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1 Introduction

I’ve collected a number of results here that I might use implicitly or explicitly. Most of the time, I will go
over the results before I use them and maybe even do the proofs but in case I forget, you can always refer
to this. This also serves the purpose of establishing (or at least alerting you to) some notation that might
be used.

This description is pretty compact and I’d bet a large sum of money that there are missing definitions.
Unless you are much smarter than any person I’ve ever met, you should not expect to be able to understand
any portion of this for a topic you’ve never seen before in your life.

During the year, I will happily cover in class any material that people are unfamiliar with and the refernce
section at the end points to expositions that are far more readable than this is, so relax.

2 Mathematics and Cryptanalysis

Shannon succintly explained the relationship between Mathematics and Cryptanalysis in his famous “Math-
ematical Theory of Secrecy Systems.” He said “Breaking a good cipher should require as much work as
solving a system of simultaneous equations in a large number of unknowns of a complex type.” This is
still true and that’s why mathematics is so important for cryptanalysis. Mathematics is a good way to
understand things generally and is fun so what more do you need? 1

3 Sets, Mappings and Counting

Let A and B be sets and f : A → B. Im(f) = {f(x) : x ∈ A}. f is surjective if Im(f) = B; in this case, f
is called a surjection. f is injective if f(x) = f(y) → x = y; in this case, f is called a injection. f is bijective
if it is both injective and surjective; in this case, f is called a bijection. The empty set is denoted by ∅. The
cardinality of a set A is denoted by |A|. When A has a finite number of elements, |A| is just the number of
elements in A; obviously, |∅| = 0. If f is a bijection between A and B, |A| = |B|. We say A has n elements
if there is a bijection between A and the set {1, 2, . . . , n}.

If A is finite with N elements (|A| = N), the set of bijections σ : A → B is denoted by SN ; it turns
out, this set forms a group under function composition and this group is called the symmetric group on N
elements. |SN | = N ! = N(N − 1) . . . 1 =

∏N
i=1 i. There are N ! bijections of a set onto itself; by contrast,

there are NN functions mapping a set to itself.

As usual, A ∩B is the intersection of A and B and A ∪B is the union of A and B.
1I am told that Simone Weil (the sister of Andre Weil, a famous mathematician) who was a very influential writer in the

early twentieth century, is quoted as saying “There are only two important things in the world: sex and mathematics.” Since
the Weils famously had both covered, this might have been understandable family pride but more likely was intended to suggest
that both were fundamental, or fun, or something. Actually, both Weil’s are a little hard to understand sometimes.
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4 Number Theory

A number p ∈ Z>0 is prime if whenever a, b ∈ Z>0 and ab = p, either a = p or b = p. An abso-
lutely fundamental property of the integers is the division property expressed in the Division Algorithm: If
a, b ∈ Z, a > b, ∃q, r ∈ Z≥0 such that a = bq + r, r < b. Let g ∈ Z>0 be the smallest positive number such
that g = ai + bj, i, j ∈ Z then (1) g | a, g | b; and, (2) if s ∈ Z with s | a and s | b then g | s. g is called
the greatest common denominator and this is denoted g = (a, b). We say a and b are co-prime or relatively
prime if (a, b) = 1. This is proved using the Division Algorithm and, in fact, the Division Algorithm can
be repeatedly applied in recipe called Euclid’s Algorithm to calculate g, i, j : g = (a, b) = ai + bj. Euclid’s
algorithm is surely one of the most important in computer science.

We can use the the results above to the Fundamental Theorem of Arithmetic that every positive
integer is a product of primes in an essentially unique way. Further, we can use the procedure to solve linear
congruences and to prove the Chinese Remainder Theorem.

With respect to solving linear equations mod m, let’s start with the case that the modulus is prime. We
want to find a solution to ax = b (mod p). If a = 0 (mod p), there is no solution unless b = 0 (mod p)
in which case everything is a solution. Assume now that a 6= 0 (mod p) then (a, p) = 1 (since p is prime)
and ∃u, v ∈ Z : au + pv = 1. Reducing mod p, we get au = 1 (mod p). Multiplying both sides by b, we
get a(ub) = b (mod p) so the solution is ub. Notice that u is the multiplicative inverse of a (mod p); in
practice, this is how an inverse mod p is computed. If the modulus, m, is not prime, there is a solution to
ax = b (mod m) only if (a,m) = g | b. In that case, just solve the equation a

g x = b
g (mod m

g ) to recover
a solution to the original equation. More sophisticated techniques are required for solving non-linear equa-
tions over prime power moduli. Once you can solve over prime powers, you can use the Chinese Remainder
Theorem to get a solution over any modulus.

Suppose we want to solve and equation over a composite modulus m = m1m2 where (m1,m2) = 1. We
can do this by solving the equations over m1 and m2 seperately (As we saw, this is often easy if the mi are
primes.) and combining the solutions with the Chinese Remainder Theorem. Chinese Remainder Theo-
rem: If (m1,m2) = 1 and x = ai (mod mi), i = 1, 2, then these equations have a common solution that is
unique mod m. Here is a procedure that carries out the program suggested by the theorem: Find (Euclidean
Algorithm!) u, v ∈ Z : um1 + vm2 = 1. Take a look at y = ua2m1 + va1m2. y = ua2m1 (mod m2), um1

(mod m2) = 1, y = va1m2 (mod m1), and vm2 (mod m1) = 1, so y is exactly the solution we are looking
for; it is easy to check that it is unique mod m.

Solving non-linear equations is quite a bit harder than solving linear equations. The simplest non-linear
problem is to solve x2 = a (mod m) and even this problem is so hard that it gives rise to cryptographic
systems that exploit the “hardness” when m is composite. When m is a prime, there is a nice theory that
will be useful in number theory based cryptosystems. I will mention the main results. First a definition:
If (a, m) = 1, the number a is called a quadratic residue if the equation x2 = a (mod m) has a solution.
If this equation has a solution, it has two since −x is another one. Let p be an odd prime and define the
“Legendre symbol” as follows: (a

p ) = 1 if a is a quadratic residue mod p and (a
p ) = −1 otherwise unless

a = 0 (mod p) in which case (a
p ) = 0. Here are two basic rules for computing the Legendre symbol: As-

sume (a, p) = 1 = (b, p) then (a
p ) = a

p−1
2 (mod p) and (ab

p ) = (a
p )( b

p ). The central result in the theory
of quadratic residues is a beautiful theorem of Gauss called the law of quadratic reciprocity : if p, q are odd
primes then (p

q )( q
p ) = (−1)

(p−1)
2

(q−1)
2 . The Legendre symbol can be extended to non-prime moduli where it’s

called the Jacobi symbol.

