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Algebraic Attacks

• As we’ve seen, ciphertext can be expressed as algebraic function of 
keys and plaintext (Lagrange Interpolation Theorem).  Key bits may be 
expressible as functions of plain and cipher texts.
• These are easy to solve if the equations are linear even for very 

large key spaces.
• These are very hard to solve if the equations are even quadratic 

(NP-hard in fact, see “General System of Quadratic Equations” 
slide).

• General problem is “Find one solution of a system of m equations in  n
variables of bounded degree, D, over K (usually finite).”

Σb ab x b+ci = 0, xb = x1
b1 x2

b2 ... xn
bn, Σi bi c D.

• We refer to this problem as SolveAlgebraic(K,D,m,n) and often 
abbreviate equations as EQj(x)= 0.



JLM 200813 3

General System of Quadratic Equations

• MQ: solve general system of m quadratic equations in  n variables over 
K:

Σ 1≤ j ≤ k ≤ n aijk xj xk + Σ 1≤ j ≤ n bij xj + ci = 0 
denoted by  li for 1 ≤ i ≤ m.

• MQ is an NP-hard even over a small finite field such as K=GF(2).
Proof over GF(2); map 3-SAT  cubicsquadratics.

Finally, add equations yij=xixj, 0=yij-xixj.  This establishes 
correspondence.

3 SAT Cubic/GF(2)
0= x/y/z 0=xyz+xy+yz+xz+x+y+z
1=t 1=1+t
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Techniques for solving equations

1. Linear equations: Gaussian elimination, LU.
2. Berlekamp’s Algorithm (single variable)
3. Linearization
4. Resultants and elimination
5. Grobner basis and elimination
6. Transforming to satisfiability instance and use SAT 

solver.
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Resultants and results involving them

• Theorem: If fv(x)= vnxn+…+ v0 and gw(x)= wmxm+…+ w0.  Then 
1. $ fv,w(x), jv,w(x): fv,w(x) fv(x) + jv,w(x) gw(x)= R(v,w).
2. R(v,w)=vn

mwm
nP l<j (ti-uj), where ti, uj are roots of fv(x), gw(x) 

respectively.
3. R(v, w) is 0 if and only if equations have common solution. 
4. Res(f1f2,g)=Res(f1 ,g) Res(f2,g)

• Theorem: If f1,..., fr F[x1 …, xn] has no common zeros, $ A1,..., Ar

such that Si Ai fi=1. [This kind of thing should ring a bell.]

• Nullstellensatz: If f(x1 …, xn)F vanishes at all the common zeros of 
f1(x1, ..., xn), ..., fr(x1, ..., xn) in every extension of F, then 
fk(x 1,…, xn)  (f 1(x 1,..., x n), ..., f r(x 1, …, x n)) for some k.
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Proof of basic formula
xm-1fv(x)
xm-2fv(x)

…
fv(x)

xn-1gw(x)
xn-2gw(x)

…
gw(x)

vn vn-1 … v0 0 … 0 0

0 vn vn-1 … v0 0 … 0

0 … … … …
… 0 0 0 vn vn-1 … v0

wm wm-1 … w0 0 0 … 0

0 wm wm-1 … w0 0 … 0

… 0 … … …
0 0 … 0 wm wm-1 … w0

=

xm+n-1

xn+m-2

…
…
…
x2

x
1

• Let the column vectors be Cm+n-1 … C0, C= (xm-1fv(x), ..., gw (x))T.  
• C= Cm+n-1xm+n-1 + …+ C0.  Now solve for 1. 
• 1= det(Cm+n-1 … C1, C) det(Cm+n-1 … C1, C0).
• So fv,w(x) fv(x) + jv,w(x) gw(x)= R(v,w).  Note: R(v,w) does not contain x 

so, considering the function field adjoining the u and c, we get the Bezout
form.
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Example

• f(x,y)= xy-1=0
• g(x,y)= x2+y2-4=0

• Res(f,g,x)= det(
y,   0,   1,
-1,   y,   0,
0,  -1,   y2-4 )

Multipolynomial resultants
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Division Algorithm for many variables

• Division Algorithm analogous to a(x)=b(x)q(x)+r(x) in 
univariate case but degree is inadequate.

• Fix a monomial order for terms in x1, x2, …, xn.   
Example: Lex order a=(a1,…,an), b=(b1,…,bn), xaxb iff
leading term of a–b is positive.

