Topics in Probabilistic and Statistical Databases

Lecture 5: Query Evaluation

Dan Suciu
University of Washington

Inversion-Free Queries

Theorem
 If q has no inversions then it is in PTIME

Stronger: there exists a polynomial size expression with + and * computing $\mathrm{p}(\mathrm{q})$

Hierarchical Queries with Inversions

$$
\mathrm{H}_{0}=\mathrm{R}(\mathrm{x}), \mathrm{S}(\mathrm{x}, \mathrm{y}), \mathrm{S}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right), \mathrm{T}\left(\mathrm{y}^{\prime}\right)
$$

There is an "inversion":
$\operatorname{sg}(\mathrm{x}) \supset \operatorname{sg}(\mathrm{y}), \operatorname{sg}\left(\mathrm{x}^{\prime}\right) \subset \operatorname{sg}\left(\mathrm{y}^{\prime}\right)$ and $\mathrm{S}(\mathrm{x}, \mathrm{y})$ unifies with $\mathrm{S}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$
Theorem H_{0} is \#P-hard

$$
\mathrm{q}=\mathrm{R}(\mathrm{x}), \mathrm{S}(\mathrm{x}, \mathrm{y}) \vee \mathrm{S}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right), \mathrm{T}\left(\mathrm{y}^{\prime}\right)
$$

Proof

Reduction from POSITIVE-PARTITIONED 2DNF

$$
x_{1} y_{1} \vee x_{2} y_{1} \vee x_{2} y_{3} \vee \ldots
$$

Let $\mathrm{c}_{\mathrm{k}}=$ \#satisfying assignments where exactly k clauses are false
The problem is to compute $\mathrm{c}_{0}+\mathrm{c}_{1}+\ldots+\mathrm{c}_{\mathrm{m}-1}$

\mathbf{R}| X | P |
| :--- | :--- |
| 1 | 0.5 |
| 2 | 0.5 |
| 3 | 0.5 |
| \ldots | |

\mathbf{S}| x | y | p |
| :--- | :--- | :--- |
| 1 | 1 | v |
| 2 | 1 | v |
| 2 | 3 | v |
| | \ldots | |

OPEN: if \mathbf{S} has probabilities 0.5

$$
1-\mathrm{p}(\mathrm{q})=\mathrm{c}_{1} 1 / 2^{\mathrm{n}}(1-\mathrm{v})+\mathrm{c}_{2} 1 / 2^{\mathrm{n}}(1-\mathrm{v})^{2}+\ldots+\mathrm{c}_{\mathrm{m}} 1 / 2^{\mathrm{n}}(1-\mathrm{v})^{\mathrm{m}}
$$

Chose m different values for v ; solve Vandermonde system

Longer Inversions

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{k}}= \\
& \mathrm{R}(\mathrm{x}), \mathrm{S}_{0}(\mathrm{x}, \mathrm{y}), \\
& \mathrm{S}_{0}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right), \mathrm{S}_{1}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right), \\
& \\
& \mathrm{S}_{1}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right), \mathrm{S}_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right), \ldots \\
& \mathrm{S}_{\mathrm{k}-1}\left(\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}\right), \mathrm{S}_{\mathrm{k}}\left(\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}\right) \\
& \quad \mathrm{S}_{\mathrm{k}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right), \mathrm{T}\left(\mathrm{y}^{\prime}\right)
\end{aligned}
$$

Theorem : For each $\mathrm{k} \geq 0, \mathrm{H}_{\mathrm{k}}$ is \#P-hard.

