Topics in Probabilistic and Statistical Databases

Lecture 2: Representation of Probabilistic Databases

Dan Suciu
University of Washington

Review: Definition

The set of all possible database instances:

$$
\text { Inst }=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{N}}\right\}
$$

Sample space (Ω)

Definition A probabilistic database PDB $=(\mathbf{I n s t}, \mathrm{Pr})$ is a discrete probability distribution:

$$
\operatorname{Pr}: \text { Inst } \rightarrow[0,1] \quad \text { s.t. } \sum_{\mathrm{i}=1, \mathrm{~N}} \operatorname{Pr}\left(\mathrm{I}_{\mathrm{i}}\right)=1
$$

Definition A possible world is I s.t. $\operatorname{Pr}(\mathrm{I})>0$
A possible tuple is a tuple $\mathrm{t} \in \mathrm{I}$, for a possible world I^{2}

Representation System

Informally: it is a syntax + semantics that allows us to represent a probabilistic database concisely

Definition A representation system for ProbDB is (\mathbf{S}, Rep), where \mathbf{S} is a set of representations and Rep: $\mathbf{S} \boldsymbol{\rightarrow}$ (set of PDBs) assigns a probabilistic database to each representation

Review:
 Disjoint-Independent Databases

Definition A PDB is disjoint-independent if for any set T of possible tuples one of the following holds:

- T is an independent set, or
- T contains two disjoint tuples

A disjoint-independent database can be fully specified by:

- all marginal tuple probabilities
- an indication of which tuples are disjoint or independent

Representations Systems for D/IDatabases

- MystiQ's representation
- Trio's xor-, maybe- tuples
- Attribute-level probabilities

D/I Relations in MystiQ

At the schema level:

- Possible worlds key = set of attributes
- Probability = expression on attributes

Constraint at the instance level:

- For each key value, sum of probabilities ≤ 1

X-Relations in Trio

- Maybe tuple is t ?, meaning it may be missing
- X-tuple is $<\mathrm{t} 1, \mathrm{t} 2, \ldots>$ meaning it may be any of $\mathrm{t} 1, \mathrm{t} 2, \ldots$
- An X-relation is a collection of X-tuples and maybe-tuples

Maybe- and X-tuples in Trio

$\mathrm{S}=$

ID	Saw(witness, car)
11	(Amy, Acura) $: 0.8$
12	(Betty,Acura) $: 0.4$

ID	Drives(person, car)
51	(Hank, Acura) :0.6 ?

$$
\operatorname{Rep}(S)=?
$$

Attribute-level Uncertainty

- For some attribute A, give a probability distribution on possible values
- Note: sum of probabilities must be 1
- More generally, for a set of attributes A1, A2, ... give a probability distribution on possible values
[Barbara'92]

Attribute-Level Uncertainty

$\mathrm{S}=$	TABLE 1 Example Probabilistic Relation		
Key	Independent	Interdependent	Independent
	Deterministic	Stochastic	Stochastic
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES
Jon Smith	Toy	0.4 [Great Yes]	$0.3[\$ 30-34 \mathrm{~K}]$
		0.5 [Good Yes]	$0.7[\$ 35-39 \mathrm{~K}]$
		0.1 [Fair No]	1.0 [Good Yes]

$$
\operatorname{Rep}(S)=?
$$

Review Query Semantics

Semantics 1: Possible Sets of Answers
A probability distributions on sets of tuples

$$
\forall \mathrm{A} \cdot \operatorname{Pr}(\mathrm{Q}=\mathrm{A})=\sum_{\mathrm{I} \in \text { Inst. } \mathrm{Q}(\mathrm{I})=\mathrm{A}} \operatorname{Pr}(\mathrm{I})
$$

Semantics 2: Possible Tuples
A probability function on tuples

$$
\forall \mathrm{t} . \operatorname{Pr}(\mathrm{t} \in \mathrm{Q})=\sum_{\mathrm{I} \in \text { Inst. } \mathrm{t} \in \mathrm{Q}(\mathrm{I})} \operatorname{Pr}(\mathrm{I})
$$

The Representation Problem

- How do we represent correlations between tuples in a probdb?
- How do we represent query answers (views)?

