Topics in Probabilistic and Statistical Databases

Lecture 9: Histograms and Sampling

Dan Suciu University of Washington

References

- *Fast Algorithms For Hierarchical Range Histogram Construction*, Guha, Koudas, Srivastava, PODS 2002
- Selectivity Estimation using Probabilistic Models, Getoor, Taskar, Koller, SIGMOD 2001
- Consistently estimating the selectivity of conjuncts of predicates, Markl et al, VLDB 2005
- *On random sampling over joins*, Chaudhuri, Motwani, Narasayya, SIGMOD'99
- *Towards a robust query optimizer*, Babcock, Chaudhuri, SIGMOD 2005

Example

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Think of this query as being issued during query optimization: Optimizer wants to find out the size of a subplan

Assume $|\mathbf{R}| = 1,000,000,000$ Can't scan R. Will use statistics instead

Histograms to the Rescue !

R.A =	 9	10	11	
count =	 	100,000,000		

R.B =	 19	20	21	
count =	 	200,000,000		

R.C =	 29	30	31	
count =	 	250,000,000		

Histogram Basics

• Main goal: estimate the size of range queries:

SELECT * FROM R WHERE $v1 \le R.A$ and $R.A \le v2$

• Special case: v=R.A

Histogram Basics

- Given: an array A[1,n] of non-negative reals
- Define: A[a,b] = (A[a]+...+A[b])/(b-a+1)

Definition. A histogram of array A[1,n] using B buckets is specified by B+1 integers $0 \le b_1 \le ... \le b_{B+1} = n.$

 $[b_i+1, b_{i+1}]$ is called a "bucket"; its value is $A[b_i+1, b_{i+1}]$

Answering Range Queries

Definition. A range query is R_{ij} and its answer is: $s_{ij} = A[i] + ... + A[j]$

The answer \hat{s}_{ij} to a range query R_{ij} using a histogram is computed by using the "uniformity assumption". [Formula on the white board]

Definition. The error of R_{ij} is $(\hat{s}_{ij} - s_{ij})^2$

[Guha'2002]

Optimal Histograms

- Given:
 - A workload W of range queries R_{ij}
 - A weight w_{ij} for each query
- Compute a histogram that minimizes

$$\Sigma w_{ij} (\hat{s}_{ij} - s_{ij})^2$$

Optimal Histograms

- V-optimal histograms:
 - Single point queries: W={ $R_{11}, ..., R_{nn}$ }
 - All weights are equal
 - Computing V-optimal histogram [IN CLASS]
- Optimal histograms for hierarchical queries
 - Workload forms a hierarchy
 - Computable in PTIME

Multidimensional Histograms

• Main goal: estimate the size of multi-range queries:

```
SELECT *
FROM R
WHERE u1 \le R.A and R.A \le v1
and u2 \le R.B and R.B \le v2
and ...
```

Multidimensional Histograms

Two issues:

- Which dimensions to choose ?
- How do we compute the optimal histogram ?
 - NP-hard for 2 dimensions [S. Muthukrishnan, V. Poosala, and T. Suel, ICDT 1999]

Will discuss only issue 1

Which Dimensions to Choose

• Use graphical models and exploit conditional independences

Probabilistic Model of a Histogram

- R(A₁, ..., A_n) = relation with n attributes
 Duplicates possible, e.g. there are more attrs
- The joint probability distribution is:

$$P(a_1, ..., a_n) = |\sigma_{A1=a1,...,An=an}(R)| / |R|$$

• Queries are now point queries

$$Q(a_1, ..., a_n) = P(a_1, ..., a_n) * |R|$$

Conditional Independences

Person(Name, Education, Income, Home-owner) Education = high-school, college, MS Income = low, medium, high Home-owner = false, true

Assumption:

$$P(H \mid E, I) = P(H \mid I)$$

Then the point query becomes:

 $Q(H, E, I) = P(H \mid I) * P(I)$

14

[Getoor'2001] Conditional Independence \rightarrow Histograms

E	Ι	Η	P(E, I, H)
h	1	f	0.27
h	1	t	0.03
h	m	f	0.105
h	m	t	0.045
h	h	f	0.005
h	h	t	0.045
с	1	f	0.135
с	1	t	0.015
с	m	f	0.063
с	m	t	0.027
с	h	f	0.006
с	h	t	0.054
a	1	f	0.018
a	1	t	0.002
a	m	f	0.042
a	m	t	0.018
a	h	f	0.012
а	h	t	0.108

E	P(I)	E)
h	0.	5
c	0.	3
a	0.	2
Ι	Ε	$P(I \mid E)$
1	h	0.6
m	h	0.3
h	h	0.1
1	с	0.5
m	с	0.3
h	с	0.2
1	a	0.1
m	a	0.3
h	а	0.6

