Cryptanalysis

Lecture 8: Lattices and Elliptic Curves

John Manferdelli imanfer@microsoft.com
JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Lattices

- Definition: Let $\left\langle v_{1}, \ldots, v_{k}>\right.$ be linearly independent vectors in K^{n}. K is often the real numbers or complex numbers. The lattice, L is $L=\left\{v: v=a_{1} v_{1}+\ldots+a_{k} v_{k}\right\}$, where a_{i} ㄴ.
- Area parallel-piped formed by $\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\rangle$ is $\left|\operatorname{det}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)\right|$.
- Shortest vector problem: Given the lattice L, find the shortest $\mathrm{v},\|\mathrm{v}\|=\mathrm{D}, \mathrm{v} \mathrm{LL}$.

Reduced Basis

- $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle$ is reduced if

$$
\begin{aligned}
& -\left\|v_{2}\right\| \leq\left\|v_{1}\right\| ; \text { and, } \\
& -\quad-1 / 2\left\|v_{1}\right\|^{2} \leq\left(v_{1}, v_{2}\right) \leq 1 / 2\left\|v_{1}\right\|^{2} .
\end{aligned}
$$

Reduced

Not

Gauss again

- Let $\left\langle\mathrm{v}_{1}, \mathrm{~V}_{2}\right\rangle$ be a basis for a two dimensional lattice L in R^{2}. The following algorithm produces a reduced basis.

```
for(;;) {
            if(|v\mp@subsup{v}{1}{}||||\mp@subsup{v}{2}{}|)
                swap v}\mp@subsup{v}{1}{}\mathrm{ and }\mp@subsup{v}{2}{}\mathrm{ ;
    t=[(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{})/(\mp@subsup{v}{1}{},\mp@subsup{v}{1}{\prime})]; //| is the "closest integer" function
        if(t==0)
            return;
    v
    }
```

- $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle$ is now a reduced basis and v_{1} is a shortest vector in the lattice.

LLL

- Definition: $B=\left\{b_{1}, \ldots, b_{n}\right\}, L$ in $R^{n} . D_{i, j}=\left(b_{i}, b_{j}^{*}\right) /\left(b_{j}{ }^{*}, b_{j}^{*}\right)$. $b_{i}^{*}=b_{i}-\square_{j=1}^{i-1} \square_{i, j} b_{j}^{*}$. B is reduced if

1. $\left|\square_{i, j}\right| \leq 1 / 2 ; 1 \leq j<i \leq n$
2. $\left|\left|b_{i}^{*}\right|^{2} \geq\left(3 / 4-\square_{i, i-1}^{2}\right)\right|\left|b_{i-1}^{*}\right|^{2}$.

- Note $\mathrm{b}_{1}{ }^{*}=\mathrm{b}_{1}$.

LLL algorithm

```
b}\mp@subsup{}{1}{*}=\mp@subsup{b}{1}{\prime;
for(i=2; i\leqn; i++) {
    bi
    for(j=1; j<i; j++)
```



```
        b}\mp@subsup{\mathbf{i}}{}{*}=\mp@subsup{b}{i}{}-\mp@subsup{\square}{i,j}{\prime}\mp@subsup{b}{j}{*};\mp@subsup{B}{i}{\prime}=(\mp@subsup{b}{i}{*},\mp@subsup{b}{i}{*}\mp@subsup{}{}{*});
}
for(;;) {
    RED(k, k-1);
    if(B
        \square= प \k,k-1
        B}=\mp@subsup{B}{k-1}{}\mp@subsup{B}{k}{\prime}/B;\mp@subsup{B}{k-1}{}= B; swap(b, br b bk-1)
        if(k>2) swap(b
        for(i=k+1; i <n;i++)
```



```
        \squarei,k-1}=t+\mp@subsup{\square}{k,k-1}{l}\mp@subsup{|}{i,k}{\prime}; 
        k= max(2, k-1);
        if(k>n) return(b}\mp@subsup{b}{1,\ldots,}{\prime}\mp@subsup{b}{n}{})
}
```


LLL Theorem

- Let L be the n-dimensional lattice generated by $<v_{1}, \ldots$, $v_{n}>$ and 0 the length of the shortest vector in L. The LLL algorithm produces a reduced basis $<b_{1}, \ldots, b_{n}>$ of L.

$$
\begin{aligned}
& \text { 1. }\left\|b_{1}\right\| \leq 2^{(n-1) / 4} D^{1 / n} . \\
& \text { 2. }\left\|b_{1}\right\| \leq 2^{(n-1) / 2} \square . \\
& \text { 3. }\left\|b_{1}\right\|\left\|b_{2}\right\| \ldots\left\|b_{n}\right\| \leq 2^{n(n-1) / 4} D \text {. }
\end{aligned}
$$

- If $\left\|b_{i}\right\|^{2} \leq C$ algorithm takes $O\left(n^{4} \lg (C)\right)$.

