Topics in Probabilistic and Statistical Databases

Dan Suciu University of Washington

Lecture \#1: Overview

This Course

- Advanced course on a special research topic
- I will give all lectures
- There will be recommended readings
- Your immediate goal: think, ask, discuss
- Your longer term goal: find great new research topics
- Credits: attendance + discussions

Communication

- http://www.cs.washington.edu/education/ courses/cse599t/CurrentQtr/
- Need a volunteer TA for:
- Setting up the mailing list
- Regular updates to the Website

Prerequisites

I will assume the following:

- Some background in databases
- Some background in probability theory

But I will review, when details are needed

What you will see:

- Some out of order presentation

Motivation

- CS is increasingly dominated by data
- The new data has two trends:
- Too large to process in traditional way
- Data from the Web, physical world, science
- Too imprecise to model in traditional way
- Data extraction, measurement errors

Motivation

- Data management needs to produce the techniques to manage large, imprecise data
- Has been doing this for a while:
- Data statistics, data sketches
- Ranking query results
- Approximate query answering
- Data anonymization
- Probabilistic databases

My ${ }^{\text {st }}$ Goal for This Course

- Comprehensive treatment of the technical material in probabilistic databases; resource for teaching probdb
- Should be able to achieve goal 1 better than 2 and 3
- What you will see:
- Technical detail on the slides
- But: difficult to prepare about 80 slides / course, may have to use whiteboard extensively

My $2^{\text {nd }}$ Goal for This Course

- Position probabilistic databases as a common foundation for a heterogeneous collection of techniques
- Warning: I probably wont achieve this goal...
- What you will see:
- I will discuss some related topics in an attempt to show how they fit under the probdb umbrella

My $3{ }^{\text {rd }}$ Goal for This Course

- Place probabilistic databases in the right context
- Intellectual roots: probability theory and statistics, finite model theory, random graphs
- Many neighboring areas in databases
- What you will see:
- Digressions into other topics

Course Outline

1. Overview
2. Representation of Probabilistic Databases

3-4-5. Query Evaluation, Ranking
6. Query evaluation in Random Graphs
7. Probabilistic logic, Conditional logic

8-9. Approximate query processing
10. Review, discussions

Today's Lecture

- Definition of a probabilistic database
- Three classes of applications

Probabilistic Databases

Notations:

- $\mathbf{R}=$ a relational schema
- $\mathrm{D}=\mathrm{a}$ finite domain
- Inst $=$ the (finite) set of all \mathbf{R}-instances on D

Background: Relational Data

- Relational schema $\mathbf{R}=$ set of relation names with attributes

Likes(Drinker, Beer), Frequents(Drinker, Bar), Serves(Bar, Beer)

- Relational instance I over schema $\mathbf{R}=$ set of relations

Drinker	Beer

The Definition

The set of all possible database instances:

$$
\mathbf{I n s t}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{N}}\right\}
$$

Sample space (Ω)

Definition A probabilistic database PDB $=(\mathbf{I n s t}, \mathrm{Pr})$ is a discrete probability distribution:

$$
\operatorname{Pr}: \text { Inst } \rightarrow[0,1] \quad \text { s.t. } \sum_{\mathrm{i}=1, \mathrm{~N}} \operatorname{Pr}\left(\mathrm{I}_{\mathrm{i}}\right)=1
$$

Definition A possible world is I s.t. $\operatorname{Pr}(\mathrm{I})>0$
A possible tuple is a tuple $\mathrm{t} \in \mathrm{I}$, for a possible world I^{14}

$\mathrm{PDB}=$
 Example

Customer	Address	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Denver	Gizmo

Customer	Address	Product
John	Boston	Gadget
Sue	Denver	Gizmo

$$
\operatorname{Pr}\left(\mathrm{I}_{1}\right)=1 / 3
$$

$$
\operatorname{Pr}\left(\mathrm{I}_{2}\right)=1 / 12
$$

Customer	Address	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Seattle	Camera

Customer	Address	Product
John	Boston	Gadget
Sue	Seattle	Camera

$$
\operatorname{Pr}\left(\mathrm{I}_{3}\right)=1 / 2
$$

$$
\text { Possible worlds }=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}\right\}
$$

Tuples as Events

One tuple $\mathrm{t} \Rightarrow$ event $\mathrm{t} \in \mathrm{I}$

$$
\operatorname{Pr}(\mathrm{t})=\sum_{\mathrm{I}: \mathrm{t} \in \mathrm{I}} \operatorname{Pr}(\mathrm{I})
$$

Two tuples $\mathrm{t}_{1}, \mathrm{t}_{2} \Rightarrow$ event $\mathrm{t}_{1} \in \mathrm{I} \wedge \mathrm{t}_{2} \in \mathrm{I}$

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\sum_{\mathrm{I}: \mathrm{t}_{1} \in \mathrm{I} \wedge \mathrm{t}_{2} \in \mathrm{I}} \operatorname{Pr}(\mathrm{I})
$$

