Topics in Probabilistic and Statistical Databases

Lecture 2: Representation of Probabilistic Databases

Dan Suciu University of Washington

Review: Definition

The set of all possible database instances:

Inst = {
$$I_1, I_2, I_3, ..., I_N$$
}

Definition A *probabilistic database* PDB = (**Inst**, Pr) is a discrete probability distribution:

$$Pr: Inst \to [0,1] \qquad s.t. \sum_{i=1,N} Pr(I_i) = 1$$

Definition A *possible world* is I s.t. Pr(I) > 0A *possible tuple* is a tuple $t \in I$, for a possible world I ²

Representation System

Informally: it is a syntax + semantics that allows us to represent a probabilistic database concisely

Definition A representation system for ProbDB is (S,Rep), where S is a set of representations and Rep: $S \rightarrow$ (set of PDBs) assigns a probabilistic database to each representation

Review: Disjoint-Independent Databases

Definition A **PDB** is disjoint-independent if for any set T of possible tuples one of the following holds:

- T is an independent set, or
- T contains two disjoint tuples

A disjoint-independent database can be fully specified by:

- all marginal tuple probabilities
- an indication of which tuples are disjoint or independent

Representations Systems for D/I-Databases

- MystiQ's representation
- Trio's xor-, maybe- tuples
- Attribute-level probabilities

D/I Relations in MystiQ

At the schema level:

- Possible worlds key = set of attributes
- Probability = expression on attributes

Constraint at the instance level:

• For each key value, sum of probabilities ≤ 1

_		
	Possible worlds key = ?	
	Attribute expression = ?	
	Constraint = ?	

S =

<u>Object</u>	<u>Time</u>	Person	Р
LaptopX77	9:07	John	p ₁
LaptopX77	9:07	Jim	p ₂
Book302	9:18	Mary	р ₃
Book302	9:18	John	p ₄
Book302	9:18	Fred	p ₅

7

X-Relations in Trio

- Maybe tuple is t?, meaning it may be missing
- X-tuple is <t1, t2, ...> meaning it may be any of t1, t2, ...
- An X-relation is a collection of X-tuples and maybe-tuples

Maybe- and X-tuples in Trio

ID	Saw(with	ess, car)]
11	(Amy,Acura):0.8		
12	(Betty,Acura):0.4	(Betty, Mazda):0.6	1

$$\operatorname{Rep}(S) = ?$$

S =

Attribute-level Uncertainty

• For some attribute A, give a probability distribution on possible values

– Note: sum of probabilities must be 1

• More generally, for a set of attributes A1, A2, ... give a probability distribution on possible values

S =

Attribute-Level Uncertainty

	TABLE 1	
EXAMPLE	PROBABILISTIC	RELATION

Van	Independent	Interdependent	Independent
Ney	Deterministic	Stochastic	Stochastic
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES
Jon Smith	Тоу	0.4 [Great Yes] 0.5 [Good Yes] 0.1 [Fair No]	0.3 [\$30–34K] 0.7 [\$35–39K]
Fre Jones	Houseware	1.0 [Good Yes]	0.5 [\$20-24K] 0.5 [\$25-29K]

Review Query Semantics

Semantics 1: Possible Sets of Answers

A probability distributions on sets of tuples

$$\forall A. Pr(Q = A) = \sum_{I \in Inst. Q(I) = A} Pr(I)$$

Semantics 2: Possible Tuples A probability function on *tuples*

$$\forall t. Pr(t \in Q) = \sum_{I \in Inst. t \in Q(I)} Pr(I)$$

The Representation Problem

- How do we represent correlations between tuples in a probdb ?
- How do we represent query answers (views)?

