
1

Cryptanalysis

Lecture 9: Introduction to Algebraic Attacks

John Manferdelli
jmanfer@microsoft.com

JohnManferdelli@hotmail.com

© 2004-2008, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability
for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

jlm20081125

mailto:jmanfer@microsoft.com�

JLM 200813 2

Algebraic Attacks

• As we’ve seen, ciphertext can be expressed as algebraic function of
keys and plaintext (Lagrange Interpolation Theorem). Key bits may be
expressible as functions of plain and cipher texts.
• These are easy to solve if the equations are linear even for very

large key spaces.
• These are very hard to solve if the equations are even quadratic

(NP-hard in fact, see “General System of Quadratic Equations”
slide).

• General problem is “Find one solution of a system of m equations in n
variables of bounded degree, D, over K (usually finite).”

Σb ab x b+ci = 0, xb = x1
b1 x2

b2 ... xn
bn, Σi bi c D.

• We refer to this problem as SolveAlgebraic(K,D,m,n) and often
abbreviate equations as EQj(x)= 0.

JLM 200813 3

General System of Quadratic Equations

• MQ: solve general system of m quadratic equations in n variables over
K:

Σ 1≤ j ≤ k ≤ n aijk xj xk + Σ 1≤ j ≤ n bij xj + ci = 0
denoted by li for 1 ≤ i ≤ m.

• MQ is an NP-hard even over a small finite field such as K=GF(2).
Proof over GF(2); map 3-SAT  cubicsquadratics.

Finally, add equations yij=xixj, 0=yij-xixj. This establishes
correspondence.

3 SAT Cubic/GF(2)
0= x/y/z 0=xyz+xy+yz+xz+x+y+z
1=t 1=1+t

JLM 200813 4

Techniques for solving equations

1. Linear equations: Gaussian elimination, LU.
2. Berlekamp’s Algorithm (single variable)
3. Linearization
4. Resultants and elimination
5. Grobner basis and elimination
6. Transforming to satisfiability instance and use SAT

solver.

JLM 200813 5

Resultants and results involving them

• Theorem: If fv(x)= vnxn+…+ v0 and gw(x)= wmxm+…+ w0. Then
1. $ fv,w(x), jv,w(x): fv,w(x) fv(x) + jv,w(x) gw(x)= R(v,w).
2. R(v,w)=vn

mwm
nP l<j (ti-uj), where ti, uj are roots of fv(x), gw(x)

respectively.
3. R(v, w) is 0 if and only if equations have common solution.
4. Res(f1f2,g)=Res(f1 ,g) Res(f2,g)

• Theorem: If f1,..., fr F[x1 …, xn] has no common zeros, $ A1,..., Ar

such that Si Ai fi=1. [This kind of thing should ring a bell.]

• Nullstellensatz: If f(x1 …, xn)F vanishes at all the common zeros of
f1(x1, ..., xn), ..., fr(x1, ..., xn) in every extension of F, then
fk(x 1,…, xn)  (f 1(x 1,..., x n), ..., f r(x 1, …, x n)) for some k.

JLM 200813 6

Proof of basic formula
xm-1fv(x)
xm-2fv(x)

…
fv(x)

xn-1gw(x)
xn-2gw(x)

…
gw(x)

vn vn-1 … v0 0 … 0 0

0 vn vn-1 … v0 0 … 0

0 … … … …
… 0 0 0 vn vn-1 … v0

wm wm-1 … w0 0 0 … 0

0 wm wm-1 … w0 0 … 0

… 0 … … …
0 0 … 0 wm wm-1 … w0

=

xm+n-1

xn+m-2

…
…
…
x2

x
1

• Let the column vectors be Cm+n-1 … C0, C= (xm-1fv(x), ..., gw (x))T.
• C= Cm+n-1xm+n-1 + …+ C0. Now solve for 1.
• 1= det(Cm+n-1 … C1, C) det(Cm+n-1 … C1, C0).
• So fv,w(x) fv(x) + jv,w(x) gw(x)= R(v,w). Note: R(v,w) does not contain x

so, considering the function field adjoining the u and c, we get the Bezout
form.

JLM 200813 7

Example

• f(x,y)= xy-1=0
• g(x,y)= x2+y2-4=0

• Res(f,g,x)= det(
y, 0, 1,
-1, y, 0,
0, -1, y2-4)

Multipolynomial resultants

JLM 200813 8

Division Algorithm for many variables

• Division Algorithm analogous to a(x)=b(x)q(x)+r(x) in
univariate case but degree is inadequate.

• Fix a monomial order for terms in x1, x2, …, xn.
Example: Lex order a=(a1,…,an), b=(b1,…,bn), xaxb iff
leading term of a–b is positive.