Tuple Correlation

Disjoint

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=0
$$

Negatively correlated

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)<\operatorname{Pr}\left(\mathrm{t}_{1}\right) \operatorname{Pr}\left(\mathrm{t}_{2}\right)
$$

Independent

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\operatorname{Pr}\left(\mathrm{t}_{1}\right) \operatorname{Pr}\left(\mathrm{t}_{2}\right)
$$

Positively correlated

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)>\operatorname{Pr}\left(\mathrm{t}_{1}\right) \operatorname{Pr}\left(\mathrm{t}_{2}\right)
$$

Identical

$$
\operatorname{Pr}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\operatorname{Pr}\left(\mathrm{t}_{1}\right)=\operatorname{Pr}\left(\mathrm{t}_{2}\right)
$$

PDB =
 Example

Customer	Address	Product	Customer	Address	Product
John	Seattle	Gizmo	John	Boston	Gadget
John	Seattle	Camera	Sue	Denver	Gizmo
Sue	Denver	Gizmo			
	$\operatorname{Pr}\left(\mathrm{I}_{1}\right)=$			$\left(\mathrm{I}_{2}\right)=1 /$	
Customer	Address	Product	Customer	Address	Product
John	Seattle	Gizmo	John	Boston	Gadget
John	Seattle	Camera	Sue	Seattle	Camera
Sue	Seattle	Camera			
$\operatorname{Pr}\left(\mathrm{I}_{3}\right)=1 / 2$			$\operatorname{Pr}\left(\mathrm{I}_{4}\right)=1 / 12$		

Example:
 Disjoint-Independent Databases

Definition A PDB is disjoint-independent if for any set T of possible tuples one of the following holds:

- T is an independent set, or
- T contains two disjoint tuples

A disjoint-independent database can be fully specified by:

- all marginal tuple probabilities
- an indication of which tuples are disjoint or independent

Example:

Disjoint-Independent Databases

Object	Time	Person	P
LaptopX77	$9: 07$	John	p_{1}
		Jim	p_{2}
Book302	$9: 18$	Mary	p_{3}
		John	p_{4}
		p_{5}	

Background: Queries

- Relational queries $=$ formulas in FO
- Conjunctive query:

$$
\exists \mathrm{y}_{1} \exists \mathrm{y}_{2} \ldots \exists \mathrm{y}_{\mathrm{k}} \cdot\left(\mathrm{~g}_{1} \wedge \mathrm{~g}_{2} \wedge \ldots \wedge \mathrm{~g}_{\mathrm{m}}\right)
$$

- Conjunctive query notation:

$$
\mathrm{q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right):-\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{m}}
$$

- Boolean query $=$ closed formula
- Boolean conjunctive query:

$$
\mathrm{q}:-\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{m}}
$$

Examples

Likes(Drinker, Beer), Frequents(Drinker, Bar), Serves(Bar, Beer)

What are these queries and what do they return?
$\forall \mathrm{y}$. (Frequents(x,y) $\rightarrow \forall$ z. (Likes($\mathrm{x}, \mathrm{z}) \rightarrow$ not $(\operatorname{Serves}(\mathrm{y}, \mathrm{z})))$

ヨy. (Frequents(Fred,x) and Likes(Fred,y) and Serves(x,y))
q(x) :- Frequents(Fred,x), Likes(Fred,y), Serves(x,y))
$\mathrm{q}:-\operatorname{Frequents(Fred,x),~Likes(Fred,y),~Serves(x,y))~}$

Query Semantics

Given a query Q and a probabilistic database PDB , what is the meaning of $\mathrm{Q}(\mathrm{PDB})$?

Query Semantics

Semantics 1: Possible Sets of Answers
A probability distributions on sets of tuples

$$
\forall \mathrm{A} \cdot \operatorname{Pr}(\mathrm{Q}=\mathrm{A})=\sum_{\mathrm{I} \in \text { Inst. } \mathrm{Q}(\mathrm{I})=\mathrm{A}} \operatorname{Pr}(\mathrm{I})
$$

Semantics 2: Possible Tuples
A probability function on tuples

$$
\forall \mathrm{t} . \operatorname{Pr}(\mathrm{t} \in \mathrm{Q})=\sum_{\mathrm{I} \in \text { Inst. } \mathrm{t} \in \mathrm{Q}(\mathrm{I})} \operatorname{Pr}(\mathrm{I})
$$

Purchase $^{\mathrm{p}}$ Example: Query Semantics

Name	City	Product
John	Seattle	Gizmo
John	Seattle	Camera
Sue	Denver $\left(\mathrm{I}_{1}\right)=1 / 3$	
Sue	Denver	Camera

SELECT DISTINCT x.product FROM Purchase ${ }^{p}$ x, Purchase $^{p} y$ WHERE x.name = 'John'
and x .product $=\mathrm{y}$.product and y.name = 'Sue'