Main Techniques

• Incomplete databases

Concerned with representing *possible worlds*,
i.e. no probabilities

- Probabilistic Networks
 - Concerned with representing *correlations*, i.e. no databases

Incomplete Databases

[Imilelinski&Lipsi'1984, Green&Tannen'2006]

Incomplete Databases

Let **Inst** = the set of all possible instances over domain D

Definition An incomplete database is a set of possible worlds

$$\mathbf{I} = \{\mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_3, \ldots\} \subseteq \mathbf{Inst}$$

Definition A representation system is (**S**, Rep) where **S** is a set of representations described by some syntax, and:

$$\operatorname{Rep}: \mathbf{S} \to 2^{\operatorname{Inst}}$$

Discussion

- We often denote an incomplete database $\{I_1, I_2, ...\}$ with $\langle I_1, I_2, ... \rangle$
- This is called an OR-set: the true state can be any I ∈<I₁, I₂, ...>

Rule of Thumb #1

A ProbDB = an Incomplete DB + probabilities

Discussion

• Question: what does <> mean (the *empty* set of worlds) ?

Discussion

- Question: what does <> mean (the *empty* set of worlds) ?
- Answer: inconsistency !

- We do not allow <>

Examples

- Every traditional database instance I is also an incomplete database **I** = <I>
- The *no-information*, or *zero-information* incomplete database is: N = < I | I ∈ Inst> (in other words: N = Inst)

Four Representation Systems

- Codd-tables
- V-tables
- C-tables
- OR-sets

Codd-Tables

T =

SUPPLIER	LOCATION	PRODUCT	QUANTITY	
Smith	London	Nails	0	
Brown	0	Bolts	@	
Jones	@	Nuts	40,000	
NULL or \bot				
Rep(T) = c	?			

V-Tables

C-Tables

T =

$$\operatorname{Rep}(T) = ?$$

Boolean C-Tables: Vars only in Cond T =

OR-Sets

Review of Nested Relational Algebra NRA:

OR-Sets

Types:

$T ::= baseType | T \times T | \{T\} | < T >$

Operations (in class):...

OR-Sets Examples

What are their types ? What do they mean ?

- {[Gizmo, <99,110>], [Camera, <10,12,19>]}
- {<3,5>,<3,7>,<5,8,12>}
- {<{<1,2>,<3>},{<4>}>,{<1>},{<2,3>,<4>}>}

Discussion

Which concepts from incomplete databases where borrowed by the three simple representation systems for ProbDB ?

- MystiQ's disjoint/independent tables
- Trio's X-tuples
- Attribute level probabilities

Two Important Properties

- Completeness: can a representation system represent *all* incomplete databases ?
- Closure: can the result of a query also be represented in the same system ?

Closure and Completeness

Assume the domain D is finite

Definition A representation system is complete if for any incomplete database I there exists a representation S s.t. Rep(S) = I.

Which Are Complete ? Why ?

- Codd-Tables ?
- V-Tables ?
- C-Tables ?
- OR-Sets ?

Which Are Complete ? Why ?

- Codd-Tables ? NO: constant cardinality
- V-Tables ? NO: constant cardinality
- C-Tables ? YES
- OR-Sets ? YES

Closure

Definition A representation system is closed w.r.t. a query language Q, if for every representation S and query q in Q, there exists S' s.t. Rep(S') = q(Rep(S))

Which Are Closed w.r.t. RA?

- Codd-Tables ?
- V-Tables ?
- C-Tables ?
- OR-Sets ?
Which Are Closed w.r.t. RA?

- Codd-Tables ? NO in class
- V-Tables ? NO in class
- C-Tables ? YES in class
- OR-Sets ? YES in class

Completeness → Closure

• Fact: every complete system is closed w.r.t. the Relational Algebra

- Why ?

Completeness Closure ?

• Challenge: give an example of a system that is closed w.r.t. Relational Algebra but is not complete !

Completeness Closure ?

Consider a representation system S s.t.

- S can represent any deterministic instance <I>
- S can represent <{0}, {1}>
- S is closed under $\{\Pi, X, \sigma\}$

Then S is complete

PROOF: in class

Lineage

- Lineage = a Boolean expression annotating a tuple that explains why the tuple is there
- Technically: lineage = condition in a Boolean C-table
- A.k.a provenance

[Benjelloun, VLDBJ'2008]

Example

Start from Trio's X-relations:

ID	Saw(Witness, Car)		
X1	<[Amy, Mazda], [Amy, Toyota]>?		
X2	<[Betty, Honda]>		

ID	Drives(Person, Car)		
Y1	<[Jimmy, Mazda], [Jimmy, Toyota]>		
Y2	<[Billy, Mazda], [Billy, Honda]>		

[Benjelloun, VLDBJ'2008]

Example

Drives

Convert to Boolean C-Tables

Saw

Witness	Car	Cond
Amy	Mazda	X1=1
Amy	Toyota	X1=2
Betty	Honda	X2=1

Person	Car	Cond
Jimmy	Mazda	Y1=1
Jimmy	Toyota	Y1=2
Billy	Mazda	Y2=1
Billy	Honda	Y2=2

Q: How do we say "Amy is a maybe tuple", "Betty is a certain tuple"?

