Topics in Probabilistic and Statistical Databases

Dan Suciu University of Washington

Lecture #1: Overview

1

This Course

- Advanced course on a special research topic
- I will give all lectures
- There will be recommended readings
- Your immediate goal: think, ask, discuss
- Your longer term goal: find great new research topics
- Credits: attendance + discussions

Communication

- <u>http://www.cs.washington.edu/education/</u> courses/cse599t/CurrentQtr/
- Need a volunteer TA for:
 - Setting up the mailing list
 - Regular updates to the Website

Prerequisites

I will assume the following:

- Some background in databases
- Some background in probability theory But I will review, when details are needed

What you will see:

• Some out of order presentation

Motivation

- CS is increasingly dominated by data
- The new data has two trends:
 - Too large to process in traditional way
 - Data from the Web, physical world, science
 - Too imprecise to model in traditional way
 - Data extraction, measurement errors

Motivation

- Data management needs to produce the techniques to manage large, imprecise data
- Has been doing this for a while:
 - Data statistics, data sketches
 - Ranking query results
 - Approximate query answering
 - Data anonymization
 - Probabilistic databases

My 1st Goal for This Course

- Comprehensive treatment of the technical material in probabilistic databases; resource for teaching probdb
 - Should be able to achieve goal 1 better than 2 and 3
- What you will see:
 - Technical detail on the slides
 - But: difficult to prepare about 80 slides / course, may have to use whiteboard extensively

My 2nd Goal for This Course

- Position probabilistic databases as a common foundation for a heterogeneous collection of techniques
 - Warning: I probably wont achieve this goal...
- What you will see:
 - I will discuss some related topics in an attempt to show how they fit under the probdb umbrella

My 3rd Goal for This Course

- Place probabilistic databases in the right context
 - Intellectual roots: probability theory and statistics, finite model theory, random graphs
 - Many neighboring areas in databases
- What you will see:
 - Digressions into other topics

Course Outline

- 1. Overview
- 2. Representation of Probabilistic Databases
- 3-4-5. Query Evaluation, Ranking
- 6. Query evaluation in Random Graphs
- 7. Probabilistic logic, Conditional logic
- 8-9. Approximate query processing
- 10. Review, discussions

Today's Lecture

- Definition of a probabilistic database
- Three classes of applications

Probabilistic Databases

Notations:

- \mathbf{R} = a relational schema
- D = a finite domain
- Inst = the (finite) set of all R-instances on D

Background: Relational Data

• Relational schema **R** = set of relation names with attributes

Likes(Drinker, Beer), Frequents(Drinker, Bar), Serves(Bar, Beer)

• Relational instance I over schema **R** = set of relations

Drinker	Beer

Drinker	Bar

Bar	Beer

The Definition

The set of all possible database instances:

Inst = {
$$I_1, I_2, I_3, ..., I_N$$
}

Definition A *probabilistic database* PDB = (**Inst**, Pr) is a discrete probability distribution:

$$Pr: Inst \to [0,1] \qquad s.t. \sum_{i=1,N} Pr(I_i) = 1$$

Definition A *possible world* is I s.t. Pr(I) > 0A *possible tuple* is a tuple $t \in I$, for a possible world I¹⁴

PDB =

Example

Customer	Address	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Denver	Gizmo

$$Pr(I_1) = 1/3$$

 $Pr(I_3) = 1/2$

Customer	Address	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Seattle	Camera

