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Inversion-Free Queries 

Theorem  
If q has no inversions then it is in PTIME 

Stronger: there exists a polynomial size expression 
with + and * computing p(q) 
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Hierarchical Queries with Inversions 

S 

R 
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y 
S 

T 

y’ 
x’ 

H0 = R(x),S(x,y),S(x’,y’),T(y’) 

Theorem H0 is #P-hard 

There is an “inversion”: 
sg(x) ⊃ sg(y), sg(x’) ⊂ sg(y’) and S(x,y) unifies with S(x’,y’) 
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Proof 

x1 y1 ∨ x2 y1 ∨ x2 y3 ∨ … 

x P 
1 0.5 
2 0.5 
3 0.5 
. . . 

y P 
1 0.5 
2 0.5 
3 0.5 
. . . 

x y P 
1 1 v 
2 1 v 
2 3 v 

. . . 

R S T 

OPEN: if S has 
probabilities 0.5  

Let ck = #satisfying assignments where exactly k clauses are false  
The problem is to compute c0 + c1 + … + cm-1 

Reduction from POSITIVE-PARTITIONED 2DNF 

1 - p(q) = c1 1/2n (1-v) + c2 1/2n (1-v)2 + … + cm 1/2n (1-v)m 

Chose m different values for v; solve Vandermonde system 

q = R(x),S(x,y) ∨ S(x’,y’),T(y’) 
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Longer Inversions 
Hk =  
    R(x), S0(x,y), 
             S0(u1,v1),S1(u1,v1), 
                           S1(u2,v2),S2(u2,v2),…       
                                    Sk-1(uk,vk),Sk(uk,vk), 
                                                    Sk(x’,y’), T(y’)  

Theorem : For each k ¸ 0, Hk is #P-hard. 

Proof: more involved, but same main idea 
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Unifications 

R(x), S(x,y,a), S(y,b,x),S(u,c,v) 

Unify 
Don’t 
unify Don’t 

unify 

g and g’ unify if ∃ h, h’ s.t. h(g)=h(g’) 
MGU = “most general unifier” 

Let g, g’ be two subgoals. 
Rename variables s.t. Vars(g) ∩ Vars(g’) = Ø 
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Simple Fact 

Proposition Let q, q’ be two queries  s.t. no  
two subgoals g ∈ q and g’ ∈ q’ unify. Then 
        p(q, q’) = p(q) p(q’) 

Proof: q and q’ are independent probabilistic events 

q = R(x,y),S(y,a)     q’ =T(u,v),S(v,b) 
q, q’  =  R(x,y),S(y,a),T(u,v),S(v,b) 



Inclusion/Exclusion Formula 
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Proposition   p(q) = ∑T≠∅ (-1)|T| p(f (T)) 

q = ∃x. f(x) Here f(x) is a query, and x 
is one of its variables 

Here f(T) means f(a1), f(a2), …, f(an), if T = {a1, a2, …, an} 

How does this generalize to q =∃x1. f(x1), ∃x2. f(x2), … 



Example 
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q = R(x), S(x), S(y), T(y) = f(x), g(y) 

Compute P(q), where: 

p(q) = ∑T1≠∅, T2≠∅ (-1)|T1|+|T2| p(f (T1) g(T2)) 

We would like to commute p with f,g, but they are dependent… 



Example 
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Idea: For each T1, T2, define U3=T1 ∩ T2, U1=T1-U3, U2=T1-U3 

p(q)=∑U1∪U3≠∅, U2∪U3≠∅, disjoint(U1,U2,U3) (-1)|U1|+|U2|  
                        p(f (U1)g(U2)h(U3)) 

Where f(x) = R(x),S(x),    g(y) = S(y),T(y),     h(z) = R(z), S(z), T(z)  

U3 
U1 U2 
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Sums (1/2) 

•  We have ensured that all factors are independent 
•  Hence terms of the form: 

     p(f1(T1)f2(T2)…) 
become 
     ∏i=1,k ∏a ∈ TI

 gi(a) 
where: gi(x) = p(fi(x)) 

•  Now we examine how to compute sums of such 
terms, when T1, …, Tk range over subsets of A, 
and are subject to predicates 
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Sums (2/2) 
∑T1,T2, T3 g1(T1) g2(T2) g3(T3) 

∏a ∈ A (1 + g1(a) + g2(a) + g3(a)) 

Theorem: for any FO predicate over T1, …, Tk, 
the sum ∑T: φ g(T) admits a closed form linear in |A| 