• Order relation must have the following two properties:
1. If xaxb then xgxaxgxb.
2. The set of orders has a minimal element.
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Division Algorithm for many variables

• Denote leading term of f under this order as in(f).   The division 
algorithm for f with respect to the monomial order produces  f(x)= a1(x) 
f1(x) + ... + am(x) fm(x) + r(x) where r=0 or r is a linear combination of 
monomials none of which are divisible by in(fi).  This is written as r= 
{fF}. In general, the result depends on the ordering of the fi(x).

• LT(f) means “leading term.”  LM(f) is “leading monomial.”  If f(x,y)= 
2x3y4+3xy, LT(f) = 2x3y4, and LM(f)=x3y4.

• Unlike the univariate case, the division algorithm over an arbitrary basis 
<f1, …, fn> may yield non-zero r(x) even if there are ai(x): a1(x) f1(x) + 
a2(x) f2(x) =f(x), because no LM(fi) divides any monomial of r(x).  An 
example is f(x)=1, f1(x)=x+1, f2(x)=x.  Grobner basis have the important 
property that if <g1(x), …, gr(x)> is such a basis, <LT(gi)>=<LT(I)> .
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Division Algorithm

• Hilbert Basis Theorem:  Every Ik[x1,…,xn]  has a finite generating set.

• Grobner condition:  <LT(g1), …, LT(gs)>= <LT(I)>.
• If G=<g1, …, gs> is a Grobner Basis and f(x)= a1(x) g1(x) + ... + am(x) 

gm(x) + r(x) then every term of r(x) is divisible by none of LT(gs).
• xg= LCM(LM(f), LM(g)).  S(f, g)= xg/LT(f)+ xg/LT(g).  Used in 

constructing Grobner basis.
• Let I be a polynomial ideal. $ G=<g1, …, gs> a Grobner Basis for I iff for 

all xy, REM(S(gi,gj))=0.  fI iff fG=0.
• Example:

– f=x3y2-x2y3+x, g= 3x4y+y2 in R[x,y].  
– xg=x4y2. 
– S(f,g)= -x3y3+x2-(1/3)y3.
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Grobner

• Grobner Basis:  A finite subset G= {g1 , g2 , ..., gs } is a Grobner basis 
for an ideal I with respect to the monomial order if <in(g1), in(g2), ... 
, in(gs)) >= < in(I)>. Equivalently, if fI, in(gi)| in(f) for some i.

• Theorem: If G is a Grobner basis fG is independent of the order of the 
fi(x).  If G is a Grobner basis and I=<G>, fI iff fG = 0.

• Consequence: Every ideal has a Grobner basis.
• There is a computationally efficient way to find these bases!
• Note connection between Grobner and Hilbert’s original proof of the 

Hilbert Basis Theorem.
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Buchberger

Input: F=<f1, f2, ..., fm>.  Output: Grobner Basis G= {g1, g2, ..., gs}.
// see definition of S(p,q) in earlier slide.
G F;
Do { 

G' G;
for(p,q  G', pq) { 

Compute S(p,q); 
r REM(S(p,q), G'); 
if(r 0)

GG' {r}; 
} 

}  while(G!=G') 
• Theorem:  Foregoing algorithm yields Grobner Basis.
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Polynomial Problems
• Ideal Membership: Does every ideal Ik[x1,…,xn] have a 

finite generating set.
• Ideal Description: Given fk[x1,…,xn] and an ideal I=<f1, 

…, fs> determine if fI.
• Implicitization: Let V be a subset of kn given 

parametrically as:
x1= g1(t1,…,tm)
x2= g2(t1,…,tm)
xn= gn(t1,…,tm)

Find the generating polynomials and conversely.  
• Note the cryptographic application of this last problem.
• All these are “solved” by the Grobner basis.
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Elimination Ideals

• Is= I k[xs+1, …, xn]
• If G is a Grobner basis for I with respect to lex then 

Gs= G k[xs+1, …, xn] is a Grobner basis for the sth
elimination ideal.

• If k is algebraically closed, then a partial solution, (al+1, 
al+2, …, an) is V(Il-1).

