
intro // 01-06-2010 // gribble

CSE599w winter ’10
operating systems and the web

introduction

Department of Computer Science & Engineering

University of Washington

intro // 01-06-2010 // gribble

Clearly something is happening...

intro // 01-06-2010 // gribble

and it’s picking up steam...

PC Web

MS office Office Web, Google docs, Zimbra, ...

Mail Gmail, hotmail...

iTunes Pandora, Hulu, ...

Skype, iChat WebEx, Google voice, twitter, ...

Quicken mint.com, ...

iPhoto flickr, photobucket, ...

Eclipse bespin, heroku, ...

intro // 01-06-2010 // gribble

but the path forward isn’t as clear.

ChromeOS

W3C HTML5

intro // 01-06-2010 // gribble

Browsers from 10,000’

intro // 01-06-2010 // gribble

Browsers: their inception

Netscape 1-2 (1994-1996)

- first to “level the playing field” among OSs

- HTML, cookies, SSL

- grew to 90% market share

Web page == static document

- no security concerns besides server access control

- major debate about markup vs. presentation

- small, stable “A”PI

intro // 01-06-2010 // gribble

“The Internet Tidal Wave”

Bill Gates memo to Microsoft executives, May 26, 1995

“ A new competitor ‘born’ on the Internet is Netscape. Their
browser is dominant, with 70% usage share, allowing them to
determine which network extensions will catch on. They are
pursuing a multi-platform strategy where they move the key API
into the client to commoditize the underlying OS.

...

One scary possibility being discussed by Internet fans is whether
they should get together and create something far less
expensive than a PC which is powerful enough for Web
browsing.”

intro // 01-06-2010 // gribble

The first browser wars
Netscape 3, IE 3-5 (1996-1999)

- Microsoft wants in, and we’re off to the feature races

‣ ActiveX, JavaScript, Java, BHOs, inline multimedia, i18n, XML, CSS/HTML,
Ajax (XmlHttpRequest)

- rapid innovation but lots of friction

‣ divergence and incompatibility between Netscape & IE

‣ security/privacy issues galore

- IE wins the war by bundling and cutting distribution deals (“cut off air supply”)

Web page == document with a little teensy bit of code

- but JavaScript is largely considered evil

- the Web is still a content publishing and distribution platform

intro // 01-06-2010 // gribble

Browsers: the doldrum years
Netscape capitulates (1999-2004)

- Navigator is open sourced as Mozilla, suffers feature creep, Firefox is born (2003)

- without competition, IE stagnates in version 6

‣ IE6 released in 2001, IE7 not out until 2006!!

‣ a period of very slow innovation in browser technology

But, some harbingers of what is to come

- a few Web apps steal appreciable market share from desktop apps

‣ e.g., hotmail, Google maps

- JavaScript and AJAX are truly embraced and Flash becomes pervasive

‣ “rich Internet apps” (RIA)

‣ Web page ==> Web program, browser --> OS

intro // 01-06-2010 // gribble

The second browser wars
Renewed biodiversity and competition (2006 -- ?)

- a bloom of browsers from tough competitors (Safari, Chrome, Firefox)

- Google emerges as the Microsoft of the Web

‣ “search, ads and apps”

‣ search and ads are their cash cow; apps, browsers as delivery vehicle

‣ “donates” browser technology and apps to drive more Web usage

- Microsoft starts sweating again (Gates’ “Internet Software Services” memo)

‣ the resulting competition revitalizes Web browser technologies

• process oriented browsers, strong sandboxing, effective Flash video,
HTML5, fast (and secure?) JavaScript, ...