Name	City	Product
John	Boston	Gizmo
Sue	Denver	Gizmo
Sue	Seattle	Gadget

$\operatorname{Pr}\left(\mathrm{I}_{2}\right)=1 / 12$

Name	City	Product
John	Seattle	Gizmo
John	Seattle	Camera
$\operatorname{Pr}\left(\mathrm{I}_{3}\right)=1 / 2$		
Sue	Seattle	Camera
Name	City	Product
John	Boston	Camera
Sue	Seattle	Camera

Possible answers semantics:

Answer set	Probability	
Gizmo, Camera	$1 / 3$	$\operatorname{Pr}\left(\mathrm{I}_{1}\right)$ $\operatorname{Pr}\left(\mathrm{I}_{2}\right)$ Gizmo
Camera	$1 / 12$	$7 / 12$
	$\mathrm{P}\left(\mathrm{I}_{3}\right)+\mathrm{P}\left(\mathrm{I}_{4}\right)$	

Possible tuples semantics:

Tuple	Probability
Camera	$11 / 12$
$\operatorname{Pr}\left(\mathrm{I}_{1}\right)+\mathrm{P}\left(\mathrm{I}_{3}\right)+\mathrm{P}\left(\mathrm{I}_{4}\right)$	
Gizmo	$5 / 12$
$\operatorname{Pr}\left(\mathrm{I}_{1}\right)+\operatorname{Pr}\left(\mathrm{I}_{2}\right)$	

Query Semantics

- If q is a boolean query, then the possible answers and the possible tuples are essentially the same

```
Why?
```


Factoid

- In traditional database theory, it suffices to study only boolean queries
- But over probabilistic databases that reduction no longer works
- We study first boolean query evaluation (=simpler) and discuss top-k semantics later

Special Case

Tuple independent probabilistic database
$\operatorname{Tup}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{M}}\right\}=$ all possible tuples

```
pr : Tup }->(0,1
```

$$
\operatorname{Pr}(\mathrm{I})=\prod_{\mathrm{t} \in \mathrm{I}} \operatorname{pr}(\mathrm{t}) \times \prod_{\mathrm{t} \in \mathrm{I}}(1-\operatorname{pr}(\mathrm{t}))
$$

Tuple Prob. \Rightarrow Query Evaluation

SELECT DISTINCT x.city FROM Person x, Purchase y WHERE x.Name = y.Customer and y.Product $=$ 'Gadget'

Tuple	Probability
Seattle	$p_{1}\left(1-\left(1-q_{2}\right)\left(1-q_{3}\right)\right)$
Boston	$1-\left(1-p_{2}\left(1-\left(1-q_{5}\right)\left(1-q_{6}\right)\right)\right)$ $\times\left(1-p_{3} q_{7}\right)$

Three Classes of Application

- Uncertain data
- Information Disclosure
- Approximate query answering

1. Uncertain Data

We'll discuss three, many more exists

- Ranking query answers
- Information extraction
- Fuzzy joins

Most work on probdb has focused on this class of apps

Questions to Ponder

- Is there a ground truth (max likelihood world) ?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities?

Ranking Query Answers

The Empty Answers problem:

$$
\begin{aligned}
& \text { SELECT } * \\
& \text { FROM Houses } \\
& \text { WHERE bedrooms }=4 \\
& \text { AND style }=\text { 'craftsman' } \\
& \text { AND district }=\text { 'View Ridge' } \\
& \text { AND price }<400000 \\
& \hline
\end{aligned}
$$

No Matches !

[Agrawal,Chaudhuri,Das,Gionis 2003]

Ranking:
Compute a similarity score between a tuple and the query

$$
\begin{aligned}
\mathrm{Q}= & \text { SELECT } * \\
& \text { FROM } \mathrm{R} \\
& \text { WHERE } \mathrm{A}_{1}=\mathrm{v}_{1} \text { AND } \ldots \text { AND A } \mathrm{A}_{\mathrm{m}}=\mathrm{v}_{\mathrm{m}}
\end{aligned}
$$

Query is a vector:
Tuple is a vector:

$$
\mathrm{Q}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)
$$

$$
T=\left(u_{1}, \ldots, u_{m}\right)
$$

Rank tuples by their TF/IDF similarity to the query Q

> Includes partial matches

Ranking Query Answers

```
SELECT *
FROM Houses
WHERE bedrooms = 4
    AND style = 'craftsman'
    AND district = 'View Ridge'
    AND price < 400000
```

Are similarities probabilities?