Main Techniques

- Incomplete databases
- Concerned with representing possible worlds, i.e. no probabilities
- Probabilistic Networks
- Concerned with representing correlations, i.e. no databases

Incomplete Databases

[Imilelinski\&Lipsi’1984, Green\&Tannen'2006]

Incomplete Databases

Let Inst $=$ the set of all possible instances over domain D
Definition An incomplete database is a set of possible worlds

$$
\mathbf{I}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots\right\} \subseteq \text { Inst }
$$

Definition A representation system is (\mathbf{S}, Rep) where \mathbf{S} is a set of representations described by some syntax, and:

$$
\text { Rep : } \mathbf{S} \rightarrow 2^{\text {Inst }}
$$

Discussion

- We often denote an incomplete database $\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots\right\}$ with $<\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots>$
- This is called an OR-set: the true state can be any $\mathrm{I} \in<\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots>$

Rule of Thumb \#1

A ProbDB = an Incomplete DB + probabilities

Discussion

- Question: what does $<>$ mean (the empty set of worlds)?

Discussion

- Question: what does $<>$ mean (the empty set of worlds)?
- Answer: inconsistency !
- We do not allow $<>$

Examples

- Every traditional database instance I is also an incomplete database $\mathbf{I}=<\mathrm{I}>$
- The no-information, or zero-information incomplete database is:
$\mathbf{N}=<\mathrm{I} \mid \mathrm{I} \in$ Inst $>$
(in other words: $\mathbf{N}=\mathbf{I n s t}$)

Four Representation Systems

- Codd-tables
- V-tables
- C-tables
- OR-sets

Codd-Tables

$\mathrm{T}=$

SUPPLIER LOCATION PRODUCT QUANTITY

Smith	London	Nails	B
Brown	$@$	Bolts	Nuts
Jones	$@$	40,000	
NULL or \perp			

$$
\operatorname{Rep}(T)=?
$$

V-Tables

$\mathrm{T}=$

C-Tables

$\mathrm{T}=$

SUPPLIER	LOCATION	PRODUCT	con
x	London	Nails	$x=$ Smith
Brown	New York	Nails	$x \neq$ Smith

$$
\operatorname{Rep}(\mathrm{T})=?
$$

Boolean C-Tables: Vars only in Cond

$$
\mathrm{T}=
$$

A	B	Cond
a1	b 1	$(\mathrm{x}=1) \wedge(\mathrm{y}=2) \vee(\mathrm{z}=1)$
a 1	b 2	$\mathrm{x}=2$
a 2	b 2	$\mathrm{z}=1$

We often state explicitly the domain of each variable:
$\operatorname{Dom}(\mathrm{X})=\{1,2\}$
$\operatorname{Dom}(\mathrm{Y})=\{1,2,3\}$
$\operatorname{Dom}(Z)=\{0,1\} \ldots$

$$
\operatorname{Rep}(T)=?
$$

In G\&T's definition all vars are Boolean; minor distinction.

OR-Sets

Review of Nested Relational Algebra NRA:

Types:
 $\mathrm{T}::=$ baseType $|\mathrm{T} \times \mathrm{T}|\{\mathrm{T}\}$
 Operations (in class):...

OR-Sets

Types:

$$
\mathrm{T}::=\text { baseType }|\mathrm{T} \times \mathrm{T}|\{\mathrm{T}\} \mid<\mathrm{T}>
$$

Operations (in class):...

OR-Sets Examples

What are their types? What do they mean?

- $\{[$ Gizmo, $<99,110>]$, [Camera, $<10,12,19>]\}$
- $\{<3,5>,<3,7>,<5,8,12>\}$
- $\{<\{<1,2>,<3>\},\{<4>\}>,<\{<1>\},\{<2,3>,<4>\}>\}$

Discussion

Which concepts from incomplete databases where borrowed by the three simple representation systems for ProbDB ?

- MystiQ's disjoint/independent tables
- Trio's X-tuples
- Attribute level probabilities

Two Important Properties

- Completeness: can a representation system represent all incomplete databases ?
- Closure: can the result of a query also be represented in the same system ?

Closure and Completeness

Definition A representation system is complete if for any incomplete database \mathbf{I} there exists a representation S s.t. $\operatorname{Rep}(S)=\mathbf{I}$.

Which Are Complete? Why ?

- Codd-Tables ?
- V-Tables?
- C-Tables ?
- OR-Sets ?

Which Are Complete ? Why ?