Attack on RSA using LLL

- Attack applies to messages of the form "M xxx" where only "xxx" varies (e.g.- "The key is $x x x$ ") and $x x x$ is small.
- From now on, assume $M(x)=B+x$ where B is fixed
- $|x|<Y$.
- Not that $E(M(x))=c=(B+x)^{3}(\bmod n)$
$-f(x)=(B+x)^{3}-c=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}(\bmod n)$.
- We want to find $x: f(x)=0(\bmod n)$, a solution to this, m, will be the corresponding plaintext.

Attack on RSA using LLL

- To apply LLL, let:
$-v_{1}=(n, 0,0,0)$,
- $\mathrm{v}_{2}=(0, Y n, 0,0)$,
$-v_{3}=\left(0,0, Y^{2} n, 0\right)$,
$-v_{4}=\left(a_{0}, a_{1} Y, a_{2} Y^{2}, a_{3} Y^{3}\right)$
- When we apply LLL, we get a vector, b_{1} :
- $\left\|b_{1}\right\| \leq 2^{(3 / 4)}\left|\operatorname{det}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)\right|=2^{(3 / 4)} n^{(3 / 4)} Y^{(3 / 2)} \ldots$. Equation 1.
- Let $b_{1}=c_{1} v_{1}+\ldots+c_{4} v_{4}=\left(e_{0}, Y e_{1}, Y^{2} e_{2}, Y^{3} e_{3}\right)$. Then:
$-\mathrm{e}_{0}=\mathrm{C}_{1} \mathrm{n}+\mathrm{C}_{4} \mathrm{a}_{0}$
$-e_{1}=c_{2} n+c_{4} a_{1}$
$-e_{2}=c_{3} n+c_{4} a_{2}$
$-e_{3}=c_{4}$

Attack on RSA using LLL

- Now set $g(x)=e_{3} x^{3}+e_{2} x^{2}+e_{1} x+e_{0}$.
- From the definition of the $e_{i}, c_{4} f(x)=g(x)(\bmod n)$, so if m is a solution of $f(x)(\bmod n), g(m)=c_{4} f(m)=0(\bmod n)$.
- The trick is to regard g as being defined over the real numbers, then the solution can be calculated using an iterative solver.
- If $Y<2^{(7 / 6)} n^{(1 / 6)},|g(x)| \leq 2| | b_{1} \|$.
- So, using the Cauchy-Schwartz inequality, $\left\|b_{1}\right\| \leq 2^{-1} n$.
- Thus $|g(x)|<n$ and $g(x)=0$ yielding 3 candidates for x.
- Coppersmith extended this to small solutions of polynomials of degree d using a $d+1$ dimensional lattice by examining the monic polynomial $f(T)=0(\bmod n)$ of degree d when $|x|<=n^{1 / d}$.

Example attack on RSA using LLL

- $p=757285757575769, q=2545724696579693$.
- $\mathrm{n}=1927841055428697487157594258917$.
- $B=200805000114192305180009190000$.
- $c=(B+m)^{3}, 0 \leq m<100$.
- $f(x)=(B+x)^{3}-c=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}(\bmod n)$.
$-a_{2}=602415000342576915540027570000$
$-a_{1}=1123549124004247469362171467964$
$-a_{0}=587324114445679876954457927616$
- $\mathrm{v}_{1}=(\mathrm{n}, 0,0,0)$
- $v_{2}=(0,100 n, 0,0)$
$-v_{3}=\left(0,0,10^{4} n, 0\right)$
$-v_{4}=\left(a_{0}, a_{1} 100, a_{2} 10^{4}, 10^{6}\right)$

Example attack on RSA using LLL

- Apply LLL, $\mathrm{b}_{1}=$
$-308331465484476402 \mathrm{v}_{1}+589837092377839611 \mathrm{v}_{2}+$
$-316253828707108264 \mathrm{v}_{3}+(-1012071602751202635) \mathrm{v}_{4}=$
- (246073430665887186108474, -577816087453534232385300, 405848565585194400880000, -1012071602751202635000000)
- $g(x)=(-1012071602751202635) t^{3}+40584856558519440088 t^{2}+$ $(-57781608745353442323853) t+246073430665887186108474$.
- Roots of $g(x)$ are 42.0000000, (-. $9496+/-76.0796 i)$
- The answer is 42.

