
1

Cryptanalysis

Lecture 6: Introduction to Public Key
Systems

John Manferdelli
jmanfer@microsoft.com

JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability
for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

jlm20081102

mailto:jmanfer@microsoft.com�

2

Public Key (Asymmetric) Cryptosystems

• An asymmetric cipher is a pair of key dependant maps,
(E(PK,-),D(pK,-)), based on related keys (PK, pK).

• D(pK,(E(PK,x))=x, for all x.

• PK is called the public key. pK is called the private key.

• Given PK it is infeasible to compute pK and infeasible to
compute x given y=E(PK,x).

Idea from Diffie, Hellman, Ellis, Cocks, Williamson. Diffie and Hellman,
"New Directions in Cryptography“, IEEE Trans on IT 11/1976. CESG work
in 1/70-74.

JLM 20081102

3

Uses of Public-Key Ciphers

• Symmetric Key Distribution
• Key Exchange and other protocols
• Digital Signatures
• Sealing Symmetric Keys
• Authentication
• Proving Knowledge without disclosing secrets (used in

anonymous authentication)
• Symmetric Key systems cannot do any of these.

However, symmetric key systems are much faster than
Public Key systems.

JLM 20081102

4

Symmetric Key Distribution

• Imagine you are the head of security for Microsoft and insist that all
Microsoft financial communications transmitted over the Internet be
encrypted for your finance machines. You buy “black boxes” for
every Internet egress point, each with a known Public Key (the
private key is generated on the black box and is known only to that
hardware).

• Every day, just before 0h Zulu, you generate a new symmetric key
Kd, encrypt it and transmit E(PKi, Kd) to each black box, i,
(Hopefully, using a mechanism that insures that it comes from you
or what happens?)

• What’s good about this? Keys are never touched by humans.
• What would you do if you were worried that some black boxes

could be compromised (i.e.- private keys determined)?

JLM 20081102

5

Diffie Hellman Key Exchange

Alice Bob
A1: s= min(p size),
Na in {0, … 2256-1}

s,Na

B1: Choose (p,q,g),
x in {0, … 2256-1}

(p,q,g), X=gx,
AuthB

A2: Check (p,q,g) X,
AuthB, pick y in
{0,…q-1}

B2: Check Y, AuthA
Y= gy, AuthA

K= Xy K= Yx

JLM 20081102

6

Digital Signatures

• I want to send you messages you can rely from time to time, like:
M=“I, John Manferdelli, promise on November 1, 2008, that (1) I will
give everyone in CSE 599r an A, (2) I will eat my vegetables, (3) I
won’t watch Apple ads.”

• How can I prove (electronically) they come from me?
• I generate a public/private key pair PKJLM, pKJLM.
• One day in class I personally give you PKJLM on a piece of paper.
• When I send a message like M I also transmit: D(pKJLM, SHA-

256(M)).
• When you get M, you calculate SHA-256(M) and compare it to

E(PKJLM, SHA-256(M)), if it matches, you can tell it’s from me.

JLM 20081102

7

Sealing Symmetric Keys

• I want to send you a confidential document, M (like an
email). I know your public key PKyou (maybe you told it
to me, maybe it’s in a directory, maybe someone I trust
gave it to me and vouched for it).

• I generate a new symmetric key, K, at random.
• I encrypt M with CBC-AES using K and transmit to you:

1. IV
2. CBC-AESK(IV,M)
3. E(PKyou, K)
4. I may also sign the message so you can be sure it came from

me

• This is essentially how S/MIME mail works.

JLM 20081102

8

Authentication

• I am on an physically secure line (no one can eavesdrop
or modify messages between me and the other end
point) so I’m not worried about confidentiality.

• I want to make sure you, my lawyer, is on the other end
and I know your public key PKyou.

• Before I say anything I’d regret reading in the New York
Times, I generate a (big) random number, N and
append the date and time, calling this entire message,
M. I transmit M and ask you to apply D(pKyou, M). If
E(PKyou, M)=M, I can be sure it’s my attorney; otherwise,
I take the fifth.

JLM 20081102

9

Existing Public-Key Ciphers

• Public Key systems are based on “computationally hard”
“trap door problems” (Not all NP complete problems are
suitable).
– Factoring (n= ab, what is a, what is b?)
– Discrete Log (x= ya (mod n), what is a?)
– Elliptic curve discrete log. (Q=nP, what is n?)

• Rivest Shamir Andelman (1978)
– Based on factoring

• El Gamal (1984)
– Based on discrete log

• Elliptic Curve (1985, Miller-Koblitz)
– Based on elliptic curve discrete log (over finite fields).

JLM 20081102

10

Some Number Theory

• Fundamental Theorem of Arithmetic
• Prime Number Theorem
• Euclidean Algorithm for GCD
• Solving congruences
• Chinese Remainder Theorem
• Continued Fractions
• Integer arithmetic mod n
• Fermat’s Theorem
• Euler’s Theorem
• Finding square root mod n
• Quadratic Reciprocity: Legendre and Jacobi symbols.
• Lattices

JLM 20081102

11

Fundamental Theorem of Arithmetic

• Let n be any positive integer, n can be written as a
product of primes in an essentially unique way (except
for units and the order of the primes).

• It may be hard to actually carry out this factorization.

JLM 20081102

12

Distribution of Primes

• Euclid: There are infinitely many primes

• Prime Number Theorem: The number of primes, p(n), less
than or equal to n is asymptotically equal to n/ln(n).
– Spookily accurate even for pretty small n.
– First proof using complex analysis sketched by Riemann, finished

by Hadamard and de la Vallee-Poussin. “Elementary” proof by
Erdos and Selberg

• Chebyshev’s Theorem: For x>200,
c1(x/ln(x)<p(x)<c2(x/ln(x)). c1=2/3, c2= 1.7
– Pretty easy to prove.

