Topics in Probabilistic and Statistical Databases

Lecture 9:
 Histograms and Sampling

Dan Suciu
University of Washington

References

- Fast Algorithms For Hierarchical Range Histogram Construction, Guha, Koudas, Srivastava, PODS 2002
- Selectivity Estimation using Probabilistic Models, Getoor, Taskar, Koller, SIGMOD 2001
- Consistently estimating the selectivity of conjuncts of predicates, Markl et al, VLDB 2005
- On random sampling over joins, Chaudhuri, Motwani, Narasayya, SIGMOD'99
- Towards a robust query optimizer, Babcock, Chaudhuri, SIGMOD 2005

Example

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Think of this query as being issued during query optimization: Optimizer wants to find out the size of a subplan

Assume $|\mathrm{R}|=1,000,000,000$
Can't scan R. Will use statistics instead

Histograms to the Rescue !

R.A $=$	\ldots	9	10	11	\ldots
count $=$	\ldots	\ldots	$100,000,000$	\ldots	\ldots

R.B $=$	\ldots	19	20	21	\ldots
count $=$	\ldots	\ldots	$200,000,000$	\ldots	\ldots

R.C $=$	\ldots	29	30	31	\ldots
count $=$	\ldots	\ldots	$250,000,000$	\ldots	\ldots

[Guha'2002]

Histogram Basics

- Main goal: estimate the size of range queries:

SELECT * FROM R WHERE v1 \leq R.A and R.A $\leq \mathrm{v} 2$

- Special case: v=R.A
[Guha'2002]

Histogram Basics

- Given: an array $\mathrm{A}[1, \mathrm{n}]$ of non-negative reals
- Define: $\mathrm{A}[\mathrm{a}, \mathrm{b}]=(\mathrm{A}[\mathrm{a}]+\ldots+\mathrm{A}[\mathrm{b}]) /(\mathrm{b}-\mathrm{a}+1)$

Definition. A histogram of array $\mathrm{A}[1, \mathrm{n}]$ using B buckets is specified by $\mathrm{B}+1$ integers $0 \leq \mathrm{b}_{1} \leq \ldots \leq \mathrm{b}_{\mathrm{B}+1}=\mathrm{n}$.
$\left[b_{i}+1, b_{i+1}\right]$ is called a "bucket"; its value is $A\left[b_{i}+1, b_{i+1}\right]$
[Guha'2002]

Answering Range Queries

Definition. A range query is R_{ij} and its answer is: $\mathrm{s}_{\mathrm{ij}}=\mathrm{A}[\mathrm{i}]+\ldots+\mathrm{A}[\mathrm{j}]$

The answer $\hat{\mathrm{s}}_{\mathrm{ij}}$ to a range query R_{ij} using a histogram is computed by using the "uniformity assumption".
[Formula on the white board]

Definition. The error of R_{ij} is $\left(\hat{\mathrm{s}}_{\mathrm{ij}}-\mathrm{s}_{\mathrm{ij}}\right)^{2}$

[Guha'2002]

Optimal Histograms

- Given:
- A workload W of range queries R_{ij}
- A weight w_{ij} for each query
- Compute a histogram that minimizes

$$
\Sigma \mathrm{w}_{\mathrm{ij}}\left(\hat{\mathrm{~s}}_{\mathrm{ij}}-\mathrm{s}_{\mathrm{ij}}\right)^{2}
$$

Optimal Histograms

- V-optimal histograms:
- Single point queries: $\mathrm{W}=\left\{\mathrm{R}_{11}, \ldots, \mathrm{R}_{\mathrm{nn}}\right\}$
- All weights are equal
- Computing V-optimal histogram [IN CLASS]
- Optimal histograms for hierarchical queries
- Workload forms a hierarchy
- Computable in PTIME