Address	Bedrooms	Style	District	Price	SimScore
\ldots	5	Craftsman	Ravenna	300000	0.8
\ldots	2	Craftsman	View ridge	500000	0.4
\ldots	4	Ranch	U District	400000	0.7
\ldots					

Adding Similarity Predicates to SQL

Beyond a single table:
"Find the good deals in a neighborhood !"

```
SELECT *
FROM Houses x
WHERE x.bedrooms ~ 4 AND x.style ~ 'craftsman' AND x.price }~600\textrm{k
    AND NOT EXISTS
        (SELECT *
        FROM Houses y
        WHERE x.district = y.district AND x.ID != y.ID
        AND y.bedrooms ~4 AND y.style ~ 'craftsman' AND y.price ~ 600k
```

Users specify similarity predicates with ~
System combines atomic similarities using probabilities

[Dalvi\&S:2004]

Evaluation using a ProbDB

```
SELECT *
FROM Houses x
WHERE x.bedrooms ~ 4 AND x.style ~ 'craftsman' AND x.price ~ 600k
    AND NOT EXISTS
    (SELECT *
    FROM Houses y
    WHERE x.district = y.district AND x.ID != y.ID
        AND y.bedrooms ~4 AND y.style ~ 'craftsman' AND y.price ~ 600k
```

A	B	S	D	P	x.Sim

[Dalvi\&S:2004]

Evaluation using a ProbDB

Finally, evaluate the "rest of the query" (w/o ~) on the ProbDB

```
SELECT *
FROM Houses1 x
WHERE NOT EXISTS
    (SELECT *
    FROM Houses2 y
    WHERE x.district = y.district AND x.ID != y.ID)
```

A	B	S	D	P	x.Sim

A	B	S	D	P	y.Sim

Answer these for query ranking (in class)

- Is there a ground truth (max likelihood world) ?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities?
[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

- Input:
- Text $=$ a collection of independent text records
- Record $=$ sequence of tokens $x 1, \ldots, x n$
- Set of labels $\mathrm{A}=\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{K}}\right\}$
- Ouput:
- Segmentation $=s_{1}, \ldots, s_{p}$ where $\mathrm{s}_{\mathrm{i}}=\left(\right.$ start $_{\mathrm{i}}$, end $_{\mathrm{i}}$, label $\left._{\mathrm{i}}\right)$

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

Conditional Random Fields (CRF):

- = probability space on all segementations

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

Conditional Random Fields (CRF):

- = probability space on all segementations

52-A Goregaon West Mumbai 400076

All segmentations

House_no	Area	City	Pincode	Prob
52	Goregaon West	Mumbai	400076	0.1
$52-\mathrm{A}$	Goregaon	West Mumbai	400076	0.2
$52-\mathrm{A}$	Goregaon West	Mumbai	400076	0.5
52	Goregaon	West Mumbai	400076	0.2

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

$$
\operatorname{Pr}(\mathrm{s} \mid \mathrm{x}, \Lambda)=1 / \mathrm{Z}(\mathrm{x}) \exp \left(\Lambda \cdot \sum_{\mathrm{j}} \mathrm{f}(\mathrm{j}, \mathrm{x}, \mathrm{~s})\right)
$$

Where:

$$
\begin{aligned}
& \Lambda=\left(\lambda_{\mathrm{i}}, \ldots, \lambda_{\mathrm{N}}\right)=\text { feature weights } \\
& \mathrm{f}=\left(\mathrm{f}_{\mathrm{i}}, \ldots, \mathrm{f}_{\mathrm{N}}\right)=\text { feature function } \\
& \mathrm{j}=1, \ldots,|\mathrm{~s}|=\text { segment index } \\
& \mathrm{Z}=\text { normalization factor }
\end{aligned}
$$

A feature $\mathrm{f}_{\mathrm{i}}(\mathrm{j}, \mathrm{x}, \mathrm{s})$ depends only on $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}}$ and the corresponding x

$$
\begin{aligned}
& \mathrm{f}_{8}\left(\mathrm{j}, \quad \mathrm{x},\left(2,5, \mathrm{y}_{\mathrm{j}-1}\right),\left(6,12, \mathrm{y}_{\mathrm{j}}\right)\right)= \\
& \quad\left[\mathrm{y}_{\mathrm{i}-1}=\text { House_no }\right] \cdot\left[\mathrm{y}_{\mathrm{j}}=\text { Area }\right] \cdot\left[\mathrm{x}_{6} \mathrm{x}_{7} \ldots \mathrm{x}_{12} \text { appears in a list of areas }\right] \\
& \hline \hline
\end{aligned}
$$

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

Traditional IE keeps the maximum likelihood segmentation, which can be computed using dynamic programming (Viterbi):

$$
\operatorname{argmax}_{\mathrm{s}} \operatorname{Pr}(\mathrm{~s} \mid \mathrm{x}, \Lambda)
$$

But this results in low recall, e.g. for the query:

```
SELECT DISTINCT x.name
FROM Person x, Addressp}\mp@subsup{}{}{p
WHERE x.ID = y.ID and y.city = 'West Mumbai'
```

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

(a) Cora

(b) Address

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

Next idea: try to keep the top 2 segmentations (or top k...)
But k needs to be large to cover significant probability mass:

Number of segmentations required
(a) Cora, $\mathrm{p}=0.95$

Number of segmentations required
(b) Address, $\mathrm{p}=0.9$

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

Keep all! $\boldsymbol{\rightarrow}$ a probabilistic database:

$\underline{I D}$	House-No	Street	City	P
1	52	Goregaon West	Mumbai	0.1
	$52-\mathrm{A}$	Goregaon West	Mumbai	0.4
	52	Goregaon	West Mumbai	0.2
1	$52-\mathrm{A}$	Goregaon	West Mumbai	0.2
2	\ldots.	\ldots.	\ldots	\ldots
2	\ldots.			