• Bertrand’s Postulate: For all n>2 there is a prime between n
and 2n

JLM 20081102

Prime Distribution Example

JLM 20081102 13

n p(n) n/ln(n) p(n)/ (n/ln(n))
10 4 4.34 .9217
50 14 12.78 1.10

100 25 21.71 1.15
500 95 80.46 1.17

1000 168 144.76 1.16
106 78498 72382 1.08
109 50847478 48254949 1.05

14

Solving Congruences mod p

• Solve ax=b (mod p)
– Procedure: If (a,p) 1, there is no solution if b
0(mod p) and everything is a solution if b=0(mod p).
This leaves us with (a,p)=1. We find u,v such that
au+pv=1. (ub) is the solution.

– This is very fast even if a, b and p are enormous
integers.

• Note: See the Short Math reference notes.

• We can also solve recurrences of the form ax=b (mod pe)

JLM 20081102

Solving Congruence Example

• Solve 5x=2 (mod 37)

• (15) 5 + (-2) 37 = 1 so the solution is (2 x 15)= 30 (mod
37)

• 5 x 30= 150= 4 x 37 + 2

• If only all problems were this easy

JLM 20081102 15

16

Chinese Remainder Theorem

• If x= a1 (mod m1) and x= a2 (mod m2) and (m1 ,
m2)= 1, then the simultaneous equations have a
unique solution mod m1 m2.

• Proof: k1m1 + k2 m2 =1. Set a= a2k1m1 + a1k2 m2 .
This is a solution. Also a practical computational
method.

JLM 20081102

CRT Example

• N= 1517= 37 x 41, solve 5 x2 = 2 (mod 1517).

• First solve 5 x2 = 2 (mod 37) and 5 x2 = 2 (mod 41).
– (15) 5 + (-2) 37 = 1 and (-8) 5 + (1) 41 =1 so:
– x2 = 2 x 15 = 30 (mod 37) and x2 = 2 x (-8) = 25 (mod 41).
– 202 = 30 (mod 37) and 52 = 25 (mod 41).

• Use CRT
– (10) 37 + (-9) 41= 1
– (5) (10) (37) + (20) (-9) (41)= 538 =y (mod 1517)
– 5 (538)2 = 2 (mod 1517).

JLM 20081102 17

18

Continued Fractions

• Continued Fraction: x0 = x, ai= xi. xi+1= (xi-ai)-1.
• pn/qn= a0 + 1/(a1 + 1 / (a2 + …)).
• p-2= 0, p-1= 1, q-2= 1, q-1=0.
• pn+1= an+1 pn + pn-1.
• qn+1= an+1 qn + qn-1.

• Theorem: If |x-(r/s)| < 1/(2s2), r,s e Z, then r/s= pi/qi
for some i.

JLM 20081102

19

Universal Exponent Theorem

• Suppose n is composite, say, n=pq. Given r>0, ar = 1
(mod n), for all a: (a,n)=1, we can factor n.

• Method: Let r=2km; m, odd. Put b0= am (mod n) and
bi+1= bi

2 (mod n).

1. If b0= 1, pick another a.
2. If bi+1= 1 and bi= -1, pick another a.
3. If bi+1= 1 and bi ± 1, d=(bi-1,n) is a non-trivial factor

of n.

JLM 20081102

Universal Exponent Example

• Let n= 1517. Note that a1440=1 (mod n).
• 1440= 25(45), m= 45.

• b0= 245=401 (mod 1517)
• b1= 4012 =1(mod 1517). Try again.

• b0= 345=776 (mod 1517)
• b1= 7762=1444 (mod 1517)
• b2= 14442 =778(mod 1517).
• b3= 7782 =1(mod 1517).
• (778-1, 1517)= (777, 1517)=37.

JLM 20081102 20

21

f(n)

• Definition: f(n)= |{a: (a,n)=1, 0<a<n}|.

n>2  f(n) is even
n is prime iff f(n)= n-1
f(pe)= (p-1)pe-1

If (m1, m2)= 1, f(m1 m2)= f(m1) f(m2)
Sd|n f(d)= n
If n= p1

e[1]p2e[2]…pk
e[k], then f(n)= P (1-1/pi)

Average value of f(n) is 6n/(p2)
f(n) is multiplicative if (n,m)=1  f(nm)=f(n)f(m)
If n= p1

e[1]p2e[2]…pk
e[k], m(n)= 0 if e[i]>1 for any I, otherwise m(n)= (-1)k

If f is multiplicative, so is F(n)= Sd|n f(d), f(n)= Sd|n m(d)F(n/d)

JLM 20081102

f(n) Example

f(1)=1
f(5)=4
f(25)=20
f(125)=40

JLM 20081102 22

23

Law of Quadratic Reciprocity

• If p and q are primes, define (a/p) = 1 if there is an x:
x2=a (mod p), 0 of p|a, and -1 is there is no such x.

• (a/p)= a(p-1)/2 (mod p)
• ((ab)/p)= (a/p) (b/p)

• Gauss: (p/q)(q/p)= (-1)[(p-1)/2 (q-1)/2].

• This allows us to solve quadratic equations in a prime
field.

JLM 20081102

Quadratic Reciprocity Example

• Entry in row i, column j is
p[i](p[j]-1)/2

JLM 20081102 24

7 11 13 17 29 31
7 -1 -1 -1 1 1

11 1 -1 -1 -1 -1
13 -1 -1 1 1 -1
17 -1 -1 1 -1 -1
29 1 -1 1 -1 -1
31 -1 1 -1 -1 -1

• (7/11)(11/7)=(-1)5 x 3=-1
• (7/13)(13/7)=(-1)6 x 3=1
• (7/17)(17/7)=(-1)8 x 3=1
• (11/31)(31/11)=(-1)15 x 5=-1

25

Factoring and exponents

• Suppose n is the product of two (possibly unknown)
primes, p and q.
1. If p and q are known, we can calculate f(n).
2. If f(n) and n are known, we can factor n.

• Proof:
– If p and q are known, f(n)= (p-1)(q-1).
– If n and f(n) are known, set f(x)= x2 –Ax+1 where A=n-

f(n)+n+1. p and q are the roots of f(x)=0.