Customer	Address	Product
John	Boston	Gadget
Sue	Denver	Gizmo

$$Pr(I_2) = 1/12$$

Customer	Address	Product
John	Boston	Gadget
Sue	Seattle	Camera

 $Pr(I_4) = 1/12$

15

Possible worlds =
$$\{I_1, I_2, I_3, I_4\}$$

Tuples as Events

One tuple t \Rightarrow event t \in I $Pr(t) = \sum_{I: t \in I} Pr(I)$

Two tuples $t_1, t_2 \Rightarrow \text{event } t_1 \in I \land t_2 \in I$

$$\Pr(t_1 t_2) = \sum_{I: t_1 \in I \land t_2 \in I} \Pr(I)$$

Tuple Correlation

PDB = Example

	Customer	Address	Product]	Customer	Address	Product
++	John	Seattle	Gizmo		John	Boston	Gadget
	John	Seattle	Camera		Sue	Denver	Gizmo
-)	Sue	Denver	Gizmo				
		$Pr(I_1) =$	1/3		P :	$r(I_2) = 1/1$	_2
	Customer	Address	Product		Customer	Address	Product
	John	Seattle	Gizmo		John	Boston	Gadget
+	John	Seattle	Camera		Sue	Seattle	Camera
	Sue	Seattle	Camera				
				-]	$\Pr(\mathbf{I}_4) = 1$	/12

$$\Pr(I_3) = 1/2$$

18

Example: Disjoint-Independent Databases

Definition A **PDB** is disjoint-independent if for any set T of possible tuples one of the following holds:

- T is an independent set, or
- T contains two disjoint tuples

A disjoint-independent database can be fully specified by:

- all marginal tuple probabilities
- an indication of which tuples are disjoint or independent

Example:

Disjoint-Independent Databases

<u>Object</u>	Time	Person	Р	
Lenten V77	9:07	John	p ₁	
LaptopX77		Jim	p ₂	
		Mary	р ₃	PDB
Book302	9:18	John	p ₄	
		Fred	p ₅	

Background: Queries

- Relational queries = formulas in FO
- Conjunctive query: $\exists y_1 \exists y_2 \dots \exists y_k (g_1 \land g_2 \land \dots \land g_m)$
- Conjunctive query notation: $q(x_1,...,x_n) := g_1, g_2, ..., g_m$
- Boolean query = closed formula
- Boolean conjunctive query:

 $q:-g_1, g_2, ..., g_m$

Examples

Likes(Drinker, Beer), Frequents(Drinker, Bar), Serves(Bar, Beer)

What are these queries and what do they return?

 \forall y. (Frequents(x,y) $\rightarrow \forall$ z. (Likes(x,z) \rightarrow not (Serves(y,z)))

 \exists y. (Frequents(Fred,x) and Likes(Fred,y) and Serves(x,y))

q(x) :- Frequents(Fred,x), Likes(Fred,y), Serves(x,y))

q :- Frequents(Fred,x), Likes(Fred,y), Serves(x,y))

Query Semantics

Given a query Q and a probabilistic database PDB, what is the meaning of Q(PDB) ?

Query Semantics

Semantics 1: Possible Sets of Answers

A probability distributions on sets of tuples

$$\forall A. Pr(Q = A) = \sum_{I \in Inst. Q(I) = A} Pr(I)$$

Semantics 2: Possible Tuples A probability function on *tuples*

$$\forall t. Pr(t \in Q) = \sum_{I \in Inst. t \in Q(I)} Pr(I)$$

Purchase^p Example: Query Semantics

Name	City	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Denver	Gizmo
Sue	Denver	Camera

Name	City	Product	
John	Boston	Gizmo	$Pr(I_2) = 1/12$
Sue	Denver	Gizmo	
Sue	Seattle	Gadget	

Name	City	Product	
John	Seattle	Gizmo	$Pr(I_3) = 1/2$
John	Seattle	Camera	
Sue	Seattle	Camera	
Name	City	Product	
John	Boston	Camera	
Sue	Seattle	Camera	$Pr(I_4) = 1/12$

$$\Pr(I_1) = 1/3$$

SELECT DISTINCT x.product FROM Purchase^p x, Purchase^p y WHERE x.name = 'John' and x.product = y.product and y.name = 'Sue'

Possible answers semantics:

Answer set	Probability	
Gizmo, Camera	1/3	$Pr(I_1)$
Gizmo	1/12	$Pr(I_2)$
Camera	7/12	$P(I_3) + P(I_4)$