Elliptic Curves

- Motivation:
- Full employment act for mathematicians
- Elliptic curves over finite fields have an arithmetic operation
- Pohlig-Hellman and index calculus don't work on elliptic curves.
- Even for large elliptic curves, field size is relatively modest.
- Use this operation to define a discrete log problem.
- To do this we need to:
- Define point addition and multiplication on an elliptic curve
- Find elliptic curve whose arithmetic gives rise to large finite groups with elements of high order
- Figure out how to embed a message in a point multiplication.
- Figure out how to pick "good" curves.

Rational Points

- Bezout
- Linear equations
- $x^{2}+5 y^{2}=1$
- $y^{2}=x^{3}-a x-b$
- Disconnected: $y^{2}=4 x^{3}-4 x+1$
- Connected: $a=7, b=-10$
- Troublesome: $a=3, b=-2$
- Arithmetic
- $D=4 a^{3}-27 b^{2}$
- Genus, rational point for $\mathrm{g}>1$
- Mordell
- $Z_{n 1} \times Z_{n 2}, n 2|n 1, n 2|(p-1)$

Equation solving in the rational numbers

- Linear case: Solve $a x+b y=c$ or, find the rational points on the curve C : $f(x, y)=a x+b y-c=0$.
- Clearing the fractions in x and y, this is equivalent to solving the equation in the integers. Suppose $(a, b)=d$, there are $x, y \in Z: ~ a x+b y=d$. If $d \mid c$, say $c=d^{\prime} d, a\left(d^{\prime} x\right)+b\left(d^{\prime} y\right)=d^{\prime} d=c$ and we have a solution. If d does not divide c, there isn't any. We can homogenize the equation to get $a x+b y=c z$ and extend this procedure, here, because of z , there is always a solution.
- Quadratic (conic) case: solve $x^{2}+5 y^{2}=1$ or find the rational points on the curve C: $g(x, y)=x^{2}+5 y^{2}-1=0$.
- $(-1,0) \in \mathrm{C}$. Let (x, y) be another rational point and join the two by a line: $y=$ $m(x+1)$. Note m is rational. Then $x^{2}+5(m(x+1))^{2}=1$ and $\left(5 m^{2}+1\right) x^{2}+2$ $\left(5 \mathrm{~m}^{2}\right) \mathrm{x}+\left(5 \mathrm{~m}^{2}-1\right)=0 \rightarrow \mathrm{x}^{2}+2\left[\left(5 \mathrm{~m}^{2}\right) /\left(5 \mathrm{~m}^{2}+1\right)\right] \mathrm{x}+\left[\left(5 \mathrm{~m}^{2}-1\right) /\left(5 \mathrm{~m}^{2}+1\right)\right]=0$. Completing the square and simplifying we get $\left(x+\left(5 m^{2}\right) /\left(5 m^{2}+1\right)\right)^{2}=\left[25 \mathrm{~m}^{4}\right.$ $\left.-\left(25 m^{4}-1\right)\right] /\left(5 m^{2}+1\right)^{2}=1 /\left(5 m^{2}+1\right)^{2}$. So $x= \pm\left(1-5 m^{2}\right) /\left(5 m^{2}+1\right)$ and substituting in the linear equation, $\mathrm{y}= \pm(2 \mathrm{~m}) /\left(5 \mathrm{~m}^{2}+1\right)$. These are all the solutions.
- Cubic case is more interesting!