• Note: If (e, f(n))=1, we can calculate d: ed=1 (mod
f(n)) if we know p and q, this theorem tells us if we
know a universal exponent, we can calculate d.

JLM 20081102

Large Integer Computation

• Almost all public key algorithms are based on “hard”
number theory problems over enormous (e.g.- 2048
bit) integers.

• We need to know how to do arithmetic on computers
with huge numbers
– Addition/subtraction
– Multiplication
– Modulus
– Modular inverses
– Exponentiation
– Testing Primality
– Factoring

JLM 20081102 26

27

Algorithm Timings

• Adding two m-bit numbers takes O(m) time.
• Multiplying two m-bit numbers takes <O(m2).
• Multiplying a 2m-bit number and reducing modulo and

m-bit number takes O(m2).
• Computing (a, b) for a, b< n takes O(ln2(n)) time (i.e.-

fast). This is Euclid’s Algorithm and it started Knuth,
Euclid and everyone else off on computational
complexity. If n has m bits this is O(m2).

• Testing an number n for primality takes
O(nclg(lg(n)))=O(2cmlg(m)).

• Best known factoring:
O(nc(lg(n)^(1/3)(lg(lg(n))^(2/3)))=O(2cm(m^(1/3)(lg(m)^(2/3))). [a lot
longer].

JLM 20081102

28

The Multiplicative Group (mod n)

• Gn= {a: (a,n)= 1, 0<a<n} is the multiplicative group mod n
• |Gn|= f(n) so (a,n)=1  a f(n) =1 (mod n)
• a is called a primitive root if ordn(a)= f(n)
• If a is a primitive root, ab= 1 (mod n) b| f(n)
• ordn(au)= ordn(a)/(u, ordn(a)). If m has a primitive root,

there are exactly f(f((m)) such primitive roots.
• Theorem: If n=pj, p an odd prime and b is a primitive root

mod n then n is not b-pseudoprime
• If n is prime, n has a primitive root.
• n has a primitive root iff n = 2, 4, pk, 2pk where p is an

odd prime.

JLM 20081102

29

Finding generators

• For a cyclic group, G of order find a generator, g

• while ()
a: choose a random g∈G

for i = 1 to k
b = gn/pi

if (b = 1) goto a:
return g

• G has φ(n) generators. Using the lower bound for φ(n),
the probability that g in line 2 is a generator is at least
1/(6 ln ln n)

ke
k

e ppn ...1
1=

JLM 20081102

30

Representing Large Integers

• Numbers are represented in base 2ws where ws is the
number of bits in the “standard” unsigned integer
(e.g. – 32 on IA32, 64 on AMD-64)

• Each number has three components:
– Sign
– Size in 2ws words
– 2ws words where n= i[ws-1]2ws(size-1) + …+ i[1]2ws + i[0]
– Assembly is often used in inner loops to take advantage of

special arithmetic instructions like “add with carry”

JLM 20081102

31

Classical Algorithms Speed

• For two numbers of size s1 and s2 (in bits)
– Addition/Subtraction: O(s1)+ O(s2) time and max(s1, s2)+1

space
– Multiplication/Squaring: O(s1) x O(s2) time and space (you can

save roughly half the multiplies on squaring)
– Division: O(s1) x O(s2) time and space

• Uses heuristic for estimating iterative single digit divisor: less
than 1 high after normalization

– Extended GCD: O(s1) x O(s2)
– Modular versions use same time (plus time for one division by

modulus) but smaller space
– Modular Exponentiation (ae (mod n)): O((size e)(size n)2) using

repeated squaring
– Solve simultaneous linear congruence's (using CRT): O(m2) x

time to solve 1 where m = number of prime power factors of n

JLM 20081102

32

Karasuba Multiplication

• (a2k+b) (c2k+d)= ac22k+(ad+bc)2k+bd
– 4 multiplies
– Asymptotically n2

• To save 1 multiply compute
– t= (a+b)(c+d)= ac+ad+bc+bd
– ac
– bd
– t-ac-bd= ad+bc
– 3 multiplies, 2 adds
– Asymptotically nlg(3), lg(3) is about 1.58

JLM 20081102

33

Integer Squaring

• Reduced number of multiplies because of symmetry
– a= 2n a1 + a0, b= 2n b1 + b0

– ab= 22n a1 b1 + 2n (a1 b0 + b1 a0)+ b0 a0

• 4 multiplies
– a2= 22n a1

2 + 2n+1 a1 a0 + a0
2

• 3 multiplies
• Cost: If a is t words long, a2 takes (t+1)t/2 single

precision multiplies

JLM 20081102

34

Integer Division Algorithm

• x= (xn xn-1 … x0)b, y= (yn yn-1 … y0)b

• x/y=q= (qn-t qn-1 … q0)b, x mod y= r = (rn rn-1 … r0)b

• Key Step: Estimate Quotient
– If yt s [b/2], the estimate
– qi-t-1= (xib+xi-1)/yt is at most 2 greater than the correct

value
– If qi-t-1= (xib2+xi-1b+xi-2)/(ytb+yt-1) is at most 1 greater

than the correct value

JLM 20081102

35

Integer Division

1. Normalize: while(x>=ybn-t) qn-t++; x-= ybn-t;

2. For(i=n, downto t+1)

2.1 if(xi=yt) qi-t-1= b-1

else qi-t-1= [xib+xi-1/yt]

2.2 while(qi-t-1(ytb+yt-1)>(xib2+xi-1b+xi-2)) qi-t-1--

2.3 x-= qi-t-1 ybi-t-1

2.4 if (x>0) x+= ybi-t-1; qi-t-1++;

3. r= x

4. return(q,r)

Cost: (n-t)(t+3) multiplies, (n-t) divisions.