• Order relation must have the following two properties:
1. If xaxb then xgxaxgxb.
2. The set of orders has a minimal element.

JLM 200813 9

Division Algorithm for many variables

• Denote leading term of f under this order as in(f). The division
algorithm for f with respect to the monomial order produces f(x)= a1(x)
f1(x) + ... + am(x) fm(x) + r(x) where r=0 or r is a linear combination of
monomials none of which are divisible by in(fi). This is written as r=
{fF}. In general, the result depends on the ordering of the fi(x).

• LT(f) means “leading term.” LM(f) is “leading monomial.” If f(x,y)=
2x3y4+3xy, LT(f) = 2x3y4, and LM(f)=x3y4.

• Unlike the univariate case, the division algorithm over an arbitrary basis
<f1, …, fn> may yield non-zero r(x) even if there are ai(x): a1(x) f1(x) +
a2(x) f2(x) =f(x), because no LM(fi) divides any monomial of r(x). An
example is f(x)=1, f1(x)=x+1, f2(x)=x. Grobner basis have the important
property that if <g1(x), …, gr(x)> is such a basis, <LT(gi)>=<LT(I)> .

JLM 200813 10

Division Algorithm

• Hilbert Basis Theorem: Every Ik[x1,…,xn] has a finite generating set.

• Grobner condition: <LT(g1), …, LT(gs)>= <LT(I)>.
• If G=<g1, …, gs> is a Grobner Basis and f(x)= a1(x) g1(x) + ... + am(x)

gm(x) + r(x) then every term of r(x) is divisible by none of LT(gs).
• xg= LCM(LM(f), LM(g)). S(f, g)= xg/LT(f)+ xg/LT(g). Used in

constructing Grobner basis.
• Let I be a polynomial ideal. $ G=<g1, …, gs> a Grobner Basis for I iff for

all xy, REM(S(gi,gj))=0. fI iff fG=0.
• Example:

– f=x3y2-x2y3+x, g= 3x4y+y2 in R[x,y].
– xg=x4y2.
– S(f,g)= -x3y3+x2-(1/3)y3.

JLM 200813 11

Grobner

• Grobner Basis: A finite subset G= {g1 , g2 , ..., gs } is a Grobner basis
for an ideal I with respect to the monomial order if <in(g1), in(g2), ...
, in(gs)) >= < in(I)>. Equivalently, if fI, in(gi)| in(f) for some i.

• Theorem: If G is a Grobner basis fG is independent of the order of the
fi(x). If G is a Grobner basis and I=<G>, fI iff fG = 0.

• Consequence: Every ideal has a Grobner basis.
• There is a computationally efficient way to find these bases!
• Note connection between Grobner and Hilbert’s original proof of the

Hilbert Basis Theorem.

JLM 200813 12

Buchberger

Input: F=<f1, f2, ..., fm>. Output: Grobner Basis G= {g1, g2, ..., gs}.
// see definition of S(p,q) in earlier slide.
G F;
Do {

G' G;
for(p,q  G', pq) {

Compute S(p,q);
r REM(S(p,q), G');
if(r 0)

GG' {r};
}

} while(G!=G')
• Theorem: Foregoing algorithm yields Grobner Basis.

JLM 200813 13

Polynomial Problems
• Ideal Membership: Does every ideal Ik[x1,…,xn] have a

finite generating set.
• Ideal Description: Given fk[x1,…,xn] and an ideal I=<f1,

…, fs> determine if fI.
• Implicitization: Let V be a subset of kn given

parametrically as:
x1= g1(t1,…,tm)
x2= g2(t1,…,tm)
xn= gn(t1,…,tm)

Find the generating polynomials and conversely.
• Note the cryptographic application of this last problem.
• All these are “solved” by the Grobner basis.

JLM 200813 14

Elimination Ideals

• Is= I k[xs+1, …, xn]
• If G is a Grobner basis for I with respect to lex then

Gs= G k[xs+1, …, xn] is a Grobner basis for the sth
elimination ideal.

• If k is algebraically closed, then a partial solution, (al+1,
al+2, …, an) is V(Il-1).

• Successively looking at the elimination ideals I1, …, In
reduces each set of variables one at a time. When we
have one variable left, we can solve in the usual way.

