Topics in Probabilistic and Statistical Databases

Lecture 3: Representation and Query Evaluation

Dan Suciu University of Washington

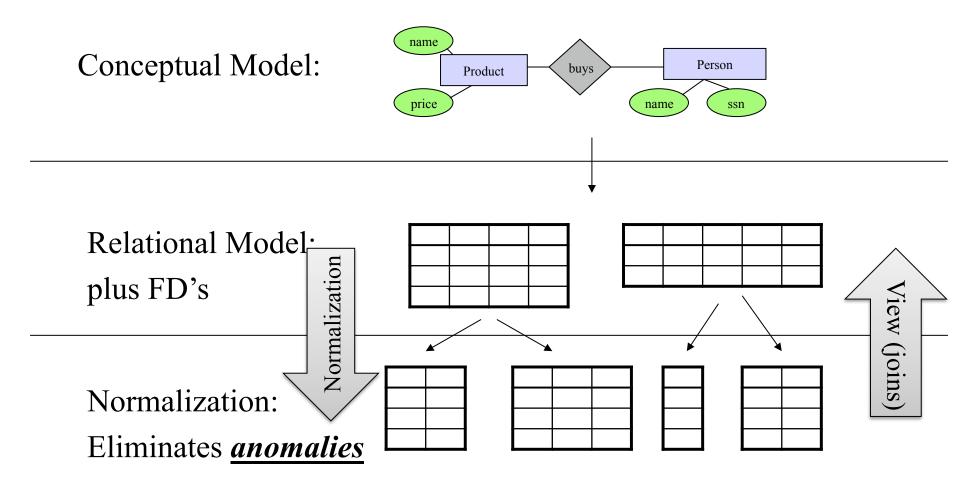
Review of Representation

- Represent the possible worlds
- Represent the probability distribution

Review: Rule of Thumb #1

A ProbDB = an Incomplete DB + probabilities

DB 101: Database Design



Review: Rule of Thumb #2

Probabilistic table = Disjoint/independent tables + view (joins)

Discussion

- How do we find the right decomposition?
 - Normalization theory (n'th normal form...)
 - Probabilistic networks (same thing....)

Representation

Design

- How to we recover the original table from the decomposed table(s) ?
 - At UW: we just use a SQL view
 - Elsewhere: equivalent formalism (e.g. U-relations)

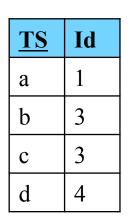
Representation: U-Relations

Two idea:

- Vertical decomposition
- Uniform lineage

Review: Vertical Decomposition

<u>TS</u>	Id	Туре	Faction
a	1	Tank	Friend
b	3	Transport	Friend
c	3	Transport	Enemy
d	4	Transport	Enemy



~				
<u>TS</u>	Туре			
a	Tank			
b	Transport			
c	Transport			
d	Transport			

<u>TS</u>	Faction
a	Friend
b	Friend
c	Enemy
d	Enemy

Review: Uniform Lineage Drives

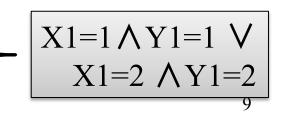
Saw

Witness	Car	X	V
Amy	Mazda	X1	1
Amy	Toyota	X1	2
Betty	Honda	X2	1

Person	Car	Y	W	What is the
Jimmy	Mazda	Y1	1 \geq	lineage here ?
Jimmy	Toyota	Y1	2	
Billy	Mazda	Y2	1	
Billy	Honda	Y2	2	

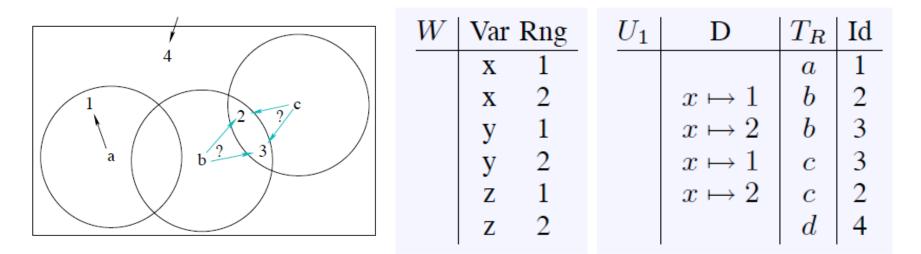
q(w,p) :- Saw(w,c),Drives(c,p)

Witness	Person	X	V	Y	W	
Amy	Jimmy	X1	1	Y1	1	
Amy	Jimmy	X1	2	Y1	2	
Betty	Billy	X2	1	Y2	2	



[Antova'2008]

U-Relations



U_2	D	T_R	Туре	U_3	D	T_R	Faction
		a	Tank			a	Friend
		b	Transport			b	Friend
		c	Tank			c	Enemy
	$y\mapsto 1$	d	Tank		$z\mapsto 1$	d	Friend
	$\begin{array}{c} y \mapsto 1 \\ y \mapsto 2 \end{array}$	d	Transport		$z\mapsto 2$	d	Enemy

Discussions

- Show the c-table R(TS, Id, Type Faction)
- Give the view expression that recovers R
- Is this a uniform lineage ?
- Do we need W ?