• Successively looking at the elimination ideals I1, …, In
reduces each set of variables one at a time.  When we 
have one variable left, we can solve in the usual way.
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Example Grobner and elimination ideal

• x2+y2+z2=4, x2+2y2=5, xz=1
• G={2z3-3z+x, -1+y2-z2, 1+2z2-3z4}
• z= ±1, ±1/2

• f(x)=x3+x-1, g(x)=2x2+3x+7
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Grobner Examples

• Example 1
– I=<x2+y2+z2=1, x2+z2=y, x=y>
– G: g1= x-z, g2= -y+2z2, g3=z4+(1/2)z2-(1/4).
– z= ±(1/2) ±5-1)

• Example 2
– x2+y+z=1, x+y2+z=1, x+y+z2=1.
– I=< x2+y+z-1, x+y2+z-1, x+y+z2-1>
– g1= x+y+z2-1
– g2= y2-y+z2+z
– g3= 2yz2+z4-z2

– g4= z6-4z4+4z3-z2
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Solving SolveAlgebraic(K,D,m,n)

• A general solving technique involves the Grobner Basis 
and found by Buchberger’s Algorithm which is doubly 
exponential time in the worst case since the monomial 
grow very rapidly and singly exponential time on average.

• This is not practical for n>15.
• To solve larger systems we must take advantage of 

special properties of the system like sparseness by using 
“nice” mappings to SAT or “linearized” equations.  We 
can do this with an overdefined set of equations (m>n).

• Note first that if we pick m random equations m>n they 
will likely be inconsistent.
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SAT and equation solving

• x1 + x2  (x1 x2) (x1x2)
• x1 x2  x1x2 

• x1+x2+x3+x4=0.   Must add variables to avoid the 
exponential explosion in terms. x1+x2+x3+x4=0 
1. y1+x1+x2= y2

2. y2+x3+x4= 0.
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SAT equation solving example

1. x1+x2x3=0   ((x1x2x3)) (x1x2x3))))
2. x1x3=1.    x1x3

• 1 simplifies to (x1x2x3)) (x1x2x3)))) 
(x1)x2x3) x1x2x3)  which is satisfied by x1= T, 
x2=T, x3=T. This translates into x1= 1, x2=1, x3=1 and 
indeed 1+ 1  1=0 and 1  1=1.

• There are standard SAT packages that work very well 
when the number of clauses compared to variables is 
small or very large (MiniSAT).
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Review: Solving Linear Equations

Solve the following over GF(7)
3x + y + 4z + 1 = 0  …  [1]
6x + 5y + 3z + 6 = 0 …  [2]
x + 4y + 2z + 5 = 0  …  [3]

Gaussian Elimination
x + 4y + 2z + 5 = 0 …  [3]

2y + 5z + 4  = 0   …  [3]+[2]
-4y + 5z + 0  = 0   …  [1]-3 x [3]

-y + 4 = 0  y=4, z= -1, x=2
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Idea: Linearization of Quadratics

Solve
x2 +4y2 + z2 +5xy +2xz +6yz +5x +3y +5z + 1 = 0

3x2 +2y2 +3z2 +4xy +6xz +2yz +6x +4y +3z + 2 = 0

2x2 +3y2 +2z2 +5xy      +2yz +4x + y + z + 4 = 0

6x2 +3y2 +3z2         +5xz + yz +  5y +2z + 2 = 0

Linearize by assigning quadratic monomial terms to new variables:
x2A, y2B, z2C, xyD, xzE, yzF

A +4B + C +5D +2E +6F +5x +3y +5z + 1  = 0

3A +2B +3C +4D +6E +2F +6x +4y +3z + 2  = 0

2A +3B +2C +5D     +2F +4x + y + z + 4  = 0

6A +3B +3C +5E + F    + 5y +2z + 2  = 0

Problem: Find more equations so system is overdetermined.
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Adding Equations by Relinearization

• If # {variables}  >>  # {equations}, there are too many solutions to the 
system of linear equations.

• Consider each quadratic monomial as a new variable and linearize 
again with more variables:
– (ab)(cd ) = (ac)(bd ) = (ad )(bc)
– (ab)(cd )(ef ) = (ad )(cf )(eb) = …

• Kipnis and Shamir, Cryptanalysis of the HFE Public Key Cryptosystem 
by Relinearization, Crypto '99.

• Toy example from [CKPS] cited later.



