
1

Topics in Probabilistic and
Statistical Databases

Lecture 5: Query Evaluation

Dan Suciu
University of Washington

2

Inversion-Free Queries

Theorem
If q has no inversions then it is in PTIME

Stronger: there exists a polynomial size expression
with + and * computing p(q)

3

Hierarchical Queries with Inversions

S

R
x

y
S

T

y’
x’

H0 = R(x),S(x,y),S(x’,y’),T(y’)

Theorem H0 is #P-hard

There is an “inversion”:
sg(x) ⊃ sg(y), sg(x’) ⊂ sg(y’) and S(x,y) unifies with S(x’,y’)

4

Proof

x1 y1 ∨ x2 y1 ∨ x2 y3 ∨ …

x P
1 0.5
2 0.5
3 0.5
. . .

y P
1 0.5
2 0.5
3 0.5
. . .

x y P
1 1 v
2 1 v
2 3 v

. . .

R S T

OPEN: if S has
probabilities 0.5

Let ck = #satisfying assignments where exactly k clauses are false
The problem is to compute c0 + c1 + … + cm-1

Reduction from POSITIVE-PARTITIONED 2DNF

1 - p(q) = c1 1/2n (1-v) + c2 1/2n (1-v)2 + … + cm 1/2n (1-v)m

Chose m different values for v; solve Vandermonde system

q = R(x),S(x,y) ∨ S(x’,y’),T(y’)

5

Longer Inversions
Hk =
 R(x), S0(x,y),
 S0(u1,v1),S1(u1,v1),
 S1(u2,v2),S2(u2,v2),…
 Sk-1(uk,vk),Sk(uk,vk),
 Sk(x’,y’), T(y’)

Theorem : For each k ¸ 0, Hk is #P-hard.

Proof: more involved, but same main idea

6

Unifications

R(x), S(x,y,a), S(y,b,x),S(u,c,v)

Unify
Don’t
unify Don’t

unify

g and g’ unify if ∃ h, h’ s.t. h(g)=h(g’)
MGU = “most general unifier”

Let g, g’ be two subgoals.
Rename variables s.t. Vars(g) ∩ Vars(g’) = Ø

7

Simple Fact

Proposition Let q, q’ be two queries s.t. no
two subgoals g ∈ q and g’ ∈ q’ unify. Then
 p(q, q’) = p(q) p(q’)

Proof: q and q’ are independent probabilistic events

q = R(x,y),S(y,a) q’ =T(u,v),S(v,b)
q, q’ = R(x,y),S(y,a),T(u,v),S(v,b)

Inclusion/Exclusion Formula

8

Proposition p(q) = ∑T≠∅ (-1)|T| p(f (T))

q = ∃x. f(x) Here f(x) is a query, and x
is one of its variables

Here f(T) means f(a1), f(a2), …, f(an), if T = {a1, a2, …, an}

How does this generalize to q =∃x1. f(x1), ∃x2. f(x2), …

Example

9

q = R(x), S(x), S(y), T(y) = f(x), g(y)

Compute P(q), where:

p(q) = ∑T1≠∅, T2≠∅ (-1)|T1|+|T2| p(f (T1) g(T2))

We would like to commute p with f,g, but they are dependent…

Example

10

Idea: For each T1, T2, define U3=T1 ∩ T2, U1=T1-U3, U2=T1-U3

p(q)=∑U1∪U3≠∅, U2∪U3≠∅, disjoint(U1,U2,U3) (-1)|U1|+|U2|
 p(f (U1)g(U2)h(U3))

Where f(x) = R(x),S(x), g(y) = S(y),T(y), h(z) = R(z), S(z), T(z)

U3
U1 U2

11

Sums (1/2)

•  We have ensured that all factors are independent
•  Hence terms of the form:

 p(f1(T1)f2(T2)…)
become
 ∏i=1,k ∏a ∈ TI

 gi(a)
where: gi(x) = p(fi(x))

•  Now we examine how to compute sums of such
terms, when T1, …, Tk range over subsets of A,
and are subject to predicates

12

Sums (2/2)
∑T1,T2, T3 g1(T1) g2(T2) g3(T3)

∏a ∈ A (1 + g1(a) + g2(a) + g3(a))