JLM 200813 15

Example Grobner and elimination ideal

• x2+y2+z2=4, x2+2y2=5, xz=1
• G={2z3-3z+x, -1+y2-z2, 1+2z2-3z4}
• z= ±1, ±1/2

• f(x)=x3+x-1, g(x)=2x2+3x+7

JLM 200813 16

Grobner Examples

• Example 1
– I=<x2+y2+z2=1, x2+z2=y, x=y>
– G: g1= x-z, g2= -y+2z2, g3=z4+(1/2)z2-(1/4).
– z= ±(1/2) ±5-1)

• Example 2
– x2+y+z=1, x+y2+z=1, x+y+z2=1.
– I=< x2+y+z-1, x+y2+z-1, x+y+z2-1>
– g1= x+y+z2-1
– g2= y2-y+z2+z
– g3= 2yz2+z4-z2

– g4= z6-4z4+4z3-z2

JLM 200813 17

Solving SolveAlgebraic(K,D,m,n)

• A general solving technique involves the Grobner Basis
and found by Buchberger’s Algorithm which is doubly
exponential time in the worst case since the monomial
grow very rapidly and singly exponential time on average.

• This is not practical for n>15.
• To solve larger systems we must take advantage of

special properties of the system like sparseness by using
“nice” mappings to SAT or “linearized” equations. We
can do this with an overdefined set of equations (m>n).

• Note first that if we pick m random equations m>n they
will likely be inconsistent.

JLM 200813 18

SAT and equation solving

• x1 + x2  (x1 x2) (x1x2)
• x1 x2  x1x2

• x1+x2+x3+x4=0. Must add variables to avoid the
exponential explosion in terms. x1+x2+x3+x4=0 
1. y1+x1+x2= y2

2. y2+x3+x4= 0.

JLM 200813 19

SAT equation solving example

1. x1+x2x3=0  ((x1x2x3)) (x1x2x3))))
2. x1x3=1.  x1x3

• 1 simplifies to (x1x2x3)) (x1x2x3)))) 
(x1)x2x3) x1x2x3) which is satisfied by x1= T,
x2=T, x3=T. This translates into x1= 1, x2=1, x3=1 and
indeed 1+ 1  1=0 and 1  1=1.

• There are standard SAT packages that work very well
when the number of clauses compared to variables is
small or very large (MiniSAT).

JLM 200813 20

Review: Solving Linear Equations

Solve the following over GF(7)
3x + y + 4z + 1 = 0 … [1]
6x + 5y + 3z + 6 = 0 … [2]
x + 4y + 2z + 5 = 0 … [3]

Gaussian Elimination
x + 4y + 2z + 5 = 0 … [3]

2y + 5z + 4 = 0 … [3]+[2]
-4y + 5z + 0 = 0 … [1]-3 x [3]

-y + 4 = 0  y=4, z= -1, x=2

JLM 200813 21

Idea: Linearization of Quadratics

Solve
x2 +4y2 + z2 +5xy +2xz +6yz +5x +3y +5z + 1 = 0

3x2 +2y2 +3z2 +4xy +6xz +2yz +6x +4y +3z + 2 = 0

2x2 +3y2 +2z2 +5xy +2yz +4x + y + z + 4 = 0

6x2 +3y2 +3z2 +5xz + yz + 5y +2z + 2 = 0

Linearize by assigning quadratic monomial terms to new variables:
x2A, y2B, z2C, xyD, xzE, yzF

A +4B + C +5D +2E +6F +5x +3y +5z + 1 = 0

3A +2B +3C +4D +6E +2F +6x +4y +3z + 2 = 0

2A +3B +2C +5D +2F +4x + y + z + 4 = 0

6A +3B +3C +5E + F + 5y +2z + 2 = 0

Problem: Find more equations so system is overdetermined.

JLM 200813 22

Adding Equations by Relinearization

• If # {variables} >> # {equations}, there are too many solutions to the
system of linear equations.

• Consider each quadratic monomial as a new variable and linearize
again with more variables:
– (ab)(cd) = (ac)(bd) = (ad)(bc)
– (ab)(cd)(ef) = (ad)(cf)(eb) = …

• Kipnis and Shamir, Cryptanalysis of the HFE Public Key Cryptosystem
by Relinearization, Crypto '99.

• Toy example from [CKPS] cited later.