Possible tuples semantics:

Tuple	Probability	
Camera	11/12	$\Pr(\mathbf{I}_1) + \Pr(\mathbf{I}_3) + \Pr(\mathbf{I}_4)$
Gizmo	5/12	$Pr(I_1)+Pr(I_2)$

Query Semantics

• If q is a boolean query, then the possible answers and the possible tuples are essentially the same

Factoid

- In traditional database theory, it suffices to study only boolean queries Why?
- But over probabilistic databases that reduction no longer works Why?
- We study first boolean query evaluation (=simpler) and discuss top-k semantics later

Special Case

Tuple independent probabilistic database

Tup = {
$$t_1, t_2, ..., t_M$$
} = all possible tuples

$$pr: \mathbf{Tup} \to (0,1]$$

$$\Pr(I) = \prod_{t \in I} \operatorname{pr}(t) \times \prod_{t \notin I} (1 - \operatorname{pr}(t))$$

Tuple Prob. \Rightarrow	Query]	Evaluation
---------------------------	---------	------------

Name	City	pr	
John	Seattle	p ₁	
Sue	Boston	p ₂	
Fred	Boston	p ₃	

	Customer	Product	Date	pr
-	John	Gizmo		q ₁
	John	Gadget		q ₂
	John	Gadget		q ₃
	Sue	Camera		q ₄
1 1	Sue	Gadget		q ₅
	Sue	Gadget		q ₆
	Fred	Gadget		q ₇

SELECT DISTINCT x.city FROM Person x, Purchase y WHERE x.Name = y.Customer and y.Product = 'Gadget'

Tuple	Probability		
Seattle	$p_1(1-(1-q_2)(1-q_3))$		
Boston	$\begin{array}{c} 1-(1-p_2(1-(1-q_5)(1-q_6))) \\ \times(1-p_3 q_7) \end{array}$		

Three Classes of Application

- Uncertain data
- Information Disclosure
- Approximate query answering

1. Uncertain Data

We'll discuss three, many more exists

- Ranking query answers
- Information extraction
- Fuzzy joins

Most work on probdb has focused on this class of apps

Questions to Ponder

- Is there a ground truth (max likelihood world)?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities ?

[Agrawal, Chaudhuri, Das, Gionis 2003]

Ranking Query Answers

The *Empty Answers* problem:

SELECT * FROM Houses WHERE bedrooms = 4 AND style = 'craftsman' AND district = 'View Ridge' AND price < 400000

No Matches !

Ranking:

Compute a similarity score between a tuple and the query

Q = SELECT *
FROM R
WHERE
$$A_1 = v_1$$
 AND ... AND $A_m = v_m$

Query is a vector:

$$Q = (v_1, ..., v_m)$$

$$T = (u_1, ..., u_m)$$

Rank tuples by their TF/IDF similarity to the query Q

Includes partial matches

Ranking Query Answers

SELECT * FROM Houses WHERE bedrooms = 4 AND style = 'craftsman' AND district = 'View Ridge' AND price < 400000

Address	Bedrooms	Style	District	Price	SimScore
	5	Craftsman	Ravenna	300000	0.8
	2	Craftsman	View ridge	500000	0.4
	4	Ranch	U District	400000	0.7

Adding Similarity Predicates to SQL

Beyond a single table:

"Find the good deals in a neighborhood !"

```
SELECT *
FROM Houses x
WHERE x.bedrooms ~ 4 AND x.style ~ 'craftsman' AND x.price ~ 600k
AND NOT EXISTS
(SELECT *
FROM Houses y
WHERE x.district = y.district AND x.ID != y.ID
AND y.bedrooms ~ 4 AND y.style ~ 'craftsman' AND y.price ~ 600k
```

Users specify similarity predicates with ~

System combines atomic similarities using probabilities

Evaluation using a ProbDB

Evaluation using a ProbDB

Finally, evaluate the "rest of the query" (w/o \sim) on the ProbDB

SELECT *	
FROM Houses1 x	
WHERE NOT EXISTS	
(SELECT *	
FROM Houses2 y	
WHERE x.district = y.district AND x.ID != y.ID)	

A	В	S	D	Р	x.Sim

Α	В	S	D	Р	y.Sim
					38

Answer these for query ranking (in class)

- Is there a ground truth (max likelihood world)?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities ?