JLM 20081102

36

Extended Binary GCD

Input: x= (xn xn-1 … x0)b, y= (yn yn-1 … y0)b. Output: a, b, v: ax+by=v= gcd(x,y).
1. g=1

2. while(x&1==y&1==0) x/= 2, y/= 2, g*=2

3. u=x, v=y, A=1, B=0, C=0, D=1

4. while (u&1==0)

u/= 2

if(A=B=0 (mod 2)) A/=2, B/=2

else A= (A+y)/2, B= (B-x)/2

5. while (v&1==0)

v/= 2

if(C=D=0 (mod 2)) C/=2, D/=2

else C= (C+y)/2, D= (D-x)/2

6. if(u>=v) u-=v, A-=C, B-=D

else v-= u, C-=A, D-=B

7. if (u==0) a= C, b= D, return(a,b,gv)

else goto 4

Cost: 2 ([lg(x)]+[lg(y)]+2) iterations
JLM 20081102

37

Montgomery Multiplication

• Motivation: Modular reduction is expensive (a divide
operation). Can we replace the divide with some cheap
operation (like shifting?)

• Let A, B, and M be n-block integers represented in base x
with 0 ≤ M < xn.

• Let R = xn. gcd(R,M) = 1.
• The Montgomery Product of A and B modulo M is the

integer ABR–1 mod M.
• Let M′ = –M–1 mod R and S = ABM′ mod R.
• Fact: (AB+SM)/R ≡ ABR–1 (mod M).

JLM 20081102

38

Montgomery Multiplication and Timing

• (r, n)= 1, r= ab (mod n), a#=ar (mod n), rr’-nn’=1, all t words long.

MontPro(a#, b#)
t= a# b# ,m= rn’ (mod n), u= (mn+t)/r
if(n>u) u-= n;
return(u)

MontMult(a,b,n)
Compute n’, a#, b#

x#= MontPro(a#, b#)
return(MontPro(x#,1))

Cost: Reduction takes 2t(t+1) multiplies, no divisions. Multiply takes
4t(t+1). vs 2t(t+1) for classical.

JLM 20081102

39

Exponentiation and Timing

• Right to left squaring and multiplication
• Left to right squaring and multiplication
• Left to right k-ary

• Square and multiply exponentiation (SME) timing, if
bitlen(e)=t+1 and wt(e) is the Hamming wt, SME
takes t squarings and wt(e) multiplies.

JLM 20081102

40

Montgomery Exponentiation and Timing

x= (xl xl-1 … x0)b, e= (et et-1 … e0)b, m = (ml-1 ml-2 … m0)b,
R= bl, m’= -m-1 (mod b)

MontExp(x,e,m)
1. x#= MontMult(x, R2, m), A= R (mod m)
2. for(i= t downto 0)

2.1 A= MontMult(A,A)
2.2 if (ei==1) A= MontMult(A, x#)

3 return(MontMult(A,1))

Cost: Total: 3l(l+1)(t+1). [For Classical: 2l(l+1) plus l divisions.]

Step 1 2 3
MontMult 1 3/2 t 1

SP Mult 2l(l+1) 3tl(l+1) l(l+1)

JLM 20081102

Montgomery Example

• Suppose N = 79, a = 61 and b = 5
• R = 102 = 100. RR’-NN’=1, R’=64, N’=81.

– a′ = 61 ⋅ 100 = 17 (mod 79)
– b′ = 5 ⋅ 100 = 26 (mod 79)
– abR (mod 79)= 61 x 5 x 100 (mod 79)= 6
– X= a’b’=442= abR2 (mod N)
– m= (X (mod R))(N’ (mod R))= 42 x 81 =2 (mod R)
– x= (X+mN)/R= (442+2x79)/100 = 6

JLM 20081102 41

Example from Mark Stamp

42

Exponentiation Optimizations

• Arbitrary g, e
• Fixed g

– RSA

• Fixed e
– DH
– El Gamal

• Useful in El Gamal verify
– Example: a h(m)(a -a)r

JLM 20081102

43

RSA Public-Key Cryptosystem

Alice (Private Keyholder)

• Select two large
random primes p & q.

• Publish the product
n=pq.

• Use knowledge of p & q
to compute Y.

Anyone (Public Key Holder)

• To send message Y to
Alice, compute Z=YX

mod n.
• Send Z and X to Alice.

Rivest, Shamir and Adleman, “On Digital Signatures and Public
Key Cryptosystems.” CACM, 2/78.

JLM 20081102

44

RSA Details

• Encryption: E(Y) = Ye mod n.
• Decryption: D(Y) = Yd mod n.

– D(E(Y)) = (Ye mod n)d (mod n) = Yed (mod n) = Y

• Speedup: Compute mod p and mod q then assemble
using CRT

• Remember (p,q)= 1  there are p’, q’: p’p+q’q=1
• Saves roughly factor of 4 in time

JLM 20081102

45

RSA Example
• p=691, q=797, n=pq=550727. f(n)= 690 x 796= 23x3x5x23x199.
• Need (e, f(n))=1, pick e=7.
• 1= 7 x 78463 + (-1) f(n), so d= 78463.

• 78463= 216+ 213+ 212+ 29+ 26+ 25+ 24+ 23+ 22+ 21+ 20 =
65536+8192+4096+512+64+32+16+8+4+2+1. Use this in the
successive squaring calculation.

• Public Key: <n=550727, e=7>
• Private Key: <p=691, q=797, d=78463>.

• Encrypt 10. 107 (mod n)= 86914.
• Decrypt: (86914)78463 (mod n)=10.
• Successive squares: 86914, 271864, 268188, 407871, 97024, 79965,

460755, 375388,444736, 362735, 289747, 500129, 378508,532103,
446093, 371923, 66612.

JLM 20081102

46

RSA Signatures

An additional property
D(E(Y)) = Yed mod n = Y
E(D(Y)) = Yde mod n = Y

Only Alice (knowing the factorization of n) knows D.
Hence only Alice can compute D(Y) = Yd mod n.

This D(Y) serves as Alice’s signature on Y.

JLM 20081102

47

Generating Primes

• Probabilistic testing for primality is faster than factoring.
• T(n, p, t) is a test, depending on a parameter, t, which

results in a “yes/no” answer to the question: “Is n prime?”
– If “yes”, the answer is true with probability p.
– If “no,” n is definitely not prime.