> SELECT DISTINCT x. name
> FROM Person x, Address ${ }^{\mathrm{y}} \mathrm{y}$
> WHERE x.ID $=\mathrm{y}$. ID and $\mathrm{y} . \mathrm{city}=$ 'West Mumbai'

[Gupta and Sarawagi, VLDB'2006]

ProbDB for IE Models

The rest of their paper:

- Considers a compact representation of the probabilistic database

We will discuss representations next time

Answer these for IE (in class)

- Is there a ground truth (max likelihood world) ?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities?
[Arasu, Ganti, Kaushik, VLDB’2006]

Similarity Joins

- Same object represented in different ways
- Why?
- Typos: "Woshington" v.s. "Washington"
- Different naming conventions: "IBM" v.s. "International Business Machines Corporation"

[Arasu, Ganti, Kaushik, VLDB'2006]

Example

Companyl

CName1	.. Other attributes
Microsoft Corp	
Apple Computer	
Apples, Pears, and More	
\ldots	

CName2	_. Other attributes
Microsoft Inc	
Apple Corporation	
Apples and Pears Farm	
\ldots	

Company 1
[Arasu, Ganti, Kaushik, VLDB’2006]

Similarity Join

SELECT *
 FROM Company1, Company2 WHERE cname $1 \approx$ cname 2

[Arasu, Ganti, Kaushik, VLDB’2006]

What is "Similar"?

- Similarity function $\operatorname{sim}(\mathrm{s} 1, \mathrm{~s} 2)$:
$-\operatorname{Sim}(\mathrm{s} 1, \mathrm{~s} 2)>\mathrm{c}$ means s1, s2 are similar
- Distance function dist(s1,s2):
- Dist(s1,s2) <c means s1, s2 are similar

```
SELECT *
FROM Company1, Company2
WHERE cname1 \approx cname2
```

SELECT *
FROM Company1, Company2
WHERE Sim(cname1, cname2) > c
[Arasu, Ganti, Kaushik, VLDB’2006]

Q-Grams

- Given a string s, a q-gram is a substring of length q
- Usually $\mathrm{q}=3$

washington woshington

s1 $=\{$ was, ash, shi, hin, ing, ngt, gto, ton $\}$
$\mathrm{s} 2=\{$ wos, osh, shi, hin, ing, ngt, gto, ton $\}$
Variation: may include beginning and end: \#\#w, \#wa, on\$, n\$\$
[Arasu, Ganti, Kaushik, VLDB’2006]

Hamming Distance

- $\mathrm{H}(\mathrm{s} 1, \mathrm{~s} 2)=|\mathrm{s} 1 \Delta \mathrm{~s} 2|=|\mathrm{s} 1-\mathrm{s} 2|+|\mathrm{s} 2-\mathrm{s} 1|$

"s1 is similar to s2" iff $\mathrm{H}(\mathrm{s} 1, \mathrm{~s} 2)<\mathrm{k}$
[Arasu, Ganti, Kaushik, VLDB’2006]

Jaccard Similarity

- $\mathrm{J}(\mathrm{s} 1, \mathrm{~s} 2)=|\mathrm{s} 1 \cap \mathrm{~s} 2| /|\mathrm{s} 1 \mathrm{U} 2|$

" s 1 is similar to s 2 " iff $\mathrm{J}(\mathrm{s} 1, \mathrm{~s} 2)>\mathrm{c}$
[Arasu, Ganti, Kaushik, VLDB’2006]

They are related!

- Suppose $|\mathrm{s} 1|=|\mathrm{s} 2|=\mathrm{L}$
- Denote $\mathrm{I}(\mathrm{s} 1, \mathrm{~s} 2)=|\mathrm{s} 1 \cap \mathrm{~s} 2|$

Then:

- $\mathrm{J}(\mathrm{s} 1, \mathrm{~s} 2)>\mathrm{c}$ iff $\mathrm{I}(\mathrm{s} 1, \mathrm{~s} 2)>2 \mathrm{cL} /(1+\mathrm{c})$
- $\mathrm{H}(\mathrm{s} 1, \mathrm{~s} 2)<\mathrm{k}$ iff $\mathrm{I}(\mathrm{s} 1, \mathrm{~s} 2)>2 \mathrm{~L}-\mathrm{k}$ Why?

[Arasu, Ganti, Kaushik, VLDB'2006]

Representing q-Grams

Company (id, name, ...) CQ(id, qgram)

Id	Name	\ldots
1	Washington	\ldots
2	\ldots	\ldots

Id	Qgram
1	was
1	ash
1	shi
1	hin
\ldots	\ldots
2	\ldots

$$
\begin{array}{l|l}
\text { SELECT x.id, y.id } \\
\text { FROM CQ x, CQ y } & \\
\text { WHERE x.Qgram=y.Qgram } \\
\text { GROUP BY x.id, y.id } & \\
\text { HAVING count }\left({ }^{*}\right)<\text { k } & 58
\end{array}
$$

ProbDBs for SS-Joins

- Most of the work is focused on computing it efficiently - we won't discuss here
- Main point: the semantics of the ss-join depends on the threshold c
- The threshold is hard to choose!