ProbDB for IE Models

- Input:
 - Text = a collection of independent text records
 - Record = sequence of tokens x1,...,xn
- Set of labels $A = \{A_1, ..., A_K\}$
- Ouput:
 - Segmentation = $s_1, ..., s_p$ where $s_i = (start_i, end_i, label_i)$

ProbDB for IE Models

Conditional Random Fields (CRF):

= probability space on all segementations

ProbDB for IE Models

Conditional Random Fields (CRF):

= probability space on all segementations

52-A Goregaon West Mumbai 400 076

All segmentations

	House_no	Area	City	Pincode	Prob
\sim	52	Goregaon West	Mumbai	400 076	0.1
	52-A	Goregaon	West Mumbai	400 076	0.2
	52-A	Goregaon West	Mumbai	400 076	0.5
	52	Goregaon	West Mumbai	400 076	0.2

ProbDB for IE Models

$$Pr(s \mid x, \Lambda) = 1/Z(x) \exp(\Lambda \cdot \sum_{j} f(j, x, s))$$

Where: $\Lambda = (\lambda_i, ..., \lambda_N) = \text{feature weights}$ $f = (f_i, ..., f_N) = \text{feature function}$ j = 1, ..., |s| = segment indexZ = normalization factor

A feature $f_i(j,x,s)$ depends only on s_{j-1} , s_j and the corresponding x

 $f_8(j, x, (2,5,y_{j-1}), (6,12,y_j)) = [y_{j-1} = House_no] \cdot [y_j = Area] \cdot [x_6 x_7 \dots x_{12} \text{ appears in a list of areas}]$

ProbDB for IE Models

Traditional IE keeps the *maximum likelihood segmentation*, which can be computed using dynamic programming (Viterbi):

 $\operatorname{argmax}_{s} \operatorname{Pr}(s \mid x, \Lambda)$

But this results in low recall, e.g. for the query:

SELECT DISTINCT x.name FROM Person x, Address^p y WHERE x.ID = y.ID and y.city = 'West Mumbai'

ProbDB for IE Models

ProbDB for IE Models

Next idea: try to keep the top 2 segmentations (or top k...) But k needs to be large to cover significant probability mass:

ProbDB for IE Models

Keep all ! \rightarrow a probabilistic database:

<u>ID</u>	House-No	Street	City	Ρ
1	52	Goregaon West	Mumbai	0.1
1	52-A	Goregaon West	Mumbai	0.4
1	52	Goregaon	West Mumbai	0.2
1	52-A	Goregaon	West Mumbai	0.2
2				
2				

SELECT DISTINCT x.name

FROM Person x, Address^p y WHERE x.ID = y.ID and y.city = 'West Mumbai'

ProbDB for IE Models

The rest of their paper:

• Considers a compact representation of the probabilistic database

We will discuss representations next time

Answer these for IE (in class)

- Is there a ground truth (max likelihood world)?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities ?

Similarity Joins

- Same object represented in different ways
- Why ?
 - Typos: "Woshington" v.s. "Washington"
 - Different naming conventions: "IBM" v.s.
 "International Business Machines Corporation"

Example

Company1

Company1

CName1	Other attributes
Microsoft Corp	
Apple Computer	
Apples, Pears, and More	

CName2	Other attributes
Microsoft Inc	
Apple Corporation	
Apples and Pears Farm	
• • •	

Similarity Join

What is "Similar"?

