  There are infinitely many 2-pseudoprimes.

Proof:  d|n 2d-1|2n-1.  Suppose n is a 2-pseudoprime, so is m=2n-1.  
m is obviously composite.  Since n is a 2 pseudoprime n| k=2n-2 so 2n-

1|2k-1.
• n is a Carmichael number if n is a b-pseudoprime for every b: 

(b,n)=1.  561 is a Carmichael number.
• If n is a Carmichael number then n=p1p2…pr and pi-1|n-1. r>2.
• Alford, Granville, Pomerance:  There are infinitely many Carmichael 

numbers
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Liars, Witnesses and Certificates

• n is prime iff f(n)=n-1. So if we find a b such that ordn(b)= n-1.  b is a 
witness to n’s primality.

• To show ordn(b)= n-1, we can factor n-1= P pi
e[i] and check that for 

each k= n-1/pi , bk 1 (mod n).
• If bn-1 1 (mod n) b is said to be a “witness” to n’s compositeness.
• If n is a b-pseudoprime b is said to liar for the primality of n.
• Given n-1=2tm, m odd and b.  A b-sequence is b1= bm, bi+1= bi

2, i= 
1,2,..t,.  If a b sequence does not end in 1 or if a terminal 1 is not 
preceded by a -1, n is composite.  Again b is a “witness” as to the 
compositeness of n.

• If n is composite and a b sequence acts like one for a prime, n is 
called a b-strong pseudoprime.

• b is a strong liar for compositeness if n passes the strong 
pseudoprime test with b
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Primality Testing
• Deterministic test:  n is prime if m does not divide n for 

all m < n.
• Check m= 2 and m odd
• Sieve of Eratosthenes
• Keep a list of primes

– Still to slow
• Probabalistic

– Fermat
– Solovay-Strassen
– Miller-Rabin: Try bases b= 2, 3, … pk , if n is a b-sequence 

“passes” the primality condition, conclude n is prime.
– If the extended Riemann Hypothesis is true the Miller-Rabin test 

is dispositive as to the primality of n if we try all bases up to 
2(ln(n))2.
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Testing Primality - Miller Rabin

• MR(n, .25, t), n>3, n, odd.  Set n-1= 2sr, r, odd. (t>3, in practice)
• Takes ~ O(lg(n)3).

for(i=1; it) {
Choose a, 1<a<n-1.  2 is a good choice first time.
Compute y=ar (mod n)
If y1 and y(n-1) {

j=1
while(j  (s-1), yn-1)

y= y2 (mod n)
if (y=1)

return(“no”)
j= j+1

}
if(y n-1)
return(“no”)

return(“yes”)
}
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Probability of Success for M-R

• Theorem (Strong liars are scarce): If n is composite and 
odd then at most (n-1)/4 residue classes can be strong 
liars.

– Case 1: n= pe.  Let g be a primitive root of n.  ordn(g)=(p-1)pe-1. If n 
is a ga-pseudoprime, (p-1)pe-1|a(pe-1)  pe-1|a.  So n is a ga-
pseudoprime iff pe-1|a and there are p-1 such a’s.  (p-1)/pec1/4.

– Case 2: n= p1
e[1]p2

e[2]…pr
e[r]. n-1=2st, t odd.  Define k to be smallest 

such that if e=2k, be= -1 (mod n)  be= -1 (mod pi), all i .  So 2k+1 | 
pi-1, all i so 2k+1|(n-1)  k<s.  Set m=2kt, bm=(-1)t= -1, and L={a: 
|am|=1, 1ca<n}.  We will show L contains all the strong liars and 
|L|c(n-1)/4.
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Proof Continued

• L contains all the strong liars and |L|c(n-1)/4.
– If a is a strong liar, and v= 2jt, j=0 and av= 1 or -1 or av= -1 for jck, 

thus a eL and a eL  ab eL.
– For aeL, put S(a)={x: 1cx<n, and x=a or ab mod pi

e[i], all i}.  There 
are 2r elements in S(a) only 2 of which are in L ({a, ab}) and each 
appears in at most 2 of the sets.  Thus there are at least |L|(2r-2)/2 
integers that are not strong liars.  If rs3, were done.  If r=2 there is 
at least one non-strong liar in S(a) for every one that is.  If x is in the 
union of the S(a)’s, n is an x-psuedoprime but is a is not a 
Carmichael number, at most half the positive integers less than a 
are liars: if x is a liar and (a,y)=1, xy is not a liar.  So if x1 and x2 are 
both liars yx1 and yx2 are not.  All that is left to show is that n is not 
a Carmichael number is r=2 but that is true.
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Primality Testing Example

• From Trappe and Washington.  n=561.
• n-1=560=24x5x7.  Pick a=2.