Example

Answer:

Dom(X1) = $\{0,1,2\}$ Dom(X2) = $\{1\}$ Dom(Y1) = $\{1,2\}$ Dom(Y2) = $\{1,2\}$ [Benjelloun, VLDBJ'2008]

Example

Compute the query q(w,p) :- Saw(w,c),Drives(c,p) Drives

Saw

Witness	Car	Cond
Amy	Mazda	X1=1
Amy	Toyota	X1=2
Betty	Honda	X2=1

Person	Car	Cond
Jimmy	Mazda	Y1=1
Jimmy	Toyota	Y1=2
Billy	Mazda	Y2=1
Billy	Honda	Y2=2

Witness	Person	Cond
Amy	Jimmy	$X1=1 \land Y1=1 \lor X1=2 \land Y1=2$
Betty	Billy	X2=1∧Y2=2

Uniform Lineage

Call a lineage expression *uniform* if:

- It is in DNF
- All conjuncts have the same number k of literals
- Each literal is of the form X=v

Representation of uniform lineage: add 2k columns !

Example

Compute the query q(w,p) :- Saw(w,c),Drives(c,p) Drives

Saw

Witness	Car	X	V
Amy	Mazda	X1	1
Amy	Toyota	X1	2
Betty	Honda	X2	1

Person	Car	Y	W
Jimmy	Mazda	Y1	1
Jimmy	Toyota	Y1	2
Billy	Mazda	Y2	1
Billy	Honda	Y2	2

Witness	Person	X	V	Y	W
Amy	Jimmy	X1	1	Y1	1
Amy	Jimmy	X1	2	Y1	2
Betty	Billy	X2	1	Y2	2

Summary of Incomplete DBs

- Main goal: specify a set of possible worlds
 Very relevant to ProbDBs !
- Key concepts: closure and completeness
 - Turn out to be equivalent, except trivial cases
 - Boolean C-tables closed&complete; others not
- Lineage: important tool in ProbDB, is derived from C-tables
- Some open questions next..<

Want to tell & show? → Email by Wed.

Open Questions in Incomplete/ Probabilistic Databases

- Variables
- OWA v.s. CWA
- Certain tuples, possible tuples
- Partial information order
- Strong v.s. weak representation systems

Homework: pick one and apply to probdbs. Tell us next time your thoughts

Variables as Attribute Values

ProbDBs don't use variables as attribute values

What if we allow ProbDBs to have variables?

OWA v.s. CWA

- CWA: if R(a,b,c) is not mentioned in the knowledge/data base, then ¬R(a,b,c) is assumed
- OWA: ¬R(a,b,c) is inferred only if it is explicitly stated in the knowledge/data base

Which one is standard semantics in DB? And in KR?

Certain v.s. Possible Tuples

Consider an incomplete database

$$\mathbf{I} = \{I_1, I_2, I_3, \ldots\}$$

Definition The <u>certain tuples</u> $\Box \mathbf{I} = \mathbf{I}_1 \cap \mathbf{I}_2 \cap \mathbf{I}_3 \cap \dots$

Definition The <u>possible tuples</u> $\diamond \mathbf{I} = \mathbf{I}_1 \cup \mathbf{I}_2 \cup \mathbf{I}_3 \cup \dots$

What do certain/possible tuples correspond to in ProbDB?

Certain v.s. Possible Tuples

- Two incomplete databases **I**, **J** are <u>equivalent</u> if $\Box \mathbf{I} = \Box \mathbf{J}$
- Two incomplete databases **I**, **J** are <u>equivalent w.r.t. a query language Q</u> if forall q in Q, $\Box q(\mathbf{I}) = \Box q(\mathbf{J})$
- These notions are used to define "weak representation systems" (see [AHV])..