Exercise: compute 

∑T1,T2, T3 : Ti  ∩ Tj = ∅ g1(T1) g2(T2) g3(T3) 

∏a ∈ A (1 + g1(a))(1+ g2(a))(1 + g3(a)) Answer 

∑T1 ∩ T2 =∅, T2 ∩ T3 =∅, T4 ⊆ T2
g1(T1) g2(T2) g3(T3) g4(T4) 

∏a ∈ A (1 + g1(a) + g2(a) + g2(a)g4(a) + g3(a) + g1(a)g3(a)) 



Challenge 

•  Sums are difficult 
– They are in PTIME, but they are so complex 

that we can’t do on paper even the simplest 
examples 

•  Moreover: mismatch with relational algebra 

What is a better abstraction to compute 
inversion free queries ?  13 



Quiz 

•  Compute the following query (up to sum 
expressions): 

q = R(x), S(x,y), S(x’,y’), T(x’) 

•  Does this work for the following too ? 

q = R(x), S(x,y), S(x’,y’), T(y’) 
14 



Where we are (1/2) 

•  Query q = f1(x1), …, fk(xk) 
•  Each xi is a root (in the sg-ordering) variable in 

fi  (WHY DO WE NEED ?) 
•  Whenever a subgoal in fi unifies with one in fj, 

that unification results in xi=xj (WHERE DO 
WE NEED ?) 

15 



Where we are 

•  Then p(q) = big sum over (HOW MANY?) Ui’s 
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p(q)=∑U1, U2, condition  (-1)|…| p(f 1(U1)…) 

Now  p(f 1(U1)…) is a probability of independent events; 
hence: = p(f 1(a1))* p(f 1(a2))* . . . 
Need to compute a sum. 

For each constant aj, fi(aj) is another query: recurs.   



Coverage 
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q = R(x,b),R(a,y) 

We don’t like that in the summation: it makes the 
transition from the Ti’s to the Uj’s too difficut. 

We have a problem, because x does not unify with y, but with 
a constant 



Coverage 
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q = R(x,b),R(a,y) 

q = R(a,b) ∨ �
      R(x,b),R(a,b),x≠a ∨�
      R(a,y),y≠b ∨ �
      R(x,b), R(a,y), x≠a,y≠b

Add predicates x≠a ∨ x=a  and also x≠a ∨ x=a 

f0        = R(a,b)  
f1(x) = R(x,b),x≠a 
f2(y)  = R(a,y),y≠b

q = f1f2   ∨  f0f2  ∨  f0f1  ∨  f0  WHAT NEXT  for p(q) ? 



Coverage 

•  How is the root variable here ? 

q = R(x,y), R(y,x), S(x,y) 
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Coverage 

•  Add predicates x<y, x=y, x>y 
•  Break ties using < 

q = R(x,y), R(y,x), S(x,y) 

f0(x)   = R(x,x), S(x,x) 
f1(x,y) = R(x,y),R(y,x), S(x,y), x<y 
f2(x,y) = R(x,y),R(y,x), S(x,y), y<x

Root var = x 

Root var = x 

Root var = y 



Coverage 

•  The last thing we don’t like: 
q = R(x,x,y), R(u,v,v) 

•  When we unify there is a “side-effect”: x=y 

•  Easy to avoid: add predicates x=y, x≠y etc. 
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General Algorithm (1/2) 

•  Add predicates =,≠, or <, =, > 
•  Query is now “covered”: 

–  q = c1 ∨  c2 ∨  … 
– Each ci = several “factors” (connected 

components) 
•  Each unifier: 

–   maps variables only to variables (not constants) 
–  is 1-to-1 

22 



23 

Inversions 
Construct the graph: 
•  Nodes: (f, x, y) with f ∈ F, x, y ∈ Vars(f) 
•  Edges:  (f, x, y) → (f’, x’, y’) s.t. there exists an 

MGU mapping x → x’ and y → y’ 

R(x,y), R(y,z) 
q, x, y q, y, z 

sg(x) ⊂ sg(y) 

sg(y)⊃ sg(z) 

Definition An inversion is a path from (f,x,y)  
to (f’,x’,y’) s.t. sg(x) ⊃ sg(y) and sg(x’) ⊂ sg(y’) 



General Algorithm (2/2) 

•  If there are no inversions, pick a unique root 
variable in each factor 

•  We have what we asked for: every unifier 
maps root variable to root variable 

•  Do summation… 
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