– b0= 235= 263 (mod n)
– b1= b0

2= 166 (mod n)
– b2= b1

2= 67 (mod n)
– b3= b2

2= 1 (mod n)

• 561 is composite.  In fact, (b2-1,561)=33.
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Strong Primes

p is a “strong prime” if
1. p-1 has a large prime factor, r.
2. p+1 has a large prime factor, s.
3. r-1 has a large prime factor, t.

Other criteria (X9.31)
– If e is odd (e,p-1) =1=(e, q-1)
– (p-1, q-1) should be “small”
– p/q should not be near the ratio of two small integers
– p-q has a large prime factor
– Add Frobenius test
– Add a Lucas test
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Gordan’s Algorithm

Gordan’s algorithm
1. Generate 2 primes, s,t of roughly same length.
2. Pick i0.  Find first prime in sequence, (2it+1), i=i0, 

i0+1,…; denote this prime as r= (2it+1).
3. Compute, p0= 2(s(r-2) (mod r))s-1.
4. Select j0. Find first prime in sequence, (p0+2jrs), 

j=j0,j0+1,…; denote this prime as p= (p0+2jrs).
5. return(p)
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Attacks

• Elementary
– Common Modulus: K1= (e1, d1, pq), K2= (e2,d2,pq)

• Low Public Exponent
– Wiener: Let N=pq, q<p<2q, d<1/3 n1/4, given <N,e> and  

ed=1 (mod j(n)), we can find d efficiently.
• Uses continued fractions

– Coppersmith’s Theorem: Let N be an integer and f a 
monic polynomial over Z, X=N1/d-e for some e>= 0.  Given 
<N, f>, we can efficiently find all integers |x0|<X satisfying 
f(x0)= 0 (mod N).  Running time is dominated by LLL on 
lattice with dimension O(min(1/e, lg(N)).
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Attacks, continued

• Related Messages and low exponents
– Coppersmith’s theorem can be used to strengthen Franklin-

Reiter Related Message attack if e=3 and pad is <1/9 message 
length.

• Timing/Glitching
• Bleichenbacher’s Attack on PKCS 1
• Factoring

– Pollard rho
– p-1
– Quadratic Sieve
– Number Field Sieve

• Reference: Boneh, Twenty years of attacks on RSA. 
Notices AMS.
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Common Modulus Attack

• (e1, e2)=1.
• c1= me1 (mod n)
• c2= me2 (mod n)
• d1 e1 + d2 e2 = 1
• (c1)d1 (c2)d2 = m, oops!
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Small exponent attack on RSA

• If q<p<2q, n=pq, 1 c d,e < f(n).  If d< 1/3 n1/4, d can be 
calculated quickly.

• Proof: q<n, n-f(n)<3n.  ed= 1+f(n)k. 
• So, f(n)k<ed<f(n)1/3 n1/4.  kn-ed= k(n-f(n))-1.
• 0< k/d – e/n <1/(3d2).  By continued fractions result, the 

successive approximations A/B with k=A, d=B and C=(ed-
1)/k allows us to compute f(n)=C.  Now use the previous 
result.



Short plaintext

• c= me (mod n), m, unknown (but small).
• Make two lists: cx-e (mod n) and ye with x,y “small.”
• When they match: 

– cx-e = ye (mod n) and c= (xy)e (mod n).
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Glitching Attack

• n=pq. <e,d> are the encryption and decryption exponents. Attack is 
on private key which is used for signing, say, a hash.  Let p’p + q’q=1.
– Suppose signer uses the CRT, m1= m (mod p) and m2= m (mod q).   The 

correct solution is m1
d= a1 (mod p) and m2

d= a2 (mod q) and the CRT 
gives y= a2 p’p + a1q’q.