[Antova'2008]

Show the c-Table

D1	D2	D3	<u>TS</u>	Id	Туре	Faction
			a	1	Tank	Friend
$x \rightarrow 1$			b	2	Transport	Friend
$x \rightarrow 2$			b	3	Transport	Friend
$x \rightarrow 1$			c	3	Tank	Enemy
$x \rightarrow 2$			c	2	Tank	Enemy
	y → 1	z→ 1	d	4	Tank	Friend
	y → 1	$z \rightarrow 2$	d	4	Tank	Enemy
	$y \rightarrow 2$	z→ 1	d	4	Transport	Friend
	$y \rightarrow 2$	$z \rightarrow 2$	d	4	Transport	Enemy

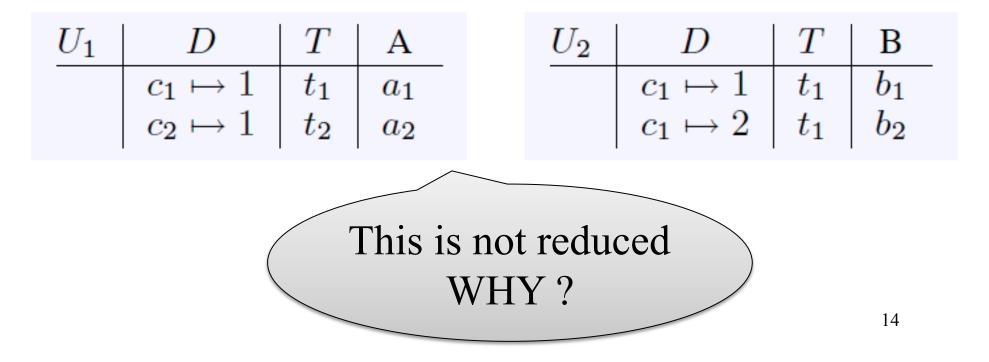
Why We Need W

Need to store the probability distribution of the the variables separately

W	Var	Rng	Pr
	Х	1	0.1
	Х	2	0.9
	У	1	0.3
	У	2	0.7
	Z	1	0.6
	Ζ	2	0.4

"Reduced" U-database

Definition A U-database is <u>reduced</u> if every tuple in every U-relation can appear in a possible world



$\begin{array}{c|c} \text{More Examples} \\ S = \pi_{\text{Id}} (\sigma_{\text{Type='Tank' \land Faction='Enemy'}}(R)) \\ \hline \frac{U_4 & D_1 & D_2 & \text{T}_S & \text{Id}}{x \mapsto 1} & c & 3 \\ x \mapsto 2 & c & 2 \\ y \mapsto 1 & z \mapsto 2 & d & 4 \end{array}$

$(S \ s$	$_{1})\bowtie_{s_{1}.I}$	$d \neq s_2.$ Id	$(S \ s_2)$)			
U_5	D_1	D_2	D_3	T_{s_1}	T_{s_2}	Id ₁	Id_2
	$x \mapsto 1$	$y \mapsto 1$	$z \mapsto 2$	c	d	3	4
	$x \mapsto 2$	$y\mapsto 1$	$z\mapsto 2$	c	d	2	4
	$y \mapsto 1$	$z\mapsto 2$	$x\mapsto 1$	d	c	4	3
	$y \mapsto 1$					4	2

Summary of U-Relations

U-relations = Vertical partition + uniform lineage

- Vertical partition: not necessarily disjoint attrs
 Consistency check needed if multiple occurrences of A
- Reduced U-relations = semijoin reduction
- "Parsimonious query translation":
 - Select-project-join queries over possible worlds → select-project-join queries over U-relations

The Design Problem

- How do we "normalize" a probabilistic database ?
- Combine:
 - MVD = multi-valued dependencies (read book..)
 - Probabilistic networks (next)
- NOTE: This is largely unexplored area

Conditional Independence

• Recall: $X \perp Y \mid Z$ means:

$$P(XY \mid Z) = P(X \mid Z) * P(Y \mid Z)$$

• Equivalently:

$$P(XYZ) = P(XZ) * P(YZ) / P(Z)$$

Review: Rule of Thumb #3

Conditional independence = MVD + some probability identities

Conditional Independence=MVD

- If $X \perp Y \mid Z$ then $X \twoheadrightarrow Y$
- Stronger: $P(X,Y,Z) = P1(X,Z) \bowtie P2(Y,Z)$

– This identity holds between *probabilistic tables*

Probabilistic Networks

- Many variables V1, V2, ..., Vn
- Given joint distribution on their values
- Goal of a PN: to capture all conditional independences
- An edge (Vi, Vj) means, intuitively, that Vi, Vj are dependent
- Lack of an edge means they are independent

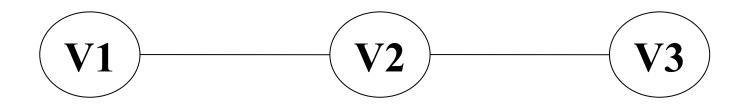
Quiz Time

- Three random variables V1, V2, V3
- Suppose their joint distribution is given by a function p(v1,v2,v3) = f(v1,v2)*g(v2,v3), where f, g are arbitrary positive functions
 QUESTION What independence relation holds between V1, V2, V3 ?

Quiz Time

- Three random variables V1, V2, V3
- Suppose their joint distribution is given by a function p(v1,v2,v3) = f(v1,v2)*g(v2,v3), where f, g are arbitrary positive functions
 QUESTION What independence relation holds between V1, V2, V3 ?
 ANSWER V1 ⊥ V3 | V2
 (proof in class)

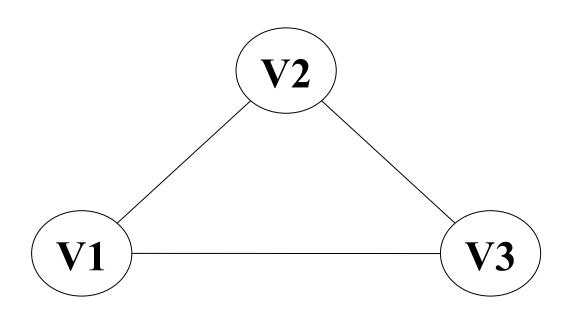
A Probabilistic Network



Quiz Time 2

 Now suppose p(v1,v2,v3) = f(v1,v2)*g(v2,v3)*h(v1,v3)
 QUESTION What independence relation holds between V1, V2, V3 ?

Another Probabilistic Network



Answer: NONE !