• Fermat Test. If (n,t)=1,
– T(n, .5, t):= “yes” if t(n-1) =1 (mod n).

• Note for most tests trial divide by all primes p cB, first.

JLM 20081102

48

Pseudoprimes

• Recall Fermat’s Little Theorem: If n is a prime a(n-1)= 1 (mod n) for all
a with (a, n)= 1.

• n is a b-pseudoprime iff b(n-1)=1 (mod n) and n is not prime.
– There are 3 2-psuedo primes <1000: 341, 561, 645.
– Theorem: There are infinitely many 2-pseudoprimes.

Proof: d|n 2d-1|2n-1. Suppose n is a 2-pseudoprime, so is m=2n-1.
m is obviously composite. Since n is a 2 pseudoprime n| k=2n-2 so 2n-

1|2k-1.
• n is a Carmichael number if n is a b-pseudoprime for every b:

(b,n)=1. 561 is a Carmichael number.
• If n is a Carmichael number then n=p1p2…pr and pi-1|n-1. r>2.
• Alford, Granville, Pomerance: There are infinitely many Carmichael

numbers

JLM 20081102

49

Liars, Witnesses and Certificates

• n is prime iff f(n)=n-1. So if we find a b such that ordn(b)= n-1. b is a
witness to n’s primality.

• To show ordn(b)= n-1, we can factor n-1= P pi
e[i] and check that for

each k= n-1/pi , bk 1 (mod n).
• If bn-1 1 (mod n) b is said to be a “witness” to n’s compositeness.
• If n is a b-pseudoprime b is said to liar for the primality of n.
• Given n-1=2tm, m odd and b. A b-sequence is b1= bm, bi+1= bi

2, i=
1,2,..t,. If a b sequence does not end in 1 or if a terminal 1 is not
preceded by a -1, n is composite. Again b is a “witness” as to the
compositeness of n.

• If n is composite and a b sequence acts like one for a prime, n is
called a b-strong pseudoprime.

• b is a strong liar for compositeness if n passes the strong
pseudoprime test with b

JLM 20081102

50

Primality Testing
• Deterministic test: n is prime if m does not divide n for

all m < n.
• Check m= 2 and m odd
• Sieve of Eratosthenes
• Keep a list of primes

– Still to slow
• Probabalistic

– Fermat
– Solovay-Strassen
– Miller-Rabin: Try bases b= 2, 3, … pk , if n is a b-sequence

“passes” the primality condition, conclude n is prime.
– If the extended Riemann Hypothesis is true the Miller-Rabin test

is dispositive as to the primality of n if we try all bases up to
2(ln(n))2.

JLM 20081102

51

Testing Primality - Miller Rabin

• MR(n, .25, t), n>3, n, odd. Set n-1= 2sr, r, odd. (t>3, in practice)
• Takes ~ O(lg(n)3).

for(i=1; it) {
Choose a, 1<a<n-1. 2 is a good choice first time.
Compute y=ar (mod n)
If y1 and y(n-1) {

j=1
while(j  (s-1), yn-1)

y= y2 (mod n)
if (y=1)

return(“no”)
j= j+1

}
if(y n-1)
return(“no”)

return(“yes”)
}

JLM 20081102

52

Probability of Success for M-R

• Theorem (Strong liars are scarce): If n is composite and
odd then at most (n-1)/4 residue classes can be strong
liars.

– Case 1: n= pe. Let g be a primitive root of n. ordn(g)=(p-1)pe-1. If n
is a ga-pseudoprime, (p-1)pe-1|a(pe-1)  pe-1|a. So n is a ga-
pseudoprime iff pe-1|a and there are p-1 such a’s. (p-1)/pec1/4.

– Case 2: n= p1
e[1]p2

e[2]…pr
e[r]. n-1=2st, t odd. Define k to be smallest

such that if e=2k, be= -1 (mod n)  be= -1 (mod pi), all i . So 2k+1 |
pi-1, all i so 2k+1|(n-1)  k<s. Set m=2kt, bm=(-1)t= -1, and L={a:
|am|=1, 1ca<n}. We will show L contains all the strong liars and
|L|c(n-1)/4.

JLM 20081102

53

Proof Continued

• L contains all the strong liars and |L|c(n-1)/4.
– If a is a strong liar, and v= 2jt, j=0 and av= 1 or -1 or av= -1 for jck,

thus a eL and a eL  ab eL.
– For aeL, put S(a)={x: 1cx<n, and x=a or ab mod pi

e[i], all i}. There
are 2r elements in S(a) only 2 of which are in L ({a, ab}) and each
appears in at most 2 of the sets. Thus there are at least |L|(2r-2)/2
integers that are not strong liars. If rs3, were done. If r=2 there is
at least one non-strong liar in S(a) for every one that is. If x is in the
union of the S(a)’s, n is an x-psuedoprime but is a is not a
Carmichael number, at most half the positive integers less than a
are liars: if x is a liar and (a,y)=1, xy is not a liar. So if x1 and x2 are
both liars yx1 and yx2 are not. All that is left to show is that n is not
a Carmichael number is r=2 but that is true.

JLM 20081102

54

Primality Testing Example

• From Trappe and Washington. n=561.
• n-1=560=24x5x7. Pick a=2.

– b0= 235= 263 (mod n)
– b1= b0

2= 166 (mod n)
– b2= b1

2= 67 (mod n)
– b3= b2

2= 1 (mod n)

• 561 is composite. In fact, (b2-1,561)=33.

JLM 20081102

55

Strong Primes

p is a “strong prime” if
1. p-1 has a large prime factor, r.
2. p+1 has a large prime factor, s.
3. r-1 has a large prime factor, t.