Theorem: for any FO predicate over T1, …, Tk,
the sum ∑T: φ g(T) admits a closed form linear in |A|

Exercise: compute

∑T1,T2, T3 : Ti ∩ Tj = ∅ g1(T1) g2(T2) g3(T3)

∏a ∈ A (1 + g1(a))(1+ g2(a))(1 + g3(a)) Answer

∑T1 ∩ T2 =∅, T2 ∩ T3 =∅, T4 ⊆ T2
g1(T1) g2(T2) g3(T3) g4(T4)

∏a ∈ A (1 + g1(a) + g2(a) + g2(a)g4(a) + g3(a) + g1(a)g3(a))

Challenge

•  Sums are difficult
– They are in PTIME, but they are so complex

that we can’t do on paper even the simplest
examples

•  Moreover: mismatch with relational algebra

What is a better abstraction to compute
inversion free queries ? 13

Quiz

•  Compute the following query (up to sum
expressions):

q = R(x), S(x,y), S(x’,y’), T(x’)

•  Does this work for the following too ?

q = R(x), S(x,y), S(x’,y’), T(y’)
14

Where we are (1/2)

•  Query q = f1(x1), …, fk(xk)
•  Each xi is a root (in the sg-ordering) variable in

fi (WHY DO WE NEED ?)
•  Whenever a subgoal in fi unifies with one in fj,

that unification results in xi=xj (WHERE DO
WE NEED ?)

15

Where we are

•  Then p(q) = big sum over (HOW MANY?) Ui’s

16

p(q)=∑U1, U2, condition (-1)|…| p(f 1(U1)…)

Now p(f 1(U1)…) is a probability of independent events;
hence: = p(f 1(a1))* p(f 1(a2))* . . .
Need to compute a sum.

For each constant aj, fi(aj) is another query: recurs.

Coverage

17

q = R(x,b),R(a,y)

We don’t like that in the summation: it makes the
transition from the Ti’s to the Uj’s too difficut.

We have a problem, because x does not unify with y, but with
a constant

Coverage

18

q = R(x,b),R(a,y)

q = R(a,b) ∨ �
 R(x,b),R(a,b),x≠a ∨�
 R(a,y),y≠b ∨ �
 R(x,b), R(a,y), x≠a,y≠b

Add predicates x≠a ∨ x=a and also x≠a ∨ x=a

f0 = R(a,b)
f1(x) = R(x,b),x≠a
f2(y) = R(a,y),y≠b

q = f1f2 ∨ f0f2 ∨ f0f1 ∨ f0 WHAT NEXT for p(q) ?

Coverage

•  How is the root variable here ?

q = R(x,y), R(y,x), S(x,y)

20

Coverage

•  Add predicates x<y, x=y, x>y
•  Break ties using <

q = R(x,y), R(y,x), S(x,y)

f0(x) = R(x,x), S(x,x)
f1(x,y) = R(x,y),R(y,x), S(x,y), x<y
f2(x,y) = R(x,y),R(y,x), S(x,y), y<x

Root var = x

Root var = x

Root var = y

Coverage

•  The last thing we don’t like:
q = R(x,x,y), R(u,v,v)

•  When we unify there is a “side-effect”: x=y

•  Easy to avoid: add predicates x=y, x≠y etc.

21

General Algorithm (1/2)

•  Add predicates =,≠, or <, =, >
•  Query is now “covered”:

–  q = c1 ∨ c2 ∨ …
– Each ci = several “factors” (connected

components)
•  Each unifier:

–  maps variables only to variables (not constants)
–  is 1-to-1

22

23

Inversions
Construct the graph:
•  Nodes: (f, x, y) with f ∈ F, x, y ∈ Vars(f)
•  Edges: (f, x, y) → (f’, x’, y’) s.t. there exists an

MGU mapping x → x’ and y → y’

R(x,y), R(y,z)
q, x, y q, y, z

sg(x) ⊂ sg(y)

sg(y)⊃ sg(z)

Definition An inversion is a path from (f,x,y)
to (f’,x’,y’) s.t. sg(x) ⊃ sg(y) and sg(x’) ⊂ sg(y’)

General Algorithm (2/2)

•  If there are no inversions, pick a unique root
variable in each factor

•  We have what we asked for: every unifier
maps root variable to root variable

•  Do summation…

24

25

26

27

