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Lattices

• Definition:  Let <v1, …, vk> be linearly independent 
vectors in Kn.  K is often the real numbers or complex 
numbers. The lattice, L is L= { v: v= a1 v1+…+ ak vk}, 
where  ai eZ.

• Area parallel-piped formed by <v1, …, vn> is 
|det(v1, …, vn)|.

• Shortest vector problem:  Given the lattice L, find the 
shortest v, ||v||=e,  v e L.
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Reduced Basis

• <v1 , v2> is reduced if  
– ||v2||  ||v1||; and,
– -1/2 ||v1||2  (v1 , v2)  1/2 ||v1||2 .
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Gauss again

• Let <v1 , v2> be a basis for a two dimensional lattice L in 
R2.  The following algorithm produces a reduced basis.

for(;;) {
if(||v1|| e ||v2||)

swap v1 and v2;
t= [(v1, v2)/(v1, v1)]; // [] is the “closest integer” function
if(t==0)

return;
v2 = v2-t v1;
}

• <v1 , v2> is now a reduced basis and v1 is a shortest 
vector in the lattice.
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LLL

• Definition: B= {b1, …, bn}, L in Rn.  ei,j= (bi, bj*)/(bj*, bj*). 
bi*= bi- e j=1

i-1 ei,j bj*.  B is reduced if 

1. | ei,j |1/2; 1j<in
2. ||bi*||2 (3/4- ei,i-1

2) ||bi-1*||2 .

• Note b1*=b1.

JLM 20081102



6

LLL algorithm
b1*= b1; k= 2;  
for(i=2; in; i++) {

bi*= bi;
for(j=1; j<i; j++) 
{   mi,j= (bi , bj*)/Bj;

bi*= bi- mi,jbj*;Bi= (bi*, bi*);}
}
for(;;) {

RED(k, k-1);
if(Bk<(3/4 – mk,k-12)Bk-1) {

m=  mk,k-1;  B= Bk+ mmmBk-1;mk,k-1 = mmBk-1/B; 
Bk= Bk-1Bk/B; Bk-1= B; swap(bk, bk-1);
if(k>2) swap(bk, bk-1);
for(i=k+1; in;i++) 
{  t= m i,k;; m i,k;= m i,k-1- mt; 

m i,k-1=t+ mk,k-1 m i,k; }
k= max(2, k-1);
if(k>n)  return(b1, …, bn);

}
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RED(k, k-1)

if(|mk,l|)> 1/2) {
r= d1/2+mk,lt;
bk= bk -r bl;
for(j=1; j<l;j++) {

mk,j= mk,j-rml,j;
mk,l = mk,l-r;

}
}
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LLL Theorem

• Let L be the n-dimensional lattice generated by <v1, …, 
vn> and eethe length of the shortest vector in L.  The LLL 
algorithm produces a reduced basis <b1, …, bn> of L.

1. ||b1||  2(n-1)/4 D1/n.
2. ||b1||  2(n-1)/2 e.
3. ||b1|| ||b2|| … ||bn||  2n(n-1)/4 D.

• If  ||bi||2C algorithm takes O(n4 lg(C)) .
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Attack on RSA using LLL

• Attack applies to messages of the form "M xxx" where 
only "xxx" varies  (e.g.- "The key is xxx") and xxx is 
small.

• From now on, assume M(x)=B+x where B is fixed
– |x|<Y.  
– Not that E(M(x))=c= (B+x)3 (mod n) 
– f(x)= (B+x)3-c= x3 + a2 x2 + a1 x + a0 (mod n). 

• We  want to find x: f(x)=0 (mod n),  a solution to this, m, 
will be the corresponding plaintext.
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Attack on RSA using LLL

• To apply LLL, let:
– v1= (n, 0, 0, 0), 
– v2= (0, Yn, 0, 0), 
– v3= (0, 0, Y2n, 0), 
– v4= (a0 , a1 Y, a2Y2, a3 Y3) 

• When we apply LLL, we get a vector, b1:
– ||b1||  2(3/4) |det(v1, v2, v3, v4)| = 2(3/4) n(3/4) Y(3/2) ….  Equation 1.