Η	Ι	$P(H \mid I)$
t	1	0.1
f	1	0.9
t	m	0.3
f	m	0.7
t	h	0.9
f	h	0.1

E	P(E)
h	0.5
с	0.3
a	0.2

Ι	P(I)
1	0.47
m	0.30
h	0.23

Η	P(H)
t	0.344
f	0.656

(a)

(b)

(c)

Bayesian Networks

Discussion

- Multidimensional histograms remain difficult to use:
- Conditional independences may not hold
- Difficult to learn the BN
- Computing buckets remains expensive

Consistent Estimation Problem

Recall: histogram entries are probabilities

R.A =	 10	•••
s ₁ =	 0.1	•••

R.B =	•••	20	•••
s ₂ =	•••	0.2	•••

R.C =	•••	30	
s ₃ =	•••	0.25	•••

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Consistent Estimation Problem

R.A =	•••	10	
s ₁ =	•••	0.1	•••

R.B =	•••	20	•••
s ₂ =		0.2	

R.C =	•••	30	•••
s ₃ =		0.25	

R.AB	•••	10,20	
s ₁₂ =	•••	0.05	

R.BC	•••	20,30	
s ₁₃ =		0.03	

SELECT count(*)

FROM R WHERE R.A=10 and R.B=20 and R.C=30

19

Problem Statement

- Given
 - Multivariate Statistics, MVS
 - Query q
- Estimate q from the MVS
- Issue:
 - Many ways to use the MVS
 - Inconsistent answers

Example

- Relation: R(A,B,C)
- MVS: P(A), P(B), P(C), P(A,B), P(B,C)
- Estimate query size: $\sigma_{A=a, B=b, C=c}(R)$
- Equivalently: compute P(a,b,c)

No Unique Solution !

The Consistency Problem

Different possible answers:

- $P(a,b,c) \approx P(a,b) * P(c)$
- $P(a,b,c) \approx P(a) * P(b,c)$
- $P(a,b,c) \approx P(a) * P(b) * P(c)$
- $P(a,b,c) \approx P(a,b) * P(b,c) / P(b)$

Which independence(s) does each formula assume ?

Simplify Probabilities

- New probability space on $\{(x,y,z) \mid (x,y,z) \in \{0,1\}^3\}$ defined by:
- Randomly select a tuple t from R
 - x=1 iff t.A=10
 - -y=1 iff t.B=20
 - -z=1 iff t.C=30
- E.g. $P(1,0,1) = P(A=a, B\neq b, C=c)$

Modeling Histograms as ProbDB

- There are eight possible worlds, need their probs
- The five histograms lead to 5+1 = 6 constraints:

Entropy Maximization Principle

- Let **x**=(x₁,x₂, ...) be a probability distribution
- The entropy is:

$$H(\mathbf{x}) = -(x_1 \log(x_1) + x_2 \log(x_2) + ...)$$

• The ME principle is: "among multiple probability distributions, choose the one with maximum entropy"

• In our example: find
$$x_{000}$$
, ..., x_{111} s.t.:

$$p_{\emptyset} = x_{000} + \ldots + x_{111} - 1 = 0$$

$$p_a = x_{100} + x_{101} + x_{110} + x_{111} - P(a) = 0$$

$$p_b = x_{010} + x_{011} + x_{110} + x_{111} - P(b) = 0$$

$$p_c = x_{001} + x_{011} + x_{101} + x_{111} - P(c) = 0$$

$$p_{ab} = x_{110} + x_{111} - P(a,b) = 0$$

$$p_{bc} = x_{011} + x_{111} - P(b,c) = 0$$
maximize(H)
where $H = -(x_{000} \log(x_{000}) + \ldots + x_{111} \log(x_{111}))$

• The Lagrange multipliers: define a constant λ_s for every constraint p_s , then define:

$$f(x_{000}, ..., x_{111}) = \Sigma_s \lambda_s p_s - H$$

• Solve the following:

$$\begin{array}{l} \partial f / \partial x_{000} = 0 \\ \dots \\ \partial f / \partial x_{111} = 0 \end{array} \end{array}$$

• The system becomes:

$$\forall t \text{ in } \{0,1\}^3: \Sigma_{s \subseteq t} \lambda_s + \log(x_t) + 1 = 0$$

• In our example, this is:

$$\begin{array}{ll} t = 000: & \lambda_{\varnothing} + \log(x_{000}) + 1 = 0 \\ t = 001: & \lambda_{\varnothing} + \lambda_{c} + \log(x_{001}) + 1 = 0 \\ t = 010: & \lambda_{\varnothing} + \lambda_{b} + \log(x_{010}) + 1 = 0 \\ t = 011: & \lambda_{\varnothing} + \lambda_{b} + \lambda_{b} + \lambda_{bc} + \log(x_{011}) + 1 = 0 \\ & \ddots & \ddots & \ddots \end{array}$$