Multidimensional Histograms

- Main goal: estimate the size of multi-range queries:

$$
\begin{aligned}
& \text { SELECT * } \\
& \text { FROM } \mathrm{R} \\
& \text { WHERE } \mathrm{u} 1 \leq \text { R.A and R.A } \leq \mathrm{v} 1 \\
& \text { and } \mathrm{u} 2 \leq \text { R.B and R.B } \leq \mathrm{v} 2 \\
& \text { and } \ldots
\end{aligned}
$$

Multidimensional Histograms

Two issues:

- Which dimensions to choose?
- How do we compute the optimal histogram?
- NP-hard for 2 dimensions [S. Muthukrishnan, V. Poosala, and T. Suel, ICDT 1999]

Will discuss only issue 1
[Getoor'2001]

Which Dimensions to Choose

- Use graphical models and exploit conditional independences

[Getoor'2001]

Probabilistic Model of a Histogram

- $R\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=$ relation with n attributes
- Duplicates possible, e.g. there are more attrs
- The joint probability distribution is:

$$
\mathrm{P}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=\left|\sigma_{\mathrm{Al}=\mathrm{a} 1, \ldots, \mathrm{An}=\mathrm{an}}(\mathrm{R})\right| /|\mathrm{R}|
$$

- Queries are now point queries

$$
Q\left(a_{1}, \ldots, a_{n}\right)=P\left(a_{1}, \ldots, a_{n}\right) *|R|
$$

[Getoor'2001]

Conditional Independences

Person(Name, Education, Income, Home-owner)
Education = high-school, college, MS
Income = low, medium, high
Home-owner $=$ false, true

Assumption:

$$
\mathrm{P}(\mathrm{H} \mid \mathrm{E}, \mathrm{I})=\mathrm{P}(\mathrm{H} \mid \mathrm{I})
$$

Then the point query becomes:

$$
\mathrm{Q}(\mathrm{H}, \mathrm{E}, \mathrm{I})=\mathrm{P}(\mathrm{H} \mid \mathrm{I}) * \mathrm{P}(\mathrm{I}) *|\mathrm{R}|
$$

[Getoor'2001]

Conditional Independence \rightarrow Histograms

E	I	H	$P(E, I, H)$
h	1	f	0.27
h	1	t	0.03
h	m	f	0.105
h	m	t	0.045
h	h	f	0.005
h	h	t	0.045
c	1	f	0.135
c	1	t	0.015
c	m	f	0.063
c	m	t	0.027
c	h	f	0.006
c	h	t	0.054
a	1	f	0.018
a	1	t	0.002
a	m	f	0.042
a	m	t	0.018
a	h	f	0.012
a	h	t	0.108

(a)

E	$P(E)$
h	0.5
c	0.3
a	0.2

I	E	$P(I \mid E)$
l	h	0.6
m	h	0.3
h	h	0.1
1	c	0.5
m	c	0.3
h	c	0.2
1	a	0.1
m	a	0.3
h	a	0.6

H	I	$P(H \mid I)$
t	1	0.1
f	1	0.9
t	m	0.3
f	m	0.7
t	h	0.9
f	h	0.1

(b)

E	$P(E)$
h	0.5
c	0.3
a	0.2

I	$P(I)$
l	0.47
m	0.30
h	0.23

H	$P(H)$
t	0.344
f	0.656

(c)
[Getoor'2001]

Bayesian Networks

Discussion

Multidimensional histograms remain difficult to use:

- Conditional independences may not hold
- Difficult to learn the BN
- Computing buckets remains expensive

[Markl'2005]

Consistent Estimation Problem

Recall: histogram entries are probabilities

R.A $=$	\ldots	10	\ldots
$\mathbf{s}_{\mathbf{1}}=$	\ldots	0.1	\ldots

R.B $=$	\ldots	20	\ldots
$\mathbf{s}_{\mathbf{2}}=$	\ldots	0.2	\ldots

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```


What's your

 estimate?
[Markl'2005]

Consistent Estimation Problem

R.A $=$	\ldots	10	\ldots
$\mathbf{s}_{\mathbf{1}}=$	\ldots	0.1	\ldots

R.B $=$	\ldots	20	\ldots
$\mathbf{s}_{\mathbf{2}}=$	\ldots	0.2	\ldots

R.C $=$	\ldots	30	\ldots
$\mathbf{s}_{3}=$	\ldots	0.25	\ldots

R.AB	\ldots	10,20	\ldots
$\mathbf{s}_{\mathbf{1 2}}=$	\ldots	0.05	\ldots

SELECT count(*)

FROM R
WHERE R.A=10 and R.B=20 and R.C=30

What's your estimate now?