Proof: more involved, but same main idea

Unifications

Let g , g ' be two subgoals.
Rename variables s.t. $\operatorname{Vars}(\mathrm{g}) \cap \operatorname{Vars}\left(\mathrm{g}^{\prime}\right)=\varnothing$

```
g and g' unify if }\exists\textrm{h},\textrm{h}\mathrm{ ' s.t. h(g)=h(g')
MGU = "most general unifier"
```


$$
\mathbf{R}(\mathrm{x}), \mathbf{S}(\mathrm{x}, \mathrm{y}, \mathrm{a}), \mathbf{S}(\mathrm{y}, \mathrm{~b}, \mathrm{x}), \mathbf{S}(\mathrm{u}, \mathrm{c}, \mathrm{v})
$$

Simple Fact

Proposition Let q, q' be two queries s.t. no two subgoals $g \in q$ and $g^{\prime} \in q^{\prime}$ unify. Then $p\left(q, q^{\prime}\right)=p(q) p\left(q^{\prime}\right)$

Proof: q and q ' are independent probabilistic events

$$
\begin{aligned}
& q=R(x, y), S(y, a) \quad q^{\prime}=T(u, v), S(v, b) \\
& q, q^{\prime}=R(x, y), S(y, a), T(u, v), S(v, b)
\end{aligned}
$$

Inclusion/Exclusion Formula

$$
q=\exists x . f(x)
$$

Here $\mathrm{f}(\mathrm{x})$ is a query, and x is one of its variables

Proposition $\mathrm{p}(\mathrm{q})=\sum_{\mathrm{T} \neq \varnothing}(-1)^{|\mathrm{T}|} \mathrm{p}(\mathrm{f}(\mathrm{T}))$

Here $f(T)$ means $f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)$, if $T=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

How does this generalize to $q=\exists x_{1} \cdot f\left(x_{1}\right), \exists x_{2} \cdot f\left(x_{2}\right), \ldots$

Example

Compute $\mathrm{P}(\mathrm{q})$, where:

$$
q=R(x), S(x), S(y), T(y)=f(x), g(y)
$$

$$
\mathrm{p}(\mathrm{q})=\sum_{\mathrm{T} \mid \neq 0, \mathrm{~T} 2 \neq \sigma}(-1)^{\mathrm{T} 1+|\mathrm{T} 2|} \mathrm{p}\left(\mathrm{f}\left(\mathrm{~T}_{1}\right) \mathrm{g}\left(\mathrm{~T}_{2}\right)\right)
$$

We would like to commute p with f, g, but they are dependent...9

Example

Idea: For each T1, T2, define U3=T1 $\cap \mathrm{T} 2, \mathrm{U} 1=\mathrm{T} 1-\mathrm{U} 3, \mathrm{U} 2=\mathrm{T} 1-\mathrm{U} 3$

$$
\begin{gathered}
\mathrm{p}(\mathrm{q})=\sum_{\mathrm{U} 1 \cup \mathrm{U} 3 \neq \varnothing, \mathrm{U} 2 \cup \mathrm{U} 3 \neq \varnothing, \operatorname{disjoint}(\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3)}(-1)^{|\mathrm{U} 1|+|\mathrm{U} 2|} \\
\mathrm{p}\left(\mathrm{f}\left(\mathrm{U}_{1}\right) \mathrm{g}\left(\mathrm{U}_{2}\right) \mathrm{h}\left(\mathrm{U}_{3}\right)\right)
\end{gathered}
$$

Where $\mathrm{f}(\mathrm{x})=\mathrm{R}(\mathrm{x}), \mathrm{S}(\mathrm{x}), \quad \mathrm{g}(\mathrm{y})=\mathrm{S}(\mathrm{y}), \mathrm{T}(\mathrm{y}), \quad \mathrm{h}(\mathrm{z})=\mathrm{R}(\mathrm{z}), \mathrm{S}(\mathrm{z}), \mathrm{T}(\mathrm{z})$

Sums (1/2)

- We have ensured that all factors are independent
- Hence terms of the form:

$$
\mathrm{p}\left(\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \ldots\right)
$$

become

$$
\prod_{i=1, k} \prod_{a \in T_{I}} g_{i}(a)
$$

where: $\mathrm{g}_{\mathrm{i}}(\mathrm{x})=\mathrm{p}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)$