JLM 200813 23

“Toy” Example
1. x1

2+mx1x2= a
2. x2

2+nx1x2= b

D=4
3. x1

4+mx1
3x2= ax1

2

4. x1
2x2

2+nx1
3x2= bx1

2

5. x1
2x2

2+mx1
3x2= ax2

2

6. x2
4+nx1

3x2= bx2
2

7. x1
3x2+mx1

2x2
2= ax1x2

8. x1x2
3+nx1

2x2
2= bx1x2

From 5:
a2+x1

2(amn-bm2-2a)+x1
4(1-nm)=0

x1x2= a/m-x12 /m
x22= (b-1n/m)-(n/m) x12

x13x2= (a/m) x12-x14(1/m)
x12x22= (b-an/m)x12 + (n/m)x14

x1x23=(ab/m)+ (an2/m-bn-b/m)x12 + 
(n2/m)x14

x24=(b2- 2abn/m)+ (2nb/m-bn2-
an2/m)x12 + (n3/m)x14
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Relinearization Procedure

• Use first Linearization to solve m linear equations in (n(n+1)/2 
variables

• yij= xi xj
• Express yij = S [k=1, l] cij

(k) tk
• Degree 4 relinearization

• Where do the extra equations come from?
– (xaxb)(xcxd) … = (xa’xb’) …

n m l n’ m’
6 8 13 104 105
8 12 24 324 336
10 16 39 819 825
15 30 90 4185 4200

n’: # variables in final eqn
m’: # equations in final 
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XL

• XL − EXtended Linearization
– [CKPS] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, 

Efficient Algorithms for Solving Overdefined Systems of 
Multivariate Polynomial Equations, Eurocrypt 2000.

• Extension of linearization idea.
• Appears to be polynomial when m>en2 and subexponential when 

m>n+1.

Basic XL algorithm (lj(X), quadratic)
1. Generate all P [j=1,k] xk lj(X), k c D-2.
2. Linearize
3. Solve 
4. Repeat
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XL Algorithm

• Take all monomials x b = x1
b1 x2

b2 ... xn
bn with total degree k, kcD − 2.

– There are  n+1HD−2 =  D−2+nCD−2 such monomials.
• Generate all equations x b li.

– There are  R = m × D−2+nCD−2 such equations.
– There must be linearly dependency among them if  D ≥ 4. 
– Denote  I =  # {linearly independent equations}.

• Treat all monomials of total degree cD as variables. 
– There are  T  = n+1HD  = D+nCD of them.

• Perform Gaussian elimination. Keep  xi
d last.

• If  T − I ≤  D , the last row represents an equation in  xn
D, ... , xn

2, xn , 
1.

• Solve the univariate equation in xn.
• Solve  xn−1 , ... , x1 recursively.
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XL

• Consider previous system of quadratic equations: 
l1 :    x2 +4y2 + z2  +5xy +2xz +6yz +5x +3y +5z +1 = 0
l2 :  3x2 +2y2 +3z2 +4xy +6xz +2yz +6x +4y +3z +2 = 0
l3 :  2x2 +3y2 +2z2 +5xy         +2yz + 4x + y + z + 4 = 0
l4 :  6x2 +3y2 +3z2             +5xz + yz + 5y + 2z + 2 = 0

• Try degree D = 3: 
– Multiply each EQi by x, y, z respectively. 
– Linearize: Consider all monomials as variables.

• How many equations now? 4×4 = 16
• How many variables now?       4H3 = 6C3 = 20
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Matrix of Coefficients

x2y x2z xy2 xyz xz2 y2z yz2 xy  xz  yz x3 x2 x y3 y2 y z3    z2 z 1
[   0    0    0    0    0    0    0    5    2    6    0    1    5    0    4    3    0    1    5    1   ]
[   0    0    0    0    0    0    0    4    6    2    0    3    6    0    2    4    0    3    3    2   ]
[   0    0    0    0    0    0    0    5    0    2    0    2    4    0    3    1    0    2    1    4   ]
[   0    0    0    0    0    0    0    0    5    1    0    6    0    0    3    5    0    3    2    2   ]
[   5    2    4    6    1    0    0    3    5    0    1    5    1    0    0    0    0    0    0    0   ]
[   1    0    5    2    0    6    1    5    0    5    0    0    0    4    3    1    0    0    0    0   ]
[   0    1    0    5    2    4    6    0    5    3    0    0    0    0    0    0    1    5    1    0   ]
[   4    6    2    2    3    0    0    4    3    0    3    6    2    0    0    0    0    0    0    0   ]
[   3    0    4    6    0    2    3    6    0    3    0    0    0    2    4    2    0    0    0    0   ]
[   0    3    0    4    6    2    2    0    6    4    0    0    0    0    0    0    3    3    2    0   ]
[   5    0    3    2    2    0    0    1    1    0    2    4    4    0    0    0    0    0    0    0   ]
[   2    0    5    0    0    2    2    4    0    1    0    0    0    3    1    4    0    0    0    0   ]
[   0    2    0    5    0    3    2    0    4    1    0    0    0    0    0    0    2    1    4    0   ]
[   0    5    3    1    3    0    0    5    2    0    6    0    2    0    0    0    0    0    0    0   ]
[   6    0    0    5    0    1    3    0    0    2    0    0    0    3    5    2    0    0    0    0   ]
[   0    6    0    0    5    3    1    0    0    5    0    0    0    0    0    0    3    2    2    0   ]
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Gaussian Elimination