- Similarity function sim(s1,s2):
 Sim(s1,s2) > c means s1, s2 are similar
- Distance function dist(s1,s2):

-Dist(s1,s2) < c means s1, s2 are similar

SELECT * FROM Company1, Company2 WHERE cname1 ≈ cname2

SELECT * FROM Company1, Company2 WHERE Sim(cname1, cname2) > c

Q-Grams

- Given a string s, a q-gram is a substring of length q
- Usually q = 3

washington woshington

Variation: may include beginning and end: ##w, #wa, on\$, n\$\$

Hamming Distance

• H(s1, s2) = $|s1 \Delta s2| = |s1-s2| + |s2-s1|$ s1 s2

"s1 is similar to s2" iff H(s1, s2) < k

Jaccard Similarity

• $J(s1,s2) = |s1 \cap s2| / |s1 \cup s2|$

"s1 is similar to s2" iff J(s1, s2) > c

56

They are related !

- Suppose |s1| = |s2| = L
- Denote $I(s1,s2) = |s1 \cap s2|$

Then:

- J(s1,s2) > c iff I(s1,s2) > 2cL/(1+c)
- H(s1,s2) < k iff I(s1,s2) > 2L kWhy?

Representing q-Grams

Company (id, name, ...) CQ(id, qgram)

Id	Name	•••
1	Washington	• • • •
2		

SELECT x.id, y.id FROM Company x, Company y WHERE J(x.name, y.name) > c

Id	Qgram
1	was
1	ash
1	shi
1	hin
2	

SELECT x.id, y.id FROM CQ x, CQ y WHERE x.Qgram=y.Qgram GROUP BY x.id, y.id HAVING count(*) < k

ProbDBs for SS-Joins

- Most of the work is focused on computing it *efficiently* we won't discuss here
- Main point: the semantics of the ss-join depends on the threshold c
- The threshold is hard to choose !

Better: keep several ss-joins and their similarities → probabilistic database

Answer these for SS-join (in class)

- Is there a ground truth (max likelihood world)?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities ?

Other Types of Uncertain Data

- Deduplication
- Data integration
- Sensor readings
- RFID data
- Scientific data management
- Social networks

For most, the probabilistic data has not been studied seriously

61

Summary of Uncertain Data

- Data is almost like a traditional database, but certain values or tuples are uncertain
- We assume uncertainties are quantified as probabilities (but this may be difficult in some cases)
- The research questions are:
 - Representation (Lecture 2)
 - Query processing (Lectures 3,4,5)

2. Information Disclosure

Have private data

- Want to make available for *statistical analysis*
- But want to hide the private details

Two conflicting goals:

- Strong privacy
- Good utiliy

[Rastogi, S., Hong, VLDB'2007]

Example

Instance I

Name	Age	Nationality	Score
Fred	17	British	62
Alice	18	Czech	95
Mary	22	Indian	99
Joe	21	British	42
Bob	22	Czech	92

Statistical queries OK:

- average score of British students ?
- how many Czechs scored better than Indians ?

Private queries not OK

• what is Alice's score ?

[Rastogi, S., Hong, VLDB'2007]

K-Anonymization

Instance I

View V

Name	Age	Nationality	Score
Fred	17	British	62
Alice	18	Czech	95
Mary	22	Indian	99
Joe	21	British	42
Bob	22	Czech	92

Age	Nationality	Score
15-19	*	62
15-19	*	95
20-24	*	99
20-24	*	42
20-24	*	92

Mallory the Eavesdropper...

• Wants to find out Alice's score...

Mallory's Cabal

View V

Age	Score
15-19	62
15-19	95
20-24	99
20-24	42
20-24	92

Case 1: Mallory Jr. knows that Alice is 18 years old. What is Alice's score ?

Case 2: Mallory Sr. knows that Alice is 18 years old, and is smarter than her brother, Bob, who is 22. What is Alice's score ?