- Now we examine how to compute sums of such terms, when T_{1}, \ldots, T_{k} range over subsets of A, and are subject to predicates

Sums (2/2)

Exercise: compute

$$
\sum_{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}} \mathrm{~g}_{1}\left(\mathrm{~T}_{1}\right) \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right) \mathrm{g}_{3}\left(\mathrm{~T}_{3}\right)
$$

Answer

$$
\prod_{a \in A}\left(1+g_{1}(a)\right)\left(1+g_{2}(a)\right)\left(1+g_{3}(a)\right)
$$

$$
\sum_{T_{1}, T_{2} \cdot T_{3}: T_{i} \cap T_{j}=g_{1}\left(T_{1}\right) g_{2}\left(T_{2}\right) g_{3}\left(T_{3}\right) .}
$$

$$
\prod_{a \in A}\left(1+g_{1}(a)+g_{2}(a)+g_{3}(a)\right)
$$

$$
\prod_{a \in A}\left(1+g_{1}(a)+g_{2}(a)+g_{2}(a) g_{4}(a)+g_{3}(a)+g_{1}(a) g_{3}(a)\right)
$$

Theorem: for any FO predicate over T_{1}, \ldots, T_{k}, the sum $\sum_{\mathrm{T}: \phi} \mathrm{g}(\mathrm{T})$ admits a closed form linear in $|\mathrm{A}|$

Challenge

- Sums are difficult
- They are in PTIME, but they are so complex that we can't do on paper even the simplest examples
- Moreover: mismatch with relational algebra

What is a better abstraction to compute inversion free queries?

Quiz

- Compute the following query (up to sum expressions):

$$
q=R(x), S(x, y), S\left(x^{\prime}, y^{\prime}\right), T\left(x^{\prime}\right)
$$

- Does this work for the following too?

$$
\mathrm{q}=\mathrm{R}(\mathrm{x}), \mathrm{S}(\mathrm{x}, \mathrm{y}), \mathrm{S}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right), \mathrm{T}\left(\mathrm{y}^{\prime}\right)
$$

Where we are (1/2)

- Query $q=f_{1}\left(x_{1}\right), \ldots, f_{k}\left(x_{k}\right)$
- Each xi is a root (in the sg-ordering) variable in fi (WHY DO WE NEED ?)
- Whenever a subgoal in fi unifies with one in fj, that unification results in $\mathrm{xi}=\mathrm{xj}$ (WHERE DO WE NEED ?)

Where we are

- Then $\mathrm{p}(\mathrm{q})=$ big sum over (HOW MANY?) Ui’s

$$
\mathrm{p}(\mathrm{q})=\sum_{\mathrm{U} 1, \mathrm{U} 2, \text { condition }}(-1)^{1 \ldots \mid} \mathrm{p}\left(\mathrm{f}_{1}\left(\mathrm{U}_{1}\right) \ldots\right)
$$

Now $p\left(f_{1}\left(U_{1}\right) \ldots\right)$ is a probability of independent events; hence: $=p\left(f_{1}\left(a_{1}\right)\right)^{*} p\left(f_{1}\left(a_{2}\right)\right)^{*} \ldots$
Need to compute a sum.

For each constant $\mathrm{a}_{\mathrm{j}}, \mathrm{f}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{j}}\right)$ is another query: recurs.

Coverage

$$
q=R(x, b), R(a, y)
$$

We have a problem, because x does not unify with y , but with a constant

We don't like that in the summation: it makes the transition from the Ti's to the Uj's too difficut.