• Let  b1= c1 v1 + …+ c4 v4= (e0 , Y e1 , Y2 e2, Y3 e3).  Then:
– e0 = c1 n + c4 a0
– e1 = c2 n + c4 a1
– e2= c3 n + c4 a2
– e3 =  c4
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Attack on RSA using LLL

• Now set g(x)= e3 x3 + e2 x2 + e1 x + e0. 
• From the definition of the ei, c4 f(x)= g(x) (mod n), so if m 

is a solution of f(x) (mod n), g(m)= c4 f(m)= 0 (mod n). 
• The trick is to regard g as being defined over the real 

numbers, then the solution can be calculated using an 
iterative solver.

• If Y < 2(7/6) n(1/6), |g(x)|  2 ||b1||.
• So, using the Cauchy-Schwartz inequality, ||b1||  2-1n.
• Thus |g(x)| < n and g(x)=0 yielding 3 candidates for x.

• Coppersmith extended this to small solutions of polynomials of 
degree d using a d+1 dimensional lattice by examining the monic
polynomial f(T)= 0 (mod n) of degree d when |x| <= n1/d.
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Example attack on RSA using LLL

• p= 757285757575769, q= 2545724696579693.
• n= 1927841055428697487157594258917.
• B= 200805000114192305180009190000.
• c= (B+m)3, 0m<100.
• f(x)= (B+x)3-c= x3 + a2 x2 + a1 x + a0 (mod n). 

– a2= 602415000342576915540027570000
– a1= 1123549124004247469362171467964 
– a0= 587324114445679876954457927616
– v1= (n,0,0,0)
– v2= (0,100n,0,0)
– v3= (0,0,104n,0)
– v4= (a0, a1100, a2104,106)
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Example attack on RSA using LLL

• Apply LLL, b1= 
– 308331465484476402v1 + 589837092377839611v2 + 
– 316253828707108264v3 + (-1012071602751202635)v4 =
– (246073430665887186108474, -577816087453534232385300,

405848565585194400880000, -1012071602751202635000000)
• g(x)= (-1012071602751202635) t3 + 40584856558519440088 t2 + 

(-57781608745353442323853) t + 246073430665887186108474.

• Roots of g(x) are 42.0000000, (-.9496 +/- 76.0796i)
• The answer is 42.
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Elliptic Curves

• Motivation: 
– Full employment act for mathematicians
– Elliptic curves over finite fields have an arithmetic operation
– Pohlig-Hellman and index calculus don’t work on elliptic 

curves.
– Even for large elliptic curves, field size is relatively modest.

• Use this operation to define a discrete log problem.
• To do this we need to:

– Define point addition and multiplication on an elliptic curve
– Find elliptic curve whose arithmetic gives rise to large finite 

groups with elements of high order
– Figure out how to embed a message in a point multiplication.
– Figure out how to pick “good” curves.
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Rational Points

• Bezout
• Linear equations
• x2+5y2=1
• y2=x3-ax-b

– Disconnected: y2= 4x3-4x +1
– Connected: a= 7, b=-10
– Troublesome: a=3, b=-2

• Arithmetic
• D= 4a3-27b2

• Genus, rational point for g>1
• Mordell
• Zn1 x Zn2, n2|n1, n2|(p-1)
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Equation solving in the rational numbers

• Linear case: solve ax+by=c or, find the rational points on the curve C: 
f(x,y)= ax+by-c=0. 
– Clearing the fractions in x and y, this is equivalent to solving the equation in 

the integers.  Suppose (a,b)=d, there are x, yZ: ax+by=d.  If d|c, say 
c=d’d, a(d’x)+b(d’y)=d’d=c and we have a solution.  If d does not divide c, 
there isn’t any.  We can homogenize the equation to get ax+by=cz and 
extend this procedure,  here, because of z, there is always a solution.

• Quadratic (conic) case: solve x2+5y2=1 or find the rational points on the 
curve C: g(x,y)= x2+5y2-1=0. 
– (-1,0)C.  Let (x,y) be another rational point and join the two by a line:  y= 

m(x+1).  Note m is rational. Then x2+5(m(x+1))2=1 and (5m2+1) x2 + 2 
(5m2)x + (5m2-1)= 0  x2 + 2 [(5m2)/(5m2+1)] x + [(5m2-1)/ (5m2+1) ]= 0.  
Completing the square and simplifying we get  (x+(5m2)/(5m2+1)) 2= [25m4

–(25m4 -1)]/(5m2+1)2= 1/(5m2+1)2.  So x= ±(1-5m2)/(5m2+1) and 
substituting in the linear equation, y= ±(2m)/(5m2+1).  These are all the 
solutions.