• the mobile Web, but for real (not WAP, thank god!)

intro // 01-06-2010 // gribble

IE: 63%

Firefox: 25%

Safari: 4.5%
Chrome: 4.6%

Opera: 2.4%

from wikipedia [http://en.wikipedia.org/wiki/File:Layout_engine_usage_share.svg]

intro // 01-06-2010 // gribble

Why is the Web so attractive?
The Web is everywhere for everyone

- your software and data are not tethered to any computer [disposable]

- to first order, every Web app runs on any OS+browser stack [portable]

Software distribution is no longer an issue

- app vendors deliver users a new program on every mouse click

- vendors don’t need to deal with configuration complexity problem

The Web encourages connecting apps, people, data

- mashups, Web REST APIs, html/JavaScript/image/media embeds

- multi-tenant Web services and the network effect

- services backed by massive data sets, compute farms

intro // 01-06-2010 // gribble

But why are browsers so lousy?

A stone-aged development platform

- a single slow & scruffy language is supported

- a program is a single threaded event handler without any offline
execution

- its “system call interface” (DOM) lacks many conveniences

‣ no stable storage

‣ no access to local devices (cameras, mikes, GPUs, ...)

‣ no real IPC

- programs are handcuffed by an esoteric security model (SOP)

intro // 01-06-2010 // gribble

Counterpoint: desktop OSs

intro // 01-06-2010 // gribble

Massive strengths

Rich, stable, powerful APIs and process model

- 20 years of Win32 and POSIX, 10 years of .NET

- convenient access to the bounty of Moore’s law

‣ multithreaded / multiprocess, indexed local file systems,
GPU access, multimedia libraries, direct TCP access

- develop in any language you like, execute with native speed,
portable across hardware configurations

- offline support!!

- in theory, the user can fully control their environment and data

intro // 01-06-2010 // gribble

But also massive weaknesses

OSs still seem to have poor application isolation

- installing an app can break another app

- running an app can harm your entire system

OSs bear the brunt of hardware, platform complexity

- driver proliferation

- massive test labs to contend with compatibility matrix

- increasingly long release cycles

Users are de facto systems administrators

- patching, backup / recovery, application integration

intro // 01-06-2010 // gribble

this course

intro // 01-06-2010 // gribble

Understand browsers

Examine modern browsers and their architecture

- programming abstractions and tools, security model,
extensibility model, ...

Look at recent browser developments

- industrial: NaCL, HTML5, multi-process browsers

- research: Tahoma, Gazelle, OP, SubOS, ...

intro // 01-06-2010 // gribble

Reconsider the role of browsers

Technological determinism: browsers will continue to adopt more
OS-like functions

- let’s look at some of the major abstractions that OSs provide, and
consider how to think of them in the Web world

‣ file systems and storage

‣ device support and device drivers

‣ the “application” abstraction and process model

‣ IPC, RPC

‣ security, trust, privacy

- examine distributed OSs and programming frameworks in comparison

intro // 01-06-2010 // gribble

Whither desktop OSs?

We’ll consider alternative OS architectures assuming that
Web applications dominate

- peek at some historical guesses that fell by the wayside
(Java, mobile agents/objects, ...)

- look at some glimmers from industry: ChromeOS,
CrunchPad, NaCL/Xax, Palm WebOS, .NET

intro // 01-06-2010 // gribble

Administrivia

Your duties

- if you are auditing

‣ sign up for mailing list, read papers before each class

- if you are registered

‣ same as above

‣ submit paper summaries before each class

‣ sign up to lead one discussion for the quarter

‣ a few small programming/design assignments

intro // 01-06-2010 // gribble

it’s your turn to talk...

intro // 01-06-2010 // gribble

Which of these will / should win?

the XTerminal model

- apps run in your local data center, your phone/laptop/desktop exploit ample
bandwidth to do remote display.

the [Moka5 / NaCL / Xax / Tahoma] model

- desktop OS as VMM or low-level sandbox, Web app contains rest of OS
plus app. Cache code locally for latency and offline execution.

the path of least resistance

- HTML5 + RIA extensions, the browser is just an app like any other.

the [ChromeOS / crunchpad] model

- as above, but strip down desktop OS to bare minimum to run browser.
Hide the OS as best you can, but the browser is largely unchanged.