Bezout's Theorem

- Let $\operatorname{deg}(f(x, y, z))=m$ and $\operatorname{deg}(g(x, y, z))=n$ be homogeneous polynomials over \mathbf{C}, the complex numbers and C_{1} and C_{2} be the curves in $\mathbf{C P}^{2}$, the projective plane, defined by:
$-C_{1}=\{(x, y, z): f(x, y, z)=0\} ;$ and,
$-C_{2}=\{(x, y, z): g(x, y, z)=0\}$.
- If f and g have no common components and $D=C_{1} \cap C_{2}$, then $\mathrm{D}_{\mathrm{x} \in \mathrm{D}} \mathrm{I}\left(\mathrm{C}_{1} \cap \mathrm{C}_{2}, \mathrm{x}\right)=\mathrm{mn}$.
- I is the intersection multiplicity. This is a fancy way of saying that (multiple points aside), there are mn points of intersection between C_{1} and C_{2}. There is a nice proof in Silverman and Tate, Rational Points on Elliptic Curves, pp 242-251. The entire book is a must read.
- A consequence of this theorem is that two cubic curves intersect in nine points.

Elliptic Curve Preliminaries -1

- Let K be a field. char (K) is the characteristic of K which is either 0 or p^{n} for some prime $p, n>0$.
- $F(x, y)=y^{2}+a x y+b y+c x^{3}+d x^{2}+e x+f$ is a general cubic.
- $F(x, y)$ is non-singular if $F_{x}(x, y)$ or $F_{y}(x, y) \neq 0$.
- If char $(K) \neq 2,3, F(x, y)=0$ is equivalent to $y^{2}=x^{3}+a x+b$ which is denoted by $\mathrm{E}_{\mathrm{K}}(\mathrm{a}, \mathrm{b})$ and is called the Weierstrass equation.
- Note that the intersection of a line $(y=m x+d)$ and a cubic, $E_{k}(a, b)$ is 1 , 2 or 3 points.
- Idea is: given 2 points, P, Q on a cubic, the line between P and Q generally identifies a third point on the cubic, R.
- Two identical points on a cubic generally identify another point which is the intersection of the tangent line to the cubic at the given point with the cubic.
- The last observation is the motivation for defining a binary operation on points of a cubic (like addition).

Elliptic Curve Preliminaries - 2

- We are most interested in cubics with a finite number of points.
- Cubics over finite fields have a finite number of points.
- $E_{K}(a, b)$ is an elliptic equation over an "affine plane."
- It is often easier to work with elliptic equations over the "projective plane". The projective plane consists of the points (a,b,c) (not all 0) and (a, b, c) and ($a d, b d, c d$) represent the same point.
- The map $(x, y, 1) \rightarrow(x z, y z, z)$ sets up a 1-1 correspondence between the affine plane and the projective plane.
- $E(a, b)$ is $z y^{2}=x^{3}+a x z^{2}+b z^{3}$.
- The points $(x, y, 0)$ are called the line at infinity.
- The point at infinity, $(0,1,0)$ is the natural "identity element" that is rather artificial in the case of the affine equations.

Elliptic Curves

- A non-singular Elliptic Curve is a curve, having no multiple roots, satisfying the equation: $y^{2}=x^{3}+a x+b$.
- The points of interest on the curve are those with rational coordinates which can be combined using the "addition" operation.
These are called "rational points."

Graphic by Richard Spillman

Multiple roots

- Here is the condition that the elliptic curve, $\mathrm{E}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})$: $y^{2}=x^{3}+a x+b$, does not have multiple roots:
- Let $f(x, y)=y^{2}-x^{3}-a x-b=0$. At a double point, $f_{x}(x, y)=f_{y}(x, y)=0$, $f_{x}(x, y)=-\left(3 x^{2}+a\right), f_{y}(x, y)=2 y$. So $y=0=x^{3}+a x+b$ and $0=\left(3 x^{2}+a\right)$ have a common zero.
- Substituting $a=-3 x^{2}$, we get $0=x^{3}-3 x^{3}+b, b=2 x^{3}, b^{2}=4 x^{6}$. Cubing $a=-3 x^{2}$, we get $a^{3}=-27 x^{6}$. So $b^{2} / 4=a^{3} /(-27)$ or $27 b^{2}+4 a^{3}=0$. Thus, if $27 b^{2}+4 a^{3} \neq 0$, then $E_{R}(a, b)$ does not have multiple roots.

Elliptic curve addition

- The addition operator on a non-singular elliptic curve maps two points, P and Q, into a third " $P+Q$ ". Here's how we construct " $P+Q$ " when $P \neq Q$.
- Construct straight line through P and Q which hits E at R.
- $\mathrm{P}+\mathrm{Q}$ is the point which is the reflection of R across the x-axis.