R.BC	\ldots	20,30	\ldots
$\mathbf{s}_{13}=$	\ldots	0.03	\ldots

Problem Statement

- Given
- Multivariate Statistics, MVS
- Query q
- Estimate q from the MVS
- Issue:
- Many ways to use the MVS
- Inconsistent answers

Example

- Relation: $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
- MVS: $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{C}), \mathrm{P}(\mathrm{A}, \mathrm{B}), \mathrm{P}(\mathrm{B}, \mathrm{C})$
- Estimate query size: $\sigma_{\mathrm{A}=\mathrm{a}, \mathrm{B}=\mathrm{b}, \mathrm{C}=\mathrm{c}}(\mathrm{R})$
- Equivalently: compute $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$

No Unique Solution!

The Consistency Problem

Different possible answers:

- $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \approx \mathrm{P}(\mathrm{a}, \mathrm{b}) * \mathrm{P}(\mathrm{c})$
- $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \approx \mathrm{P}(\mathrm{a}) * \mathrm{P}(\mathrm{b}, \mathrm{c})$
- $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \approx \mathrm{P}(\mathrm{a}) * \mathrm{P}(\mathrm{b}) * \mathrm{P}(\mathrm{c})$
- $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \approx \mathrm{P}(\mathrm{a}, \mathrm{b}) * \mathrm{P}(\mathrm{b}, \mathrm{c}) / \mathrm{P}(\mathrm{b})$

Simplify Probabilities

- New probability space on $\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in\{0,1\}^{3}\right\}$ defined by:
- Randomly select a tuple t from R
$-\mathrm{x}=1$ iff $\mathrm{t} . \mathrm{A}=10$
$-\mathrm{y}=1$ iff t . $\mathrm{B}=20$
$-\mathrm{z}=1$ iff $\mathrm{t} . \mathrm{C}=30$
- E.g. $P(1,0,1)=P(A=a, B \neq b, C=c)$

[Markl'2005]

Modeling Histograms as ProbDB

- There are eight possible worlds, need their probs
- The five histograms lead to $5+1=6$ constraints:

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{P}
0	0	0	x_{000}
0	0	1	x_{001}
0	1	0	x_{010}
0	1	1	x_{011}
1	0	0	x_{100}
1	0	1	x_{101}
1	1	0	x_{110}
1	1	1	x_{111}

$$
\begin{aligned}
& \mathrm{x}_{000}+\mathrm{x}_{001}+\mathrm{x}_{010}+\mathrm{x}_{011}+\mathrm{x}_{100}+\mathrm{x}_{101}+\mathrm{x}_{110}+\mathrm{x}_{111}=1 \\
& \mathrm{x}_{100}+\mathrm{x}_{101}+\mathrm{x}_{110}+\mathrm{x}_{111}=\mathrm{P}(\mathrm{a}) \\
& \mathrm{x}_{010}+\mathrm{x}_{011}+\mathrm{x}_{110}+\mathrm{x}_{111}=\mathrm{P}(\mathrm{~b}) \\
& \mathrm{x}_{001}+\mathrm{x}_{011}+\mathrm{x}_{101}+\mathrm{x}_{111}=\mathrm{P}(\mathrm{c}) \\
& \mathrm{x}_{110}+\mathrm{x}_{1111}=\mathrm{P}(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{x}_{011}+\mathrm{x}_{1111}=\mathrm{P}(\mathrm{~b}, \mathrm{c}) \\
& \text { But underdetermined. } \\
& \text { How do we choose? }
\end{aligned}
$$