- Codd-Tables ? NO: constant cardinality
- V-Tables ? NO: constant cardinality
- C-Tables? YES
- OR-Sets? YES

Closure

Definition A representation system is closed w.r.t. a query language Q , if for every representation S and query q in Q , there exists S^{\prime} s.t. $\operatorname{Rep}\left(S^{\prime}\right)=q(\operatorname{Rep}(S)$

Which Are Closed w.r.t. RA ?

- Codd-Tables ?
- V-Tables?
- C-Tables ?
- OR-Sets ?

Which Are Closed w.r.t. RA ?

- Codd-Tables? NO - in class
- V-Tables? NO - in class
- C-Tables ? YES - in class
- OR-Sets ? YES - in class

Completeness $\boldsymbol{\rightarrow}$ Closure

- Fact: every complete system is closed w.r.t. the Relational Algebra
- Why?

Completeness \leftarrow Closure ?

- Challenge: give an example of a system that is closed w.r.t. Relational Algebra but is not complete!

Completeness \leftarrow Closure ?

Consider a representation system \mathbf{S} s.t.

- S can represent any deterministic instance $<\mathrm{I}>$
- S can represent $<\{0\},\{1\}>$
- \mathbf{S} is closed under $\{\Pi, \times, \sigma\}$

Then \mathbf{S} is complete

PROOF: in class

Lineage

- Lineage $=$ a Boolean expression annotating a tuple that explains why the tuple is there
- Technically: lineage $=$ condition in a Boolean C-table
- A.k.a provenance

[Benjelloun, VLDBJ'2008]

Example

Start from Trio's X-relations:

```
ID 
X1 <[Amy, Mazda], [Amy, Toyota]> ?
X2 <[Betty, Honda]>
```

ID	Drives(Person, Car)
Y1	$<$ [Jimmy, Mazda], [Jimmy, Toyota] $>$
Y2	$<$ [Billy, Mazda], [Billy, Honda] $>$

[Benjelloun, VLDBJ’2008]

Example

Convert to Boolean C-Tables

Saw

Witness	Car	Cond
Amy	Mazda	$\mathrm{X} 1=1$
Amy	Toyota	$\mathrm{X} 1=2$
Betty	Honda	$\mathrm{X} 2=1$

Person	Car	Cond
Jimmy	Mazda	$\mathrm{Y} 1=1$
Jimmy	Toyota	$\mathrm{Y} 1=2$
Billy	Mazda	$\mathrm{Y} 2=1$
Billy	Honda	$\mathrm{Y} 2=2$

Q: How do we say
"Amy is a maybe tuple",
"Betty is a certain tuple"?
Drives

Example

Answer:
$\operatorname{Dom}(\mathrm{X} 1)=\{0,1,2\}$
$\operatorname{Dom}(\mathrm{X} 2)=\{1\}$
$\operatorname{Dom}(\mathrm{Y} 1)=\{1,2\}$
$\operatorname{Dom}(\mathrm{Y} 2)=\{1,2\}$

[Benjelloun, VLDBJ’2008]

Example

Compute the query $q(w, p):-\operatorname{Saw}(w, c), \operatorname{Drives}(c, p)$

Saw

Witness	Car	Cond
Amy	Mazda	$\mathrm{X} 1=1$
Amy	Toyota	$\mathrm{X} 1=2$
Betty	Honda	$\mathrm{X} 2=1$

Drives

Person	Car	Cond
Jimmy	Mazda	$\mathrm{Y} 1=1$
Jimmy	Toyota	$\mathrm{Y} 1=2$
Billy	Mazda	$\mathrm{Y} 2=1$
Billy	Honda	$\mathrm{Y} 2=2$

Witness	Person	Cond
Amy	Jimmy	$\mathrm{X} 1=1 \wedge \mathrm{Y} 1=1 \vee \mathrm{X} 1=2 \wedge \mathrm{Y} 1=2$
Betty	Billy	$\mathrm{X} 2=1 \wedge \mathrm{Y} 2=2$

Uniform Lineage

Call a lineage expression uniform if:

- It is in DNF
- All conjuncts have the same number k of literals
- Each literal is of the form $\mathrm{X}=\mathrm{v}$

Representation of uniform lineage: add 2 k columns!