21

Addition for points P, Q in $\mathrm{E}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})-1$

- \quad Suppose we want to add two distinct points P and Q lying on the curve $E_{R}(a, b)$: $y^{2}=x^{3}+a x+b$, where $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ with $P \neq Q$, then $P+Q=R=\left(x_{3}, y_{3}\right)$. Also, suppose $x_{1} \neq x_{2}$, here is the computation:
- Join P and Q by the line $y=m x+u . m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) . u=\left(m x_{1}-y_{1}\right)=$ ($m x_{2}-y_{2}$). Substituting for $y(=m x+u)$ into $E_{R}(a, b)$, we get $(m x+u)^{2}=$ $y^{2}=x^{3}+a x+b$; so $0=x^{3}-m^{2} x+(a-2 m u) x+b-u^{2} . x_{1}, x_{2}, x_{3}$ are the roots of this equations so $m^{2}=x_{1}+x_{2}+x_{3}$. and $x_{3}=m^{2}-x_{1}-x_{2}$. $P^{*} Q=\left(x_{3},-y_{3}\right)$ and substituting back into the linear equation, we get: , $-y_{3}=m\left(x_{3}\right)+u$. So $y_{3}=-m x_{3}-u=-m\left(x_{3}\right)-\left(m x_{1}-y_{1}\right)=m\left(x_{1}-x_{3}\right)-y_{1}$.
- To summarize, if $\mathrm{P} \neq \mathrm{Q}$ (and $\mathrm{x}_{1} \neq \mathrm{x}_{2}$):

$$
\begin{array}{ll}
- & x_{3}=m^{2}-x_{1}-x_{2} \\
- & y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} \\
- & m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
\end{array}
$$

Multiples in Elliptic Curves 1

- $\mathrm{P}+\mathrm{P}$ (or 2P) is defined in terms of the tangent to the cubic at P .
- Construct tangent to P and
reflect the point at which it intercepts the curve (R) to obtain 2P.
- P can be added to itself k times resulting in a point $\mathrm{Q}=\mathrm{kP}$.

Addition for points P, Q in $\mathrm{E}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})-2$

- Suppose we want to add two distinct points P and Q lying on the curve $E_{R}(a, b): y^{2}=x^{3}+a x+b$, where $P=\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{x}_{1}=\mathrm{x}_{2}$.
- Case 1, $y_{1} \neq y_{2}$: In this case, $y_{1}=-y_{2}$ and the line between P and Q "meet at infinity," this is the point we called O and we get $\mathrm{P}+\mathrm{Q}=\mathrm{O}$. Note $\mathrm{Q}=-\mathrm{P}$ so $-(\mathrm{x}, \mathrm{y})=(\mathrm{x},-\mathrm{y})$.
- Case 2, $\mathrm{y}_{1}=\mathrm{y}_{2}$ so $\mathrm{P}=\mathrm{Q}$: The slope of the tangent line to $\mathrm{E}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})$ at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is m . Differentiating $\mathrm{y}^{2}=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b}$, we get $2 y y^{\prime}=3 x_{2}+a$, so $m=\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right)$. The addition formulas on the previous page still hold.

Addition in $\mathrm{E}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})$ - summary

- Given two points P and Q lying on the curve $E_{R}(a, b)$: $\mathrm{y}^{2}=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b}$, where $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ with $\mathrm{P} \neq \mathrm{Q}$, then $P+Q=R=\left(x_{3}, y_{3}\right)$ where:
- If $x_{1} \neq x_{2}, m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$, and
- $x_{3}=m^{2}-x_{1}-x_{2}$
- $y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}$
- If $x_{1}=x_{2}$ and $y_{1} \neq y_{2}$, then $y_{1}=-y_{2}$ and $P+Q=O, Q=-P$ If $x_{1}=x_{2}$ and $y_{1}=y_{2}$, then $P=Q, R=2 P, m=\left(3 x_{1}{ }^{2}+a\right) /\left(2 y_{1}\right)$,
and
- $x_{3}=m^{2}-x_{1}-x_{2}$
- $y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}$