Entropy Maximization Principle

- Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)$ be a probability distribution
- The entropy is:

$$
H(\mathbf{x})=-\left(x_{1} \log \left(x_{1}\right)+x_{2} \log \left(x_{2}\right)+\ldots\right)
$$

- The ME principle is: "among multiple probability distributions, choose the one with maximum entropy"

Solving ME

- In our example: find $\mathrm{x}_{000}, \ldots, \mathrm{x}_{111}$ s.t.:

$$
\begin{aligned}
& \mathrm{p}_{\varnothing}=\mathrm{x}_{000}+\ldots+\mathrm{x}_{111}-1=0 \\
& \mathrm{p}_{\mathrm{a}}=\mathrm{x}_{100}+\mathrm{x}_{101}+\mathrm{x}_{110}+\mathrm{x}_{111}-\mathrm{P}(\mathrm{a})=0 \\
& \mathrm{p}_{\mathrm{b}}=\mathrm{x}_{010}+\mathrm{x}_{011}+\mathrm{x}_{110}+\mathrm{x}_{111}-\mathrm{P}(\mathrm{~b})=0 \\
& \mathrm{p}_{\mathrm{c}}=\mathrm{x}_{001}+\mathrm{x}_{011}+\mathrm{x}_{101}+\mathrm{x}_{111}-\mathrm{P}(\mathrm{c})=0 \\
& \mathrm{p}_{\mathrm{ab}}=\mathrm{x}_{110}+\mathrm{x}_{111}-\mathrm{P}(\mathrm{a}, \mathrm{~b})=0 \\
& \mathrm{p}_{\mathrm{bc}}=\mathrm{x}_{011}+\mathrm{x}_{111}-\mathrm{P}(\mathrm{~b}, \mathrm{c})=0 \\
& \operatorname{maximize}(\mathrm{H})
\end{aligned}
$$

$$
\text { where } \mathrm{H}=-\left(\mathrm{x}_{000} \log \left(\mathrm{x}_{000}\right)+\ldots+\mathrm{x}_{111} \log \left(\mathrm{x}_{111}\right)\right)
$$

Solving ME

- The Lagrange multipliers: define a constant λ_{s} for every constraint p_{s}, then define:

$$
\mathrm{f}\left(\mathrm{x}_{000}, \ldots, \mathrm{x}_{111}\right)=\Sigma_{\mathrm{s}} \lambda_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}-\mathrm{H}
$$

- Solve the following:

$$
\begin{aligned}
& \partial \mathrm{f} / \partial \mathrm{x}_{000}=0 \\
& \cdots \\
& \partial \mathrm{f} / \partial \mathrm{x}_{111}=0
\end{aligned}
$$

Solving ME

- The system becomes:

$$
\forall \mathrm{t} \text { in }\{0,1\}^{3}: \Sigma_{\mathrm{s}} \subseteq_{\mathrm{t}} \lambda_{\mathrm{s}}+\log \left(\mathrm{x}_{\mathrm{t}}\right)+1=0
$$

- In our example, this is:

$$
\begin{array}{ll}
\mathrm{t}=000: & \lambda_{\varnothing}+\log \left(\mathrm{x}_{000}\right)+1=0 \\
\mathrm{t}=001: & \lambda_{\varnothing}+\lambda_{\mathrm{c}}+\log \left(\mathrm{x}_{001}\right)+1=0 \\
\mathrm{t}=010: & \lambda_{\varnothing}+\lambda_{\mathrm{b}}+\log \left(\mathrm{x}_{010}\right)+1=0 \\
\mathrm{t}=011: & \lambda_{\varnothing}+\lambda_{\mathrm{b}}+\lambda_{\mathrm{b}}+\lambda_{\mathrm{bc}}+\log \left(\mathrm{x}_{011}\right)+1=0 \\
\ldots & \ldots
\end{array}
$$