Are there similar notions of equivalences between ProbDBs?

Let (D, \leq) be an ordered set. Consider two sets A= $\{a_1, \dots, a_m\}$, B= $\{b_1, \dots, b_n\}$. When can we say A \leq B ?

Definition [Smythe or upper] $A \leq^{\sharp} B$ if $\forall b_i \exists a_i: a_i \leq b_i$

Definition [Hoare or lower] $A \leq b B$ if $\forall a_i \exists b_i : a_i \leq b_i$

Definition [Plotkin or convex] $A \leq^{\natural} B$ if $A \leq^{\sharp} B$ and $A \leq^{\flat} B$

Let's order OR-sets

- Values of base type: $a \le a$ and $\bot \le a$
- Records: $[x,y] \le [u,v]$ when ?
- OR-sets $< a_{1,a_{2,a_{3}}} \le < b_{1,b_{2}} \le$ when ?
- Sets: $\{a1,a2,a3\} \le \{b1, b2\}$ when ?

Let's order OR-sets

- Values of base type: $a \le a$ and $\bot \le a$
- Records: $[x,y] \le [u,v]$ when ? - When $x \le u$ and $y \le v$
- OR-sets <a1,a2,a3> ≤ <b1,b2> when ?
 − Smythe
- Sets: $\{a1,a2,a3\} \le \{b1,b2\}$ when ?
 - Hoare (for OWA), or equality (for CWA)

What is the partial information order on ProbDBs?

Probabilistic Networks

Probabilistic Models

Problem setting:

- Given m random variables V₁, ..., V_m
- Each with domain D (same for all V_i)
- A probability space over D^m : Pr: $D^m \rightarrow [0,1]$, st $\sum_{v_1,...,v_m \text{ in } D} Pr(v_1,...,v_m) = 1$
- Called the *joint probability distribution* Problem: give a compact representation of Pr

Example

Here m=2, but in general m is large, need compact rep.

Background

• Marginal probability:

 $Pr(V_i = a) = \sum_{v_1,...,v_m \text{ in } D, v_i = a} Pr(v_1,...,v_m)$

- What does this mean ? $Pr(V_i)$, $Pr(V_iV_j)$
- Conditional prob: Pr(E | F) = Pr(EF)/Pr(F)
- Independence: Pr(EF) = Pr(E) * Pr(F)
 Equivalently: Pr(E | F) = Pr(E)
- Conditional indep: Pr(E,F | G) = Pr(E|G)*Pr(F|G)

V1	V2	Р
1	1	0.06
1	2	0.14
2	1	0.24
2	2	0.56

V1	Р
1	0.2
2	0.8

V2	Р
1	0.3
2	0.7

Marginal probabilities

Are V1, V2 independent, i.e. Pr(V1,V2) = Pr(V1)*Pr(V2)? Note: need to check 4 equalities (why ?)

Factored Representation

More general: if P(V1=a,V2=b) = p(a) * q(b) for all a,b then V1, V2 are independent

64

1st Connection to ProbDBs: Variable → Attribute

 Every joint distribution over variables V₁, ..., V_m corresponds to a trivial probabilistic table with attributes V₁, ..., V_m

– What's "trivial" about it?

1st Connection to ProbDBs: Variable ← Attribute

• Conversely: each block in a disjoint/ independent relation defines a joint distribution on the values of its attribute

<u>Object</u>	<u>Time</u>	Person	Р
LaptopX77	9:07	John	0.5
		Jim	0.5
	9:18	Mary	0.2
Book302		John	0.4
		Fred	0.4

TABLE I EXAMPLE PROBABILISTIC RELATION

Van	Independent	Interdependent	Independent Stochastic	
Ney	Deterministic	Stochastic		
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES	
Jon Smith	Тоу	0.4 [Great Yes] 0.5 [Good Yes] 0.1 [Fair No]	0.3 [\$30–34K] 0.7 [\$35–39K]	
Fre Jones	Houseware	1.0 [Good Yes]	0.5 [\$20-24K] 0.5 [\$25-29K]	