Better: keep several ss-joins and their similarities \rightarrow probabilistic database

Answer these for SS-join (in class)

- Is there a ground truth (max likelihood world)?
- What do we gain by keeping multiple worlds ?
- Are the confidence scores indeed probabilities?

Other Types of Uncertain Data

- Deduplication
- Data integration
- Sensor readings
- RFID data
- Scientific data management
- Social networks

For most, the probabilistic data has not been studied seriously

Summary of Uncertain Data

- Data is almost like a traditional database, but certain values or tuples are uncertain
- We assume uncertainties are quantified as probabilities (but this may be difficult in some cases)
- The research questions are:
- Representation (Lecture 2)
- Query processing (Lectures 3,4,5)
[Rastogi, S., Hong, VLDB'2007]

2. Information Disclosure

Have private data

- Want to make available for statistical analysis
- But want to hide the private details

Two conflicting goals:

- Strong privacy
- Good utiliy

[Rastogi, S., Hong, VLDB'2007]

Example

Instance I

Name	Age	Nationality	Score
Fred	17	British	62
Alice	18	Czech	95
Mary	22	Indian	99
Joe	21	British	42
Bob	22	Czech	92

Statistical queries OK:

- average score of British students?
- how many Czechs scored better than Indians?

Private queries not OK

- what is Alice's score?

[Rastogi, S., Hong, VLDB'2007]

K-Anonymization

Instance I

Name	Age	Nationality	Score
Fred	17	British	62
Alice	18	Czech	95
Mary	22	Indian	99
Joe	21	British	42
Bob	22	Czech	92

Age	Nationality	Score
$15-19$	$*$	62
$15-19$	$*$	95
$20-24$	$*$	99
$20-24$	$*$	42
$20-24$	$*$	92

Mallory the Eavesdropper...

- Wants to find out Alice's score...

Mallory's Cabal

View V

Age	Score
$15-19$	62
$15-19$	95
$20-24$	99
$20-24$	42
$20-24$	92

> Case 1 : Mallory Jr. knows that Alice is 18 years old. What is Alice's score?

Case 2: Mallory Sr. knows that Alice is 18 years old, and is smarter than her brother, Bob, who is 22. What is Alice's score?

Age	Nationality	Score
25	British	99
27	British	97
21	Indian	82
32	Indian	90
33	American	94
36	American	94

(a) Test Scores

There are better anonymizations...

Age	Nationality	Score
$\mathbf{2 5}$	British	$\mathbf{9 9}$
28	Indian	99
29	American	81
$\mathbf{3 2}$	Indian	$\mathbf{9 0}$
39	American	84
32	Indian	89
(c) FRAPP [3]		

[Rastogi, S., Hong, VLDB'2007]

Age	Nationality	Score
$21-30$	$*$	99
$21-30$	$*$	97
$21-30$	$*$	82
$31-40$	$*$	90
$31-40$	$*$	94
$31-40$	$*$	94

(b) 2-diversity and

3-anonymity [13]

Age	Nationality	Score
$\mathbf{2 5}$	British	$\mathbf{9 9}$
21	British	99
22	Indian	89
$\mathbf{3 2}$	Indian	$\mathbf{9 0}$
28	Indian	99
29	American	81
33	American	$\mathbf{9 4}$
27	American	94
32	British	83
36	American	$\mathbf{9 4}$
26	American	99
39	Indian	94

(d) $\alpha \beta$ algorithm

[Rastogi, S., Hong, VLDB'2007]

Definition of Privacy

The adversary has a prior. This is \underline{a} probabilistic database $\boldsymbol{P}:$
$\mathrm{P}(\mathrm{s})=$ the adversary's prior belief of the secret s
After seeing V, the adversary adjusts its belief to the a posterior

$$
\mathrm{P}(\mathrm{~s} \mid \mathrm{V})=\text { the adversary's a posterior belief of the secret s }
$$

$$
\begin{array}{lc}
\mathrm{P}(\mathrm{I} \mid \mathrm{V})=0 & \text { if } \mathrm{V}(\mathrm{I}) \neq \mathrm{V} \\
\mathrm{P}(\mathrm{I} \mid \mathrm{V})=\mathrm{P}(\mathrm{I}) / \sum_{\mathrm{J}: \mathrm{V}(\mathrm{~J})=\mathrm{V}} \mathrm{P}(\mathrm{~J}) & \text { if } \mathrm{V}(\mathrm{I})=\mathrm{V}
\end{array}
$$

Definition The algorithm computing $\mathrm{I} \rightarrow \mathrm{V}$ is private for s if $\mathrm{P}(\mathrm{s}) \approx \mathrm{P}(\mathrm{s} \mid \mathrm{V})$

What are Prior and a Posteriori?