• The solution has the following form:

$$\forall t \text{ in } \{0,1\}^3: x_t = \prod_{s \subseteq t} \alpha_s$$

- Here α_s are parameters: one parameter for each MVS
- To solve for the parameters → nonlinear system of equations

- In our example, this is: $\mathbf{x}_{000} = \boldsymbol{\alpha}_{\varnothing}$ $\mathbf{x}_{001} = \boldsymbol{\alpha}_{\boldsymbol{\varnothing}} \boldsymbol{\alpha}_{\mathbf{c}}$ $\mathbf{X}_{010} = \boldsymbol{\alpha}_{\boldsymbol{\varnothing}} \boldsymbol{\alpha}_{\mathbf{b}}$ $\mathbf{x}_{011} = \alpha_{\varnothing} \alpha_{\mathbf{b}} \alpha_{\mathbf{c}} \alpha_{\mathbf{b}\mathbf{c}}$ $\mathbf{x}_{100} = \boldsymbol{\alpha}_{\boldsymbol{\varnothing}} \boldsymbol{\alpha}_{\mathbf{a}}$ $\mathbf{X}_{101} = \boldsymbol{\alpha}_{\boldsymbol{\varnothing}} \boldsymbol{\alpha}_{\mathbf{a}} \boldsymbol{\alpha}_{\mathbf{c}}$ $\mathbf{X}_{110} = \boldsymbol{\alpha}_{\boldsymbol{\omega}} \boldsymbol{\alpha}_{\mathbf{a}} \boldsymbol{\alpha}_{\mathbf{b}} \boldsymbol{\alpha}_{\mathbf{ab}}$ $\mathbf{X}_{111} = \alpha_{\varnothing} \alpha_{a} \alpha_{b} \alpha_{c} \alpha_{ab} \alpha_{bc}$
- Next, need to solve a nonlinear system
 - [WHICH ONE ?]
 - Good luck solving it !

Summary of Histograms

- Naïve probabilistic model:
 - Select randomly a tuple from the relation R
- Limited objective:
 - Estimate range queries
 - But they do this pretty well
- Widely used in practice

A Much Simpler Approach: Sampling

- R has N=1,000,000,000 tuples
- Compute (offline) a sample of size n = 500

SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample \rightarrow 8 tuples

What is your estimate ?

Sampling from Databases

Two usages:

- For query size estimation:
 - Keep a random sample, use it to estimate queries
- Approximate query answering:
 - Answer a query by sampling from the database and computing the query only on the sample

Sampling from Databases

SAMPLE(R, f), where $f \in [0,1]$, and |R|=nThree semantics:

- Sampling with replacement WR
 - Sample fn elements from R, each independently
- Sampling without replacement WoR
 - Sample a subset of size fn from R
- Bernoulli sample, or coin flip CF
 - For each element in R, flip a coin with prob f

Random Sampling from Databases

- Given a relation $R = \{t_1, ..., t_n\}$
- Compute a sample S of R

Random Sample of Size 1

- Given a relation $R = \{t_1, ..., t_n\}$
- Compute random element s of R
- Q: What is the probability space ?

- Given a relation $R = \{t_1, ..., t_n\}$
- Compute random element s of R
- Q: What is the probability space ?
 A: Atomic events: t₁, ..., t_n, Probabilities: 1/n, 1/n, ..., 1/n

```
Sample(R) {

r = random_number(0..2^{32}-1);

n = |R|;

s = "the (r \% n)"th element of R"

return s;
```

Sequential scan

Sample(R) {
 forall x in R do {
 r = random_number(0..1);
 if (r < ???) s = x;
 }
 return s;
}</pre>

Sequential scan

Sample(R) { k = 1; forall x in R do { r = random_number(0..1); if (r< 1/k++) s = x; } return s; }

Note: need to scan R fully. How can we stop early?

Sequential scan: use the size of R

Sample(R) { k = 0; forall x in R do { k++; r = random_number(0..1); if (r< 1/(n - k +1) return x; } return s; }

Binomial Sample or Coin Flip

In practice we want a sample > 1

Sample(R) { S = emptyset; forall x in R do { r = random_number(0..1); if (r< p) insert(S,x); return S; }

What is the problem with binomial sample?

Binomial Sample

- The size of the sample S is not fixed
- Instead it is a random binomial variable of expected size pn
- In practice we want a guarantee on the sample size, i.e. we want the sample size = m

Fixed Size Sample WoR

Problem:

- Given relation R with n elements
- Given m > 0
- Sample m distinct values from R

What is the probability space?