Coverage

$\mathrm{q}=\mathrm{R}(\mathrm{x}, \mathrm{b}), \mathrm{R}(\mathrm{a}, \mathrm{y})$

Add predicates $\mathrm{x} \neq \mathrm{a} \vee \mathrm{x}=\mathrm{a}$ and also $\mathrm{x} \neq \mathrm{a} \vee \mathrm{x}=\mathrm{a}$

$$
\begin{array}{rlrl}
\mathrm{q}= & \mathrm{R}(\mathrm{a}, \mathrm{~b}) \vee & & \mathrm{f}_{0}=R(\mathrm{a}, \mathrm{~b}) \\
& R(\mathrm{x}, \mathrm{~b}), \mathrm{R}(\mathrm{a}, \mathrm{~b}), \mathrm{x} \neq \mathrm{a} \vee & & \mathrm{f}_{1}(\mathrm{x})=\mathrm{R}(\mathrm{x}, \mathrm{~b}), \mathrm{x} \neq \mathrm{a} \\
& \mathrm{R}(\mathrm{a}, \mathrm{y}), \mathrm{y} \neq \mathrm{b} \vee & & \mathrm{f}_{2}(\mathrm{y})=\mathrm{R}(\mathrm{a}, \mathrm{y}), \mathrm{y} \neq \mathrm{b} \\
& \mathrm{R}(\mathrm{x}, \mathrm{~b}), \mathrm{R}(\mathrm{a}, \mathrm{y}), \mathrm{x} \neq \mathrm{a}, \mathrm{y} \neq \mathrm{b} & & \\
\mathrm{q}= & \mathrm{f}_{1} \mathrm{f}_{2} \vee \mathrm{f}_{0} \mathrm{f}_{2} \vee \mathrm{f}_{0} \mathrm{f}_{1} \vee \mathrm{f}_{0} & & \\
\text { WHAT NEXT for } \mathrm{p}(\mathrm{q}) ?_{18}
\end{array}
$$

Coverage

- How is the root variable here?

$$
q=R(x, y), R(y, x), S(x, y)
$$

Coverage

- Add predicates $\mathrm{x}<\mathrm{y}, \mathrm{x}=\mathrm{y}, \mathrm{x}>\mathrm{y}$
- Break ties using $<$

$q=R(x, y), R(y, x), S(x, y)$

$$
\begin{aligned}
& f_{0}(x)=R(x, x), S(x, x) \\
& f_{1}(x, y)=R(x, y), R(y, x), S(x, y), x<y \\
& f_{2}(x, y)=R(x, y), R(y, x), S(x, y), y<x
\end{aligned}
$$

Coverage

- The last thing we don't like:

$$
\mathrm{q}=\mathrm{R}(\mathrm{x}, \mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{u}, \mathrm{v}, \mathrm{v})
$$

- When we unify there is a "side-effect": $\mathrm{x}=\mathrm{y}$
- Easy to avoid: add predicates $x=y, x \neq y$ etc.

General Algorithm (1/2)

- Add predicates $=, \neq$, or $<,=,>$
- Query is now "covered":
$-\mathrm{q}=\mathrm{c} 1 \vee \mathrm{c} 2 \vee \ldots$
- Each ci = several "factors" (connected components)
- Each unifier:
- maps variables only to variables (not constants)
- is 1-to-1

Inversions

Construct the graph:

- Nodes: ($f, \mathrm{x}, \mathrm{y}$) with $\mathrm{f} \in \mathrm{F}, \mathrm{x}, \mathrm{y} \in \operatorname{Vars}(\mathrm{f})$
- Edges: $(f, x, y) \rightarrow\left(f^{\prime}, x^{\prime}, y^{\prime}\right)$ s.t. there exists an MGU mapping $x \rightarrow x$ and $y \rightarrow y^{\prime}$
Definition An inversion is a path from ($\mathrm{f}, \mathrm{x}, \mathrm{y}$) to $\left(f^{\prime}, x^{\prime}, y^{\prime}\right)$ s.t. $\operatorname{sg}(\mathrm{x}) \supset \operatorname{sg}(\mathrm{y})$ and $\operatorname{sg}\left(\mathrm{x}^{\prime}\right) \subset \operatorname{sg}\left(\mathrm{y}^{\prime}\right)$

```
R(x,y), R(y,z)
```


General Algorithm (2/2)

- If there are no inversions, pick a unique root variable in each factor
- We have what we asked for: every unifier maps root variable to root variable
- Do summation...