x2y x2z xy2 xyz xz2 y2z yz2 xy  xz  yz x3 x2 x y3 y2 y z3    z2 z 1
[   5    2    4    6    1    0    0    3    5    0    1    5    1    0    0    0    0    0    0    0   ]
[   0    1    0    5    4    6    1    3    6    5    4    6    4    4    3    1    0    0    0    0   ]
[   0    0    3    6    0    3    4    1    2    6    0    5    6    2    5    4    0    0    0    0   ]
[   0    0    0    1    0    2    3    4    5    3    0    2    1    2    4    2    0    0    0    0   ]
[   0    0    0    0    5    5    5    4    6    5    3    1    3    3    4    6    1    5    1    0   ]
[   0    0    0    0    0    5    3    2    4    0    0    1    4    1    2    1    0    2    6    0   ]
[   0    0    0    0    0    0    6    4    2    0    5    1    5    6    5    6    1    0    0    0   ]
[   0    0    0    0    0    0    0    5    0    2    0    2    4    0    3    1    0    2    1    4   ]
[   0    0    0    0    0    0    0    0    5    1    0    6    0    0    3    5    0    3    2    2   ]
[   0    0    0    0    0    0    0    0    0    2    0    4    0    0    3    0    0    2    4    2   ]
[   0    0    0    0    0    0    0    0    0    0    6    0    6    3    1    0    4    1    6    1   ]
[   0    0    0    0    0    0    0    0    0    0    0    2    1    0    0    0    0    4    3    1   ]
[   0    0    0    0    0    0    0    0    0    0    0    0    3    1    2    4    2    0    1    0 ]
[   0    0    0    0    0    0    0    0    0    0    0    0    0    1    4    6    0    0    1    5   ]
[   0    0    0    0    0    0    0    0    0    0    0    0    0    0    6 3    6    1    5    5 ]
[   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    5    2    1    6 ]
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XL at Degree D

• XL only operates on determined (n = m) or over-determined (n < m) 
systems.

• Select an appropriate degree D before performing XL.
• Given a large system of equations, it is difficult to find optimal D.
• XL succeeds when ms n2/(D(D-1)).  Ds n/m
• [CKPS] gives a rough estimate and some simulation results.

– m=n, D~2n

– m=n+1, D~n
– m=n, D~n
– m=en2, D~ 1/
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Time Complexity of XL

• Denote E(N, M) the complexity of elimination on N
variables and M equations.

• CXL = E(T, R) = E
– T  =  The number of monomials, including 1.
– R =  The number of equations.

• T 2.8 was claimed for E(T, R) under Strassen’s blocking 
elimination algorithm.
– Not really suited to XL implementation.
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Algebraic description of AES

• M= CRL, is the linear map over GF(2) representing mix 
column, shift row and the linear equation.

• Minimal polynomials C: (x4+1),R: (x4+1),L: (x+1)3,C: 
(x+1)15. 

• Single AES round is ri(x)= M(x)-1+(k)i+63
• Full AES (128) is:

– w0= p + (k)0 + 63
– wi= M(wi-1)-1+(k)i+63, i=1,2,…9
– c=M*(w9)-1+(k)10+63

• Rank of system is (equations)/(monomials).
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Resulting algebraic description of AES

• If 8j+m component denoted by v(j,m).
– 0=w0,(j,m)+p(j,m)+k0,(j,m).
– 0=xi,(j,m) wi,(j,m)+1, i=1,2, …, 9.
– 0=wi,(j,m)+(M xi-1)(j,m)+ki,(j,m), i= 1,2, …, 9.
– 0=c(j,m)+(M* x9)(j,m)+k10,(j,m).

• This is a total of 10368 encryption equations over GF(2) 
involving 2560 state variables and 1728 key variables.  
The equations come from 6400 inversion equations, 1408 
linear diffusion operations and 2560 field equations.