Hierarchical Decomposition

• $P(V_1, ..., V_n)$ is a *Hierarchical Distribution* if there exists functions $f_1, ..., f_k$, s.t.:

$$-P = f_1^* f_2^* \dots^* f_k$$

- $-f_i(\mathcal{V}_{Ci})$ depends on a subset $\mathcal{V}_{ci} \subseteq \{V_1, ..., V_n\}$
- Also called: Probabilistic Graphical Model
- $f_1, ..., f_k$ (or the set \mathcal{V}_{ci}) are called *factors*

Probabilistic Network

- Define a graph G = (V, E) s.t. $-V = \{V_1, ..., V_n\}$ $-E = \{(V_i, V_j) \mid \text{exists } \mathcal{V}_c \text{ s.t. } V_i \in \mathcal{V}_c, V_j \in \mathcal{V}_c\}$
- A *clique* is C ⊆V s.t. any two nodes in C are connected
- A *separator* is S = C ∩ C', where C, C'=cliques

Probabilistic Network

- Let C1, C2, ... be all the cliques, and S1, S2, ... all separators
- Then:

$$\mathbf{P}(\mathbf{V}) = \mathbf{P}(\mathcal{V}_{C1}) * \mathbf{P}(\mathcal{V}_{C2}) * \dots / (\mathbf{P}(\mathcal{V}_{S1}) * \mathbf{P}(\mathcal{V}_{S2}) * \dots)$$

Research question: how does decompose P into D/I tables + views?

Query Evaluation on D/I Databases

Problem Statement

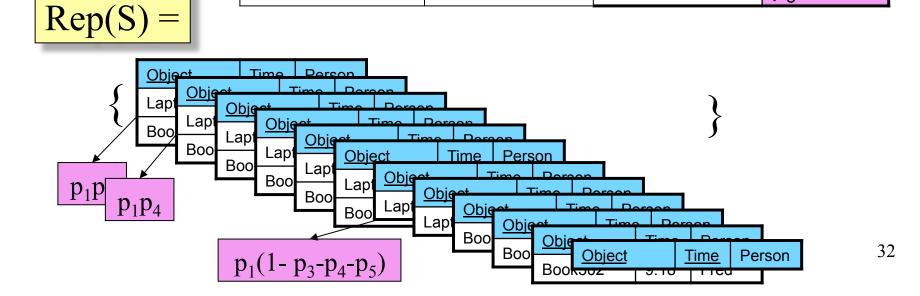
- Given:
 - A disjoint/independent probdb PDB
 - A Boolean conjunctive query Q
- Compute the probability Q(PDB)

Why does it suffice to restrict to D/I databases?

Review: D/I Databases

S =

<u>Object</u>	<u>Time</u>	Person	Р
LaptopX77	9:07	John	p ₁
LaptopX77	9:07	Jim	p ₂
Book302	9:18	Mary	p ₃
Book302	9:18	John	p ₄
Book302	9:18	Fred	р ₅



Review Query Semantics

Semantics 1: Possible Sets of Answers

A probability distributions on sets of tuples

8 A.
$$Pr(Q = A) = \sum_{I \text{ 2 Inst. }Q(I) = A} Pr(I)$$

Semantics 2: Possible Tuples A probability function on *tuples*

8 t.
$$Pr(t 2 Q) = \sum_{I 2 Inst. t 2 Q(I)} Pr(I)$$

Extensional Operators

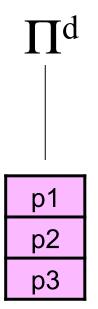
<u>Object</u>	Person	Location	Р
	John	L45	p1
Laptop77	Jim	L45	p2
	Jim	L66	р3
	Mary	L66	p4
	Mary	L45	p5
Book302	Jim	L66	p6
	John	L45	p7
	Fred	L45	p8

 $q(z) :- HasObject^p(Book302, y, z)$

Location	Р
L66	p4+p6
L45	p5+p7+p8

Disjoint Project

p1+p2+p3

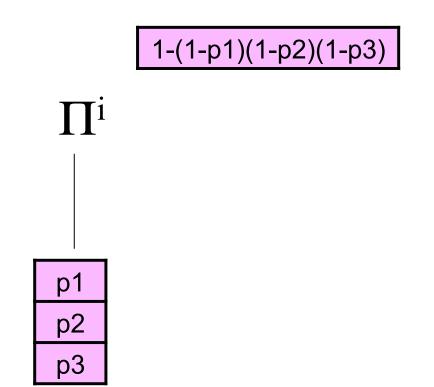


Extensional Operators

Object	Person	Location		Р		
Laptop77	John	L45		p1		
	Jim	L45		p2		
	Jim	L66		p3		
Book302	Mary	L66		p4		
	Mary	L45		р5		
	Jim	L66		p6		
	John	L45		р7		
	Fred	L45				D
			Perso	n	Location	P
			Jim		L66	1-(1-p3)(1-p6)
z) :- HasObject ^p (x ,y,z)		John		L45	1-(1-p1)(1-p7)	