The Prime Number Theorem is important for cryptography since it describes the “density” of primes in
the integers. We will not prove it, since even the shortest, simplest proof is long and involves techniques
from complex analysis. Prime Number Theorem: Let π(x) denote the number of primes ≤ x then
limx→∞

π(x)ln(x)
x = 1. In fact, the accuracy of the asymptotic approximation is pretty good, pretty fast.
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5 Groups, Permutation Groups

A set G is a group under the binary operation “·” if it has the following properties: (1) ∃e ∈ G : ∀x ∈
G, e · x = x · e = x (existence of identity); (2) ∀x, y, z ∈ G : (x · y) · z = x · (y · z) (associativity); and, (3)
∀x ∈ G, ∃x−1 ∈ G : x · x−1 = x−1 · x = e (existence of inverse). Note that it is not required that x · y = y · x
although some groups have this property; those groups are called commutative. A group is finite if it has a
finite number of elements. Often we omit the · understanding that xy means x · y.

You’re familiar with many groups already. For example, the integers, Z form an infinite commutative
group under the operation + with e = 0. The integers mod n, Zn, form a finite commutative group with
n elements under the operation + with e = 0. If we denote by Z∗n the set of elements in Zn which have
multiplicative inverses (i.e. {x ∈ Zn : ∃y ∈ Zn : xy = 1 (mod n)}) then Z∗n is a group under the binary
operation of multiplication mod n with identity e = 1. By the way, the size of this group is φ(n) which is the
number of integers less than n which are co-prime to n. If n =

∏k
i=1 pi

ei , φ(n) = n
∏k

i=1(1− 1
pi

). This is actu-
ally an important result in number theory that we could have covered, from a different perspective, elsewhere.

H is a subgroup of G, written G ≥ H, if H ⊆ G and H is a group under the same binary operation as
G. As you know, xm,m ∈ Z≥0 is defined recursively as follows: x0 = e and xm+1 = x · xm; x−m = (xm)−1.
If n is the smallest non-negative integer such that xn = e, we say x has order n or |x| = n.

Although infinite groups are important, in cryptography we often do calculations in finite groups. In fi-
nite groups, every element has finite order. Proof: if x = e, |x| = 1; let e 6= x ∈ G. Since G is finite, the
sequence x, x2, . . . , xn, . . . has repeats. Let i > j be two integers with shortest positive difference such that
xi = xj . Multiplying both sides of this equation by x−j , we get xi−j = e, |x| = i− j.

The first important theorem in group theory is the Theorem of Lagrange: If G is finite and G ≥ H,
then G is the disjoint union of sets of the form Hg and thus |H| | |G|. Lagrange’s theorem is proved by
showing that the sets Hg = {hg : h ∈ H} are either disjoint or identical; these sets are called cosets. The
theorem easily follows. We can use Lagrange’s theorem to show: |x| | |G|. Proof: let H = {xi}, i = 1, 2, . . .}.
You can check that H is a subgroup called the cyclic group generated by x (sometimes we say H =< x >)
and |H| = |x|. Applying Lagrange, we get |x| | |G|.

Because cryptography concerns, in part, “reversible” transformations between message blocks of the same
size, the bijections of a finite set of N elements is very important. These bijections give rise to a very
important group is SN which consists of all bijections from a set of N elements to itself. In cryptography,
bijections usually act on n bit messages. In this case, the “message space” has N = 2n elements. Let σ
be an element of SN and the set being “permuted” be XN = {1, 2, . . . , N}. σ can be completely specified
by its effect on each element of XN , 1 7→ a1, 2 7→ a2, . . ., N 7→ aN . This can be represented pictorially

as σ =
(

1 2 . . . N
a1 a2 . . . aN

)
. For N = 5, for example, we might have σ =

(
1 2 3 4 5
2 3 1 5 4

)
. An-

other way to describe σ is in “cycle structure” form where we successively apply σ until the result “wraps
around.” For the simple example above, σ = (123)(45) in cycle structure form. The cycle structure can
be obtained from by picking x ∈ {1, 2, . . . , N} and forming (x, σ(x), σ2(x), . . . σi(x)) where σi+1(x) = x
and then pick a y that is not in this cycle and forming it’s cycle, etc, until all N elements appear.
In this representation, it is common not to list the singleton cycles (x) where σ(x) = x. The nice
thing about cycle structure is that the element order is easy to figure out: if the cycle representation is
σ = (a1,1, a1,2, . . . , a1,i1)(a2,1, a2,2, . . . , a2,i2) . . . (ak,1, ak,2, . . . , ak,ik

), then |σ| = LCM [i1, i2, . . . , ik]. For ex-
ample, |(123)(45)| = 6.

To “multiply” two permutations, we need to compose the maps. There are two conventions for describ-
ing multiplication for composition of maps, “from the left” and “from the right.” In “from the right” style,
we compute ρ = σ1 · σ2 by mapping an element x through σ2 first and then applying σ1 to σ2(x); so
ρ(x) = σ1(σ2(x)). This of course completely specifies ρ. The same operation done “from the left” would be
denoted ((x)σ2)σ1 = (x)ρ which may seem a little less familiar. It’s important to pick one convention and
stick with it in calculation because, since SN is not commutative for N > 2, σ1 ·σ2 6= σ2 ·σ1. You’ll see both
conventions used in cryptography papers.
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Let G,H be two groups and ϕ : G → H be a map. For simplicity, we denote the group operation as
“·” in both G and H even though they are not generally the same operation. ϕ is a homomorphism if
ϕ(a ·b) = ϕ(a) ·ϕ(b),∀a, b ∈ G. A homomorphism which is surjective as a map is a surjective homomorphism
or epimorphism and one that is injective as a map is an injective homomorphism or monomorphism. A
homomorphism which is injective and surjective as a map is called an isomorphism. Two groups G and
H are “isomorphic” if the elements of one correspond to a elements of the other in a way that preserves
the action of the binary operation, that is, ϕ(ab) = ϕ(a)ϕ(b). If two finite groups are isomorphic, denoted
G ∼= H, they have the same number of elements and if ϕ(a) = b, a and b have the same order.

If ϕ is a homomorphism from G → H, we can define a set (which turns out to be a subgroup) of G
called the kernel by ker(ϕ) = {x : ϕ(x) = e}. In fact, ker(ϕ) is a special kind of subgroup called normal. N
is a normal subgroup of G if it is a subgroup and it has the additional property that y−1Ny = N, ∀y ∈ G, we
denote this by G . N . Normal subgroups are important because they allow us to decompose subgroups in a
useful way. Suppose G.N , we define the “factor group” as the set or cosets {Na} together with the inherited
operation (Na) · (Nb) = N(a · b). We denote the factor group by G/N ; note that |G/N | = |G|/|N |. The
three isomorphism theorems are (1) If ϕ : G → H is a homomorphism, G/ker(ϕ) ∼= Im(ϕ), (2) If G . H
and G . N and N ⊆ H ⊆ G then G/H ∼= (G/N)/(H/N), (3) If G = HN , G . N then HN/N ∼= H/(H ∩N).