Employee	<u>Department</u>	Quality	Bonus	Sales	Р
John Smith	Тоу	Great	Yes	30k-34k	0.4*0.3
John Smith	Тоу	Good	Yes	30k-34k	0.5*0.3
John Smith	Тоу	Fair	No	30k-34k	0.1*0.3
John Smith	Тоу	Great	Yes	35k-39k	0.4*0.7
John Smith	Тоу	Good	Yes	35k-39k	0.5*0.7
John Smith	Тоу	Fair	No	35k-39k	0.1*0.7
Fre Jones	Houseware	Good	Yes	20k-24k	0.5
Fre Jones	Houseware	Good	Yes	24k-29k	0.5

Factors are disjoint/indep. Tables !

Employee	Department	Quality	Bonus	Р
John Smith	Тоу	Great	Yes	0.4
John Smith	Тоу	Good	Yes	0.5
John Smith	Тоу	Fair	No	0.1
Fre Jones	Houseware	Good	Yes	1

Employee	<u>Department</u>	Sales	Р
John Smith	Тоу	30k-34k	0.3
John Smith	Тоу	35k-39k	0.7
Fre Jones	Houseware	20k-24k	0.5
Fre Jones	Houseware	24k-29k	0.5

 \bowtie

69

Rule of Thumb #2

Correlated table = Independent tables + join

Same principle as in traditional schema normalization

- Decompose big table into small tables with independent attributes
- Big table = a view (single join !) over the small tables

Database 101

- Assume that (Quality, Bonus) is independent from (Sales)
- Drop the P column → a traditional table (no more probabilities)
- Question What 'functional dependency' holds in this table ?

Database 101

- Assume that (Quality, Bonus) is independent from (Sales)
- Drop the P column → a traditional table (no more probabilities)
- Question What 'functional dependency' holds in this table ?
- A Multivalued FD !:

Emp, Dept - Quality, Bonus Sales
Rule of Thumb #3

Factor decomposition = MVD decomposition + probability identities

Conditional Independence

V1	V2	W	Р
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	a	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

Are V1, V2 independent given W, i.e. Pr(V1,V2 | W) = Pr(V1 | W) * Pr(V2 | W)?

Conditional Independence

V1	V2	W	Р
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	а	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

V1	V2	Р
1	1	0.06
1	2	0.14
2	1	0.24
2	2	0.56

$$P(W=b)=0.5; P(--|W=b):$$

V1	V2	Р
1	1	0.25
1	2	0.25
2	1	0.25
2	2	0.25 75

They: they are conditional independent

Conditional Independence

V1	V2	W	Р
1	1	a	0.03
1	2	a	0.07
2	1	a	0.12
2	2	a	0.28
1	1	b	0.125
1	2	b	0.125
2	1	b	0.125
2	2	b	0.125

W	Р
a	0.5
b	0.5

	V2	W	Р
	1	a	0.3
1	2	a	0.7
•	1	b	0.5
	2	b	0.5

Representing Conditional Independent Vars

More general: if P(V1=a,V2=b,W=c) = p(a,c) * q(b,c) forall a,b,c then V1, V2 are independent given c

V1	V2	W	Р
a ₁	b ₁	c ₁	$p_{11}q_{11}$
a ₁	b ₂	c ₁	$p_{11}q_{21}$
a ₂	b_1	c ₁	$p_{21}q_{11}$
a ₂	b ₂	c ₁	$p_{21}q_{21}$
•••	•••	c ₂	$P_{12}q_{12}$
	•••		

V1	W	Р	n -
a ₁	c ₁	p ₁₁ /P ₁	
a ₂	c ₁	p_{21}/P_1	
	c ₂	p ₁₂ /P ₂	

V2	W	Р
b ₁	c ₁	q_{11}/Q_1
b_2	c ₁	q_{21}/Q_1
	c ₂	q_{12}/Q_2
• •		7

Summary of Prob Networks

- (Conditional) indep. = MVDs + prob ident.
- Factored decomposition = base tables + joins
- Next time:
 - Discuss the <u>networks</u> in probabilistic networks; WSdecomposition, U-relations
 - Partial/approximate representations
 - Begin query evaluation
- Send email by Wed. if want to show&tell