Solving ME

- The solution has the following form:

$$
\forall \mathrm{t} \text { in }\{0,1\}^{3}: \mathrm{x}_{\mathrm{t}}=\Pi_{\mathrm{s} \subseteq_{\mathrm{t}}} \alpha_{\mathrm{s}}
$$

- Here α_{s} are parameters: one parameter for each MVS
- To solve for the parameters \rightarrow nonlinear system of equations

Solving ME

- In our example, this is:

$$
\begin{aligned}
& \mathrm{x}_{000}=\alpha_{\varnothing} \\
& \mathrm{x}_{001}=\alpha_{\varnothing} \alpha_{\mathrm{c}} \\
& \mathrm{x}_{010}=\alpha_{\varnothing} \alpha_{b} \\
& \mathrm{x}_{011}=\alpha_{\varnothing} \alpha_{b} \alpha_{c} \alpha_{b c} \\
& \mathrm{x}_{100}=\alpha_{\varnothing} \alpha_{a} \\
& \mathrm{x}_{101}=\alpha_{\varnothing} \alpha_{a} \alpha_{c} \\
& \mathrm{x}_{110}=\alpha_{\varnothing} \alpha_{a} \alpha_{b} \alpha_{a b} \\
& \mathrm{x}_{111}=\alpha_{\varnothing} \alpha_{a} \alpha_{b} \alpha_{c} \alpha_{a b} \alpha_{b c}
\end{aligned}
$$

- Next, need to solve a nonlinear system
- [WHICH ONE ?]
- Good luck solving it!

Summary of Histograms

- Naïve probabilistic model:
- Select randomly a tuple from the relation R
- Limited objective:
- Estimate range queries
- But they do this pretty well
- Widely used in practice

A Much Simpler Approach: Sampling

- R has $\mathrm{N}=1,000,000,000$ tuples
- Compute (offline) a sample of size $\mathrm{n}=500$

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Evaluate the query on the sample $\rightarrow 8$ tuples What is your estimate?

Sampling from Databases

Two usages:

- For query size estimation:
- Keep a random sample, use it to estimate queries
- Approximate query answering:
- Answer a query by sampling from the database and computing the query only on the sample

Sampling from Databases

$\operatorname{SAMPLE}(\mathrm{R}, \mathrm{f})$, where $\mathrm{f} \in[0,1]$, and $|\mathrm{R}|=\mathrm{n}$
Three semantics:

- Sampling with replacement WR
- Sample fn elements from R, each independently
- Sampling without replacement WoR
- Sample a subset of size fn from R
- Bernoulli sample, or coin flip CF
- For each element in R, flip a coin with prob f

Random Sampling from Databases

- Given a relation $\mathrm{R}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$
- Compute a sample S of R

Random Sample of Size 1

- Given a relation $\mathrm{R}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$
- Compute random element s of R

Q: What is the probability space?

Random Sample of Size 1

- Given a relation $\mathrm{R}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$
- Compute random element s of R

Q: What is the probability space?
A: Atomic events: t_{1}, \ldots, t_{n},
Probabilities: $1 / \mathrm{n}, 1 / \mathrm{n}, \ldots, 1 / \mathrm{n}$

Random Sample of Size 1

Sample(R) \{
$r=$ random_number(0.. $\left.2^{32}-1\right)$;
$\mathrm{n}=|\mathrm{R}|$;
$\mathrm{s}=$ "the (r \% n)'th element of R" return s;

Random Sample of Size 1

Sequential scan

```
Sample(R) {
    forall }\textrm{x}\mathrm{ in R do {
            r = random_number(0..1);
        if (r < ???) s=x;
    }
    return s;
}
```


Random Sample of Size 1

Sequential scan

```
Sample(R) { k=1;
    forall }\textrm{x}\mathrm{ in R do {
        r = random_number(0..1);
        if (r<1/k++) s=x;
    }
    return s;
}
```

Note: need to scan R fully. How can we stop early?