Example

Compute the query $q(w, p):-\operatorname{Saw}(w, c), \operatorname{Drives}(c, p)$

Saw

Witness	Car	X	V
Amy	Mazda	X1	1
Amy	Toyota	X1	2
Betty	Honda	X2	1

Drives

Person	Car	Y	\mathbf{W}
Jimmy	Mazda	Y1	1
Jimmy	Toyota	Y1	2
Billy	Mazda	Y2	1
Billy	Honda	Y2	2

Witness	Person	\mathbf{X}	\mathbf{V}	\mathbf{Y}	\mathbf{w}		
Amy	Jimmy	X 1	1	Y 1	1		
Amy	Jimmy	X 1	2	Y 1	2		
Betty	Billy	X 2	1	Y 2	2	\quad	$\mathrm{X} 1=1$ ^Y1=1 V
---:							
$\mathrm{X} 1=2$ ^Y1=2							

Summary of Incomplete DBs

- Main goal: specify a set of possible worlds
- Very relevant to ProbDBs !
- Key concepts: closure and completeness
- Turn out to be equivalent, except trivial cases
- Boolean C-tables closed\&complete; others not
- Lineage: important tool in ProbDB, is derived from C-tables
- Some open questions next. Want to tell \& show? \rightarrow Email by Wed.

Open Questions in Incomplete/ Probabilistic Databases

- Variables
- OWA v.s. CWA
- Certain tuples, possible tuples
- Partial information order
- Strong v.s. weak representation systems

Homework: pick one and apply to probdbs. Tell us next time your thoughts

Variables as Attribute Values

$$
\mathrm{T}=\begin{array}{|l|l|}
\hline \mathbf{A} & \mathbf{B} \\
\hline \perp & \mathrm{b} 1 \\
\hline \mathrm{a} 2 & \mathrm{~b} 1 \\
\hline
\end{array}
$$

$$
\operatorname{Rep}(T)=
$$

A large, or infinite set

ProbDBs don't use variables as attribute values

What if we allow ProbDBs to have variables?

OWA v.s. CWA

- CWA: if $R(a, b, c)$ is not mentioned in the knowledge/data base, then $\neg \mathrm{R}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is assumed
- OWA: $\neg \mathrm{R}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is inferred only if it is explicitly stated in the knowledge/data base Which one is standard semantics in DB? And in KR ?

OWA v.s. CWA in Incomplete DB

$\mathrm{T}=$| \mathbf{A} | \mathbf{B} |
| :---: | :---: |
| \perp | b 1 |
| a 2 | b 1 |

CWA: $\operatorname{Rep}(\mathrm{T})=$

A	\mathbf{B}
a1	b 1
a 2	b 1

A	\mathbf{B}
a1	b 1

A	\mathbf{B}
a3	b1
a2	b1

A	\mathbf{B}
a4	b 1
a 2	b 1

OWA: $\operatorname{Rep}(T)=$

A	\mathbf{B}	\mathbf{A}	\mathbf{B}
a 1	b 1	a 1	b 1
a 2	b 1	a 2	b 1

What would OWA mean for ProbDBs?

Certain v.s. Possible Tuples

Consider an incomplete database $\quad \mathbf{I}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots\right\}$

Definition The certain tuples $\square \mathbf{I}=I_{1} \cap I_{2} \cap I_{3} \cap \ldots$
Definition The possible tuples $\diamond \mathbf{I}=I_{1} \cup I_{2} \cup I_{3} \cup \ldots$

What do certain/possible tuples correspond to in ProbDB?

Certain v.s. Possible Tuples

- Two incomplete databases I, J are equivalent if $\square \mathbf{I}=\square \mathbf{J}$
- Two incomplete databases I, J are equivalent w.r.t. a query language Q if forall q in $\mathrm{Q}, \square \mathrm{q}(\mathbf{I})=\square \mathrm{q}(\mathbf{J})$
- These notions are used to define "weak representation systems" (see [AHV])..

Are there similar notions of equivalences between ProbDBs?

Partial Information Order

Let (D, \leq) be an ordered set.
Consider two sets $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$.
When can we say $\mathrm{A} \leq \mathrm{B}$?