JLM 200813 23

“Toy” Example
1. x1

2+mx1x2= a
2. x2

2+nx1x2= b

D=4
3. x1

4+mx1
3x2= ax1

2

4. x1
2x2

2+nx1
3x2= bx1

2

5. x1
2x2

2+mx1
3x2= ax2

2

6. x2
4+nx1

3x2= bx2
2

7. x1
3x2+mx1

2x2
2= ax1x2

8. x1x2
3+nx1

2x2
2= bx1x2

From 5:
a2+x1

2(amn-bm2-2a)+x1
4(1-nm)=0

x1x2= a/m-x12 /m
x22= (b-1n/m)-(n/m) x12

x13x2= (a/m) x12-x14(1/m)
x12x22= (b-an/m)x12 + (n/m)x14

x1x23=(ab/m)+ (an2/m-bn-b/m)x12 +
(n2/m)x14

x24=(b2- 2abn/m)+ (2nb/m-bn2-
an2/m)x12 + (n3/m)x14

JLM 200813 24

Relinearization Procedure

• Use first Linearization to solve m linear equations in (n(n+1)/2
variables

• yij= xi xj
• Express yij = S [k=1, l] cij

(k) tk
• Degree 4 relinearization

• Where do the extra equations come from?
– (xaxb)(xcxd) … = (xa’xb’) …

n m l n’ m’
6 8 13 104 105
8 12 24 324 336
10 16 39 819 825
15 30 90 4185 4200

n’: # variables in final eqn
m’: # equations in final

JLM 200813 25

XL

• XL − EXtended Linearization
– [CKPS] N. Courtois, A. Klimov, J. Patarin, and A. Shamir,

Efficient Algorithms for Solving Overdefined Systems of
Multivariate Polynomial Equations, Eurocrypt 2000.

• Extension of linearization idea.
• Appears to be polynomial when m>en2 and subexponential when

m>n+1.

Basic XL algorithm (lj(X), quadratic)
1. Generate all P [j=1,k] xk lj(X), k c D-2.
2. Linearize
3. Solve
4. Repeat

JLM 200813 26

XL Algorithm

• Take all monomials x b = x1
b1 x2

b2 ... xn
bn with total degree k, kcD − 2.

– There are n+1HD−2 = D−2+nCD−2 such monomials.
• Generate all equations x b li.

– There are R = m × D−2+nCD−2 such equations.
– There must be linearly dependency among them if D ≥ 4.
– Denote I = # {linearly independent equations}.

• Treat all monomials of total degree cD as variables.
– There are T = n+1HD = D+nCD of them.

• Perform Gaussian elimination. Keep xi
d last.

• If T − I ≤ D , the last row represents an equation in xn
D, ... , xn

2, xn ,
1.

• Solve the univariate equation in xn.
• Solve xn−1 , ... , x1 recursively.

JLM 200813 27

XL

• Consider previous system of quadratic equations:
l1 : x2 +4y2 + z2 +5xy +2xz +6yz +5x +3y +5z +1 = 0
l2 : 3x2 +2y2 +3z2 +4xy +6xz +2yz +6x +4y +3z +2 = 0
l3 : 2x2 +3y2 +2z2 +5xy +2yz + 4x + y + z + 4 = 0
l4 : 6x2 +3y2 +3z2 +5xz + yz + 5y + 2z + 2 = 0

• Try degree D = 3:
– Multiply each EQi by x, y, z respectively.
– Linearize: Consider all monomials as variables.

• How many equations now? 4×4 = 16
• How many variables now? 4H3 = 6C3 = 20

JLM 200813 28

Matrix of Coefficients

x2y x2z xy2 xyz xz2 y2z yz2 xy xz yz x3 x2 x y3 y2 y z3 z2 z 1
[0 0 0 0 0 0 0 5 2 6 0 1 5 0 4 3 0 1 5 1]
[0 0 0 0 0 0 0 4 6 2 0 3 6 0 2 4 0 3 3 2]
[0 0 0 0 0 0 0 5 0 2 0 2 4 0 3 1 0 2 1 4]
[0 0 0 0 0 0 0 0 5 1 0 6 0 0 3 5 0 3 2 2]
[5 2 4 6 1 0 0 3 5 0 1 5 1 0 0 0 0 0 0 0]
[1 0 5 2 0 6 1 5 0 5 0 0 0 4 3 1 0 0 0 0]
[0 1 0 5 2 4 6 0 5 3 0 0 0 0 0 0 1 5 1 0]
[4 6 2 2 3 0 0 4 3 0 3 6 2 0 0 0 0 0 0 0]
[3 0 4 6 0 2 3 6 0 3 0 0 0 2 4 2 0 0 0 0]
[0 3 0 4 6 2 2 0 6 4 0 0 0 0 0 0 3 3 2 0]
[5 0 3 2 2 0 0 1 1 0 2 4 4 0 0 0 0 0 0 0]
[2 0 5 0 0 2 2 4 0 1 0 0 0 3 1 4 0 0 0 0]
[0 2 0 5 0 3 2 0 4 1 0 0 0 0 0 0 2 1 4 0]
[0 5 3 1 3 0 0 5 2 0 6 0 2 0 0 0 0 0 0 0]
[6 0 0 5 0 1 3 0 0 2 0 0 0 3 5 2 0 0 0 0]
[0 6 0 0 5 3 1 0 0 5 0 0 0 0 0 0 3 2 2 0]