View V

Age	Score
$15-19$	62
$15-19$	95
$20-24$	99
$20-24$	42
$20-24$	92

> Case 1 : Mallory Jr. knows that Alice is 18 years old. What is Alice's score?

Case 2: Mallory Sr. knows that Alice is 18 years old, and is smarter than her brother, Bob, who is 22 .
What is Alice's score?

Discussion of Information Disclosure

- The technical problem is computing $\mathrm{P}(\mathrm{s} \mid \mathrm{V})$
- But the probabilistic database P is very different from those in uncertain data !
- We don't have the set of possible tuples t
- We don't have their marginal probabilities $\mathrm{P}(\mathrm{t})$
- In fact, we may not even know Malory's prior !
- Reasonable assumption: $\mathrm{P}(\mathrm{t})$ is "small", $\forall \mathrm{t}$

Discussion of Information Disclosure

- Approach 1: quantify over ALL P's
- "perfect security"
- Approach 2: fix one particular "small" P
- Random graphs
- Approach 3: quantify over all "small" P's
- Conditional logic ?? Differential privacy ??
- This approach is an open research question
- Lectures 6 and 7

3. Approximate Query Answering

- Have data I, want to compute a query q(I)
- Usually q is a count(*), or avg()
- But I is too big: will use some statistics S to estimate q
- Goal: rewrite q to q 0 s.t. $\mathrm{q}(\mathrm{I}) \approx \mathrm{q} 0(\mathrm{~S})$

Two Examples

- Consistent cardinality estimation
- Robust query optimization

Example

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Think of this query as being issued during query optimization:
Optimizer wants to find out the size of a subplan

Assume $|\mathrm{R}|=1,000,000,000$
Can't scan R. Will use statistics instead

[Markl et al. VLDB'2005]

Histograms to the Rescue !

R.A $=$	\ldots	9	10	11	\ldots
count $=$	\ldots	\ldots	$100,000,000$	\ldots	\ldots

R.B $=$	\ldots	19	20	21	\ldots
count $=$	\ldots	\ldots	$200,000,000$	\ldots	\ldots

R.C $=$	\ldots	29	30	31	\ldots
count $=$	\ldots	\ldots	$250,000,000$	\ldots	\ldots

[Markl et al. VLDB'2005]

Normalized Histograms

Replace counts with frequencies, by dividing by $|\mathrm{R}|=1,000,000,000$:

R.A $=$	\ldots	10	\ldots
$\mathbf{s}_{\mathbf{1}}=$	\ldots	0.1	\ldots

R.B $=$	\ldots	20	\ldots
$\mathbf{s}_{\mathbf{2}}=$	\ldots	0.2	\ldots

SELECT count(*) FROM R
WHERE R.A=10 and R.B=20 and R.C=30

What's your

 estimate?
[Markl et al. VLDB'2005]

2-Dimensional Histograms

We have two more histograms for the same $|\mathrm{R}|=1,000,000,000$:

R.A $=$	\ldots	10	\ldots
$\mathbf{s}_{\mathbf{1}}=$	\ldots	0.1	\ldots

R.B $=$	\ldots	20	\ldots
$\mathbf{s}_{\mathbf{2}}=$	\ldots	0.2	\ldots

SELECT count(*) FROM R
WHERE R.A=10 and R.B=20 and R.C=30

R.C $=$	\ldots	30	\ldots
$\mathbf{s}_{3}=$	\ldots	0.25	\ldots

R.AB	\ldots	10,20	\ldots
$\mathbf{s}_{\mathbf{1 2}}=$	\ldots	0.05	\ldots

What's your estimate now?

R.AC	\ldots	20,30	\ldots
$\mathbf{s}_{13}=$	\ldots	0.03	\ldots

The Estimation Problem

- We have several statistics
- Here: five histograms
- Want to estimate a query q
- Problem:
- There are different ways to use the histograms, and result in inconsistent answers
- We want a consistent estimate
[Markl et al. VLDB'2005]

Histograms as Probabilities

- Probability space on $\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in\{0,1\}^{3}\right\}$ defined as follows:
- Randomly select a tuple t from R
- If $\mathrm{t} . \mathrm{A}=10$ then set $\mathrm{x}=1$; otherwise $\mathrm{x}=0$
- If t. $B=20$ then set $y=1$; otherwise $y=0$
- If t. $\mathrm{C}=30$ then set $\mathrm{z}=1$; otherwise $\mathrm{z}=0$

[Markl et al. VLDB'2005]

Modeling Histograms as ProbDB

- There are eight possible worlds, need their probs
- The five histograms lead to $5+1=6$ constraints:

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{P}
0	0	0	p_{000}
0	0	1	p_{001}
0	1	0	p_{010}
0	1	1	p_{011}
1	0	0	p_{100}
1	0	1	p_{101}
1	1	0	p_{110}
1	1	1	p_{111}

$$
\begin{aligned}
& \mathrm{p}_{000}+\mathrm{p}_{001}+\mathrm{p}_{010}+\mathrm{p}_{011}+\mathrm{p}_{100}+\mathrm{p}_{101}+\mathrm{p}_{110}+\mathrm{p}_{111}=1 \\
& \mathrm{p}_{100}+\mathrm{p}_{101}+\mathrm{p}_{110}+\mathrm{p}_{111}=\mathrm{s}_{1} \\
& \mathrm{p}_{010}+\mathrm{p}_{011}+\mathrm{p}_{110}+\mathrm{p}_{111}=\mathrm{s}_{2} \\
& \mathrm{p}_{001}+\mathrm{p}_{011}+\mathrm{p}_{101} \mathrm{p}_{111}=\mathrm{s}_{3} \\
& \mathrm{p}_{110}+\mathrm{p}_{111}=\mathrm{s}_{12} \\
& \mathrm{p}_{101}+\mathrm{p}_{1111}=\mathrm{s}_{13} \\
& \quad \begin{array}{l}
\text { But underdetermined. } \\
\text { How do we choose? }
\end{array}
\end{aligned}
$$

Maximum Entropy Principle

- Equivalent to the principle of indifference
- The entropy: $\mathrm{H}=-\sum \mathrm{p}_{\mathrm{i}} \log \left(\mathrm{p}_{\mathrm{i}}\right)$
- There is a unique solution to the previous system that maximizes H , which is obtained by solving a non-linear system of equations - IN CLASS
- It turns out: $\mathrm{p}_{111}=0.015$, hence $\mathrm{q}(\mathrm{I}) \approx 15,000,000$

A Much Simpler Approach: Sampling

- R has $\mathrm{N}=1,000,000,000$ tuples
- Compute (offline) a sample of size $\mathrm{n}=500$

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

- Evaluate the query on the sample $\rightarrow 8$ tuples What is your estimate?

[Babock et al. SIGMOD'2005]

Robust Query Optimization

Traditional optimization:

- Plan 1: use index
- Plan 2: sequential scan
- The choice between 1 and 2 depends on the estimated selectivity
- E.g. for $\mathrm{p}<0.26$ the Plan 1 is better

[Babock et al. SIGMOD'2005]

Robust Query Optimization

The performance/predictability tradeoff:

- Plan 1: use index
- If it is right \rightarrow ©
- If it is wrong \rightarrow (MUST AVOID THIS !!
- Plan 2: sequential scan \rightarrow :

Optimizing performance may result in significant penalty, with some probabililty

[Babock et al. SIGMOD'2005]

Query Plan Cost

Figure 1: Execution Costs for Two Hypothetical Plans

Figure 2: Probability Density Function for Execution Cost

[Babock et al. SIGMOD'2005]

Cumulative Distribution

User chooses confidence level T\%.

$\mathrm{T} \%=50 \% \rightarrow$ plans are chosen by expected cost;
$\mathrm{T} \%=80 \% \rightarrow$ plans chosen by their cost at cumulative prob of 80%

[Babock et al. SIGMOD'2005]

The Probabilistic Database

- R has $\mathrm{N}=1,000,000,000$ tuples
- Compute (offline) a sample X of size $n=500$

SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30

- Evaluate the query on the sample $\rightarrow 8$ tuples
- Thus E[p] $=8 / 500=0.0016$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

- R has $\mathrm{N}=1,000,000,000$ tuples
- Compute (offline) a sample X of size $n=500$
- A fraction $\mathrm{k}=8$ of X satisfy the predicate
- An unknown fraction p of R satisfy the pred.
- Denote $f(z)=$ density function for p :

$$
\operatorname{Pr}[(a \leq p \leq b) \mid X]=\int_{a}^{b} f(z \mid X) d z
$$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

- Bayes' rule:

$$
f(z \mid X)=\frac{\operatorname{Pr}[X \mid p=z] f(z)}{\int_{0}^{1} \operatorname{Pr}[X \mid p=y] f(y) d y}
$$

Next, compute each term (in class)

- What is $\operatorname{Pr}[\mathrm{X} \mid \mathrm{p}=\mathrm{z}]$? Assume $\mathrm{X}=\mathrm{w} /$ replacement
- Whas is "the prior" $\mathrm{f}(\mathrm{z})$?
[Babock et al. SIGMOD'2005]

The Probabilistic Database

$$
f(z \mid X)=\frac{z^{k-1 / 2}(1-z)^{n-k-1 / 2}}{\int_{0}^{1} y^{k-1 / 2}(y-z)^{n-k-1 / 2} d y}
$$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

Figure 4: Sample Size Matters, Prior Doesn't

Summary on Approx. Query Answering

- Will become increasingly relevant in the near future
- A large collection of techniques exists:
- Sketches, samples, statistics, ...
- My thesis: there exists a foundation on probabilistic databases that still has to be discovered
- Lectures 8 , 9: will try to find out together...