Point multiplication in $E_{R}(a, b)$

- By using the doubling operation just defined, we can easily calculate $\mathrm{P}, 2 \mathrm{P}, 4 \mathrm{P}, 8 \mathrm{P}, \ldots, 2^{\mathrm{e}} \mathrm{P}$ and by adding appropriate multiples calculate nP for any n .
- If $\mathrm{nP}=\mathrm{O}$, and n is the smallest positive integer with this property, we say P has order n .
- Example:

$$
\begin{aligned}
& \text { - } \quad \text { The order of } P=(2,3) \text { on } E_{R}(0,1) \text { is } 6 \text {. } \\
& -\quad 2 P=(0,1), 4 P=(0,-1), 6 P=0 .
\end{aligned}
$$

Example of Addition and Element Order

- $\quad E(-36,0): y^{2}=x^{3}-36 x . P=(-3,9), Q=(-2,8)$.
- $P+Q=\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(x_{1}-x_{3}\right)-y_{1}\right)$

$$
\begin{aligned}
-\quad \lambda & =\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), \text { if } P \neq Q \\
-\quad & =\left(3 x_{1}^{2}+a\right) / 2 y_{1}, \text { if } P=Q
\end{aligned}
$$

- $\quad P+Q=\left(x_{3}, y_{3}\right)=(6,0)$
- $2 \mathrm{P}=(25 / 4,-35 / 8)$
- Note growth of denominators

Proof of group laws

- From the formulas and definitions it is easy to see the operation " + " is commutative, O acts like an identity and if $P=(x, y),-P=(x,-y)$ with $P+(-P)=O$.
- Associativity is the only law that's hard to verify. We could use the formulas to prove it but that's pretty ugly.
- There is a shorter poof that uses the following result: Let C, $\mathrm{C}_{1}, \mathrm{C}_{2}$ be three cubic curves. Suppose C goes through eight of the nine intersection points of $\mathrm{C}_{1} \cap \mathrm{C}_{2}$, then C also goes through the ninth intersection point.

Associativity

- If P and Q are points on an elliptic curve, E, let $P^{*} Q$ denote the third point of intersection of the line PQ and E .
- Now let P, Q, R be points on an elliptic curve E. We want to prove $(\mathrm{P}+\mathrm{Q})+\mathrm{R}=\mathrm{P}+(\mathrm{Q}+\mathrm{R})$. To get $(\mathrm{P}+\mathrm{Q})$, form $\mathrm{P}^{*} \mathrm{Q}$ and find the intersection point, between $P^{*} \mathrm{Q}$ and E and the vertical line through $\mathrm{P}^{*} \mathrm{Q}$; this latter operation is the same as finding the intersection of $\mathrm{P}^{*} \mathrm{Q}, \mathrm{O}$ (the point at infinity) and E . To get $(\mathrm{P}+\mathrm{Q})+\mathrm{R}$, find $(\mathrm{P}+\mathrm{Q}) * \mathrm{R}$ and the vertical line, the other intersection point with E is $(P+Q)+R$. A similar calculation applies to $P+(Q+R)$ and it suffices to show ($\mathrm{P}+\mathrm{Q})^{*} \mathrm{R}=\mathrm{P}^{*}(\mathrm{Q}+\mathrm{R}) . \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{P}^{*} \mathrm{Q}, \mathrm{P}+\mathrm{Q}, \mathrm{Q} * \mathrm{R}, \mathrm{Q}+\mathrm{R}$ and the intersection of the line between ($\mathrm{P}+\mathrm{Q}$), R and E lie on the two cubics:
$-\mathrm{C}_{1}$: Product of the lines $[(\mathrm{P}, \mathrm{Q}),(\mathrm{R}, \mathrm{P}+\mathrm{Q}),(\mathrm{Q}+\mathrm{R}, \mathrm{O})]$
$-C_{2}$: Product of the lines [(P,Q+R), $\left.(P+Q, O),(R, Q)\right]$
- The original curve E goes through eight of these points, so it must go through the ninth $[(P+Q) * R]$. Thus the intersection of the two lines lies on E and $(\mathrm{P}+\mathrm{Q})^{*} \mathrm{R}=\mathrm{P} *(\mathrm{Q}+\mathrm{R})$.
- This proof will seem more natural if you've taken projective geometry. You could just slog out the algebra though.