JLM 200813 29

Gaussian Elimination

x2y x2z xy2 xyz xz2 y2z yz2 xy xz yz x3 x2 x y3 y2 y z3 z2 z 1
[5 2 4 6 1 0 0 3 5 0 1 5 1 0 0 0 0 0 0 0]
[0 1 0 5 4 6 1 3 6 5 4 6 4 4 3 1 0 0 0 0]
[0 0 3 6 0 3 4 1 2 6 0 5 6 2 5 4 0 0 0 0]
[0 0 0 1 0 2 3 4 5 3 0 2 1 2 4 2 0 0 0 0]
[0 0 0 0 5 5 5 4 6 5 3 1 3 3 4 6 1 5 1 0]
[0 0 0 0 0 5 3 2 4 0 0 1 4 1 2 1 0 2 6 0]
[0 0 0 0 0 0 6 4 2 0 5 1 5 6 5 6 1 0 0 0]
[0 0 0 0 0 0 0 5 0 2 0 2 4 0 3 1 0 2 1 4]
[0 0 0 0 0 0 0 0 5 1 0 6 0 0 3 5 0 3 2 2]
[0 0 0 0 0 0 0 0 0 2 0 4 0 0 3 0 0 2 4 2]
[0 0 0 0 0 0 0 0 0 0 6 0 6 3 1 0 4 1 6 1]
[0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 4 3 1]
[0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 4 2 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 0 0 1 5]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 6 1 5 5]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 1 6]

JLM 200813 30

XL at Degree D

• XL only operates on determined (n = m) or over-determined (n < m)
systems.

• Select an appropriate degree D before performing XL.
• Given a large system of equations, it is difficult to find optimal D.
• XL succeeds when ms n2/(D(D-1)). Ds n/m
• [CKPS] gives a rough estimate and some simulation results.

– m=n, D~2n

– m=n+1, D~n
– m=n, D~n
– m=en2, D~ 1/

JLM 200813 31

Time Complexity of XL

• Denote E(N, M) the complexity of elimination on N
variables and M equations.

• CXL = E(T, R) = E
– T = The number of monomials, including 1.
– R = The number of equations.

• T 2.8 was claimed for E(T, R) under Strassen’s blocking
elimination algorithm.
– Not really suited to XL implementation.

















−
+−








 +
2

2
,

D
nD

m
D

nD

JLM 200813 32

Algebraic description of AES

• M= CRL, is the linear map over GF(2) representing mix
column, shift row and the linear equation.

• Minimal polynomials C: (x4+1),R: (x4+1),L: (x+1)3,C:
(x+1)15.

• Single AES round is ri(x)= M(x)-1+(k)i+63
• Full AES (128) is:

– w0= p + (k)0 + 63
– wi= M(wi-1)-1+(k)i+63, i=1,2,…9
– c=M*(w9)-1+(k)10+63

• Rank of system is (equations)/(monomials).

JLM 200813 33

Resulting algebraic description of AES

• If 8j+m component denoted by v(j,m).
– 0=w0,(j,m)+p(j,m)+k0,(j,m).
– 0=xi,(j,m) wi,(j,m)+1, i=1,2, …, 9.
– 0=wi,(j,m)+(M xi-1)(j,m)+ki,(j,m), i= 1,2, …, 9.
– 0=c(j,m)+(M* x9)(j,m)+k10,(j,m).

• This is a total of 10368 encryption equations over GF(2)
involving 2560 state variables and 1728 key variables.
The equations come from 6400 inversion equations, 1408
linear diffusion operations and 2560 field equations.

• We could also calculate the key schedule equations.

JLM 200813 34

XL and AES from [CP]

• S Box is map from GF(28)  GF(28) .
• Remaining operations are linear diffusion
• s=8 (size of substitution box), r=24, t=41.
• kij: key bits, i=1,2,…,Nr+1; B= 4Nb; j= 1,2,…, sB [Nr=10…14]
• zij: output bits xi+1,j =zij⊕kij

• Number of monomials: t << sCd

• S-box: 8 bilinear equations, 7 hold with p=1, one with p=255/256
• Rijndael can be solved with m= 8000 over n=1600.
• XSL

– X: xor key
– S: substitution
– L: linear mixing

Typical problem of algebraic cryptanalysis

• Solve a system of black box polynomial equations over
GF(2):

P1(x1…xnv1
1…v1

m)=0
P2(x1…xnv2

1…v2
m)=1

P3(x1…xnv3
1…v3

m)=0
…

in which the fixed key variables xi are unknown, and the
various plaintext/IV variables vj

j are known
• The problem is NP-hard and exceedingly difficult in

practice, even with explicitly given polynomials

JLM 200813 35
Source: Adi Shamir.

The only easily solvable cases of
simultaneous algebraic equations

Number of
variables

Total
degree

1

1

JLM 200813 36
Source: Adi Shamir.