Definition [Smythe or upper] A \leq B if $\forall b_{j} \exists a_{i}: a_{i} \leq b_{j}$

Definition [Hoare or lower] $A \leq{ }^{b} B$ if $\forall a_{i} \exists b_{j}: a_{i} \leq b_{j}$
Definition [Plotkin or convex] $\mathrm{A} \leq{ }^{\natural} \mathrm{B}$ if $\mathrm{A} \leq \neq \mathrm{B}$ and $\mathrm{A} \leq^{\mathrm{b}} \mathrm{B}$

Partial Information Order

Let's order OR-sets

- Values of base type: $\mathrm{a} \leq \mathrm{a}$ and $\perp \leq \mathrm{a}$
- Records: $[\mathrm{x}, \mathrm{y}] \leq[\mathrm{u}, \mathrm{v}]$ when ?
- OR-sets $<\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3>\leq<\mathrm{b} 1, \mathrm{~b} 2>$ when ?
- Sets: $\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\} \leq\{\mathrm{b} 1, \mathrm{~b} 2\}$ when ?

Partial Information Order

Let's order OR-sets

- Values of base type: $\mathrm{a} \leq \mathrm{a}$ and $\perp \leq \mathrm{a}$
- Records: $[\mathrm{x}, \mathrm{y}] \leq[\mathrm{u}, \mathrm{v}]$ when ?
- When $x \leq u$ and $y \leq v$
- OR-sets $<\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3>\leq<\mathrm{b} 1, \mathrm{~b} 2>$ when ?
- Smythe
- Sets: $\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\} \leq\{\mathrm{b} 1, \mathrm{~b} 2\}$ when ?
- Hoare (for OWA), or equality (for CWA)

Partial Information Order

What is the partial information order on ProbDBs ?

Probabilistic Networks

Probabilistic Models

Problem setting:

- Given m random variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$
- Each with domain D (same for all V_{i})
- A probability space over $\mathrm{D}^{\mathrm{m}}: \operatorname{Pr}: \mathrm{D}^{\mathrm{m}} \rightarrow[0,1]$, st $\sum_{\mathrm{v} 1, \ldots, \mathrm{vm} \text { in } \mathrm{D}} \operatorname{Pr}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)=1$
- Called the joint probability distribution

Problem: give a compact representation of Pr

Example

V1	V2	P
1	1	0.06
1	2	0.14
2	1	0.24
2	2	0.56

Here $\mathrm{m}=2$, but in general m is large, need compact rep.

Background

- Marginal probability:

$$
\operatorname{Pr}\left(\mathrm{V}_{\mathrm{i}}=\mathrm{a}\right)=\sum_{\mathrm{v} 1, \ldots, \mathrm{vm} \text { in } \mathrm{D}, \mathrm{vi}=\mathrm{a}} \operatorname{Pr}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)
$$

- What does this mean $? \operatorname{Pr}\left(\mathrm{~V}_{\mathrm{i}}\right), \operatorname{Pr}\left(\mathrm{V}_{\mathrm{i}} \mathrm{V}_{\mathrm{j}}\right)$
- Conditional prob: $\quad \operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{EF}) / \operatorname{Pr}(\mathrm{F})$
- Independence: $\operatorname{Pr}(\mathrm{EF})=\operatorname{Pr}(\mathrm{E}) * \operatorname{Pr}(\mathrm{~F})$ Equivalently: $\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{E})$
- Conditional indep: $\operatorname{Pr}(\mathrm{E}, \mathrm{F} \mid \mathrm{G})=\operatorname{Pr}(\mathrm{E} \mid \mathrm{G}) * \operatorname{Pr}\left(\mathrm{~F}_{62} \mathrm{G}\right)$

Independence

V1	V2	\mathbf{P}
1	1	0.06
1	2	0.14
2	1	0.24
2	2	0.56

V1	\mathbf{P}
1	0.2
2	0.8

V2	\mathbf{P}
1	0.3
2	0.7

Marginal probabilities

Are $\mathrm{V} 1, \mathrm{~V} 2$ independent, i.e. $\operatorname{Pr}(\mathrm{V} 1, \mathrm{~V} 2)=\operatorname{Pr}(\mathrm{V} 1) * \operatorname{Pr}(\mathrm{~V} 2)$? Note: need to check 4 equalities (why ?)