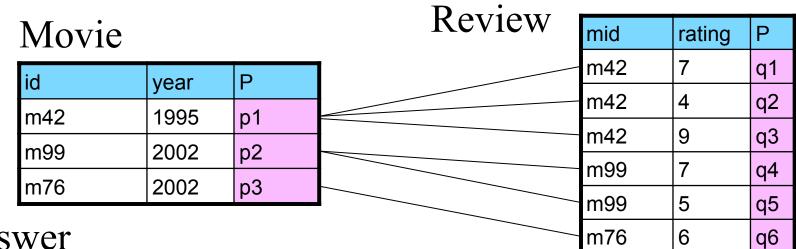
q(y,

Independent Project



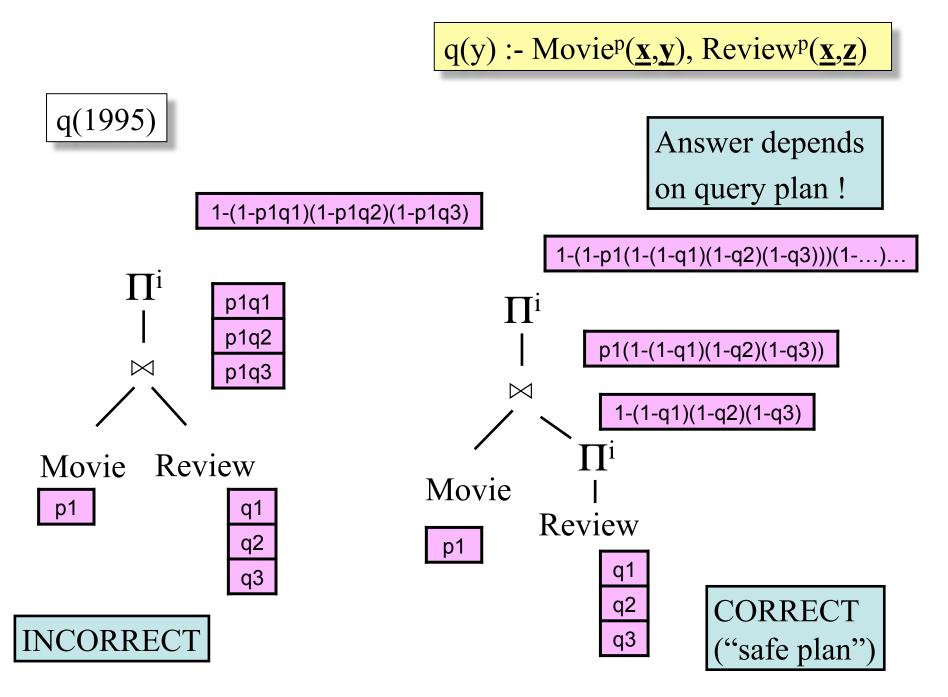
 $q(y) := Movie^{p}(\underline{x},\underline{y}), Review^{p}(\underline{x},\underline{z}), z > 3$

Example



Answer

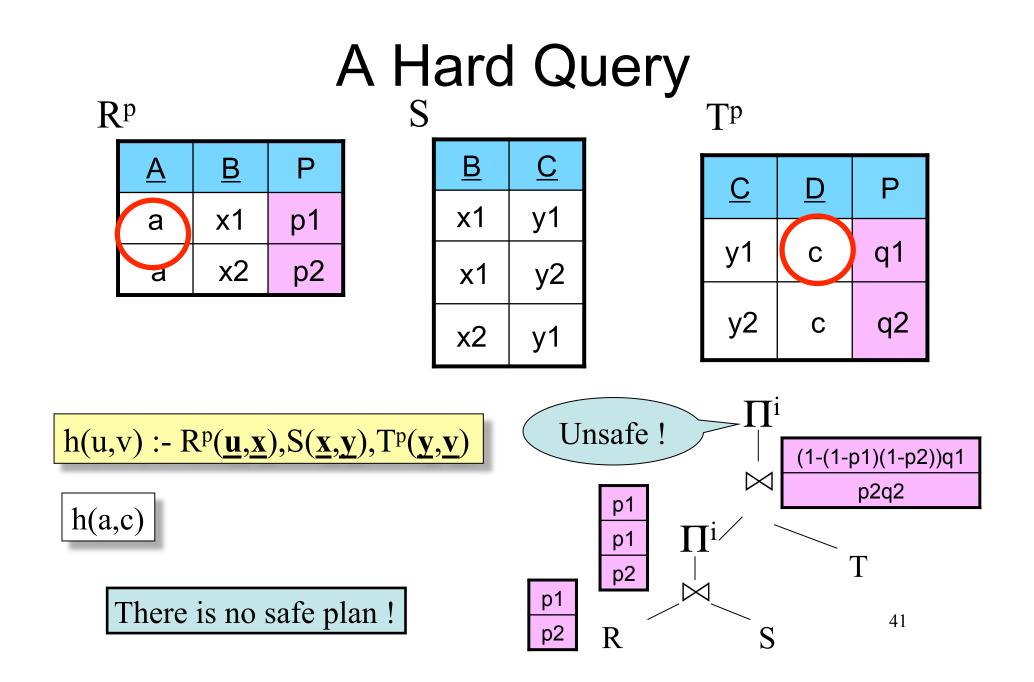
year	Р
1995	$p1 \times (1 - (1 - q1) \times (1 - q2) \times (1 - q3))$
2002	$\begin{array}{rrrr} 1 - (1 - p2 \times (1 - (1 - q4) \times (1 - q5))) \times \\ (1 - p3 \times q6) \end{array}$



Safe Plans are Efficient

- Very efficient: run almost as fast as regular queries
- Require only simple modifications of the relational operators
- Or can be translated back into SQL and sent to any RDBMS

Can we always generate a safe plan?



Independent Queries

Let q1, q2 be two boolean queries

<u>Definition</u> q1, q2 are "independent" if P(q1, q2) = P(q1) P(q2)

Also:
$$P(q1 \lor q2) = 1 - (1 - P(q1))(1 - P(q2))$$

Quiz: which are independent?

q1	q2	Indep.?
Movie ^p (<u>m41</u> , y)	Review ^p (<u>m41</u> , <u>z</u>)	
Movie ^p (<u>m42</u> , <u>y</u>),Review ^p (<u>m42</u> , <u>z</u>)	Movie ^p (<u>m77</u> , <u>y</u>),Review ^p (<u>m77</u> , <u>z</u>)	
Movie ^p (m42 , y),Review ^p (m42 , z)	Movie ^p (<u>m42</u> , <u>1995</u>)	
Movie ^p ($\underline{m42}, \underline{y}$), Review ^p ($\underline{m42}, \underline{7}$)	Movie ^p (m42 , y),Review ^p (m42 , 4)	
$R^{p}(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}},\underline{\mathbf{z}},\underline{\mathbf{u}}),\ R^{p}(\underline{\mathbf{x}},\underline{\mathbf{x}},\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{y}})$	R ^p (<u>a</u> , <u>a</u> , <u>b</u> , <u>b</u> , <u>c</u>)	