Characteristics of cryptographically
defined polynomials

• Consider the case of the AES, with 128 key and 128
input bits with Multivariate polynomials in fully expanded
Algebraic Normal Form
– These polynomials are huge, and can not be explicitly

defined, stored, or manipulated with a feasible
complexity.

– The data available to the attacker will typically be
insufficient to interpolate their coefficients from their
output values.

JLM 200813 37
Source: Adi Shamir.

Cryptographic scheme as “black box”

• Each output bit is some multivariate polynomial
P(x1,…xn,v1,…vm) over GF(2) of secret variables xi (key bits),
and public variables vj (plaintext bits in block ciphers, IV bits
in stream ciphers)

x1

P

JLM 200813 38

Secret bits
(e.g.- key bits)

Selectable bits
(e.g.- plaintext bits)

xn v1 vm

Many of the following
slides are from or
inspired by a talk of
Adi Shamir. Adi
kindly provided a copy.

The cube attack (Dinur&Shamir)

• Algebraic attack on “black box” ciphers that is much faster than general
equation solving (in special cases).

• Applies when encryption equations are derived from a “low degree”
sparse master polynomial.

• Attack will be demonstrated on an LFSR-based stream cipher with non-
linear filter.

• Cryptanalyst knows the structure of cipher:
– The schematic diagram
– The size of the various components

• Cryptanalyst does not know the many details, for the “LSFR” example,
cryptanalyst does not know:
– The LFSR feedback function
– The Sboxes
– The LFSR/Sboxes connections
– The quadratic key/IV mixing function

JLM 200813 39
Source: Adi Shamir.

LFSR scheme

8 to 1 Sbox

1,000 different, secret Sboxes
connected to 8,000 of the 10,000
LFSR bits via a well chosen and
secret bit permutation

JLM 200813 40

Only one output bit is
generated in each clock

cycle

Source: Adi Shamir.

10,000 bit LFSR

8 to 1 Sbox8 to 1 Sbox8 to 1 Sbox

The initial loading of the LFSR

1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0

1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0

A nonlinear key/IV mixing
function

Key bits IV bits

Initial LFSR bits

JLM 200813 41

Source: Adi Shamir.

Source: Adi Shamir.

Further description

• We used a random dense secret quadratic mixing function on all
the 10,000 key and IV bits for initial LFSR state.
xixj+…+xkvl+…+vmvn+…+xp+…+vq+…

• We added a large and secret number of dummy initial LFSR steps
which produce no output.

• We assume that each key can be used with at most 220 IV’s.
• We assume that for each IV only 1 output bit is known.
• The known output bit of the stream cipher is a multivariate

polynomial P over GF(2) of the n=10,000 key variables xi and IV
variables vj

• What is the degree d of this polynomial?
• The key/IV mixing function was chosen as a random dense

quadratic mapping, the dummy and real LFSR steps re-randomize
these polynomials but their degree remains 2.

JLM 200813 42Source: Adi Shamir.

Key exploited algebraic feature: low
degree representations

• Each 8-bit to 1-bit Sbox is a dense polynomial of degree at most 8 over
GF(2) in its input bits z1…z8. (Ex: z1z2z3z4z5z6z7z8 + z2z3z6z8 +…)

• Substituting the random quadratic polynomials and expanding , we can
describe the output bit of each Sbox as the sum of terms of degrees at
most 16 zt=xixj+…+xkvl+…+vmvn+…+xp+…+vq+….

• Each output bit is the sum of 1,000 such polynomials, and can be
described as a random looking dense polynomial of degree at most 16
in the 10,000 input variables.

• This low degree representation will be the only weakness used by the
new cube attack to extract the key.

JLM 200813 43Source: Adi Shamir.

Two stage attack

• A preprocessing phase (uses black box simulation):
– The stream cipher is given as a black box. Attacker can obtain

one bit of output for any chosen key and IV.
• An online phase (uses data from eavesdropping):

– The stream cipher is given as a black box, with the key set to a
secret fixed value. The attacker can obtain one bit of output for
any chosen IV value.

• For an black box scheme represented by random polynomials of
degree d in n input variables over GF(2):
– The online stage takes O(n2d-1+n2) bit operations.
– The preprocessing stage is n times larger.

• In LFSR example (to follow), d=16 and n=213, so the running time
of the attack is 213215+226, which is about 228.

JLM 200813 44Source: Adi Shamir.

Small example of cube attack

• Suppose we have a dense master polynomial of degree d=3
over three secret variables x1,x2,x3 and three public
variables v1,v2,v3:
– P(v1,v2,v3,x1,x2,x3)= v1v2v3+v1v2x1+v1v3x1+v2v3x1+v1v2x3+v1v3x2+

v2v3x2+ v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+
v1x3+ v3x1+x1x2+x2x3+x2+v1+v3+1

• Summing the derived polynomials (over v2 , v3) with v1=0,
we get x1+x2. Similarly, summing with v2=0, we get x1+x2+x3
and summing with v3=0 we get x1+x3.