Fixed Size Sample WoR

Problem:

- Given relation R with n elements
- Given m > 0
- Sample m distinct values from R

What is the probability space ?
A: all subsets of R of size m, each has probability 1/(ⁿ_m)

Reservoir Sampling: known population size

Here we want a sample S of fixed size m from a set R of known size n

> Sample(R) { S = emptyset; k = 0; forall x in R do { k++; p = (m-|S|)/(n-k+1) $r = random_number(0..1);$ if (r< p) insert(S,x); return S;

Reservoir Sampling: unknown population size

```
Sample(R) { S = emptyset; k = 0;
 forall x in R do
     p = |S|/k++
     r = random number(0..1);
     if (r < p) { if (|S|=m) remove a random
                          element from S;
                insert(S,x);
 return S;
```

Question

• What is the disadvantage of not knowing the population size ?

Example: Using Samples

R has N=1,000,000,000 tuples Compute (offline) a sample X of size n =500

> SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample \rightarrow 8 tuples Thus E[p] = 8/500 = 0.0016

The Join Sampling Problem

- SAMPLE($R_1 \bowtie R_2$, f) without computing the join J = $R_1 \bowtie R_2$
- Example: $R_1(A,B) = \{(a_1,b_0), (a_2,b_1), \dots, (a_2,b_k)\}$ $R_2(A,C) = \{(a_2,c_0), (a_1,b_1), \dots, (a_1,b_k)\}$
- A random sample of J cannot be obtained from a *uniform* random sample on R1 and on R2

Sampling over Joins

- Solution: use weighted sampling
- [IN CLASS]

Join Synopses

- [Acharya et al, SIGMOD'99]
- Idea: compute maximal key-foreign key joins
- Compute a sample S
- Then we can obtain a sample for any subjoin by projecting S

Example

R(<u>A</u>, B, C), S(<u>B</u>, D, J), T(<u>C</u>, E, F), U(<u>D</u>, G, H) Join synopsis: sample Σ of R \bowtie S \bowtie T \bowtie U

SELECT count(*) FROM S, U WHERE S.D = U.D and S.J='a' and U.G='b'

Compute $\Sigma' = \prod_{B,D,J,G,H}(\Sigma)$ This is an unbiased sample of $S \bowtie U$ [WHY ???] Evaluate query on $\Sigma' \rightarrow 12$ tuples Estimate query size: 12 * $|\Sigma'| / |S|$ [WHY ???⁵]

Example

R has N=1,000,000,000 tuples Compute (offline) a sample X of size n =500

> SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample \rightarrow 8 tuples Thus E[p] = 8/500 = 0.0016

Robust Query Optimization

Traditional optimization:

- Plan 1: use index
- Plan 2: sequential scan
- The choice between 1 and 2 depends on the estimated selectivity
- E.g. for p < 0.26 the Plan 1 is better

Robust Query Optimization

The performance/predictability tradeoff:

- Plan 1: use index
 - If it is right **→** ☺
 - If it is wrong $\rightarrow \mathfrak{S}$ MUST AVOID THIS !!
- Plan 2: sequential scan \rightarrow \cong

Optimizing performance may result in significant penalty, with some probabililty

Query Plan Cost

Figure 1: Execution Costs for Two Hypothetical Plans

Figure 2: Probability Density Function for Execution Cost

Cumulative Distribution

User chooses confidence level T%.

T%=50% \rightarrow plans are chosen by expected cost; T%=80% \rightarrow plans chosen by their cost at cumulative prob of 80%

The Probabilistic Database

R has N=1,000,000,000 tuples Compute (offline) a sample X of size n =500

> SELECT count(*) FROM R WHERE R.A=10 and R.B=20 and R.C=30

Evaluate the query on the sample \rightarrow 8 tuples Thus E[p] = 8/500 = 0.0016

But what is the distribution of p??

The Probabilistic Database

R has N=1,000,000,000 tuples Compute (offline) a sample X of size n =500 A fraction k = 8 of X satisfy the predicate An unknown fraction p of R satisfy the pred. Denote f(z) = density function for p:

$$Pr[(a \le p \le b)|X] = \int_a^b f(z|X)dz.$$

The Probabilistic Database

Bayes' rule:

$$f(z|X) = \frac{\Pr[X|p=z]f(z)}{\int_0^1 \Pr[X|p=y]f(y)dy}$$

Next, compute each term (in class) What is Pr[X | p=z]? Assume X= w/ replacement Whas is "the prior" f(z)?

The Probabilistic Database

$$f(z|X) = \frac{z^{k-1/2}(1-z)^{n-k-1/2}}{\int_0^1 y^{k-1/2}(y-z)^{n-k-1/2}dy}$$

The Probabilistic Database

Figure 4: Sample Size Matters, Prior Doesn't