Factored Representation

More general: if $\mathrm{P}(\mathrm{V} 1=\mathrm{a}, \mathrm{V} 2=\mathrm{b})=\mathrm{p}(\mathrm{a}) * \mathrm{q}(\mathrm{b})$ forall a, b then $\mathrm{V} 1, \mathrm{~V} 2$ are independent

V1	$\mathbf{V 2}$	\mathbf{P}			
a_{1}	$\mathrm{~b}_{1}$	$\mathrm{p}_{1} \mathrm{q}_{1}$			
a_{1}	$\mathrm{~b}_{2}$	$\mathrm{p}_{1} \mathrm{q}_{2}$			
a_{2}	$\mathrm{~b}_{1}$	$\mathrm{p}_{2} \mathrm{q}_{1}$			
a_{2}	$\mathrm{~b}_{2}$	$\mathrm{p}_{2} \mathrm{q}_{2}$			
\ldots	\ldots		$=$	$\mathbf{V 1}$	\mathbf{P}
:---	:---	:---	:---		
a_{1}	p_{1}				
a_{2}	p_{2}				
\ldots		\times	$\mathbf{V 2}$	\mathbf{P}	
:---	:---	:---			
b_{1}	q_{1}				
$\mathrm{~b}_{2}$	q_{2}				
\ldots		\quad	Factors		
:---					

$1^{\text {st }}$ Connection to ProbDBs: Variable \rightarrow Attribute

- Every joint distribution over variables V_{1}, $\ldots, \mathrm{V}_{\mathrm{m}}$ corresponds to a trivial probabilistic table with attributes $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$
- What's "trivial" about it?

$1^{\text {st }}$ Connection to ProbDBs: Variable \leftarrow Attribute

- Conversely: each block in a disjoint/ independent relation defines a joint distribution on the values of its attribute

Object	Time	Person	P
LaptopX77	$9: 07$	John	0.5
		Jim	0.5
Book302	$9: 18$	Mary	0.2
		John	0.4
		0.4	

Independence

TABLE 1
Example Probabilistic Relation

Key	Independent	Interdependent	Independent
	Deterministic	Stochastic	Stochastic
EMPLOYEE	DEPARTMENT	OUALITY BONUS	SALES
Jon Smith	Toy	0.4 [Great Yes]	$0.3[\$ 30-34 \mathrm{~K}]$
		0.5 [Good Yes]	$0.7[\$ 35-39 \mathrm{~K}]$
		$1.0[$ Good Yes]	$0.5[\$ 20-24 \mathrm{~K}]$
			$0.5[\$ 25-29 \mathrm{~K}]$

Independence

Employee	Department	Quality	Bonus	Sales	\mathbf{P}
John Smith	Toy	Great	Yes	$30 \mathrm{k}-34 \mathrm{k}$	$0.4^{*} 0.3$
John Smith	Toy	Good	Yes	$30 \mathrm{k}-34 \mathrm{k}$	$0.5 * 0.3$
John Smith	Toy	Fair	No	$30 \mathrm{k}-34 \mathrm{k}$	$0.1 * 0.3$
John Smith	Toy	Great	Yes	$35 \mathrm{k}-39 \mathrm{k}$	$0.4^{*} 0.7$
John Smith	Toy	Good	Yes	$35 \mathrm{k}-39 \mathrm{k}$	$0.5 * 0.7$
John Smith	Toy	Fair	No	$35 \mathrm{k}-39 \mathrm{k}$	$0.1 * 0.7$
Fre Jones	Houseware	Good	Yes	$20 \mathrm{k}-24 \mathrm{k}$	0.5
Fre Jones	Houseware	Good	Yes	$24 \mathrm{k}-29 \mathrm{k}$	0.5

Independence

Factors are disjoint/indep. Tables !

Employee	Department	Quality	Bonus	P
John Smith	Toy	Great	Yes	0.4
John Smith	Toy	Good	Yes	0.5
John Smith	Toy	Fair	No	0.1
Fre Jones	Houseware	Good	Yes	1

Employee	Department	Sales	\mathbf{P}
John Smith	Toy	$30 \mathrm{k}-34 \mathrm{k}$	0.3
John Smith	Toy	$35 \mathrm{k}-39 \mathrm{k}$	0.7
Fre Jones	Houseware	$20 \mathrm{k}-24 \mathrm{k}$	0.5
Fre Jones	Houseware	$24 \mathrm{k}-29 \mathrm{k}$	0.5

Rule of Thumb \#2

Correlated table $=$ Independent tables + join

Same principle as in traditional schema normalization

- Decompose big table into small tables with independent attributes
- Big table = a view (single join !) over the small tables

Database 101

- Assume that (Quality, Bonus) is independent from (Sales)
- Drop the \mathbf{P} column \rightarrow a traditional table (no more probabilities)
Question What 'functional dependency' holds in this table?