• This give rise to three linear equations in the three secret
variables xi, which can be easily solved.

JLM 200813 45Source: Adi Shamir.

Why did the nonlinear terms in the sum?

• All the terms are the products of at most 3 of the 6 xi
and vj variables. We sum over all the values of two vj’s

• Any term in the master polynomial P such as x1x2v1
which contains the nonlinear product of two or more xi
in it, is missing at least one of the vj that we sum over,
and is thus added an even number of times modulo 2 to
the sum.

JLM 200813 46

Source: Adi Shamir.

t=x1x3x5

1

x1x5

x1x2x3x5

x1x2x5

Given P and t terms in P can be:
Supersets of the variables in t
Subsets of the variables in t
Incomparable sets of variables.

The superpoly of a term t in P

• For any polynomial P and term t, write P=tPt+Q where:
– The variables in Pt are disjoint from those in t.
– Each term in Q misses at least one variable from t.

• Pt is called the superpoly of t in P.
• A maxterm of P is any product t of vj variables whose

superpoly has degree 1 (i.e., is a linear or affine function
which is not a constant).

• Example:
– P(x1,x2,x3,x4,x5) =x1x2x3 + x1x2x4 + x2x4x5 + x1x2 + x2 + x3x5 + x5+1
– Let t=x1x2, P(x1,x2,x3,x4,x5)= x1x2(x3+x4+1)+(x2x4x5+x3x5+x2+x5+1)
– The superpoly of x1x2 in P is (x3+x4+1)

JLM 200813 47Source: Adi Shamir.

Main observation on the superpoly

• Theorem: The symbolic sum over GF(2) of all the derived
polynomials obtained from a master polynomial P by
assigning all the possible 0/1 values to the subset of
variables in the term t is exactly the superpoly of t in P.
– Proof: Let P=tPt+Q. Any term t’ in Q misses at least one variable

from t, and is thus added an even number of times. This cancels
its sum modulo 2. Any term tt’ which contains a superset of the
variables in t is zero for all the assignments of values to the
variables in t, except when all of them are 1. In this case we add t’
once to the sum. The sum thus contains exactly the terms t’ in the
superpoly of t in P.

JLM 200813 48Source: Adi Shamir.

Applying this to low degree “black box”

• Random polynomials of degree d are expected to have
only maxterms of degree d-1. However, some
polynomials have no maxterms and some maxterms can
have considerably lower degrees.

• Even when P is huge, the linear superpoly of any
maxterm t can be compactly represented.

• The master polynomial has about 2200 terms of degree at
most 16 in 10,000 key and IV variables.

• Since P is sufficiently random, almost all the products of
15 IV variables are maxterms whose superpolys are
linear combinations of the other variables.

JLM 200813 49Source: Adi Shamir.

Applying the cube attack to our full
stream cipher example

• The master polynomial has about 2200 terms of degree at most 16
in 10,000 key and IV variables

• Since P is sufficiently random, almost all the products of 15 IV
variables are maxterms whose superpolys are linear combinations
of the other variables

• How much data
– Consider the 20 dimensional boolean cube in which the

cryptanalyst sets the 20 least significant IV bits to all their
possible values, leaving all the other xi and vj variables fixed

– There are 15,504 possible terms of degree 15 defined by these
20 variables, and more than 10,000 of them are maxterms
which yield linear equations in the 10,000 key variables

JLM 200813 50Source: Adi Shamir.

Preprocessing Stage

• The derived polynomials cannot be explicitly generated or symbolically
summed from the master polynomial with feasible complexity.

• The preprocessing phase (executed only once for each cryptosystem)
finds the maxterms and their superpolys. Note that during
preprocessing, the attacker is allowed to choose both the key and IV
variables.

• For each candidate maxterm t, the attacker chooses pairs of values for
all the other variables X’ and X”, and verifies that the numerical values
of the subcube sums satisfy the linearity test: Pt(X’) + Pt(X”) =
Pt(X’+X”) + Pt(0).

• If the test succeeds multiple times, the attacker finds the actual linear
superpoly by checking the numeric effect of flipping each key bit xi:

JLM 200813 51Source: Adi Shamir.

When does attack succeed?

• The attack is provably successful against sufficiently
random multivariate polynomials in which:
– Each term occurs with probability 0.5
– Each term of maximum degree d occurs with probability 0.5
– Each term containing one xi variable and d-1 vj variables occurs

with probability 0.5

• Polynomials representing cryptographic schemes are
typically sufficiently random.

JLM 200813 52Source: Adi Shamir.