• Suppose the computation is done on a  w-bit (e.g.-32) machine which 
miscomputes a x b for two specific w-bit values a, b. 
– We want m around n satisfying  p<m<q involving a and b; for example,

m= ck 2wk + ck-1 2w(k-1) + … + a 2w + b.
– We submit m for signing. Because of the error, the signer will 

(mis)compute y= md (mod n) in a way we can take advantage of.
– In normal squaring, m1

2 will be computed correctly (mod p) but m2
2 will be 

computed incorrectly (mod q).  We get m1
d= a1 (mod p) [correct] and m2

d= 
a2’  a2(mod q) [wrong!].  y y’= a2’ p’p + a1q’q.

– Resulting y’ will be correct (mod p) but wrong (mod q).  
– Now (y’e-m, n)= q.  Oops.
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Glitching Attack Example

• p=37, q=41. n=pq=1517.  f(n) = 36 x 40 = 25 x 32 x 5 = 1440.
• Note as before that 10(37)+(-1)41=1.c= 1517 ~ 38.  We pick m= 39.
• Now imagine an RSA scheme with e=7 and the foregoing parameters.

– 3 (1440) +(-617) 7=1, so d= -617=823 (mod 1440).
– m1= m (mod 37)=2, m2= m (mod 41)= 39.
– d1= d (mod 36)= 31, d2= d (mod 40)= 23.
– 231=22 (mod 37), 3923= 33 (mod 41).  
– By the CRT, y=md (mod n)= (10)(37)(33)+(-9)(41)22= 1058.  We confirm 

10587= 39 (mod n).
• Now suppose w=3, 39= 4 x 8 + 7 and suppose the error in the 

computer is that it thinks 4 x 7 = 26.
– Computing m2

2 (mod 41) we get 13 instead of the correct answer, 4. 
– Using the usual exponentiation procedure, we would compute 3923 (mod 

41) =12 (wrong!) and y’= (10)(37)(12)+(-9)(41)22 =873.  8737 (mod 
n)=1334.

– (1334-39,1517)= (1295, 1517)=37.  Bingo!
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Repeated Squaring

// Compute y = xd (mod N)
// where, in binary, d = (d0,d1,d2,…,dn) with d0 = 1
s = x
for i = 1 to n

s = s2 (mod N)
if di == 1 then

s = s ⋅ x (mod N)
end if

next i
return s
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Timing Attack (Kocher)

• Attack on repeated squaring
– Does not work if CRT or Montgomery used
– In most applications, CRT and Montgomery 

multiplication are used
• This attack originally designed for smartcards 
• Can be generalized (differential power analysis)
• Recover private key bits one (or a few) at a time

– Private key: d = d0,d1,…,dn with d0 = 1
– Recover bits in order, d1,d2,d3,…
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Kocher’s Attack

• Suppose bits d0,d1,…,dk−1, are known
• We want to determine bit dk

• Randomly select Cj for j=0,1,…,m-1, obtain timings 
T(Cj) for Cj

d (mod N)
• For each Cj emulate steps i=1,2,…,k-1 of repeated 

squaring
• At step k, emulate dk = 0 and dk = 1
• Variance of timing difference will be smaller for 

correct choice of dk
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Preventing Timing Attack

• RSA Blinding
• To decrypt C, generate random r

Y = reC (mod N)
• Decrypt Y then multiply by r−1 (mod N):

r−1Yd = r−1(reC)d = r−1rCd = Cd (mod N)
• Since r is random, timing information is hidden
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Factoring

• Security of RSA algorithm depends on (presumed) 
difficulty of factoring
– Given n = pq, find p or q and RSA is broken

• Factoring like “exhaustive search” for RSA

• What are best factoring methods?
• How does RSA “key size” compare to symmetric 

cipher key size?
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Factoring Methods: Motivation

• Trial division
– Obvious method but not practical

• Get element order
– x2k= 1 (mod n)
– (xk-1) (xk+1) = 0 (mod n).
– See below for exploiting this
– How do we find k?