]	Age	Nationality	Score	Age	Nationality	Score	
	25	British	99	21-30	*	99	
	27	British	97	21-30	*	97	
	21	Indian	82	21-30	*	82	
	32	Indian	90	31-40	*	90	
	33	American	94	31-40	*	94	
	36	American	94	31-40	*	94	
(a) Test Scores				(b) 2-diversity and			
				3-	3-anonymity [13]		
(There are better					N. (* 1.)	a	
anonymizations			Age	Nationality	Score		
anonymizations			25	British	99		
				21	British	99	
	Age	Nationality	Score	22	Indian	89	
	25	British	99	32	Indian	90	
	28	Indian	99	28	Indian	99	
	29	American	81	29	American	81	
	32	Indian	90	33	American	94	
	39	American	84	27	American	94	
	32	Indian	89	32	British	83	
(c) FRAPP [3]			36	American	94		
				26	American	99	
				39	Indian	94	
[Rastogi, S., Hong, VLDB'2007]					(d) $\alpha\beta$ algorithm		

[Rastogi, S., Hong, VLDB'2007]

Definition of Privacy

The adversary has a *prior*. This is *a probabilistic database P*:

P(s) = the adversary's prior belief of the secret s

After seeing V, the adversary adjusts its belief to the *a posterior*

P(s | V) = the adversary's a posterior belief of the secret s

$$\begin{split} P(I \mid V) &= 0 & \text{if } V(I) \neq V \\ P(I \mid V) &= P(I) \ / \ \sum_{J:V(J) = V} P(J) & \text{if } V(I) = V \end{split}$$

Definition The algorithm computing $I \rightarrow V$ is private for s if $P(s) \approx P(s | V)$

What are Prior and a Posteriori?

View V

Age	Score
15-19	62
15-19	95
20-24	99
20-24	42
20-24	92

Case 1: Mallory Jr. knows that Alice is 18 years old. What is Alice's score ?

Case 2: Mallory Sr. knows that Alice is 18 years old, and is smarter than her brother, Bob, who is 22. What is Alice's score ?

Discussion of Information Disclosure

- The technical problem is computing P(s | V)
- But the probabilistic database P is very different from those in uncertain data !
 - We don't have the set of possible tuples t
 - We don't have their marginal probabilities P(t)
 - In fact, we may not even know Malory's prior !
 - Reasonable assumption: P(t) is "small", $\forall t$

Discussion of Information Disclosure

- Approach 1: quantify over ALL P's – "perfect security"
- Approach 2: fix one particular "small" P

 Random graphs
- Approach 3: quantify over all "small" P's
 - Conditional logic ?? Differential privacy ??
 - This approach is an open research question
- Lectures 6 and 7

3. Approximate Query Answering

- Have data I, want to compute a query q(I)
 Usually q is a count(*), or avg()
- But I is too big: will use some statistics S to estimate q
 - Goal: rewrite q to q0 s.t. $q(I) \approx q0(S)$

Two Examples

- Consistent cardinality estimation
- Robust query optimization

[Markl et al. VLDB'2005]

Example

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Think of this query as being issued during query optimization: Optimizer wants to find out the size of a subplan

Assume $|\mathbf{R}| = 1,000,000,000$ Can't scan R. Will use statistics instead

Histograms to the Rescue !

R.A =	 9	10	11	
count =	 	100,000,000		

R.B =	 19	20	21	
count =	 	200,000,000		

R.C =	 29	30	31	
count =	 	250,000,000		

Normalized Histograms

Replace counts with frequencies, by dividing by |R|=1,000,000,000:

R.A =	•••	10	•••
s ₁ =	•••	0.1	•••

R.B =	•••	20	•••
s ₂ =		0.2	

R.C =	•••	30	
s ₃ =	•••	0.25	•••

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

2-Dimensional Histograms

We have two more histograms for the same |R|=1,000,000,000:

R.A =	•••	10	•••
s ₁ =	•••	0.1	

R.B =	•••	20	•••
s ₂ =		0.2	

R.C =	•••	30	•••
s ₃ =		0.25	

R.AB	 10,20	
s ₁₂ =	 0.05	

R.AC	•••	20,30	
s ₁₃ =		0.03	

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

The Estimation Problem

- We have several statistics - Here: five histograms
- Want to estimate a query q
- Problem:
 - There are different ways to use the histograms, and result in inconsistent answers
 - We want a consistent estimate

Histograms as Probabilities

- Probability space on $\{(x,y,z) | (x,y,z) \in \{0,1\}^3\}$ defined as follows:
- Randomly select a tuple t from R
 - If t.A=10 then set x=1; otherwise x=0
 - If t.B=20 then set y=1; otherwise y=0
 - If t.C=30 then set z=1; otherwise z=0

Is this a probabilistic database ??

Modeling Histograms as ProbDB

- There are eight possible worlds, need their probs
- The five histograms lead to 5+1 = 6 constraints:

Maximum Entropy Principle

- Equivalent to the principle of indifference
- The entropy: $H = -\sum p_i \log(p_i)$
- There is a unique solution to the previous system that maximizes H, which is obtained by solving a non-linear system of equations – IN CLASS
- It turns out: $p_{111} = 0.015$, hence $q(I) \approx 15,000,000$

A Much Simpler Approach: Sampling

- R has N=1,000,000,000 tuples
- Compute (offline) a sample of size n = 500

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

• Evaluate the query on the sample \rightarrow 8 tuples

What is your estimate ?

Robust Query Optimization

Traditional optimization:

- Plan 1: use index
- Plan 2: sequential scan
- The choice between 1 and 2 depends on the estimated selectivity
- E.g. for p < 0.26 the Plan 1 is better

Robust Query Optimization

The performance/predictability tradeoff:

- Plan 1: use index
 - If it is right → ☺
 - If it is wrong $\rightarrow \mathfrak{S}$ MUST AVOID THIS !!
- Plan 2: sequential scan \rightarrow \cong

Optimizing performance may result in significant penalty, with some probabililty

Query Plan Cost

Figure 1: Execution Costs for Two Hypothetical Plans

Figure 2: Probability Density Function for Execution Cost

Cumulative Distribution

User chooses confidence level T%.

T%=50% \rightarrow plans are chosen by expected cost; T%=80% \rightarrow plans chosen by their cost at cumulative prob of 80%?

The Probabilistic Database

- R has N=1,000,000,000 tuples
- Compute (offline) a sample X of size n =500

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

- Evaluate the query on the sample \rightarrow 8 tuples
- Thus E[p] = 8/500 = 0.0016

But what is the distribution of p??

The Probabilistic Database

- R has N=1,000,000,000 tuples
- Compute (offline) a sample X of size n =500
- A fraction k = 8 of X satisfy the predicate
- An unknown fraction p of R satisfy the pred.
- Denote f(z) = density function for p:

$$Pr[(a \le p \le b)|X] = \int_a^b f(z|X)dz.$$

The Probabilistic Database

• Bayes' rule:

$$f(z|X) = \frac{\Pr[X|p=z]f(z)}{\int_0^1 \Pr[X|p=y]f(y)dy}$$

Next, compute each term (in class)

• What is Pr[X | p=z]? Assume X=w replacement

90

• Whas is "the prior" f(z) ?

The Probabilistic Database

$$f(z|X) = \frac{z^{k-1/2}(1-z)^{n-k-1/2}}{\int_0^1 y^{k-1/2}(y-z)^{n-k-1/2}dy}$$

The Probabilistic Database

Figure 4: Sample Size Matters, Prior Doesn't

Summary on Approx. Query Answering

- Will become increasingly relevant in the near future
- A large collection of techniques exists:
 Sketches, samples, statistics, …
- My thesis: there exists a foundation on probabilistic databases that still has to be discovered
- Lectures 8, 9: will try to find out together...