Random Sample of Size 1

Sequential scan: use the size of R

$$
\begin{aligned}
& \text { Sample }(\mathrm{R})\{\mathrm{k}=0 ; \\
& \text { forall } \mathrm{x} \text { in } \mathrm{R} \text { do }\{\mathrm{k}++; \\
& \quad \mathrm{r}=\text { random_number }(0 . .1) ; \\
& \quad \text { if }\left(\mathrm{r}<1 /\left(\mathrm{n}_{-}-\mathrm{k}+1\right) \text { return } \mathrm{x} ;\right. \\
& \} \\
& \text { return } \mathrm{s} ;
\end{aligned}
$$

Binomial Sample or Coin Flip

In practice we want a sample >1

```
Sample(R) { S = emptyset;
    forall }\textrm{x}\mathrm{ in R do {
        r = random_number(0..1);
        if (r< p) insert(S,x);
    return S;
}
```

What is the problem with binomial sample?

Binomial Sample

- The size of the sample S is not fixed
- Instead it is a random binomial variable of expected size pn
- In practice we want a guarantee on the sample size, i.e. we want the sample size $=$ m

Fixed Size Sample WoR

Problem:

- Given relation R with n elements
- Given $\mathrm{m}>0$
- Sample m distinct values from R

What is the probability space?

Fixed Size Sample WoR

Problem:

- Given relation R with n elements
- Given $\mathrm{m}>0$
- Sample m distinct values from R

What is the probability space?
A: all subsets of R of size m, each has probability $1 /\binom{\mathrm{n}}{\mathrm{m}}$

Reservoir Sampling: known population size

Here we want a sample S of fixed size m from a set R of known size n

Sample(R) \{ $\mathrm{S}=$ emptyset; $\mathrm{k}=0$; forall x in R do $\{\mathrm{k}++$; $\mathrm{p}=(\mathrm{m}-|\mathrm{S}|) /(\mathrm{n}-\mathrm{k}+1)$ $\mathrm{r}=$ random_number(0..1); if $(\mathrm{r}<\mathrm{p})$ insert (S, x);
return S;

Reservoir Sampling: unknown population size

Sample(R) \{ $\mathrm{S}=$ emptyset; $\mathrm{k}=0$;

 forall x in R do$$
\begin{aligned}
& \mathrm{p}=|\mathrm{S}| / \mathrm{k}++ \\
& \mathrm{r}=\text { random_number }(0 . .1)
\end{aligned}
$$

$$
\text { if }(\mathrm{r}<\mathrm{p})\{\text { if }(|\mathrm{S}|=\mathrm{m}) \text { remove a random }
$$ element from S; insert(S,x);\}

return S;

Question

- What is the disadvantage of not knowing the population size?

Example: Using Samples

R has $\mathrm{N}=1,000,000,000$ tuples
Compute (offline) a sample X of size $\mathrm{n}=500$

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Evaluate the query on the sample $\rightarrow 8$ tuples Thus $E[p]=8 / 500=0.0016$

The Join Sampling Problem

- $\operatorname{SAMPLE}\left(\mathrm{R}_{1} \bowtie \mathrm{R}_{2}, \mathrm{f}\right)$ without computing the join $J=R_{1} \bowtie R_{2}$
- Example:

$$
\begin{aligned}
& \mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{0}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{2}, \mathrm{~b}_{\mathrm{k}}\right)\right\} \\
& \mathrm{R}_{2}(\mathrm{~A}, \mathrm{C})=\left\{\left(\mathrm{a}_{2}, \mathrm{c}_{0}\right),\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{1}, \mathrm{~b}_{\mathrm{k}}\right)\right\}
\end{aligned}
$$

- A random sample of J cannot be obtained from a uniform random sample on R1 and on R2

Sampling over Joins

- Solution: use weighted sampling
- [IN CLASS]

Join Synopses

- [Acharya et al, SIGMOD'99]
- Idea: compute maximal key-foreign key joins
- Compute a sample S
- Then we can obtain a sample for any subjoin by projecting S