• Cubic case is more interesting!
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Bezout’s Theorem

• Let deg(f(x,y,z))=m and deg(g(x,y,z))=n be homogeneous 
polynomials over C, the complex numbers and C1 and C2
be the curves in CP2, the projective plane, defined by:
– C1 = {(x,y,z): f(x,y,z)=0}; and,
– C2 = {(x,y,z): g(x,y,z)=0}.

• If f and g have no common components and D=C1C2, 
then exD I(C1C2,x)=mn.

• I is the intersection multiplicity.  This is a fancy way of saying that 
(multiple points aside), there are mn points of intersection between C1 
and C2.  There is a nice proof in Silverman and Tate, Rational Points 
on Elliptic Curves,  pp 242-251.  The entire book is a must read.

• A consequence of this theorem is that two cubic curves intersect in 
nine points.
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Elliptic Curve Preliminaries -1

• Let K be a field.  char(K) is the characteristic of K which is either 0 or 
pn for some prime p, n>0.

• F(x,y)= y2+axy+by+cx3+dx2+ex+f is a general cubic.
• F(x,y) is non-singular if Fx(x,y) or Fy(x,y) ≠ 0.
• If char(K) ≠ 2,3, F(x,y)=0 is equivalent to y2= x3+ax+b which is 

denoted by EK(a, b) and is called the Weierstrass equation.
• Note that the intersection of a line (y=mx+d) and a cubic, EK(a,b) is 1, 

2  or 3 points.  
• Idea is: given 2 points, P,Q on a cubic, the line between P and Q 

generally identifies a third point on the cubic, R. 
• Two identical points on a cubic generally identify another point which 

is the intersection of the tangent line to the cubic at the given point 
with the cubic.

• The last observation is the motivation for defining a binary operation 
on points of a cubic (like addition).
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Elliptic Curve Preliminaries - 2

• We are most interested in cubics with a finite number of points.  
• Cubics over finite fields have a finite number of points.
• EK(a,b) is an elliptic equation over an “affine plane.”  
• It is often easier to work with elliptic equations over the “projective 

plane”. The projective plane consists of the points (a,b,c) (not all 0) 
and (a,b,c) and (ad,bd,cd) represent the same point.  

• The map (x,y,1)(xz,yz,z) sets up a 1-1 correspondence between 
the affine plane and the projective plane. 

• E(a,b) is zy2= x3+axz2+bz3. 
• The points (x,y,0) are called the line at infinity.  
• The point at infinity, (0,1,0) is the natural “identity element” that is 

rather artificial in the case of the affine equations.
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Elliptic Curves

• A non-singular Elliptic Curve is a curve, having no multiple roots, 
satisfying the equation: y2=x3+ax+b.

– The points of interest on the 
curve are those with rational 
coordinates which can be combined 
using the “addition” operation.
These are called “rational points.”

Graphic by Richard Spillman
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Multiple roots

• Here is the condition that the elliptic curve, ER(a, b): 
y2=x3+ax+b, does not have multiple roots:

• Let f(x,y)= y2-x3-ax-b=0.  At a double point, fx(x,y)=fy(x,y)=0 , 
fx(x,y)= -(3x2+a), fy(x,y)=2y.  So y=0=x3+ax+b and 0=(3x2+a) 
have a common zero.  

• Substituting a= -3x2, we get 0=x3-3x3+b, b= 2x3, b2=4x6.  
Cubing a= -3x2, we get a3= -27x6.  So b2/4=a3/(-27) or 
27b2+4a3=0.  Thus, if 27b2+4a30, then ER(a, b) does not 
have multiple roots.
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Elliptic curve addition
• The addition operator on a non-singular elliptic curve maps two 

points, P and Q, into a third “P+Q”.  Here’s how we construct 
“P+Q” when P ≠Q .

• Construct straight line through P and Q which hits E at R.

• P+Q is the point which is
the reflection of R across 
the x-axis. 