Other criteria (X9.31)
– If e is odd (e,p-1) =1=(e, q-1)
– (p-1, q-1) should be “small”
– p/q should not be near the ratio of two small integers
– p-q has a large prime factor
– Add Frobenius test
– Add a Lucas test

JLM 20081102

56

Gordan’s Algorithm

Gordan’s algorithm
1. Generate 2 primes, s,t of roughly same length.
2. Pick i0. Find first prime in sequence, (2it+1), i=i0,

i0+1,…; denote this prime as r= (2it+1).
3. Compute, p0= 2(s(r-2) (mod r))s-1.
4. Select j0. Find first prime in sequence, (p0+2jrs),

j=j0,j0+1,…; denote this prime as p= (p0+2jrs).
5. return(p)

JLM 20081102

57

Attacks

• Elementary
– Common Modulus: K1= (e1, d1, pq), K2= (e2,d2,pq)

• Low Public Exponent
– Wiener: Let N=pq, q<p<2q, d<1/3 n1/4, given <N,e> and

ed=1 (mod j(n)), we can find d efficiently.
• Uses continued fractions

– Coppersmith’s Theorem: Let N be an integer and f a
monic polynomial over Z, X=N1/d-e for some e>= 0. Given
<N, f>, we can efficiently find all integers |x0|<X satisfying
f(x0)= 0 (mod N). Running time is dominated by LLL on
lattice with dimension O(min(1/e, lg(N)).

JLM 20081102

58

Attacks, continued

• Related Messages and low exponents
– Coppersmith’s theorem can be used to strengthen Franklin-

Reiter Related Message attack if e=3 and pad is <1/9 message
length.

• Timing/Glitching
• Bleichenbacher’s Attack on PKCS 1
• Factoring

– Pollard rho
– p-1
– Quadratic Sieve
– Number Field Sieve

• Reference: Boneh, Twenty years of attacks on RSA.
Notices AMS.

JLM 20081102

Common Modulus Attack

• (e1, e2)=1.
• c1= me1 (mod n)
• c2= me2 (mod n)
• d1 e1 + d2 e2 = 1
• (c1)d1 (c2)d2 = m, oops!

JLM 20081102 59

JLM 20081102 60

Small exponent attack on RSA

• If q<p<2q, n=pq, 1 c d,e < f(n). If d< 1/3 n1/4, d can be
calculated quickly.

• Proof: q<n, n-f(n)<3n. ed= 1+f(n)k.
• So, f(n)k<ed<f(n)1/3 n1/4. kn-ed= k(n-f(n))-1.
• 0< k/d – e/n <1/(3d2). By continued fractions result, the

successive approximations A/B with k=A, d=B and C=(ed-
1)/k allows us to compute f(n)=C. Now use the previous
result.

Short plaintext

• c= me (mod n), m, unknown (but small).
• Make two lists: cx-e (mod n) and ye with x,y “small.”
• When they match:

– cx-e = ye (mod n) and c= (xy)e (mod n).

JLM 20081102

Glitching Attack

• n=pq. <e,d> are the encryption and decryption exponents. Attack is
on private key which is used for signing, say, a hash. Let p’p + q’q=1.
– Suppose signer uses the CRT, m1= m (mod p) and m2= m (mod q). The

correct solution is m1
d= a1 (mod p) and m2

d= a2 (mod q) and the CRT
gives y= a2 p’p + a1q’q.

• Suppose the computation is done on a w-bit (e.g.-32) machine which
miscomputes a x b for two specific w-bit values a, b.
– We want m around n satisfying p<m<q involving a and b; for example,

m= ck 2wk + ck-1 2w(k-1) + … + a 2w + b.
– We submit m for signing. Because of the error, the signer will

(mis)compute y= md (mod n) in a way we can take advantage of.
– In normal squaring, m1

2 will be computed correctly (mod p) but m2
2 will be

computed incorrectly (mod q). We get m1
d= a1 (mod p) [correct] and m2

d=
a2’  a2(mod q) [wrong!]. y y’= a2’ p’p + a1q’q.

– Resulting y’ will be correct (mod p) but wrong (mod q).
– Now (y’e-m, n)= q. Oops.

JLM 20081102 62

63

Glitching Attack Example

• p=37, q=41. n=pq=1517. f(n) = 36 x 40 = 25 x 32 x 5 = 1440.
• Note as before that 10(37)+(-1)41=1.c= 1517 ~ 38. We pick m= 39.
• Now imagine an RSA scheme with e=7 and the foregoing parameters.

– 3 (1440) +(-617) 7=1, so d= -617=823 (mod 1440).
– m1= m (mod 37)=2, m2= m (mod 41)= 39.
– d1= d (mod 36)= 31, d2= d (mod 40)= 23.
– 231=22 (mod 37), 3923= 33 (mod 41).
– By the CRT, y=md (mod n)= (10)(37)(33)+(-9)(41)22= 1058. We confirm

10587= 39 (mod n).
• Now suppose w=3, 39= 4 x 8 + 7 and suppose the error in the

computer is that it thinks 4 x 7 = 26.
– Computing m2

2 (mod 41) we get 13 instead of the correct answer, 4.
– Using the usual exponentiation procedure, we would compute 3923 (mod

41) =12 (wrong!) and y’= (10)(37)(12)+(-9)(41)22 =873. 8737 (mod
n)=1334.

– (1334-39,1517)= (1295, 1517)=37. Bingo!