Database 101

- Assume that (Quality, Bonus) is independent from (Sales)
- Drop the \mathbf{P} column \rightarrow a traditional table (no more probabilities)
Question What 'functional dependency' holds in this table?

A Multivalued FD !:
Emp, Dept \rightarrow Quality, Bonus Sales

Rule of Thumb \#3

Factor decomposition $=$ MVD decomposition + probability identities

Conditional Independence

V1	V2	W	\mathbf{P}
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	a	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

Are V1, V2 independent given W , i.e.
$\operatorname{Pr}(\mathrm{V} 1, \mathrm{~V} 2 \mid \mathrm{W})=\operatorname{Pr}(\mathrm{V} 1 \mid \mathrm{W}) * \operatorname{Pr}(\mathrm{~V} 2 \mid \mathrm{W})$?

Conditional Independence

V1	V2	W	P
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	a	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

$$
\mathrm{P}(\mathrm{~W}=\mathrm{a})=0.5 ; \mathrm{P}(--\mid \mathrm{W}=\mathrm{a}):
$$

V1	V2	\mathbf{P}
1	1	0.06
1	2	0.14
2	1	0.24
2	2	0.56

$\mathrm{P}(\mathrm{W}=\mathrm{b})=0.5 ; \mathrm{P}(--\mid \mathrm{W}=\mathrm{b})$:

V1	V2	\mathbf{P}
1	1	0.25
1	2	0.25
2	1	0.25
2	2	$0.25 \quad 75$

They: they are conditional independent

Conditional Independence

V1	V2	\mathbf{W}	\mathbf{P}
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	a	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

$=$| \mathbf{W} | \mathbf{P} |
| :--- | :--- |
| a | 0.5 |
| b | 0.5 |

V1	$\underline{\mathbf{W}}$	\mathbf{P}				
1	a	0.2				
2	a	0.8				
1	b	0.5				
2	b	0.5	\diamond	$\mathbf{V 2}$	$\underline{\mathbf{W}}$	\mathbf{P}
:---	:---	:---				
1	a	0.3				
2	a	0.7				
1	b	0.5				
2	b	0.5				

Representing Conditional Independent Vars

More general: if $\mathrm{P}(\mathrm{V} 1=\mathrm{a}, \mathrm{V} 2=\mathrm{b}, \mathrm{W}=\mathrm{c})=\mathrm{p}(\mathrm{a}, \mathrm{c}) * \mathrm{q}(\mathrm{b}, \mathrm{c})$ forall $\mathrm{a}, \mathrm{b}, \mathrm{c}$ then $\mathrm{V} 1, \mathrm{~V} 2$ are independent given c

V1	$\mathbf{V 2}$	\mathbf{W}	\mathbf{P}
a_{1}	$\mathrm{~b}_{1}$	c_{1}	$\mathrm{p}_{11} \mathrm{q}_{11}$
a_{1}	$\mathrm{~b}_{2}$	c_{1}	$\mathrm{p}_{11} \mathrm{q}_{21}$
a_{2}	$\mathrm{~b}_{1}$	c_{1}	$\mathrm{p}_{21} \mathrm{q}_{11}$
a_{2}	$\mathrm{~b}_{2}$	c_{1}	$\mathrm{p}_{21} \mathrm{q}_{21}$
\ldots	\ldots	c_{2}	$\mathrm{P}_{12} \mathrm{q}_{12}$
\ldots	\ldots		

$\mathbf{V} 2$	$\underline{\mathbf{W}}$	\mathbf{P}
$\mathrm{~b}_{1}$	c_{1}	$\mathrm{q}_{11} / \mathrm{Q}_{1}$
$\mathrm{~b}_{2}$	c_{1}	$\mathrm{q}_{21} / \mathrm{Q}_{1}$
\ldots	c_{2}	$\mathrm{q}_{12} / \mathrm{Q}_{2}$
\ldots		

Summary of Prob Networks

- $($ Conditional $)$ indep. $=$ MVDs + prob ident.
- Factored decomposition $=$ base tables + joins
- Next time:
- Discuss the networks in probabilistic networks; WSdecomposition, U-relations
- Partial/approximate representations
- Begin query evaluation
- Send email by Wed. if want to show\&tell