Answers

q1	q2	Indep.?
Movie ^p (<u>m41</u> , y)	Review ^p (<u>m41</u> , <u>z</u>)	YES
Movie ^p (<u>m42</u> , <u>y</u>),Review ^p (<u>m42</u> , <u>z</u>)	Movie ^p (<u>m77,y</u>),Review ^p (<u>m77,z</u>)	YES
Movie ^p ($\underline{m42}, \underline{y}$), Review ^p ($\underline{m42}, \underline{z}$)	Movie ^p (<u>m42</u> , <u>1995</u>)	NO
Movie ^p (<u>m42</u> , y),Review ^p (<u>m42</u> , <u>7</u>)	Movie ^p (m42 , y),Review ^p (m42 , 4)	NO
$R^{p}(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}},\underline{\mathbf{z}},\underline{\mathbf{u}}),\ R^{p}(\underline{\mathbf{x}},\underline{\mathbf{x}},\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{y}})$	$R^{p}(\underline{a},\underline{a},\underline{b},\underline{b},\underline{c})$	YES

Prop If no two subgoals unify then q1,q2 are independent

Detour: Independent Queries

- Let q= a Boolean conjunctive query
- A critical tuple is a tuple t s.t.
 - There exists an instance I s.t.
 - q(I) is true
 - q(I-{t}) is false
 - (in other words, $I \vDash q$ and $I-\{t\} \nvDash q$)
- Denote crit(q) = the set of critical tuples

Detour: Independent Queries

Note: necessary but not sufficient condition

<u>Theorem</u> Queries q1, q2 are independent iff $crit(q1) \cap crit(q2) = \emptyset$

q1 :- Movie^p(<u>**m42**</u>,<u>**y**</u>),Review^p(<u>**m42**</u>,<u>**z**</u>)

$$Crit(q1) = ?$$

q2 :- Movie^p(<u>m77</u>,<u>y</u>),Review^p(<u>m77</u>,<u>z</u>)

$$Crit(q2) = ?$$

Detour: Independent Queries

Note: necessary but not sufficient condition

q1 := R(x, y, z, z, u), R(x, x, x, y, y).

$$q2 := R(a, a, b, b, c),$$

Theorem Independence is Π^p₂ complete [Miklau&S'04] Reducible to query containment [Machanavajjhala&Gehrke'06]

Disjoint Queries

Let q1, q2 be two boolean queries

Definition q1, q2 are "disjoint" if P(q1, q2) = 0

Iff q1, q2 depend on two disjoint tuples t1, t2

Quiz: which are disjoint ?

q1	q2	?
HasObject ^p (' <u>book'</u> , ' <u>9'</u> , 'Mary', x)	HasObject ^p (' book' , ' 9' , 'Jim', x)	
HasObject ^p (' <u>book'</u> , <u>t</u> , 'Mary', x)	HasObject ^p (' <u>book'</u> , <u>t</u> , 'Jim', x)	
HasObject ^p (' <u>book'</u> , ' <u>9'</u> , u, x)	HasObject ^p (' <u>book'</u> , ' <u>9'</u> , v, x)	