P

Q

P+Q
Graphic by Richard Spillman

R



JLM 20050710 22

Addition for points P, Q in ER(a, b) - 1

• Suppose we want to add two distinct points P and Q lying on the 
curve ER(a, b): y2=x3+ax+b, where P=(x1, y1) and Q=(x2, y2) with P≠Q, 
then P+Q=R=(x3, y3).  Also, suppose x1≠x2, here is the computation:

• Join P and Q by the line y=mx+u.  m=(y2-y1)/(x2-x1).  u= (mx1-y1)= 
(mx2-y2).  Substituting for y(=mx+u) into ER(a, b), we get (mx+u)2= 
y2=x3+ax+b; so 0= x3-m2x+(a-2mu)x+b-u2. x1, x2, x3 are the roots of 
this equations so m2= x1+x2+x3. and  x3= m2-x1-x2.  P*Q= (x3, -y3) and 
substituting back into the linear equation, we get: , -y3= m(x3)+u. So 
y3= -mx3 – u= -m(x3) -(mx1 -y1)= m(x1 – x3) – y1.

• To summarize, if P≠Q (and x1≠x2):
– x3 =m2 – x1 – x2
– y3 =m(x1 – x3) – y1
– m=(y2-y1)/(x2-x1)
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Multiples in Elliptic Curves 1

• P+P (or 2P) is defined in terms of the tangent to the cubic at P.
• Construct tangent to P and 

reflect the point at 
which it intercepts the 
curve (R) to obtain 2P.

• P can be added to itself 
k times resulting in a 
point Q = kP. 

P

P+P= 2P

R

Graphic by Richard Spillman
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Addition for points P, Q in ER(a, b) - 2

• Suppose we want to add two distinct points P and Q lying 
on the curve ER(a, b): y2=x3+ax+b, where P=(x1, y1) and 
Q=(x2, y2) and x1=x2.

• Case 1, y1≠y2: In this case, y1=-y2 and the line between P 
and Q “meet at infinity,”  this is the point we called O and 
we get P+Q=O.  Note Q=-P so –(x,y)=(x,-y).

• Case 2, y1=y2 so P=Q:  The slope of the tangent line to 
ER(a, b) at (x1, y1) is m.   Differentiating y2=x3+ax+b, we get 
2y y’= 3x2+a, so m=(3x1

2+a)/(2y1).  The addition formulas 
on the previous page still hold. 
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Addition in ER(a, b) - summary

• Given two points P and Q lying on the curve ER(a, b): 
y2=x3+ax+b, where P=(x1, y1) and Q=(x2, y2) with P≠Q, 
then P+Q=R=(x3, y3) where:

• If x1≠x2, m=(y2-y1)/(x2-x1), and
• x3 =m2 – x1 – x2
• y3 =m(x1 –x3) – y1

• If x1=x2 and y1≠y2, then y1=-y2 and P+Q=O, Q= -P 
• If x1=x2 and y1=y2, then P=Q, R=2P, m=(3x1

2+a)/(2y1), 
and

• x3 =m2 – x1 – x2
• y3 =m(x1 –x3) – y1
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Point multiplication in ER(a, b)

• By using the doubling operation just defined, we can 
easily calculate P, 2P, 4P, 8P ,…, 2eP and by adding 
appropriate multiples calculate nP for any n.

• If nP=O, and n is the smallest positive integer with 
this property, we say P has order n.

• Example:
– The order of P=(2,3) on ER(0,1) is 6.  
– 2P=(0,1), 4P= (0,-1), 6P=O.
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Example of Addition and Element Order

• E(-36,0): y2=x3-36x.  P=(-3, 9), Q=(-2,8).
• P + Q = (λ2 - x1- x2, λ(x1- x3) - y1)

– λ = (y2- y1)/(x2- x1), if P ≠ Q.
– = (3 x1

2 + a)/2y1,  if P = Q.
• P+Q= (x3,y3)=(6,0)
• 2P=(25/4,-35/8)
• Note growth of denominators
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Proof of group laws

• From the formulas and definitions it is easy to see the 
operation “+” is commutative, O acts like an identity 
and if P=(x,y), -P = (x,-y) with P + (-P)= O. 

• Associativity is the only law that’s hard to verify.  We 
could use the formulas to prove it but that’s pretty 
ugly.

– There is a shorter poof that uses the following result: Let C, 
C1, C2 be three cubic curves.  Suppose C goes through eight 
of the nine intersection points of C1C2, then C also goes 
through the ninth intersection point.
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Associativity
• If P and Q are points on an elliptic curve, E, let P*Q denote the third point of 

intersection of the line PQ and E.