• Find x2 = y2 (mod n), x±y, calculate (x+y,n), (x-y,n)
– Theorem: If x, y are chosen at random subject to x2 = y2

(mod n) then P(x±y)= ½.
– Next question: How  do we find such x,y.
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Trial Division

• Given n, trial divide n by 2,3,4,5,6,7,…,(n)
• Expected work is about n/2
• Trying only prime numbers reduces search π(n) ≈ 

n/ln(n) is number of primes up to n.
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Pollard p-1

• Suppose p|n and p-1 has small factors.  Pick a>1 and 
B.  We’re hoping B!=(p-1)k. 

• Set b1= a, bj+1= bj
j (mod n).  

• Put b= bB (mod n)= aB! (mod n)
• Now look at (b-1, n)=d.  If 1<d<n, we have a factor; if 

not, universal exponent theorem might work.
• Lenstra’s Elliptic Curve Factoring Method is an 

extension of this idea.
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Kraitchik

• We want to factor n = pq.
• Find x,y such that n = x2 − y2

• How do we find such x, y?
• Ad hoc:

– n= 193541963777
– 4399352= 28 x 72 x 67 (mod n)
– 10692 x 72 x 67 = 4494902 (mod n)
– (439934 x 1609)2 = (24 x 44940)2
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Factoring – Pollard r

• f(x)= x2 + 1 (mod n).
• xi+1= f(xi) (mod n).
• Look at (xi – xj, n).

– Actually, use Floyd’s trick and look at (xm-x2m,n).
• Loop expected after about 2n iterations.

– Actually, after (pn/2) steps).
• Unfortunately, this is exponential in lg(n)
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Pollard r factoring Example

• We use our old favorite n=1517.
• f(952)= 9522+1 (mod 1517)= 656
• f(360)= 3602+1 (mod 1517)= 656
• 9522- 3602= (952-360)(952+360).
• 952-360=592
• (592, 1517)= 37.

• Question:  Where does the name r factoring come 
from?
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Factor Bases

• Pick a set of primes: B= {-1, 2,3,5,7,…, p} (the “bases”).   
Numbers which completely factor are called B-smooth.

• ai= ((dnt+i)2 )–n

• Find ai so that it completely factors over p eB, these 
numbers are called B-smooth

• Example:
– a1

2= p1 p2, a2
2= p2 p3, a3

2= p1 p3

– (a1a2a3)2=(p1p2p3)2

– Compute ((a1a2a3-p1p2p3), n).

JLM 20081102



Linear Algebra

• Let B={p: p<B} and |B|= k.  
• If we have r>k “smooth” numbers

– xi
2= P jk pj

e[j]. ……  Ei

– We can find aj = 1,0: S jk e[i]=0  (mod 2)  --- Gaussian 
elimination!

– So P l xi
2= P j pj

2d[j]. ……  Ei

– This gives us the relations we want
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Factor Basis Example

• n=3837523. B={2,3,5,11,13,19}.
• 93982= 55 x 19 (mod n)
• 190952 = 22 x 5 x 11 x 13 x 19 (mod n)
• 19642 = 32 x 133 (mod n)
• 170782= 26 x 32 x 11 (mod n)
• (9398 x 19095 x 1964 x 17078)2 –

(24 x  32 x 53  x 11 x 132 x 19x)2=0 (mod n)
• 22303872 = 25867052 (mod n)
• (223038-2586705, 3837523)= 1093
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Sieving
• To factor n, set m= dnt.  Pick a B.

• f(x)= (x+m)2-n
• For small x, we are likely to have small f(x) and hopefully factors 

over B.
• Collect r>k of these as follows (sieving):

1. If x2=n (mod p), n is a QR mod p
2. Write down the f(m+i), -C  i C (The sieving interval)
3. Use the regularly spaced solutions to x2=n (mod p) , to reduce 

each f(m+i)
4. Do this for each p.