SN has a normal subgroup AN which consists of all the “even” permutations SN that is permutations,
σ, for which

∏
i<j

xσ(i)−xσ(j)

xi−xj
= 1. |SN/AN | = 2.

We’re going through things fast but I can’t resist mentioning one of the major results of twentieth cen-
tury mathematics. If a group has no non-trivial normal subgroups, it is called simple. The cyclic group
< x >, |x| = p with p a prime is simple as is alternating group An, n > 4. If a group is not simple, it contains
a normal subgroup and knowing the structure of N and G/N dictates many of the properties of G so if we
understood the “atoms” of finite groups, the simple groups, we’d know an awful lot about all possible finite
groups. The great theorem of finite group theory was the classification of all finite simple groups into a few
dozen infinite families along with 26 (God knows what is special about 26.) sporadic simple groups which
fall into no systematic family.

If G is a group and x1, x2, . . . , xk ∈ G define H =< x1, x2, . . . , xk > as the smallest subgroup in G containing
x1, x2, . . . , xk. Equivalently H consists of all possible products of x1, x2, . . . , xk and their inverses. A theorem
which provides intuition about the kinds of subgroups in SN , generated by two elements chosen at random,
is Netto’s Conjecture proved by Dixon in the following form: The proportion of elements of x, y ∈ SN

that generate SN tends to 3
4 as n →∞.

6 Algebra

The basic results of algebra and a familiarity with rings and modules (and their morphisms) are useful but
I will not cover them exhaustively. In fact, I’ll mainly focus on finite fields, polynomials (mostly solving
them) and linear algebra. Linear algebra is important because, in the end, we can only efficiently solve
linear equations and even the “tricks” that accelerate solving non-linear equations often end up using linear
algebra. We’ll talk about that in the section after the present one.

We’re all familiar with the mathematical objects called fields. A field, F , is a commutative group with
respect to an additive operation, “+” and F − {0} is commutative group with respect to the multiplication
operation “·”. Fields are required to have a further property relating the two operations, namely, the dis-
tributive law a · (b+c) = a ·b+a ·c. The most familiar fields are the rational numbers R, the real numbers, R
and the complex numbers C. The complex numbers are a little special since they are algebraically complete;
that is, every polynomial equation, p(x) = 0 in C has a solution (called a root of p(x)) in C and hence by
the division algorithm we discuss later, all solutions lie in C. This result is called Fundamental Theorem of
Algebra. The real numbers and complex numbers are also complete; that is, every Cauchy sequence converges
to an element in the underlying field.

Two related, less restricted, algebraic concepts are commutative rings and modules. A commutative ring
has the basic properties of a field except non-zero elements are not required to have inverses. A module,
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M , over a ring R, is a commutative group under the + operation and posseses a composition operation
(R,M) → M (again we call this “·” even though it is different from the · operation in R) with the following
properties: r · (m1 + m2) = r ·m1 + r ·m2, (r1 + r2) ·m = r1 ·m + r2 ·m, and 1 ·m = m. We sometimes
call M an R−module to emphasize the role of R. A vector space V of finite dimension is a module. real
numbers (viewed as a ring) acting on a vector So the usual three dimensional space, V , is simply an R-module.

Rings are modules over themselves. The reason rings (and modules) are so important is they can be decom-
posed in iteresting ways that illuminate the structure of the parent object. Here is such construction that
we will use to construct finite fields. Let R be a ring and x ∈ R, the set of all R-multiples of x denoted
by I = Rx is an module over R. I is also an ideal of R (a special kind, in fact). An ideal of a ring R is a
subgroup of the additive group of R (i.e.- is closed under addition) and satisfies the property x ∈ I → rx ∈ I.
If we define the factor object R/I whose elements are the cosets of I in R regarded as a commutative group
under addition and define the operations a+I +b+I = (a+b)+I and r(a+I) = ra+I, this factor object is
also a ring. Here’s an example that ties this together and shows the importance of factor objects. Consider
Z as a ring and I = {np : n ∈ Z} with p prime. Convince yourself that I is an ideal of Z. Look carefully
and you’ll notice that Z/I is isomorphic to the ring Zp or the integers modulo p. We can also define factor
module in the obvious way. Ideals generated by a single element, like Rx, are called principal ideals and are
often denoted by (x) when R is clear.

R, the rational numbers, R and C are all fields of characteristic 0 meaning that n · 1 6= 0 for any posi-
tive integer n. Fields which do not have this property have characteristic p for some prime, p (Why must
a finite characteristic be prime?). A familiar example of a field of characteristic p is the integers modulo p.
This is a finite field with p elements where p · 1 = 0. There are infinite fields of characteristic p and, in fact,
any algebraically complete field of characteristic p will be infinite. However, we will mostly be concerned
with finite fields of characteristic p called Galois fields.

Galois fields can be constructed by starting with a finite field of characteristic p and “extending it” so
that it contains a root of a polynomial that was irreducible in the original finite field. Extending a field
is an interesting and important operation theoretically and computationally. Here is an example of such
a construction which is easy to generalize: Let GF (2) be the field of integers mod 2. This is the smallest
possible field and has characteristic 2 (1+1 = 0 in GF (2)). GF (2) has only two elements: 0 and 1. Consider
the irreducible polynomial g(x) = x2 + x + 1 in the ring GF (2)[x]2 and its associated ideal (g(x)) consist-
ing of all GF (2)[x]-multiples of g(x). The factor object GF (2)[x]

(g(x)) has four elements. It is a field with four
elements of characteristic 2. More generally, if g(x) is an irreducible polynomial of degree d, the extension
field would have 2d elements. All finite fields can be constructed this way. The fact that g was irreducible
is required to show the non zero elements in the factor object [which can be represented as elements of the
form y = a + bx, a, b,∈ GF (2)] have inverses. We’ll do that when we talk about polynomials below.

If F is a finite field, the multiplicative group of F is cyclic and any generator of F − {0} is called a
primitive element. I won’t prove this. One can also count the primitive roots, for example, Zp had φ(p− 1)
primitive roots. I won’t prove that either. Another important fact is that if F is a finite field every func-
tion from F → F can be represented as a polynomial over F . To show this, suppose f is a function with
values f(ai) = bi and put Pa(x) =

∏
α∈F,α 6=a

(x−α)
(a−α) . There are finitely many such ai’s and we can set

f(x) =
∑

a∈F f(a)Pa(x). It is easy to show this polynomial has precisely the right values. As a concrete
example, consider GF (3) the integers mod 3 regarded as a finite field with 3 elements 0, 1, 2 and let f be spec-
ified (in full generality by f(0) = a0, f(1) = a1, f(2) = a2. g(x) = a0

(x−1)(x−2)
(0−1)(0−2) +a1

(x−0)(x−2)
(1−0)(1−2) +a2

(x−1)(x−0)
(2−0)(2−1) .