Polynomials, P, which are nonrandom,
or of unknown degree

• Choose an arbitrary degree d and a random term t
which is the product of d-1 vj variables.

• Find multiple numeric values of the superpoly of t by
computing several random subcube sums.

• If the result is always the same value, d is too high:
eliminate one vj from t, and repeat.

• If the result is a nonlinear function, d is too low: add a
random vj to the term t, and repeat.

• Advantage: partial sums can be reused.

JLM 200813 53Source: Adi Shamir.

End

JLM 200813 54

JLM 200813 55

Extra
• Pn,dk[x1, …, xn] is the vector subspace of polynomials of degree d.

dim(Pn,d)= n+dCn.
• Given N points, for what d, does the ideal, IdPn,d, such that I vanishes

on all N points.
• Cd(S)= dim(Pn,d)-dim(Id).
• If f is an invertible affine transformation, then Cd(S)=Cd(f(S)).
• Rational maps induce k-algebra homomorphisms between function

fields.
• Res(f,g) is irreducible.
• If I= <fv,gw>, then Ik[v, w]=Res(fv,gw).
• Pullback: f* is a pullback of f if f*f= ff
• deg(Fi)=mi. F1=F2=F3=0 have a common solution.
• d0(d): Sd-m1 Sd-m2 Sd-m3  Sd by (A1, A2, A3) (A1F1 + A2F2+A3F3).
• Over 2 affine variable we get dim(Sd)= d+1Cd=(d+2)(d+1)/2.

JLM 200813 56

BES

• AESk(P)=C BESf(k)(f(P))= f(C).
• Let a(i)= 2i, f(a)= (aa(0), aa(1), aa(2), aa(3), aa(4), aa(5), aa(6), aa(7)).
• BES: b MB b-1 + kB.

– w0=p+k0.
– xi=wi

-1, wi=MB xi-1 + ki.
– c=MB* x9 + k10.

• Circulant as linearized polynomial: x  0x05xa(0)+ 0x09xa(1)+ 0xf9xa(2)+
0x25xa(3)+ 0xf4xa(4)+ 0x01xa(5)+ 0xb5xa(6)+ 0x8fxa(7).

• S: w S i=0
7 li w255-a(i) +0x63, modified: S: w  S i=0

7 li w-a(i).

JLM 200813 57

AES algebraic expansion

• For each round, (0i9) and each S-box (0j15), we get r= 8 x 3 =24
quadratics.

• S: Total S-boxes. B: S-boxes/round.
• P-1: passive S-Boxes, Highest degree: 2P. R: Equations.
• Lk: independent key variables, Sk: key variables.
• |R|= SCP (tP -(t-r) P), |R'|= SCP-1 SB (Nr +1) (t-r)P-1.
• |R''|= SCP-1 (Sk -Lk) (Nr +1) (t-r) P-1.
• Total terms: T= SCP tP.
• For P=2, (R+R'+R'')= 33,665,888, T= 33,788,100.
• For P=3, (R+R'+R'')= 95.18 x 109, T= 91.9 x x 109.

	Slide Number 1
	Algebraic Attacks
	General System of Quadratic Equations
	Techniques for solving equations
	Resultants and results involving them
	Proof of basic formula
	Example
	Division Algorithm for many variables
	Division Algorithm for many variables
	Division Algorithm
	Grobner
	Buchberger
	Polynomial Problems
	Elimination Ideals
	Example Grobner and elimination ideal
	Grobner Examples
	Solving SolveAlgebraic(K,D,m,n)
	SAT and equation solving
	SAT equation solving example
	Review: Solving Linear Equations
	Idea: Linearization of Quadratics
	Adding Equations by Relinearization
	“Toy” Example
	Relinearization Procedure
	XL
	XL Algorithm
	XL
	Matrix of Coefficients
	Gaussian Elimination
	XL at Degree D
	Time Complexity of XL
	Algebraic description of AES
	Resulting algebraic description of AES
	XL and AES from [CP]
	Typical problem of algebraic cryptanalysis
	The only easily solvable cases of simultaneous algebraic equations
	Characteristics of cryptographically defined polynomials
	Cryptographic scheme as “black box”
	The cube attack (Dinur&Shamir)
	LFSR scheme
	The initial loading of the LFSR
	Further description
	Key exploited algebraic feature: low degree representations
	Two stage attack
	Small example of cube attack
	Why did the nonlinear terms in the sum?
	The superpoly of a term t in P
	Main observation on the superpoly
	Applying this to low degree “black box”
	Applying the cube attack to our full stream cipher example
	Preprocessing Stage
	When does attack succeed?
	Polynomials, P, which are nonrandom, or of unknown degree
	End
	Extra
	BES
	AES algebraic expansion