• We could also calculate the key schedule equations.
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XL and AES from [CP]

• S Box is map from GF(28)  GF(28) .
• Remaining operations are linear diffusion
• s=8 (size of substitution box), r=24, t=41.
• kij: key bits, i=1,2,…,Nr+1; B= 4Nb; j= 1,2,…, sB [Nr=10…14]
• zij: output bits xi+1,j =zij⊕kij

• Number of monomials: t << sCd

• S-box: 8 bilinear equations, 7 hold with p=1, one with p=255/256
• Rijndael can be solved with m= 8000 over n=1600.
• XSL

– X: xor key
– S: substitution
– L: linear mixing



Typical problem of algebraic cryptanalysis 

• Solve a system of black box polynomial equations over 
GF(2): 

P1(x1…xnv1
1…v1

m)=0
P2(x1…xnv2

1…v2
m)=1

P3(x1…xnv3
1…v3

m)=0
…

in which the fixed key variables xi are unknown, and the 
various plaintext/IV variables vj

j are known
• The problem is NP-hard and exceedingly difficult in 

practice, even with explicitly given polynomials
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The only easily solvable cases of 
simultaneous algebraic equations

Number of 
variables

Total
degree 

1

1

JLM 200813 36
Source: Adi Shamir.



Characteristics of cryptographically 
defined polynomials

• Consider the case of the AES, with 128 key and 128 
input bits with Multivariate polynomials in fully expanded 
Algebraic Normal Form
– These polynomials are huge, and can not be explicitly 

defined, stored, or manipulated with a feasible 
complexity.

– The data available to the attacker will typically be 
insufficient to interpolate their coefficients from their 
output values.
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Cryptographic scheme as “black box”

• Each output bit is some multivariate polynomial 
P(x1,…xn,v1,…vm) over GF(2) of secret variables xi (key bits), 
and public variables vj (plaintext bits in block ciphers, IV bits 
in stream ciphers)

x1

P
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Secret bits 
(e.g.- key bits)

Selectable bits
(e.g.- plaintext bits)

xn v1 vm

Many of the following
slides are from or
inspired by a talk of
Adi Shamir.   Adi
kindly provided a copy.



The cube attack (Dinur&Shamir)

• Algebraic attack on “black box” ciphers that is much faster than general 
equation solving (in special cases).

• Applies when encryption equations are derived from a “low degree” 
sparse master polynomial.

• Attack will be demonstrated on an LFSR-based stream cipher with non-
linear filter.

• Cryptanalyst knows the structure of cipher:
– The schematic diagram
– The size of the various components

• Cryptanalyst does not know the many details, for the “LSFR” example, 
cryptanalyst does not know:
– The LFSR feedback function
– The Sboxes
– The LFSR/Sboxes connections 
– The quadratic key/IV mixing function
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LFSR scheme

8 to 1 Sbox

1,000 different, secret Sboxes
connected to 8,000 of the 10,000 
LFSR bits via a well chosen and 
secret bit permutation
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Only one output bit is 
generated in each clock 

cycle

Source: Adi Shamir.

10,000 bit LFSR

8 to 1 Sbox8 to 1 Sbox8 to 1 Sbox



The initial loading of the LFSR

1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0

1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0

A nonlinear key/IV mixing 
function

Key bits IV bits

Initial LFSR bits
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Further description

• We used a random dense secret quadratic mixing function on all 
the 10,000 key and IV bits for initial LFSR state. 
xixj+…+xkvl+…+vmvn+…+xp+…+vq+…

• We added a large and secret number of dummy initial LFSR steps 
which produce no output.

• We assume that each key can be used with at most 220 IV’s.
• We assume that for each IV only 1 output bit is known.
• The known output bit of the stream cipher is a multivariate 

polynomial P over GF(2) of the n=10,000 key variables xi and IV 
variables vj

• What is the degree d of this polynomial?
• The key/IV mixing function was chosen as a random dense 

quadratic mapping, the dummy and real LFSR steps re-randomize 
these polynomials but their degree remains 2.
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Key exploited algebraic feature: low 
degree representations

• Each 8-bit to 1-bit Sbox is a dense polynomial of degree at most 8 over 
GF(2) in its input bits z1…z8. (Ex: z1z2z3z4z5z6z7z8 + z2z3z6z8  +…)

• Substituting the random quadratic polynomials and expanding , we can 
describe the output bit of each Sbox as the sum of terms of degrees at 
most 16 zt=xixj+…+xkvl+…+vmvn+…+xp+…+vq+….