Now let’s investigate polynomials, particularly polynomials over finite fields. Polynomials are elements
of F [x]; they are things of the form p(x) where p(x) =

∑n
i=0 aix

i. Just like integers, polynomials obey a
division algorithm: if a(x) and b(x) are two polynomials with deg(a(x)) ≥ deg(b(x)) then ∃q(x), r(x) such
that a(x) = b(x)q(x) + r(x) where deg(r(x)) < deg(b(x)). As a result, although we haven’t proved this, just
like the integers, every ideal in F [x] is principal and, just like the integers, the ring of polynomials in a single
variable, x, is a unique factorization domain or UFD. A UFD is a ring with cancellation (no zero divisors) in
which every element can be written as the product of irreducible elements (primes) in an essentially unique

2That may have gone by too fast. F [x] is the ring consisting of all polynomials in x with coefficients in F . Convince yourself
this is a ring. In the present example, F = GF (2).
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way. Restating this, F [x] is a “UFD”. Wait, there’s more: if U is any UFD, U [y] is a UFD. So not only
univariate polynomials are UFDs, multi-variate polynomials (elements of F [X1, X2, . . . , Xn]) are UFD’s. If
F = C, since F is algebraically closed, irreducible polynomials must be linear so any polynomial, g(x), in
C[x] can be factored as g(x) = a(x− a1)(x− a2) . . . (x− an).

Often, we want to factor polynomials into irreducible elements. Here is a simple observation you learned in
high school that uses the division algorithm for polynomials: If a is a root of p(x), (x−a) | p(x). Another way
of saying this is p(x) = (x− a)q(x) where q(x) is another polynomial. The proof is simple. By the division
algorithm for polynomials, p(x) = (x−a)q(x)+r(x) where deg(r(x)) < deg(x−a) = 1. The inequality forces
r(x) to be a constant, say b and p(x) = (x− a)q(x) + b. Substituting x = a, we get p(a) = (a− a)q(a) + b.
However, a is a root so p(a) = 0 = 0(q(a)) + b = b and thus p(x) = (x − a)q(x). Continuing in the same
vein, we can show that p(x) has no more that deg(p(x)) roots and, in fact, p(x) has exactly deg(p(x)) roots
(counting multiplicity) if the underlying field is algebraically closed.

Now we can fulfill our promise to show that non-zero elements of F [x]/(g(x)) have inverses if g(x) is ir-
reducible: Suppose f(x) 6= 0, then the gcd, h(x), of f(x) and g(x) can be expressed as h(x) = a(x)f(x) +
b(x)g(x). Since h(x) | g(x) and g(x) is irreducible, either h(x) (and hence f(x)) must be a multiple of g(x) or
h(x) has degree 1 3 and hence is a non-zero constant c. In the former case, f(x) ∈ (g(x)) so f(x) = 0 as a fac-
tor object and there is nothing to prove. In the later case, dividing by c, we get 1 = f(x)( 1

ca(x))+g(x)( 1
c b(x)).

Reducing mod g(x), we get 1 = f(x)( 1
ca(x)) (mod g(x)) and ( 1

ca(x)) (mod g(x)) is the desired inverse.

The Fundamental Theorem of Algebra describes the relationship between the roots of a polynomial and its
degree. Bezout’s theorem characterizes the common solutions of two polynomials by their degrees. Bezout’s
Theorem: If two polynomials f(x), g(x) have degrees m,n respectively and have no common component,
then f(x) = 0 and g(x) = 0 intesect in mn points (counting multiplicity).

There are two way to specify a polynomial of degree n. We can specify the n + 1 coefficients a0, a1, . . . , an

or we can specify the values y0, y1, . . . , yn of f(x) at n + 1 points x0, x1, . . . , xn. These representations are
related by a matrix called the Vandermonde matrix. In fact,




y0

y1

. . .
yn


 =




1 x0 . . . x0
n−1 x0

n

1 x1 . . . x1
n−1 x1

n

. . . . . . . . . . . . . . .
1 xn . . . xn

n−1 xn
n







a0

a1

. . .
an


 .

If the xi’s are distinct, the Vandermonde matrix is invertible so we can solve for the ai’s in terms of the yi’s
and vice versa.

There are several ways to solve a set of polynomial equations and obtain common solutions. One tech-
nique uses the concept of a resultant. If fv(x) = vnxn + . . . + v0 and gw(x) = wmxm + . . . + w0,
∃φv,w(x), ψv,w(x), R(u, v) : φv,w(x)fv(x) + ψv,w(x)gu(x) = R(v, w) = vn

mwm
n

∏
i<j(ti − uj), where ti, uj

are roots of f, g respectively. R(u, v) is the resultant and it is 0 iff fu(x) = 0 and gv(x) = 0 have a common
solution. To show this, consider the equations written in matrix notation:




xm−1fv(x)
xm−2fv(x)

. . .
fv(x)

xn−1gw(x)
xn−2gw(x)

. . .
gw(x)




=




vn vn−1 . . . v0 0 0 . . . 0
0 vn vn−1 . . . v0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 vn vn−1 . . . v0

wm wm−1 . . . w0 0 0 . . . 0
0 wm wm−1 . . . w0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 wm wm−1 . . . w0







xn+m−1

xn+m−2

. . .

. . .

. . .

. . .
x
1




Proof: Let the column vectors be Cm+n−1 . . . C0. C = (xm−1fv(x), . . . , gw(x))T . C = Cm+n−1 · xm+n−1 +
. . . + 1 · C0. Now solve for 1. 1 = det(Cm+n−1...C1,C)

det(Cm+n−1...C1,C0)
. Get φv,w(x)fv(x) + ψv,w(x)gw(x) = R(v, w). In

principle, we can solve multivatiate polynomials by using resultants to successively eliminate variables.
3If it had higher degree, h(x) would be a non-trivial factor of the irreducible g(x) which can’t happen.
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Another technique for solving simultaneous polynomial equations involves “Grobner Basis” but we won’t
cover that here.

7 Linear Algebra

I realize we have not really followed a strictly linear order of presentation and, in fact, we’ve used results
from linear algebra in prior sections. Sorry, General Bourbaki.