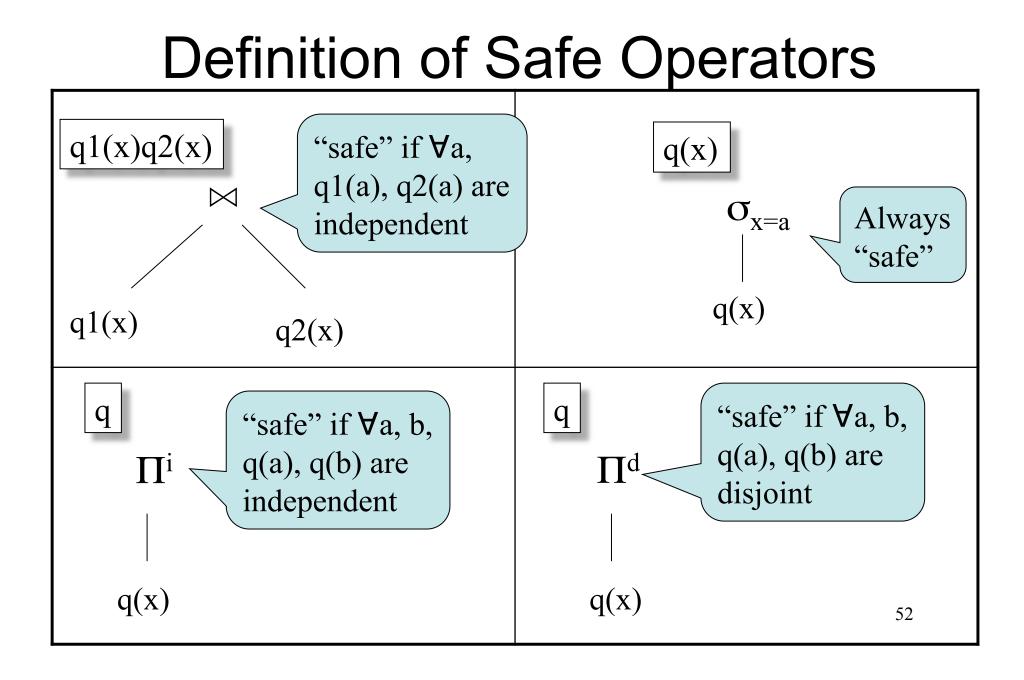
Answers

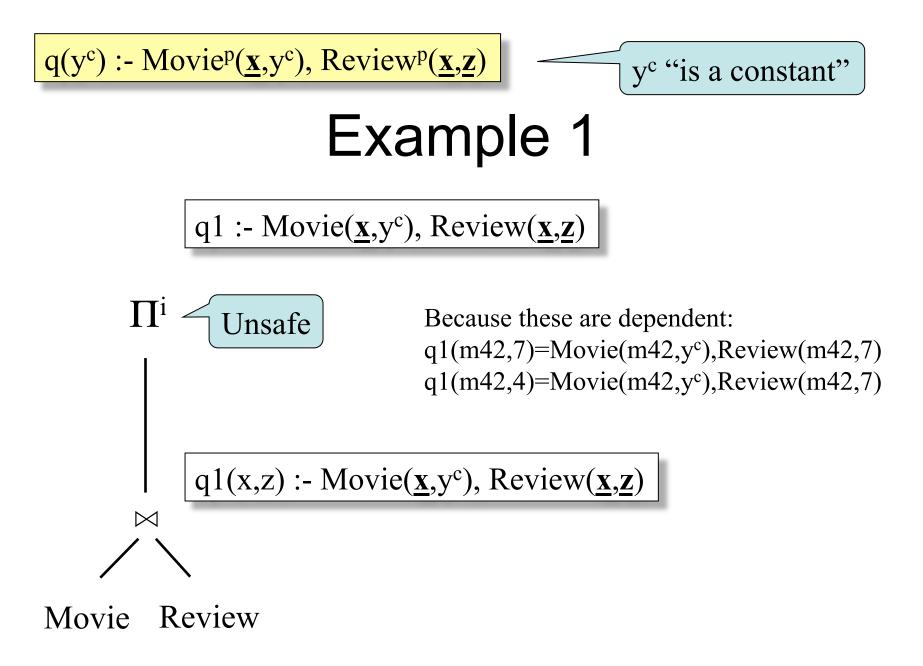
q1	q2	?
HasObject ^p (' <u>book'</u> , ' <u>9'</u> , 'Mary', x)	HasObject ^p (' <u>book'</u> , ' <u>9'</u> , 'Jim', x)	Y
HasObject ^p (' book' , <u>t</u> , 'Mary', x)	HasObject ^p (' <u>book'</u> , <u>t</u> , 'Jim', x)	Ν
HasObject ^p (' <u>book'</u> , ' <u>9'</u> , u, x)	HasObject ^p (' <u>book'</u> , ' <u>9'</u> , v, x)	N

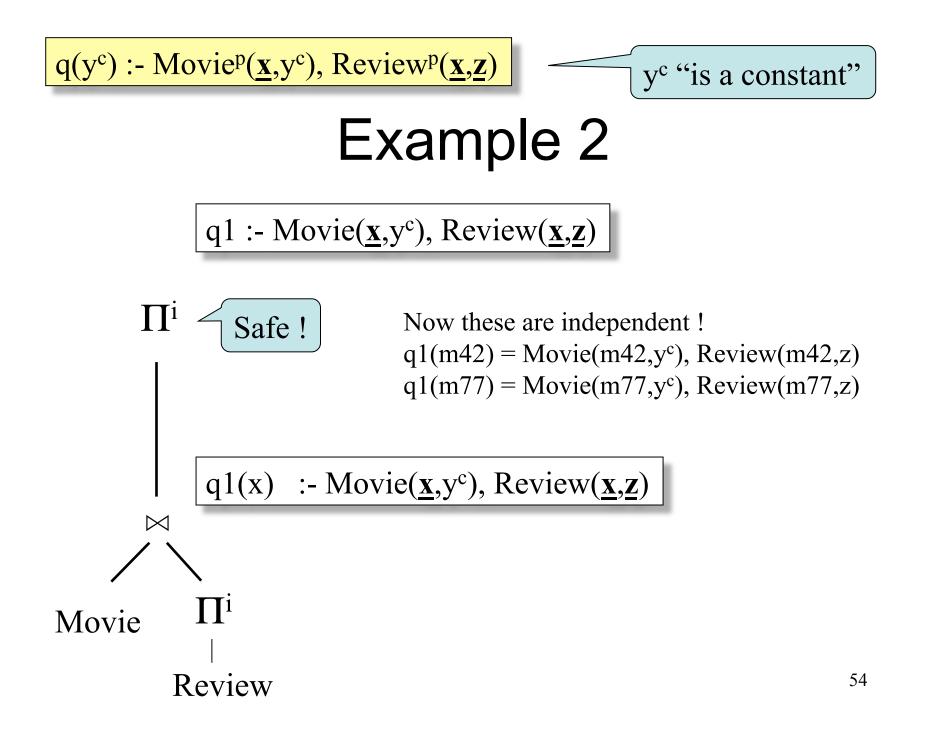
Proposition q1, q2 are "disjoint" if they contain subgoals g1, g2: Have the same values for the key attributes these values are constants have at least one different constant in the non-key attributes

Definition of Safe Operators

- Safe join = left and right are indep.
- Safe independent project = duplicate tuples are independent
- Safe disjoint project = duplicate tuples are disjoint
- Safe select = any select is safe ③







Complexity Class #P

Definition #P is the class of functions f(x) for which there exists a PTIME non-deterministic Turing machine M s.t. f(x) = number of accepting computations of M on input x

Examples:

- SAT = "given formula Φ , is Φ satisfiable ?" = NP-complete
- #SAT = "given formula Φ , count # of satisfying assignments" = #P-complete

Examples

Class	Example	SAT	#SAT
3CNF	$(X \vee Y \vee Z) \land (\neg X \vee U \vee W) \dots$	NP	#P
2CNF	(X∨Y)∧(¬X∨U)	PTIME	#P
Positive, partitioned 2CNF	(X1∨Y1)∧(X1∨Y4)∧ (X2∨Y1) ∧ (X3∨Y1)	PTIME	#P
Positive, partitioned 2DNF	(X1∧Y1)∨(X1∧Y4)∨ (X2∧Y1) ∨ (X3∧Y1)	PTIME	#P

Here NP, #P means "NP-complete, #P-complete"

#P-Hard Queries

hd1 :- $R^{p}(\underline{\mathbf{x}}), S(\underline{\mathbf{x}}, \underline{\mathbf{y}}), T^{p}(\underline{\mathbf{y}})$