JLM 20081102

Repeated Squaring

// Compute y = xd (mod N)
// where, in binary, d = (d0,d1,d2,…,dn) with d0 = 1
s = x
for i = 1 to n

s = s2 (mod N)
if di == 1 then

s = s ⋅ x (mod N)
end if

next i
return s

JLM 20081102 64

Timing Attack (Kocher)

• Attack on repeated squaring
– Does not work if CRT or Montgomery used
– In most applications, CRT and Montgomery

multiplication are used
• This attack originally designed for smartcards
• Can be generalized (differential power analysis)
• Recover private key bits one (or a few) at a time

– Private key: d = d0,d1,…,dn with d0 = 1
– Recover bits in order, d1,d2,d3,…

JLM 20081102 65

Example from Mark Stamp

Kocher’s Attack

• Suppose bits d0,d1,…,dk−1, are known
• We want to determine bit dk

• Randomly select Cj for j=0,1,…,m-1, obtain timings
T(Cj) for Cj

d (mod N)
• For each Cj emulate steps i=1,2,…,k-1 of repeated

squaring
• At step k, emulate dk = 0 and dk = 1
• Variance of timing difference will be smaller for

correct choice of dk

JLM 20081102 66
Example from Mark Stamp

Preventing Timing Attack

• RSA Blinding
• To decrypt C, generate random r

Y = reC (mod N)
• Decrypt Y then multiply by r−1 (mod N):

r−1Yd = r−1(reC)d = r−1rCd = Cd (mod N)
• Since r is random, timing information is hidden

JLM 20081102 67

Factoring

• Security of RSA algorithm depends on (presumed)
difficulty of factoring
– Given n = pq, find p or q and RSA is broken

• Factoring like “exhaustive search” for RSA

• What are best factoring methods?
• How does RSA “key size” compare to symmetric

cipher key size?

JLM 20081102 68

Factoring Methods: Motivation

• Trial division
– Obvious method but not practical

• Get element order
– x2k= 1 (mod n)
– (xk-1) (xk+1) = 0 (mod n).
– See below for exploiting this
– How do we find k?

• Find x2 = y2 (mod n), x±y, calculate (x+y,n), (x-y,n)
– Theorem: If x, y are chosen at random subject to x2 = y2

(mod n) then P(x±y)= ½.
– Next question: How do we find such x,y.

JLM 20081102 69

Trial Division

• Given n, trial divide n by 2,3,4,5,6,7,…,(n)
• Expected work is about n/2
• Trying only prime numbers reduces search π(n) ≈

n/ln(n) is number of primes up to n.

JLM 20081102 70

71

Pollard p-1

• Suppose p|n and p-1 has small factors. Pick a>1 and
B. We’re hoping B!=(p-1)k.

• Set b1= a, bj+1= bj
j (mod n).

• Put b= bB (mod n)= aB! (mod n)
• Now look at (b-1, n)=d. If 1<d<n, we have a factor; if

not, universal exponent theorem might work.
• Lenstra’s Elliptic Curve Factoring Method is an

extension of this idea.

JLM 20081102

Kraitchik

• We want to factor n = pq.
• Find x,y such that n = x2 − y2

• How do we find such x, y?
• Ad hoc:

– n= 193541963777
– 4399352= 28 x 72 x 67 (mod n)
– 10692 x 72 x 67 = 4494902 (mod n)
– (439934 x 1609)2 = (24 x 44940)2

JLM 20081102 72

73

Factoring – Pollard r

• f(x)= x2 + 1 (mod n).
• xi+1= f(xi) (mod n).
• Look at (xi – xj, n).

– Actually, use Floyd’s trick and look at (xm-x2m,n).
• Loop expected after about 2n iterations.

– Actually, after (pn/2) steps).
• Unfortunately, this is exponential in lg(n)

JLM 20081102

74

Pollard r factoring Example

• We use our old favorite n=1517.
• f(952)= 9522+1 (mod 1517)= 656
• f(360)= 3602+1 (mod 1517)= 656
• 9522- 3602= (952-360)(952+360).
• 952-360=592
• (592, 1517)= 37.

• Question: Where does the name r factoring come
from?

JLM 20081102

75

Factor Bases

• Pick a set of primes: B= {-1, 2,3,5,7,…, p} (the “bases”).
Numbers which completely factor are called B-smooth.

• ai= ((dnt+i)2)–n

• Find ai so that it completely factors over p eB, these
numbers are called B-smooth

• Example:
– a1

2= p1 p2, a2
2= p2 p3, a3

2= p1 p3

– (a1a2a3)2=(p1p2p3)2

– Compute ((a1a2a3-p1p2p3), n).

JLM 20081102

Linear Algebra

• Let B={p: p<B} and |B|= k.
• If we have r>k “smooth” numbers

– xi
2= P jk pj

e[j]. …… Ei

– We can find aj = 1,0: S jk e[i]=0 (mod 2) --- Gaussian
elimination!

– So P l xi
2= P j pj

2d[j]. …… Ei

– This gives us the relations we want

JLM 20081102
76

77

Factor Basis Example

• n=3837523. B={2,3,5,11,13,19}.
• 93982= 55 x 19 (mod n)
• 190952 = 22 x 5 x 11 x 13 x 19 (mod n)
• 19642 = 32 x 133 (mod n)
• 170782= 26 x 32 x 11 (mod n)
• (9398 x 19095 x 1964 x 17078)2 –

(24 x 32 x 53 x 11 x 132 x 19x)2=0 (mod n)
• 22303872 = 25867052 (mod n)
• (223038-2586705, 3837523)= 1093

JLM 20081102

78

Sieving
• To factor n, set m= dnt. Pick a B.

• f(x)= (x+m)2-n
• For small x, we are likely to have small f(x) and hopefully factors

over B.
• Collect r>k of these as follows (sieving):

1. If x2=n (mod p), n is a QR mod p
2. Write down the f(m+i), -C  i C (The sieving interval)
3. Use the regularly spaced solutions to x2=n (mod p) , to reduce

each f(m+i)
4. Do this for each p.

• Use these to get B or more factorizations and (by solving B or
more linear systems)

• There’s a > ½ probability that the resulting relation will find a
factor.

JLM 20081102

79

Quadratic Sieve

• To analyze QS, we need to finds a good interval and
estimate sieving and solving times

of decimal digits 50 60 70 80 90 100 110 120

factor bas x 1000 3 4 7 15 30 51 120 245

sieving interval x 106 .2 2 5 6 8 14 16 26

JLM 20081102

80

Sieve Example

• n= 7429, m=86. B={-1,2,3,5,7}

JLM 20081102

s -3 -2 -1 0 1 2 3
(s+m)2-n -540 -373 -204 -33 140 315 492
p=2 -135 -51 35 123
p=3 -5 -17 -11 35 41
p=5 -1 7 7
p=7 1 1

81

Quadratic Sieve Analysis

• Define Ln[u,v]= exp(v(lg(n))u(lg(lg(n)(1-u).
• Let y(x,B) =|{y: ycx and y is B-smooth}|.
• Theorem [deBruijn, 1966]: Let e>0, then for xs10, w cln(x)(1-e),

y(x,x(1/w)) = xw(-w+f(x,w)), where f(x,w)/w 0 as w .
• Corrollary: If a, u, v >0, then y(na, Ln[u,v])= naLn[1-u,-(a/v)(1-u)+o(1)]

as n .
• For QS generate numbers f(s)~ n. Set a= ½ in Corollary.