• Each output bit is the sum of 1,000 such polynomials, and can be 
described as a random looking dense polynomial of degree at most 16 
in the 10,000 input variables.

• This low degree  representation will be the only weakness used by the 
new cube attack to extract the key.
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Two stage attack

• A preprocessing phase (uses black box simulation):
– The stream cipher is given as a black box. Attacker can obtain 

one bit of output for any chosen key and IV.
• An online phase (uses data from eavesdropping):

– The stream cipher is given as a black box, with the key set to a 
secret fixed value. The attacker can obtain one bit of output for 
any chosen IV value.

• For an black box scheme represented by random polynomials of 
degree d in n input variables over GF(2):
– The online stage takes O(n2d-1+n2) bit operations.
– The preprocessing stage is n times larger.

• In LFSR example (to follow), d=16 and n=213, so the running time 
of the attack is 213215+226, which is about 228.
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Small example of cube attack

• Suppose we have a dense master polynomial of degree d=3 
over three secret variables x1,x2,x3 and three public 
variables v1,v2,v3:
– P(v1,v2,v3,x1,x2,x3)= v1v2v3+v1v2x1+v1v3x1+v2v3x1+v1v2x3+v1v3x2+

v2v3x2+ v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+
v1x3+ v3x1+x1x2+x2x3+x2+v1+v3+1

• Summing the derived polynomials (over v2 , v3) with v1=0, 
we get x1+x2. Similarly, summing with v2=0, we get x1+x2+x3
and  summing with v3=0 we get x1+x3.

• This give rise to three linear equations in the three secret 
variables xi, which can be easily solved.
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Why did the nonlinear terms in the sum?

• All the terms are the products of at most 3 of the 6 xi
and vj variables.  We sum over all the values of two vj’s

• Any term in the master polynomial P such as x1x2v1
which contains the nonlinear product of two or more xi
in it, is missing at least one of the vj that we sum over, 
and is thus added an even number of times modulo 2 to 
the sum.
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Source: Adi Shamir.

t=x1x3x5

1

x1x5

x1x2x3x5

x1x2x5

Given P and t terms in P can be:
Supersets of the variables in t
Subsets of the variables in t
Incomparable sets of variables.



The superpoly of a term t in P

• For any polynomial P and term t, write P=tPt+Q where:
– The variables in Pt are disjoint from those in t.
– Each term in Q misses at least one variable from t.

• Pt is called the superpoly of t in P.  
• A maxterm of P is any product t of vj variables whose 

superpoly has degree 1 (i.e., is a linear or affine function 
which is not a constant).

• Example:
– P(x1,x2,x3,x4,x5) =x1x2x3 + x1x2x4 + x2x4x5 + x1x2 + x2 + x3x5 + x5+1 
– Let t=x1x2, P(x1,x2,x3,x4,x5)= x1x2(x3+x4+1)+(x2x4x5+x3x5+x2+x5+1)
– The superpoly of x1x2 in P is (x3+x4+1)
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Main observation on the superpoly

• Theorem: The symbolic sum over GF(2) of all the derived 
polynomials obtained from a master polynomial P by 
assigning all the possible 0/1 values to the subset of 
variables in the term t is exactly the superpoly of t in P.
– Proof: Let P=tPt+Q.  Any term t’ in Q misses at least one variable 

from t, and is thus added an even number of times. This cancels 
its sum modulo 2.  Any term tt’ which contains a superset of the 
variables in t is zero for all the assignments of values to the 
variables in t, except when all of them are 1. In this case we add t’ 
once to the sum. The sum thus contains exactly the terms t’ in the 
superpoly of t in P.
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Applying this to low degree “black box”

• Random polynomials of degree d are expected to have 
only maxterms of degree d-1. However, some 
polynomials have no maxterms and some maxterms can 
have considerably lower degrees.

• Even when P is huge, the linear superpoly of any 
maxterm t can be compactly represented.

• The master polynomial has about 2200 terms of degree at 
most 16 in 10,000 key and IV variables.