Theorem The query hd1 is #P-hard

Proof: Reduction from partitioned, positive 2DNF

C

E.g. $\emptyset = x1 \ y1 \ \lor \ x2 \ y1 \ \lor \ x1 \ y2 \ \lor \ x3 \ y2$ reduces to

R^p

A	Р
x1	0.5
x2	0.5
x3	0.5

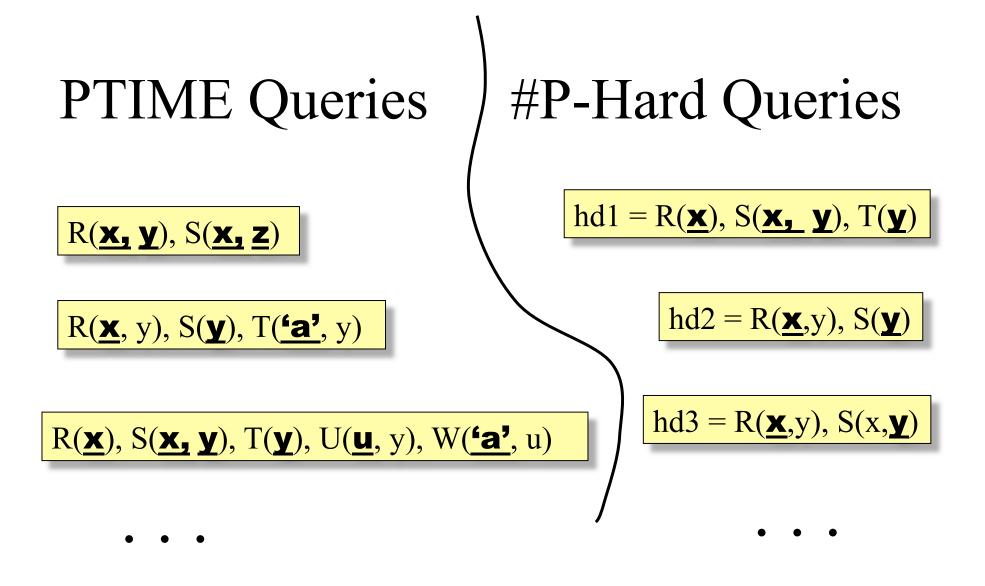
Tp

B	Р
y1	0.5
y2	0.5

Where We Are

- We have seen a query that can be evaluated with a safe plan

 Very efficient
- We have seen a query whose data complexity is #P hard
- What is the general picture ?



Will discuss next how to decide their complexity and how evaluate PTIME queries

Dichotomy for a Language L

- Fix a query language L
- The dichotomy property is:
 - Every query in L is either in PTIME or #P-hard
- Note that this does not follow from general principles
 - It may be false for some languages L

Dichotomy Property

LANG: CQ = conjunctive queries $CQ^1 = conjunctive queries without self-joins$

Theorem The dichotomy property holds for:

- CQ^1 and independent dbs.
- CQ¹ and disjoint/independent dbs.
- CQ and independent dbs.

We'll start these today and continue next lecture

Hierarchical Queries

sg(x) = set of subgoals containing the variable x in a key position**Definition** A query q is *hierarchical* if forall x, y: $sg(x) \subseteq sg(y)$ or $sg(y) \subseteq sg(x)$ or $sg(x) \cap sg(y) = \emptyset$ Non-hierarchical Hierarchical $h1 = R(\mathbf{x}), S(\mathbf{x}, \mathbf{y}), T(\mathbf{y})$ $q = R(\mathbf{x}, \mathbf{y}), S(\mathbf{x}, \mathbf{z})$ У <u>X</u> Х S Τ R S

Case 1: CQ¹ + Independent

Note that in this case:

- CQ¹ (conjunctive queries, no self-joins):
 - $-R(\underline{\mathbf{x}},\underline{\mathbf{y}}), S(\underline{\mathbf{y}},\underline{\mathbf{z}})$ OK
 - $-R(\underline{\mathbf{x}},\underline{\mathbf{y}}), R(\underline{\mathbf{y}},\underline{\mathbf{z}})$ Not OK
- Independent tuples only:
 - R(**x**,**y**) OK - S(**y**,z) Not OK

CQ¹ + Independent

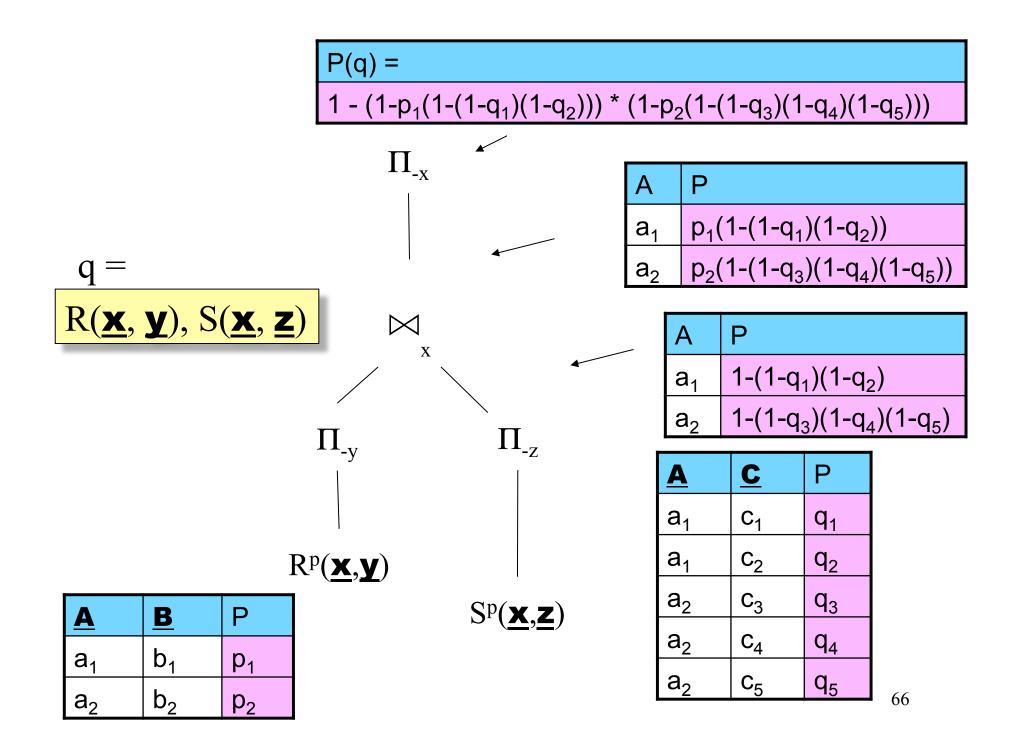
Theorem Forall $q \in CQ^1$:

q is hierarchical, has a safe plan, and is in PTIME, OR

q is not hierarchical and is #P-hard

The PTIME Queries





The **#P-Hard Queries**

Are precisely the non-hierarchical queries. Example:

hd1 :- $R(\mathbf{x}), S(\mathbf{x}, \mathbf{y}), T(\mathbf{y})$

More general:

$$q := \dots, R(\underline{\mathbf{x}}, \dots), S(\underline{\mathbf{x}}, \underline{\mathbf{y}}, \dots), T(\underline{\mathbf{y}}, \dots), \dots$$

Theorem Testing if q is PTIME or #P-hard is in AC⁰

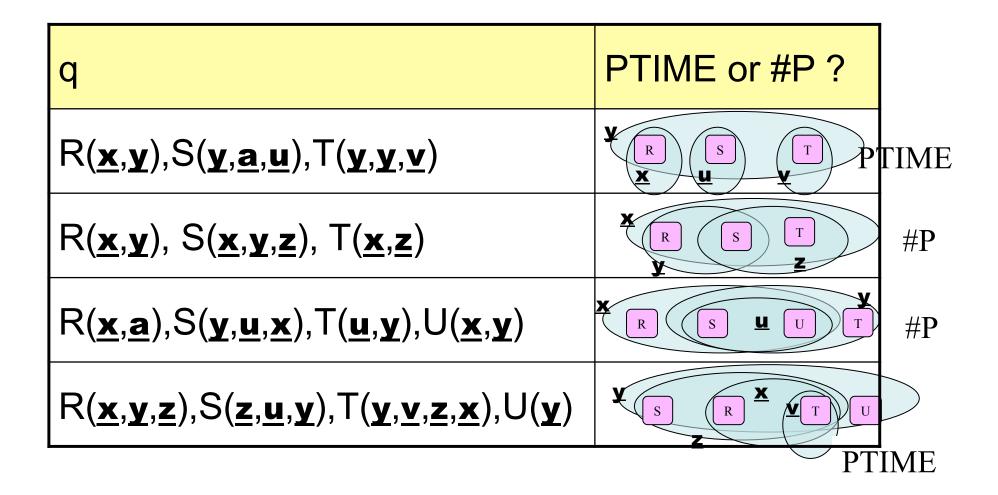
Quiz: What is their complexity ?

q	PTIME or #P ?
$R(\underline{\mathbf{x}},\underline{\mathbf{y}}),S(\underline{\mathbf{y}},\underline{\mathbf{a}},\underline{\mathbf{u}}),T(\underline{\mathbf{y}},\underline{\mathbf{y}},\underline{\mathbf{v}})$	
$R(\underline{\mathbf{x}},\underline{\mathbf{y}}), \ S(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}}), \ T(\underline{\mathbf{x}},\underline{\mathbf{z}})$	
$R(\underline{\mathbf{x}},\underline{\mathbf{a}}),S(\underline{\mathbf{y}},\underline{\mathbf{u}},\underline{\mathbf{x}}),T(\underline{\mathbf{u}},\underline{\mathbf{y}}),U(\underline{\mathbf{x}},\underline{\mathbf{y}})$	
$R(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}}),S(\underline{\mathbf{z}},\underline{\mathbf{u}},\underline{\mathbf{y}}),T(\underline{\mathbf{y}},\underline{\mathbf{v}},\underline{\mathbf{z}},\underline{\mathbf{x}}),U(\underline{\mathbf{y}})$	

Hint...

q	PTIME or #P?
$R(\underline{\mathbf{x}},\underline{\mathbf{y}}),S(\underline{\mathbf{y}},\underline{\mathbf{a}},\underline{\mathbf{u}}),T(\underline{\mathbf{y}},\underline{\mathbf{y}},\underline{\mathbf{v}})$	Y R S T X U Y
$R(\underline{\mathbf{x}},\underline{\mathbf{y}}), \ S(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}}), \ T(\underline{\mathbf{x}},\underline{\mathbf{z}})$	X R S T Y Z
$R(\underline{\mathbf{x}},\underline{\mathbf{a}}),S(\underline{\mathbf{y}},\underline{\mathbf{u}},\underline{\mathbf{x}}),T(\underline{\mathbf{u}},\underline{\mathbf{y}}),U(\underline{\mathbf{x}},\underline{\mathbf{y}})$	
$R(\underline{\mathbf{x}},\underline{\mathbf{y}},\underline{\mathbf{z}}),S(\underline{\mathbf{z}},\underline{\mathbf{u}},\underline{\mathbf{y}}),T(\underline{\mathbf{y}},\underline{\mathbf{v}},\underline{\mathbf{z}},\underline{\mathbf{x}}),U(\underline{\mathbf{y}})$	Y S R Y U U

...Answer



Summary

- We have discussed only the simplest case: CQ w/o self-joins, on independent dbs
- Next time:
 - Add FDs at the representation level
 - Extend to independent/disjoint dbs
 - Extend to arbitrary CQs (with self-joins)