Linear algebra studies the transformations L : V → V ′ between vector spaces (and more generally modules)
with the property that L(x + y) = L(x) + L(y) where x, y ∈ V . These maps are morphisms from V to V ′.
It is very important to observe that one can and we will study linear algebra over finite fields not just over
real or complex numbers.

If V is a vector space over F , with basis < v1, v2, . . . , vn > and L is a linear transformation on V , L
can be specified by its effect on each of the basis vectors. If L(vi) = ai1v1 + ai,2v2 + . . . + ainvn, for
i = 1, 2, . . . , n, the coefficients aij specify the linear transformation, given the basis, and can be organized as
a matrix. That’s how matricies are born.

One theme related to algebraic structures we’ve mentioned was that of decomposition into sub-structures
which can be simply reassembled to produce the properties of the original sturcture. Linear algebra is no
exception, and the crucial property required to do this is invariance. From now on we assume L : V → V .
A subspace, W , is invariant under L iff L(W ) ⊆ W . Nothing we’ve said so far requires L to be invertible.
However, if L : V → V is a surjection, it is an injection and if it is an injection, it is a surjection. If L does
not induce a vector space isomorphism, there are two non-trivial invariant subspaces that can be obtained
from L. The first is the image of V under L and the second, is the null space or kernel of L defined by
ker(L) = {v ∈ V : L(v) = 0}. In fact (and I won’t prove it here), V ∼= Im(L) ⊕ ker(V ) which leads to
the result that the dimension of V as a vector space is the sum of the dimensions of ker(L) and Im(L) as
vector spaces. If ker(L) = 0, L is a bijection and is invertible. The inverse of an invertible linear function is
itself linear and the set of linear bijections is a subgroup of all bijections on V . In the case that V is finite
(which happens when F is finite and V is finite-dimensional over F ), the group of linear transformations is
is very interesting in its own right and we will calculate its size below. When we decompose a vector space
into the direct sum of invariant subspaces under L, this induces a natural change in the basis and matrix
representation of the linear transformation. We study that next.

Let [e] = {e1, . . . , en} be a basis for V and let L be a linear transformation on V . Let v[e] = [c1, c2, ..., cn]T

denote the coordinates of v with respect to [e]: v[e] = c1e1 + ...+ cnen. Let L[e] denote the matrix for L with
respect to [e]: L[e] =

∑
j ajiej . Then L[e]v[e] = (Lv)[e]. If fi =

∑
j bjiej is another basis, P = (bij) is called

the transition matrix from [f ] to [e] and P−1 is the transition matrix from [e] to [f ] (note the sum over the
first index). Pv[f ] = v[e] and v[f ] = P−1v[e]. Finally, L[f ] = P−1L[e]P . The same holds over free modules (I
know, I haven’t defined free modules). This shows that the conjugates of the matrix, M , matricies of the form
N−1MN , represent the self same linear transformation expressed in terms of another basis and two matricies
related in that way are said to be similar. Note that representing a linear transformation on a direct sum of
two invariant subspaces simplifies the appearance of the matrix in this new basis. In the new basis, the ma-
trix is divided into four rectangular blocks with non-zero entries in only the upper left and lower right blocks.

There are two prototypical invariant subspaces which stand out as “natural” when regarding linear trans-
formations. Suppose L(v) = λv, v 6= 0. The subspace L(v) is obviously L-invariant. In fact, if we can
find n linear independant such vectors, where n = dim(V ), the matrix for L in the basis consisting of these
vectors is diagonal with entries λ1, λ2, . . . , λn along the diagonal and 0 elsewhere. We denote this matrix as
diag(λ1, λ2, . . . , λn). This is called a spectral decomposition and is it is the best possible decomposition in
terms of simplifying the matrix and making the properties of the linear transformation obvious. If such a
decomposition exists, there exist linear transformations E1, E2, . . . , En such that E2

i = Ei and EiEj = 0.

Unfortunately, not all transformations are diagonalizable. Matricies can fail to be diagonalizable because
the eigenvalues, λi, fail to lie in the field F (this can’t happen if the field is algebraically closed). However,
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there are matricies which are just not diagonalizeable for more fundamental reasons. Fortunately, we can
decompose all matricies into subspaces in which the matrix is simple enough to get a lot of information even
if it is “not quite as simple” as a spectral decomposition. Each of these decomposition is called a “canonical
form” of the transformation because if we have two matricies, they are similar if and only if they have the
same canonical form.

Another “obviously” L-invariant subspace of V can be constructed as follows: Let v 6= 0 and consider the
sequence of spaces < v >,< v, L(V ) >, . . . , < v, L(v), L2(v) . . . Lk−1(v) > where each space is larger than the
last. This construction continues until Lk(v) is in the space generated by the previous images of powers of L,
when this happens, Lk(v) = (ak−1L

k−1+ak−2L
k−2+. . .+a0)v. Let W =< v, L(v), L2(v) . . . Lk−1(v) > be the

subspace of dimension k resulting from the foregoing construction. A minimal polynomial of a linear transfor-
mation in a vector space V is one that results in 0 when the polynomial, with the transformation substituted
is applied to any vector in V and is denoted by mL(V )(x). So mL(W )(x) = xk− (ak−1x

k−1 +ak−2
k−2 + . . .+a0).

It is clear that L(W ) ⊆ W and in fact Lk−(ak−1L
k−1+ak−2L

k−2+. . .+a0)w = 0,∀w ∈ W . If W = W1⊕W2

is a decomposition into two L-invariant subspaces mL(W )(x) = [mL(W1)(x), mL(W2)(x)]. For any linear trans-
formation, L, on V , we can always find a basis for V such that the matrix representation for L is upper
triangular 4 and using this, it is easy to show that the minimal polynomial of any linear transformation on
a vector space V of dimension n has degree less than or equal to n.

Now back to diagonalization. It turns out, a linear transformation is diagonalizable if and only if its minimal
polynomial is the product of linear factors: mL(x) = (x−λ1)(x−λ2) . . . (x−λt) 5 and two linear transforma-
tions are diagonalizeable if both their minimal polynomials are products of linear factors and they commute.
I’ll assume you know what a determinant is. The characteristic polynomial of a matrix, A, denoted by
cA(x) is det(A− xI) and cA(x) = 0 is called the characteristic equation of the matrix A. Since all matricies
representing the same linear transformation are conjugate and since det(B−1AB) = det(A), we can actually
calculate cA(x) but refer to it and the characteristic polynomial of the linear transformation L, cL(V ), pro-
vided L happens to have matrix A representation in some basis. In general, the minimal polynomial divides
the characteristic polynomial but they don’t have to be the same. Here is the prototypical example: Set

A =




λ 0 0
0 λ 0
0 0 λ


 and B =




λ 0 0
1 λ 0
0 1 λ




T

. A and B have the same characteristic polynomial, (x− λ)3,

but A has minimal polynomial, (x− λ), while B has minimal polynomial, (x− λ)3.