Example

$R(\underline{A}, B, C), S(\underline{B}, D, J), T(\underline{C}, E, F), U(\underline{D}, G, H)$ Join synopsis: sample Σ of $R \bowtie S \bowtie T \bowtie U$

```
SELECT count(*)
FROM S, U
WHERE S.D = U.D and S.J='a' and U.G='b'
```

Compute $\Sigma^{\prime}=\Pi_{\mathrm{B}, \mathrm{D}, \mathrm{J}, \mathrm{G}, \mathrm{H}}(\Sigma)$
This is an unbiased sample of $\mathrm{S} \bowtie \mathrm{U}$ [WHY ???]
Evaluate query on $\Sigma^{\prime} \rightarrow 12$ tuples
Estimate query size: $12 *\left|\Sigma^{\prime}\right| /|S|$ [WHY ??? ${ }^{\text {] }}$

Example

R has $\mathrm{N}=1,000,000,000$ tuples
Compute (offline) a sample X of size $\mathrm{n}=500$

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Evaluate the query on the sample $\rightarrow 8$ tuples Thus $E[p]=8 / 500=0.0016$

[Babock et al. SIGMOD'2005]

Robust Query Optimization

Traditional optimization:

- Plan 1: use index
- Plan 2: sequential scan
- The choice between 1 and 2 depends on the estimated selectivity
- E.g. for $\mathrm{p}<0.26$ the Plan 1 is better

[Babock et al. SIGMOD'2005]

Robust Query Optimization

The performance/predictability tradeoff:

- Plan 1: use index
- If it is right \rightarrow ©
- If it is wrong \rightarrow (MUST AVOID THIS !!
- Plan 2: sequential scan \rightarrow :

Optimizing performance may result in significant penalty, with some probabililty

[Babock et al. SIGMOD'2005]

Query Plan Cost

Figure 1: Execution Costs for Two Hypothetical Plans

Figure 2: Probability Density Function for Execution Cost

[Babock et al. SIGMOD'2005]

Cumulative Distribution

User chooses confidence level T\%.

$\mathrm{T} \%=50 \% \rightarrow$ plans are chosen by expected cost;
$\mathrm{T} \%=80 \% \rightarrow$ plans chosen by their cost at cumulative prob of 800%

[Babock et al. SIGMOD'2005]

The Probabilistic Database

R has $\mathrm{N}=1,000,000,000$ tuples
Compute (offline) a sample X of size $\mathrm{n}=500$

```
SELECT count(*)
FROM R
WHERE R.A=10 and R.B=20 and R.C=30
```

Evaluate the query on the sample $\rightarrow 8$ tuples Thus $E[p]=8 / 500=0.0016$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

R has $\mathrm{N}=1,000,000,000$ tuples
Compute (offline) a sample X of size $\mathrm{n}=500$
A fraction $\mathrm{k}=8$ of X satisfy the predicate An unknown fraction p of R satisfy the pred. Denote $f(z)=$ density function for p :

$$
\operatorname{Pr}[(a \leq p \leq b) \mid X]=\int_{a}^{b} f(z \mid X) d z .
$$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

Bayes' rule:

$$
f(z \mid X)=\frac{\operatorname{Pr}[X \mid p=z] f(z)}{\int_{0}^{1} \operatorname{Pr}[X \mid p=y] f(y) d y}
$$

Next, compute each term (in class)
What is $\operatorname{Pr}[\mathrm{X} \mid \mathrm{p}=\mathrm{z}]$? Assume $\mathrm{X}=\mathrm{w} /$ replacement Whas is "the prior" $f(z)$?
[Babock et al. SIGMOD'2005]

The Probabilistic Database

$$
f(z \mid X)=\frac{z^{k-1 / 2}(1-z)^{n-k-1 / 2}}{\int_{0}^{1} y^{k-1 / 2}(y-z)^{n-k-1 / 2} d y}
$$

[Babock et al. SIGMOD'2005]

The Probabilistic Database

Figure 4: Sample Size Matters, Prior Doesn't