• Since P is sufficiently random, almost all the products of 
15 IV variables are maxterms whose superpolys are 
linear combinations of the other variables.
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Applying the cube attack to our full 
stream cipher example

• The master polynomial has about 2200 terms of degree at most 16
in 10,000 key and IV variables

• Since P is sufficiently random, almost all the products of 15 IV 
variables are maxterms whose superpolys are linear combinations 
of the other variables

• How much data
– Consider the 20 dimensional boolean cube in which the 

cryptanalyst sets the 20 least significant IV bits to all their 
possible values, leaving all the other xi and vj variables fixed

– There are 15,504 possible terms of degree 15 defined by these 
20 variables, and more than 10,000 of them are maxterms
which yield linear equations in the 10,000 key variables
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Preprocessing Stage

• The derived polynomials cannot be explicitly generated or symbolically 
summed from the master polynomial with feasible complexity.

• The preprocessing phase (executed only once for each cryptosystem) 
finds the maxterms and their superpolys. Note that during 
preprocessing, the attacker is allowed to choose both the key and IV 
variables.

• For each candidate maxterm t, the attacker chooses pairs of values for 
all the other variables X’ and X”, and verifies that the numerical values 
of the subcube sums satisfy the linearity test:  Pt(X’) + Pt(X”) = 
Pt(X’+X”) + Pt(0).

• If the test succeeds multiple times, the attacker finds the actual linear 
superpoly by checking the numeric effect of flipping each key bit xi:
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When does attack succeed?

• The attack is provably successful against sufficiently 
random multivariate polynomials in which:
– Each term occurs with probability 0.5
– Each term of maximum degree d occurs with probability 0.5
– Each term containing one xi variable and d-1 vj variables occurs 

with probability 0.5

• Polynomials representing cryptographic schemes are 
typically sufficiently random.
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Polynomials, P, which are nonrandom, 
or of unknown degree

• Choose an arbitrary degree d and a random term t 
which is the product of d-1 vj variables.

• Find multiple numeric values of the superpoly of t by 
computing several random subcube sums.

• If the result is always the same value, d is too high: 
eliminate one vj from t, and repeat.

• If the result is a nonlinear function, d is too low: add a 
random vj to the term t, and repeat.

• Advantage: partial sums can be reused.
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End
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Extra
• Pn,dk[x1, …, xn] is the vector subspace of polynomials of degree d.  

dim(Pn,d)= n+dCn.
• Given N points, for what d, does the ideal, IdPn,d, such that I vanishes 

on all N points.
• Cd(S)= dim(Pn,d)-dim(Id).
• If  f is an invertible affine transformation, then Cd(S)=Cd(f(S)).
• Rational maps induce k-algebra homomorphisms between function 

fields.
• Res(f,g) is irreducible.  
• If I= <fv,gw>, then Ik[v, w]=Res(fv,gw).
• Pullback: f* is a pullback of f if f*f= ff
• deg(Fi)=mi.  F1=F2=F3=0 have a common solution.
• d0(d): Sd-m1 Sd-m2 Sd-m3  Sd by (A1, A2, A3) (A1F1 + A2F2+A3F3).  
• Over 2 affine variable we get dim(Sd)= d+1Cd=(d+2)(d+1)/2.
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BES

• AESk(P)=C BESf(k)(f(P))= f(C).
• Let a(i)= 2i,  f(a)= (aa(0), aa(1), aa(2), aa(3), aa(4), aa(5), aa(6), aa(7)).
• BES: b MB b-1 + kB.

– w0=p+k0.
– xi=wi

-1, wi=MB xi-1 + ki.
– c=MB* x9 + k10.

• Circulant as linearized polynomial: x  0x05xa(0)+ 0x09xa(1)+ 0xf9xa(2)+ 
0x25xa(3)+ 0xf4xa(4)+ 0x01xa(5)+ 0xb5xa(6)+ 0x8fxa(7).

• S: w S i=0
7 li w255-a(i) +0x63, modified: S: w  S i=0

7 li w-a(i).
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AES algebraic expansion

• For each round, (0i9) and each S-box (0j15), we get r= 8 x 3 =24 
quadratics. 

• S: Total S-boxes. B: S-boxes/round.
• P-1: passive S-Boxes, Highest degree: 2P.  R: Equations.  
• Lk: independent key variables, Sk: key variables.
• |R|= SCP (tP -(t-r) P), |R'|= SCP-1 SB (Nr +1) (t-r)P-1.
• |R''|= SCP-1 (Sk -Lk) (Nr +1) (t-r) P-1. 
• Total terms: T= SCP tP.
• For P=2, (R+R'+R'')= 33,665,888, T= 33,788,100.
• For P=3, (R+R'+R'')= 95.18 x 109, T= 91.9 x x 109.
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