Okay, now we can fully characterize linear transformations L : V → V by one of two canonical forms.
First, supose that the underlying field is algebraically closed, the minimal polynomial of a linear transforma-
tion, L, can be factored as mL(V )(x) =

∏k
i=1(x−λi)ni . If all the ni = 1, the transformation is diagonalizable

and can be decomposed into invariant subspaces whose minimal polynomial on each subspace is of the form
(x − λj). Even when all n1 6= 1, the vector space can be decomposed into invariant subspaces with min-
imal polynomials (x − λi)ni . If ni > 1, say ni = 3, the matrix on the corresponding subspace looks like


λ 0 0
1 λ 0
0 1 λ


. This decomposition is called Jordan Cannonical Form and two matricies are similar if and

only they have the same Jordan Canonical Form. If the underlying field, F , is not algebraically closed, the
vector space can be decomposed into invariant subspaces whose minimal polynomials are powers of irre-
ducible polynomials (but ones not quite as simple as (x− λ)). On each of these invariant subspaces, where
the irreducible polynomial is of the form m(x) = ak−1x

k−1 + ak−2x
k−2 + . . . + a1x + a0, the submatrix will

have the form 


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −ak−2 −ak−1




.

When matricies are decomposed into invariant subspaces in this manner the resulting matrix after trans-
forming to the new basis is said to be in Rational Canonical Form. Again, two matricies are similar if and

4This is the Cayley-Hamilton Theorem.
5The λi are the eigenvalues we mentioned before.
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only they have the same Rational Canonical Form. Notice the spectral decomposition is the same (when it
exists) as the corresponding canonical forms.

You probably know that the transpose of a square matrix, AT , is the matrix obtained by making the
rows of A, the columns of AT . We define a normal matrix is one for which NT N = NNT . If a normal
transformation has eigenvalues that are all real, the matrix is hermitian (and hence the matrix is equal to
its conjugate transpose) and unitary if |λ| = 1 for all eigenvalues. The Spectral Theorem say A normal
operator over an algebraically complete field is diagonalizable. The diagonal elements are called the spectrum
and this is called the spectral decomposition.

As promised earlier, let’s count the number of invertible transformation, L, from a vector space, V , of
dimension n over a finite field F where the number of elements in F is q. If v1, v2, . . . , vm is a basis for
V , v1 can go into any one of qn − 1 vectors, v2 can go into any vector which is not a multiple of the first
vector, there are qn − q of these, v3 can go into qn − q2 possible vectors, etc.. Thus the total number of
transformations is (qn − 1)(qn − q) . . . (qn − qn−1).

8 Probabililty

Let X be a random variable and Pr(X = x) be probability distribution on X. Usually we are interested in
probability distribution over a finite number of elements; in that case, Pr(X = xi) = pi and

∑n
i=1 pi = 1.

Infinite distributions are also important. There replace “sums” with integrals in what follows.

Given a probability distribution, there are several important parameters that characterize it. The first
is the expectation, E(X) where E(X) =

∑n
i=1 xipi. µ = E(X) is also called the mean. The two other

parameters that are important are the standard deviation, σ(X), and the variance, V ar(X). Both measure
the “spread” of likelihood from the mean and are defined by σ2(X) = V ar[X] = E[(X − E[X])2]. The
covariance between two distributions, X, Y is µXY = E((X−Xj)(Y −Yi)) and it measures the relationship
between two distributions.

A useful approximation, called Stirling’s formula, is n! ≈ √
2πn(n

e )n.

The notation P (X = a|Y = b) means the probability that X takes on the value a given that Y , a pos-
sibly related distribution finction, takes on the value b (there is a slight abuse of language here which I
will cheerfully ignore). P (X = x, Y = y) = P (X = x|Y = y) = P (Y = y|X = x) is the joint dis-
tribution of X and Y . X and Y are independent if P (Y = y|X = x) = P (Y = y); in which case,
P (Y = y, X = x) = P (X = x)P (Y = y). Actually its better to think of A as a set of events and B a set
of events whose occurance is governed by some distributions and define P (A|B) as the probability that an
event in A occured given that an event in B occured. With this notation, we can state Bayes Theorem:
P (Bi|A) = P (A|Bi)P (Bi)P

P (A|Bj)P (Bj)
.

There are two very important distributions. The first is the Normal Distribution N(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 .
This is a continuous distribution over the real numbers with mean µ and standard deviation σ. The second
is Binomial Distribution B(N, n, p) =

(
N
n

)
pn(1−p)N−n which describes repeating an experiment of selecting

one of two outcomes (the first occurs with probability p, the second,occurs with probability q = 1 − p) N
times. B(N,n, p) is the probability that the repeated trials resulted in n instances of outcome 1 and N − n
instances of outcome 2. Unsurprisingly, we expect to get about Np instances of outcome 1; thus, E(B) = Np
and, σ2(B) = Np(1− p).

The Central Limit Theorem justifies our intuition that repeated trials will “tend” towards the correct proba-
bility distribution. If Xi are independent, identically distributed random variables with mean µ and standard
deviation σ and Sn = X1 + . . . + Xn, then limn→∞ P (a ≤ (Sn−nµ)

σ
√

n
≤ b) = 1√

2π

∫ b

a
e−(u2/2).

Another important relation is Chebyshev’s inequality: Let Y be a random variable with expected value
µY = E[Y ] and variance, V ar(Y ). Then for any t > 0, Pr[|Y − µY | ≥ t] ≤ V ar(Y )

t2 .

The index of coincidence or “IC” measures the roughness of a distribution. IC =
∑n

i=1
fifi−1
n(n−1) .
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9 Algorithms

f ∈ O(g) ↔ g ∈ Ω(f) ↔ Lx→∞
f(x)
g(x) < ∞. O(f) is an upper bound and Ω(f) is a lower bound. If

g ∈ O(f) ∩ Ω(f) we say g ∈ Θ(f) and thus that g is “tightly bounded” by f . f ∈ o(g) ↔ g ∈ ω(f) ↔
Lx→∞

f(x)
g(x) = 0.

Typically, we wish to analyze the performance of algorithms in terms of the number of “sequential steps” re-
quired for exection as a function of the instance input size n. While recursive algorithms naturally lend them-
selves to analysis by recursion, generally, we would like to obtain a “closed form expression” for T (n). Here
are some standard results. Suppose T (n) = aT (n/b)+f(n). If f(n) = O(nlogb(a)−ε) then T (n) = Θ(nlogb(a)).
If f(n) = Θ(nlogb(a)) then T (n) = Θ(nlogb(a)lg(n)). If f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), c < 1 then
T (n) = Θ(f(n)).