• Now let P, Q, R be points on an elliptic curve E.  We want to prove 
(P+Q)+R=P+(Q+R).  To get (P+Q), form P*Q and find the intersection point, 
between P*Q  and E and the vertical line through P*Q; this latter operation is 
the same as finding the intersection of P*Q, O (the point at infinity) and E.  To 
get (P+Q)+R, find (P+Q)*R and the vertical line, the other intersection point 
with E is (P+Q)+R.  A similar calculation applies to P+(Q+R) and it suffices to 
show (P+Q)*R=P*(Q+R). O,P,Q,R, P*Q, P+Q, Q*R, Q+R and the intersection 
of the line between (P+Q), R and E lie on the two cubics:
– C1:  Product of the lines [(P,Q), (R,P+Q), (Q+R, O)]
– C2: Product of the lines [(P,Q+R), (P+Q,O), (R,Q)]

• The original curve E goes through eight of these points, so it must go through 
the ninth [ (P+Q)*R].  Thus the intersection of the two lines lies on E and 
(P+Q)*R= P*(Q+R).

• This proof will seem more natural if you’ve taken projective geometry.  You 
could just slog out the algebra though.
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Mordell and Mazur

• Mordell:  Let E be the elliptic curve given by the 
equation E: y2=x3 + ax2 + bx +c and suppose that 
e (E)=-4a3c+a2b2-4b3-27c2+18abc0. There exist r 
points P1, P2, …, Pr such that all rational points on E 
are of the form a1P1 + …  + arPr where ai Z.

• Mazur:  Let C be a non-singular rational cubic curve 
and C(Q) contain a point of order m, then 1m or 
m=12.  In fact, the order of the group of finite order 
points is either cyclic or a product of a group of order 
2 with a cyclic group of order less than or equal to 4.
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Fermat’s Last Theorem

• xn + yn = zn has no non-trivial solutions in Z for n>2.  
• It is sufficient to prove this for n=p, where p is an odd 

prime.

• Proof (full version will be on HW):
1. Suppose Ap+Bp=Cp,  (A,B,C)=1.
2. EAB: y2 = x(x+Ap)(x+Bp)
3. Wiles: EAB is modular.
4. Ribet: EAB is too weird to be modular.
5. Fermat was right.
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Why may elliptic curves might be 
valuable in crypto

• Consider E: y2= x3+17.  Let Pn=(An/Bn, Cn/Dn) be a rational point 
on E.  Define ht(Pn)= max(|An|, |Bn|).

• Define P1= (2,3), P2= (-1,4) and Pn+1= Pn + P1.

JLM 20081102

n ht(Pn)
1 2

2 1

3 4

4 2

5 4

6 106

7 2228

n ht(Pn)
8 76271

9 9776276

10 3497742218

20 8309471981636130322638066614339972215969861310

• In fact, ht(Pn)1.574ens, ns=n2.
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Points on elliptic curves over Fq

• The number of points N on Eq(a,b) is the number of solutions of 
y2=x3+ax+b.  

• For each of q x’s there are up to 2 square roots plus O, giving a 
maximum of 2q+1.  However, not every number in Fq has a square 
root.  In fact, N= q + 1 + ∑xχ(x3 + ax + b), where χ is the quadratic 
character of Fq.

• Hasses’ Theorem:
– | N – (q+1)|≤ 2√q where N is the number of points

• Eq(a,b) is supersingular if N = (q+1)-t, t= 0,q, 2q, 3q or 4q.
• The abelian group over Fq does not need to be cyclic, but it can be 

decomposed into cyclic groups.  Let G be the Elliptic group for Eq(a,b).  
Theorem: G=e p Z/Zpe x Z/Zpe .

• Example: E71(-1,0). N= 72, G is of type (2,4,9).
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Addition for points P, Q in Ep(a, b)

1. P+O=P
2. If P=(x, y), then P+(x, -y)=O. The point (x, -y) is the 

negative of P, denoted as –P. 
3. If P=(x1, y1) and Q=(x2, y2) with P≠Q, then P+Q=(x3, 

y3) is determined by the following rules:
– x3 =λ2 – x1 – x2 (mod p)
– y3 =λ( x1 – x3) – y1 (mod p)
– λ=(y2-y1)/(x2-x1)    (mod p) if P≠Q
– λ=(3(x1)2+a)/(2y1) (mod p) if P=Q

4. The order of P is the number n: nP=O
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End
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