Probability of finding one that is Ln[u,v]-smooth one is Ln[1-u,-
1/(2v)(1-u)+o(1)] so we must try Ln[1-u, 1/(2v)(1-u)+o(1)] to find one.

• Size of factor base is ~ Ln[u,v].
• Choose u= 1/2. Ln[1/2, x] Ln[1/2, y]= Ln[1/2, x+y].
• Size of sieving interval is Ln[1/2, v] Ln[1/2, 1/(4v)]= Ln[1/2, v+1/(4v)]
• Sieving time is Ln[1/2, v+1/(4v)], solving sparse equations is Ln[1/2,

2v+o(1)]. Total time is minimized when v=1/2 and is Ln[1/2, 1+o(1)] .

JLM 20081102

82

Three more algorithms

• Multiple Polynomial Quadratic Sieve: Use many
polynomials (shorter sieve intervals)

• Number Field Sieve: Extends QFS by allowing
elements to be algebraic integers in algebraic number
field.

• Elliptic Curve Factoring Method: Does arithmetic over
elliptic curve mod n. Q=k x P. Operations project mod
p if p|n. If Q is the identity (0:1:0) mod p, third
coordinate, z, is 0 mod p. Then (z,n)=p. Now check to
see if the difference of two points (for different k) have
last coordinates: (z1-z2,n)=p.

JLM 20081102

Factoring Algorithms

JLM 20081102 83Example from Mark Stamp

84

Work Factors

JLM 20081102

Method f(x)
Trial Division n/lg(n)
Quadratic Sieve (n lg(n))1/2

Number Field Sieve 1.9223 n1/3 lg(n)2/3

• Quadratic Sieve: Ln[1/2, 1+o(1)]
• ECM: Lp[1/2, - (1/2)] where p is smallest prime dividing n.
• Fastest in 1998: Ln[1/2, 1+o(1)]
• NFS (Pollard again): Ln[1/3, (64/9)(1/3)].
• QS best for N up to 390 bit 117 digits), then NFS.

85

RSA Caution: Homomorphism

• Commutivity
– Given plain/cipher pairs (pi, ci), i= 1, 2,…, n, one

can produce product pairs like (p1p5p2, c1c5c2) of
corresponding plain/cipher pairs.

– Solution: padding

JLM 20081102

86

Practical Factoring Results

• On August 22, 1999, the 155 digit (512 bit) RSA
Challenge Number was factored with the General
Number Field Sieve.

• Sieving took 35.7 CPU-years in total on...
160 175-400 MHz SGI and Sun workstations

8 250 MHz SGI Origin 2000 processors
120 300-450 MHz Pentium II PCs

4 500 MHz Digital/Compaq boxes
• Total CPU-effort : 8000 MIPS years over 3.7 months.

JLM 20081102

87

RSA Summary

• RSA is a great algorithm.
• Just don’t do anything stupid.

– Reasonable exponents
– Good padding
– Good prime generation

JLM 20081102

88

End

JLM 20081102

	Slide Number 1
	Public Key (Asymmetric) Cryptosystems
	Uses of Public-Key Ciphers
	Symmetric Key Distribution
	Diffie Hellman Key Exchange
	Digital Signatures
	Sealing Symmetric Keys
	Authentication
	Existing Public-Key Ciphers
	Some Number Theory
	Fundamental Theorem of Arithmetic
	Distribution of Primes
	Prime Distribution Example
	Solving Congruences mod p
	Solving Congruence Example
	Chinese Remainder Theorem
	CRT Example
	Continued Fractions
	Universal Exponent Theorem
	Universal Exponent Example
	f(n)
	f(n) Example
	Law of Quadratic Reciprocity
	Quadratic Reciprocity Example
	Factoring and exponents
	Large Integer Computation
	Algorithm Timings
	The Multiplicative Group (mod n)
	Finding generators
	Representing Large Integers
	Classical Algorithms Speed
	Karasuba Multiplication
	Integer Squaring
	Integer Division Algorithm
	Integer Division
	Extended Binary GCD
	Montgomery Multiplication
	Montgomery Multiplication and Timing
	Exponentiation and Timing
	Montgomery Exponentiation and Timing
	Montgomery Example
	Exponentiation Optimizations
	RSA Public-Key Cryptosystem
	RSA Details
	RSA Example
	RSA Signatures
	Generating Primes
	Pseudoprimes
	Liars, Witnesses and Certificates
	Primality Testing
	Testing Primality - Miller Rabin
	Probability of Success for M-R
	Proof Continued
	Primality Testing Example
	Strong Primes
	Gordan’s Algorithm
	Attacks
	Attacks, continued
	Common Modulus Attack
	Small exponent attack on RSA
	Short plaintext
	Glitching Attack
	Glitching Attack Example
	Repeated Squaring
	Timing Attack (Kocher)
	Kocher’s Attack
	Preventing Timing Attack
	Factoring
	Factoring Methods: Motivation
	Trial Division
	Pollard p-1
	Kraitchik
	Factoring – Pollard r
	Pollard r factoring Example
	Factor Bases
	Linear Algebra
	Factor Basis Example
	Sieving
	Quadratic Sieve
	Sieve Example
	Quadratic Sieve Analysis
	Three more algorithms
	Factoring Algorithms
	Work Factors
	RSA Caution: Homomorphism
	Practical Factoring Results
	RSA Summary
	End