$\begin{aligned} & R(x) S_{1}(\underline{x}, y, \underline{y}) \\ & S_{1}(\underline{u}, v, \underline{w}), S_{2}(\underline{u}, v, \underline{w}) \\ & S_{2}\left(\underline{x}^{\prime}, x^{\prime}, \underline{y^{\prime}}\right), T\left(y^{\prime}\right) \end{aligned}$	$\begin{aligned} q c_{1}= & R(x), S_{1}(\underline{x}, y, \underline{y}), x \neq y, \\ & S_{1}(\underline{u}, v, \underline{v}), S_{2}(\underline{u}, v, \underline{v}), u \neq v \\ & S_{2}\left(x^{\prime}, x^{\prime}, y^{\prime}\right), T\left(y^{\prime}\right), x^{\prime} \neq y^{\prime} \\ q c_{2}= & R(x), S_{1}(x, y, y), x \neq y \\ & S_{1}(\underline{u}, u, \underline{w}), S_{2}(\underline{u}, u, \underline{w}), u \neq w \\ & S_{2}\left(\underline{x^{\prime}}, x^{\prime}, \underline{y^{\prime}}\right), T\left(y^{\prime}\right), x^{\prime} \neq y^{\prime} \end{aligned}$	Illustrates the need for a strict coverage. The unification path forming an inversion in q in the trivial cover (which is non-strict) is interrupted when we add \neq predicates to make the cover strict.

$\begin{aligned} & R\left(x_{1}, x_{2}\right), S\left(\underline{x_{1}}, x_{2}, \underline{y}, y\right) \\ & S\left(x_{1}, x_{1}, x_{2}, x_{2}\right) \\ & S\left(\underline{(x}^{\prime}, x^{\prime}, \underline{y^{\prime}}, y^{\prime}\right), T\left(y^{\prime}\right) \end{aligned}$	$\begin{aligned} q c= & R(x, x), S(\underline{x}, x, \underline{y}, y), \\ & S(x, x, x, x), x \neq y \\ & S\left(\underline{x}^{\prime}, x^{\prime}, \underline{\left.y^{\prime}, y^{\prime}\right), T\left(y^{\prime}\right), x^{\prime} \neq y^{\prime}}=\right. \\ = & R(x, x), S(x, x, x, x), \\ & S\left(x^{\prime}, x^{\prime}, y^{\prime}, y^{\prime}\right), T\left(y^{\prime}\right), x^{\prime} \neq y^{\prime} \end{aligned}$	This illustrates the need to minimize covers. The inversion disappears after minimizing $q c$.

$\begin{aligned} & R\left(x_{1}, x_{2}\right), S\left(x_{1}, x_{2}, \underline{y}, y\right) \\ & S\left(x_{1}, x_{2}, x_{1}, x_{2}\right) \\ & S\left(\underline{x^{\prime}}, x^{\prime}, \underline{y_{1}^{\prime}}, y_{2}^{\prime}\right), T\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \end{aligned}$	$\begin{aligned} q c_{1}= & R(x, x), S(\underline{x}, x, \underline{y}, y), x \neq y \\ & S\left(\underline{x^{\prime}}, x^{\prime}, \underline{y^{\prime}}, y^{\prime}\right), T\left(y^{\prime}, y^{\prime}\right), x^{\prime} \neq y^{\prime} \\ & S(x, x, x, x) \\ q c_{2}= & R(x, x), S(x, x, x, x), \\ & S\left(x^{\prime}, x^{\prime}, y^{\prime}, y^{\prime}\right), T\left(y^{\prime}, y^{\prime}\right), x^{\prime} \neq y^{\prime} \end{aligned}$	This shows that we should not consider redundant coverages. There is an inversion in $q c_{1}$, but this cover is contained in $q c_{2}$ so it is redundant and after we remove $q c_{1}$ from the coverage there is no more inversion.