We need to know a little about representing numbers on a computer. Although most “theoretical bounds” on
performance of a computation are expressed in terms of bits (i.e.- the input of the computation is expressed,
without loss of generality, as a sequence of bits), on most digital computers, data is organized into “bytes”
(representing characters) and words, which are a sequence of wordsize bits upon which register operations
are performed. On current PC’s, wordsize = 64. There are several reasons for focusing on operations in
terms of words: memory contents are fetched in blocks that are a multiple of wordsize and the most basic
operations like add and multiply on signed or unsigned integers operate on values w of wordsize length (in
bits). An imperfect (it is architecture and implementation dependent) but useful intuition is that operations
like adding two wordsize bit integers should take “one cycle” when the integers are in exactly the right place
(registers, not memory, which takes hundreds of cycles to get to on a cache miss). Multiplying two integers
by contrast can take 5 − 12 cycles even if they are in the right place. As a practical matter, we usually
do arithmetic on words, not bits. Words, w, of wordsize length can represent unsigned integers satisfying
0 ≤ w ≤ 2wordsize − 1 or signed values satisfying −2wordsize−1 ≤ w ≤ 2wordsize−1 − 1. From the point of
view of bit based input arguments using primitive binary operations (and, or, xor), adding an m bit number
and n bit number takes O(max(m,n)) time and O(m + n) space, while multiplying an m bit number and n
bit number takes O(mn) time and O(m + n) space.

There are a number of cryptographic attacks where the size of the system we can reasonable expect to
attack is related to critical algorithms. We mention three important such algorithms (1) the extended Eu-
clidean Algorithm which calculates the greatest common denominator g = (a, b) = au + bv of two integers;
(2) The LU algorithm which solves n linear equations in n unknowns and, (3) The FFT algorithm which
evaluates or interpolates (finds the coefficients of the polynomial given values) polynomials.

The Euclidean Algorithm is arguably the most important “non-trival” algorithm in computer science. It
is based on the division algorithm. Here it is in slightly telegraphic form: Suppose a > b, a, b ∈ Z. Using
the division algorithm, we can construct the following sequence mechanically: a = bq1 + r1, b = r1q2 + r2,
r1 = r2q3 + r3, . . ., rk−2 = rk−1qk + rk, rk−1 = rkqk+1. Now r1 = a − bq1 and r2 = b − r1q2 imply that
r2 = b− q2(a− q1b) = b(q1q2 +1)− q2a. Continuing this thru the penultimate step of the sequence, it is easy
to see that g = rk = au + bv for integers u and v that are obtained by following the procedure above. This
is the extended Euclidean Algorithm (extended, because we produced u and v). g is the greatest common
denominator (the British call it the highest common factor or HCF which is a much better name). The
number of equations in this sequence is roughly lg(b) (lg(x) = log2(x)). So this procedure is very efficient.
The same thing works for univariate polynomials. This form, g = au + bv, of the HCF is called the Plucker
or Bezout form and it is very, very useful. From it, we can pick off the inverse of a (mod b) when g = 1.
As we saw in the proof of the Chinese Remainder Theorem, u, v are important in obtaining solutions to
simultaneous congruences in co-prime moduli.

Finding the extended gcd of an m bit number and n bit number takes O(mn) time and O(m + n) space.
Finding (a, b) has average running time: O((1 + max(u,v)

(u,v) )lg(min(u, v))).

On to solving linear equations. Suppose we want to find solutions to the following set of equations:

a11x1 + a12x2 + . . . + a1n = c1

a21x1 + a22x2 + . . . + a2n = c2
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. . .

an1x1 + an2x2 + . . . + annxn = cn

We apply a simple but beautiful procedure, called Gaussian elimination, which proceeds as follows: (1)
Suppose a11 6= 0 (if not, rearrange the equations so that this is true 6); (2) Divide the first equation by a11;
(3) Subtract ak1 times equation 1 from equation k for k = 2, 3, . . . , n. This yield an equivalent system of
equations:

x1 + a′12x2 + . . . + a′1n = c′1

0 + a′22x2 + . . . + a′2n = c′2

. . .

0 + a′n2x2 + . . . + a′nnxn = c′n

This last n− 1 equations are linear in n− 1 variables and we can repeat the procedure to get and equivalent
set of equations:

x1 + a′12x2 + . . . + a′1n = c′1

0 + a′22x2 + . . . + a′2n = c′2

0 + 0 + a′′13x3 + . . . + a′′1n = c′′3

. . .

0 + 0 + . . . + 0 + a′′nnxn = c′′n

If you write this out in matrix notation the coefficient will be upper triangular if the matricies operate from
the right and lower triangular if they operate from the left. Now we can follow a similar procedure from
the bottom up to remove all non-zero coefficients of xn from all but the last equation, then all non-zero
coefficients of xn−1 from all but the second to last equation and so on yielding an equivalent system:

b11x1 + 0 + . . . 0 = d1

0 + b22x2 + 0 + . . . + 0 = d2

. . .

0 + 0 + . . . + bnnxn = dn

which we can easily solve. Notice that the matrix for this equivalent system is diagonal matrix

diag(b11, b22, . . . , bnn) = (d1, d2, . . . , dn).

A slightly stuffier sounding but equivalent procedure from the point of view of matrix based algorithms is
called LU -factorization. The principle result (which is a consequence of applying Gaussian elimination is:
Let A 6= 0 be an m × n matrix. There are permutation matricies P, Q such that PT AQ = LU where L is
lower triangular and U is upper triangular. If multiplying two n×n matricies takes TM (n) time and TLU (n)
represents the time to perform LU , TLU (m) ≤ mCTM (m) for some constant C. Some sparse systems can
be solved much more quickly because multiplying sparse matricies can take linear time if we’re very lucky.
In describing Gaussian elimination and LU -factorization, we assumed “infinite precision” arithmetic. When
the matricies consist of floating point numbers on real computers, errors and error propagation becomes
the major implementation problem. Fortunately, in cryptography, we often are solving equations over finite
fields where there is no round-off error in sight. A couple of other matrix algorithms come up, from time
to time, in cryptanalysis. QR-factorization via unitary operations is used in the least square approximation
problem. Spectral decomposition with hermetian conjugates: UHAU = diag(λ1, λ2, . . . , λn) is used in Prin-
cipal Component Analysis.