Mordell and Mazur

- Mordell: Let E be the elliptic curve given by the equation $E: y^{2}=x^{3}+a x^{2}+b x+c$ and suppose that (E) $=-4 a^{3} c+a^{2} b^{2}-4 b^{3}-27 c^{2}+18 a b c \neq 0$. There exist r points $P_{1}, P_{2}, \ldots, P_{r}$ such that all rational points on E are of the form $a_{1} P_{1}+\ldots+a_{r} P_{r}$ where $a_{i} \in Z$.
- Mazur: Let C be a non-singular rational cubic curve and $C(Q)$ contain a point of order m, then $1 \leq m \leq 10$ or $\mathrm{m}=12$. In fact, the order of the group of finite order points is either cyclic or a product of a group of order 2 with a cyclic group of order less than or equal to 4.

Fermat's Last Theorem

- $x^{n}+y^{n}=z^{n}$ has no non-trivial solutions in Z for $n>2$.
- It is sufficient to prove this for $\mathrm{n}=\mathrm{p}$, where p is an odd prime.
- Proof (full version will be on HW):

1. Suppose $A^{p}+B^{p}=C^{p},(A, B, C)=1$.
2. $E_{A B}: y^{2}=x\left(x+A^{p}\right)\left(x+B^{p}\right)$
3. Wiles: $E_{A B}$ is modular.
4. Ribet: $E_{A B}$ is too weird to be modular.
5. Fermat was right.

Why may elliptic curves might be valuable in crypto

- Consider $E: y^{2}=x^{3}+17$. Let $P_{n}=\left(A_{n} / B_{n}, C_{n} / D_{n}\right)$ be a rational point on E. Define ht $\left(P_{n}\right)=\max \left(\left|A_{n}\right|,\left|B_{n}\right|\right)$.
- Define $P_{1}=(2,3), P_{2}=(-1,4)$ and $P_{n+1}=P_{n}+P_{1}$.

n	$h t\left(P_{n}\right)$	n	ht $\left(\mathrm{P}_{\mathrm{n}}\right)$
1	2	8	76271
2	1	9	9776276
3	4	10	3497742218
4	2	20	8309471981636130322638066614339972215969861310
5	4		
6	106	-	fact, $\mathrm{ht}\left(\mathrm{P}_{\mathrm{n}}\right) \approx\left(1.574 \mathrm{hr}^{\mathrm{s}}, \mathrm{ns}=\mathrm{n}^{2}\right.$.
7	2228		

Points on elliptic curves over F_{q}

- The number of points N on $\mathrm{E}_{\mathrm{q}}(\mathrm{a}, \mathrm{b})$ is the number of solutions of $y^{2}=x^{3}+a x+b$.
- For each of $q \times$'s there are up to 2 square roots plus O , giving a maximum of $2 q+1$. However, not every number in F_{q} has a square root. In fact, $\mathrm{N}=\mathrm{q}+1+\sum_{\mathrm{x}} \chi\left(\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b}\right)$, where χ is the quadratic character of F_{q}.
- Hasses' Theorem:
$-|N-(q+1)| \leq 2 \sqrt{ } q$ where N is the number of points
- $E_{q}(a, b)$ is supersingular if $N=(q+1)-t, t=0, q, 2 q, 3 q$ or $4 q$.
- The abelian group over F_{q} does not need to be cyclic, but it can be decomposed into cyclic groups. Let G be the Elliptic group for $E_{q}(a, b)$. Theorem: $G=\square_{p} Z / Z p^{\square} \times Z / Z p^{\square}$.
- Example: $\mathrm{E}_{71}(-1,0) . \mathrm{N}=72, \mathrm{G}$ is of type $(2,4,9)$.

Addition for points P, Q in $\mathrm{E}_{\mathrm{p}}(\mathrm{a}, \mathrm{b})$

1. $\mathrm{P}+\mathrm{O}=\mathrm{P}$
2. If $P=(x, y)$, then $P+(x,-y)=O$. The point $(x,-y)$ is the negative of P, denoted as $-P$.
3. If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ with $P \neq Q$, then $P+Q=\left(x_{3}\right.$, y_{3}) is determined by the following rules:
$-x_{3}=\lambda^{2}-x_{1}-x_{2} \quad(\bmod p)$
$-\quad y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}(\bmod p)$
$-\quad \lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) \quad(\bmod p)$ if $P \neq Q$

- $\quad \lambda=\left(3\left(x_{1}\right)^{2}+a\right) /\left(2 y_{1}\right)(\bmod p)$ if $P=Q$

4. The order of P is the number $n: n P=O$

End