• Use these to get B or more factorizations and (by solving B or 
more linear systems)

• There’s a > ½ probability that the resulting relation will find a 
factor. 
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Quadratic Sieve

• To analyze QS, we need to finds a good interval and 
estimate sieving and solving times

# of decimal digits 50 60 70 80 90 100 110 120

# factor bas x 1000 3 4 7 15 30 51 120 245

# sieving interval x 106 .2 2 5 6 8 14 16 26
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Sieve Example

• n= 7429, m=86.  B={-1,2,3,5,7}

JLM 20081102

s -3 -2 -1 0 1 2 3
(s+m)2-n -540 -373 -204 -33 140 315 492
p=2 -135 -51 35 123
p=3 -5 -17 -11 35 41
p=5 -1 7 7
p=7 1 1
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Quadratic Sieve Analysis

• Define Ln[u,v]= exp(v(lg(n))u(lg(lg(n)(1-u).
• Let y(x,B) =|{y: ycx and y is B-smooth}|.
• Theorem [deBruijn, 1966]:  Let e>0, then for xs10, w cln(x)(1-e), 

y(x,x(1/w)) = xw(-w+f(x,w)), where f(x,w)/w 0 as w . 
• Corrollary: If a, u, v >0, then y(na, Ln[u,v])= naLn[1-u,-(a/v)(1-u)+o(1)] 

as n .
• For QS generate numbers f(s)~ n. Set a= ½ in Corollary. 

Probability of finding one that is Ln[u,v]-smooth one is Ln[1-u,-
1/(2v)(1-u)+o(1)] so we must try Ln[1-u, 1/(2v)(1-u)+o(1)] to find one.

• Size of factor base is ~ Ln[u,v].
• Choose u= 1/2.  Ln[1/2, x] Ln[1/2, y]= Ln[1/2, x+y].
• Size of sieving interval is Ln[1/2, v] Ln[1/2, 1/(4v)]= Ln[1/2, v+1/(4v)]
• Sieving time is Ln[1/2, v+1/(4v)], solving sparse equations is Ln[1/2, 

2v+o(1)].  Total time is minimized when v=1/2 and is Ln[1/2, 1+o(1)] .
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Three more algorithms

• Multiple Polynomial Quadratic Sieve: Use many 
polynomials (shorter sieve intervals)

• Number Field Sieve:  Extends QFS by allowing 
elements to be algebraic integers in algebraic number 
field.

• Elliptic Curve Factoring Method: Does arithmetic over 
elliptic curve mod n.  Q=k x P.  Operations project mod 
p if p|n.  If Q is the identity (0:1:0) mod p, third 
coordinate, z, is 0 mod p.  Then (z,n)=p.  Now check to 
see if the difference of two points (for different k) have 
last coordinates: (z1-z2,n)=p. 
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Work Factors

JLM 20081102

Method f(x)
Trial Division n/lg(n)
Quadratic Sieve (n lg(n))1/2

Number Field Sieve 1.9223 n1/3 lg(n)2/3

• Quadratic Sieve: Ln[1/2, 1+o(1)]
• ECM: Lp[1/2, - (1/2)] where p is smallest prime dividing n.
• Fastest in 1998: Ln[1/2, 1+o(1)]
• NFS (Pollard again): Ln[1/3, (64/9)(1/3)].
• QS best for N up to 390 bit 117 digits), then NFS.
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RSA Caution: Homomorphism

• Commutivity
– Given plain/cipher pairs (pi, ci), i= 1, 2,…, n, one 

can produce product pairs like (p1p5p2, c1c5c2) of 
corresponding plain/cipher pairs.

– Solution: padding
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Practical Factoring Results

• On August 22, 1999, the 155 digit (512 bit) RSA 
Challenge Number was factored with the General 
Number Field Sieve.

• Sieving took 35.7 CPU-years in total on... 
160 175-400 MHz SGI and Sun workstations

8 250 MHz SGI Origin 2000 processors
120 300-450 MHz Pentium II PCs

4 500 MHz Digital/Compaq boxes
• Total CPU-effort :  8000 MIPS years over  3.7 months. 
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RSA Summary

• RSA is a great algorithm.
• Just don’t do anything stupid.

– Reasonable exponents
– Good padding
– Good prime generation
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End
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