The Discrete Fourier Transform of a vector ~a is obtained by calculating F (~a) = A~a where A = ωij and
ω is a primitive n-th root of unity. Notice this corresponds to evaluating the polynomial ~a · (1, x, x2, . . . , xn)
with x taking on the value of each of the n-th root of unity. The inverse of A exists (A is just a Vander-
monde matrix) and, in fact, A−1 = 1

nω−ij . The inverse operation is really just the interpolation of the

6If you can’t rearrange the equations to do this, x1 is inessential and you really have n equations in n− 1 unknowns.
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coefficients of the polynomial from its values on the roots of unity. Doing the matrix calculation can obvi-
ously be done in no more than O(n2) multiplications but Tukey and Cooley noticed that, for this special
matrix, the calculation could be performed in O(nlg(n)) time. They reasoned as follows: Let n = pq and
set j = j(j1, j2) = j1q + j2, k = k(k1, k2) = k2p + k1, 0 ≤ j1 < p, 0 ≤ j2 < q, 0 ≤ k1 < p, 0 ≤ k2 < q. Then
f̂(k1, k2) =

∑q−1
j2=0 e

2πij2(k2p+k1)
n

∑p−1
j1=0 e

2πij1k1
p f(j1, j2). This requires p2q and q2p operations respectively or

pq(p + q) rather than (pq)2. Applying this recursively, if n is a power of 2, the produces the desired result.

There are some other computer science problems where a detailed study of algorithms and performance
of those algorithms are very important in cryptanalysis: (1) sorting n quantities (say integers), (2) finding a
shortest path, (3) finding an assigment of truth values to literals that make a specified set of clauses all true
or showing that no such assignment exists (SAT), (4) solving a set of non-linear equations over a finite field
(Non-linear Solve).

Sorting, that is, putting n objects in order, is Θ(nlg(n)). We can show sorting is O(nlg(n)) by apply-
ing mergesort and demonstrating that performance is dictated by the recurrence T (n) = 2T (n

2 ) + (n − 1).
The first term is the cost of applying mergesort to each half of the sort and the n− 1 comes from the merge.
One can also show that sorting with comparisons can’t be faster in general than nlg(n); here’s how: There
are n! possible arangements of the objects to be sorted and all arrangements are possible in a general in-
stance. Any sorting algorithm must have enough comparisons to distinguish among the n! possibilities and,
at best, any binary comparison distinguishes between two balenced sets of possibilities. Thus, there must be
lg(n!) comparisons. lg(n!) ≈ lg(

√
2πn(n

e )n) ≥ nlg(n). Of course, this latter argument works applies only to
the general sorting problem using comparisons. On restricted problems, we can often do better: bucket-sort
is O(n) but is restricted to sorting a fixed (usually small) number of values and topological sort for putting
a partially ordered set in any order consistant with the order relation is also O(n).

Finding the shortest path in a graph takes O(n2) time.

The remaining two problems are more interesting. They fall into the catagory of NP -complete (“NPC”)
problems. NPC problems are those where verifying a solution takes polynomial time in the input size but
for which all known algorithms that solve a general instance seem (but have not been proved) to take ex-
ponential time. All NPC problems can be transformed to each other by a polynomial transformation so if
a polynomial-time algorithm exists for any NPC problem, any NPC problem has a polynimial time algo-
rithm. Let P be the class of problems that are polynomial time and N be the class of problems that are
“non-deterministic polynomial time” (where a solution can be verified in polynomial time).

P ⊆ N . If A ≤ B 7 and B ∈ P then A ∈ P . L ∈ NPC if and only if L ∈ NP , A ∈ NP → A ≤ L.
Classical computation theory classifies problems by a “certain” solution on all instances. Later we will en-
counter problems which can be solved in polynomial time “up to an arbitrary error, ε” and call the class
RP for “randomized polynomial.” P ⊆ RP ⊆ NP . There are actually two ways in which the solution can
be subject to error. In “Monte-Carlo” algorithms, the problems are always solved by a PTM (probabalistic
Turing machine) and the answers given are the machine are “wrong” no more than ε of the time. In “Las
Vegas” algorithms, the answer given by the PTM is always right but the PTM may return “I don’t know”
ε of the time. As an example, COMPOSITE which answers the question “is n composite” is in RP . The
naive factoring algortihm is O(

√
n) time, and, we can discover whether a number is prime as an outcome

of this very expensive procedure 8 but there are probabalistic algorithms which, while not polynomial, are
sub-exponential. Primality testing (answering COMPOSITE directly) with probabalistic algorithms (using
the Miller-Rabin test, for example) is very efficient. This is a very important application of a PTM . The
big questions for us are: what about SAT and Discrete log?

Sastifiability or SAT is the prototypical NP -complete problem. The input is a number, O(n), of literals
or variables and a number, again O(n), of clauses like x∨ y ∨ z. A solution consists of a variable assignment
to true or false which simultaneously makes all the clauses true. Verifying that a given proposed variable
assignment simultaneously satisfies all the clauses takes linear time but no one knows a general algorithm

7A ≤ B means problem A can be transformed to problem B in polynomial time; this is called a reduction from A to B.
8Remember n is the number to factor, the bit representation length, b, is logrithmatic in n, so

√
n ≈ 2

b
2 . Thus this algorithm

is exponential in the input length.
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to find such an assignment in polynomial time for an arbitrary set of clauses. Solving, nonlinear polyno-
mial equations called “Non-linear Solve” can be described as follows: Given an O(n) list of variables and
an O(n) list of equations find the an assignment of values to the variables (in a finite field) that satisfies
all equations simultaneously. Even if the equations are restricted to those that are quadratic, at worst,
this problem is in NPC. Non-linear Solve also appears to be asymptotically inaccessible in the general case.
If it were easy to solve these equations, according to Shannon’s dictum, cryptanalysis would generally be easy.

SAT and Non-linear Solve share a very interesting property. A SAT problem instance in which the number
of clauses is small compared to the number of variables is often quite easy to solve and it’s often very easy to
show there is no satisfying assignment when there are a lot of clauses compared to the number of variables in
an instance. In fact, SAT problems turn from very easy to very hard abruptly when the ratio of the number
of clauses to the number of variable approache 4.3. The same phenomena occurs in Non-linear Solve. So
cryptographers are motivated to find transformations that map complicated (i.e.- well balenced) looking
equations into a very sparse one. In addition, there is a very practical way to map Non-linear Solve over
GF (2) to a SAT problem.

10 References

Whew! I hope you weren’t discouraged.

Many of the algebra texts mentioned in the references on the main web site are very nice and cover all
this material (and much more) in an instructive and entertaining way. Two of my favorites are Herstein and
van der Waerden. For algorithms, Aho et. al. and Corman, et. al. are good. For linear algebra, Hoffman
and Kunze or the new book by Leibler are nice. On the other hand, doing is more important than reading.

Please send corrections to jmanfer@microsoft.com or, if I get fired from Microsoft, to JohnManferdelli@hotmail.com.
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