
���
���

© 2001, University of Washington

When Trouble Comes:
The Basics of Debugging

No one is capable of performing IT tasks flawlessly all
of the time. Therefore, web page design,

programming and any other logical activity will require
debugging or trouble shooting. Though debugging is

very case-specific, there are some principles.

���
���

���
���

© 2001, University of Washington

Bugs vs Faults
❖ When the car doesn’t start because of a dead

battery, figuring out the problem uses debugging
skills … but it is not technically debugging, but rather
“fault identification”

❏ When the error is a failing component of a correct design, it
is a fault … when the battery is fixed the car runs

❏ When the error is a failure of the design, it is a bug

❖ With complex IT the chances are overwhelming that
the error is a bug, since you’ve likely made a
reasoning error

❖ In “mature” systems it could be either one since the
error could be a fault or a latent logical error

It is impossible to say that a program is perfectly correct

���
���

© 2001, University of Washington

The First Computer Bug Was A Moth

❖ The term “bug” for a computer glitch was coined by
Adm. Grace Murray Hopper when working on the
Harvard Mark II computer

The moth was found in Relay #70 -- an electro-
mechanical switch -- and taped into the logbook with
the caption “First actual case of a bug being found”

���
���

© 2001, University of Washington

When Debugging, Think Abstractly
❖ Debugging is like solving a mystery … except you

don’t want to know who dunit, so much as what dunit
❖ An effective way to proceed is to …

❖ Think about what you know … the facts
❖ Consider what should be true … the assumptions
❖ Formulate a test hypothesis … gather evidence
❖ Work intelligently … assess if you’re making progress

Watch yourself debug

Though debugging can be frustrating, many times
the “solving a mystery” aspect of it is rewarding.

���
���

© 2001, University of Washington

Guidelines For Debugging

❖ There is no recipe for successful debugging because
every situation is different … but there are guidelines

1. Verify that the error is reproducible, i.e. make it
happen again

❏ “Transient errors” can occur

❏ The error may have been caused by a state or configuration
that was unknowingly set … get a “clean” instance of the bug

❏ When reproducing the error, try to formulate a “minimal”
version of the system or program with the bug

���
���

© 2001, University of Washington

Guidelines -- Check obvious
2. Check for the “obvious” problems

❏ Verify that the inputs are as required

✛ Are there 0-O 1-l I-l or other substitution mistakes

❏ If there are multiple components or files in the buggy system,
establish that these are properly “connected”

❏ Has anything been changed recently
❏ When there are multiple inputs, does the order matter

The chances are small that the problem is something
“obvious” because if it were so “obvious” you would
have already found the problem … but you must check

���
���

© 2001, University of Washington

Guidelines -- Isolate error
3. Isolate the problem -- since the error is likely located

in a specific place in the system or program, large
sections of it are correct and should be removed from
consideration

❏ Isolating the problem to a specific procedure is best

❏ Verifying that parts thought to be correct are correct is
essential

Command 1
Command 2
...
Command n/2
...
Command n-1
Command n

Check if erroneous
results have been
produced here

T
im

e

���
���

© 2001, University of Washington

Guidelines -- Step through process

4. Once the error is isolated, reason through the
process start-to-finish, predicting what should be
computed and then verifying that it has been

❏ When a prediction is inconsistent with an observation, the
problem has been further isolated to the current step

✛ The process was OK prior to this step
✛ The process is incorrect after this step

❏ Check the inputs and reason through the step

❏ If bug not found, continue applying the guidelines

���
���

© 2001, University of Washington

Guidelines -- Assess Objectively

5. It frequently occurs that everything checks out and is
found to be OK … but the bug still persists

Don’t become frustrated. Rather, evaluate your
progress objectively ... how are you doing

❏ Are you making a wrong assumption

❏ Do you misunderstand what the data means

❏ Have you made a wrong deduction

Remember … it’s a mystery and you are Jane
Marple or Hercule Poirot … using those “little
gray cells” you can find the culprit

���
���

© 2001, University of Washington

Example: Building an HTML Table

GoalPage

���
���

© 2001, University of Washington

Tables in HTML

❖ The basic 2x2 table in html has the following scheme:

<table>
<tr>

<td> Row 1, Cell 1</td>
<td> Row 1, Cell 2</td>

</tr>
<tr>

<td> Row 2, Cell 1</td>
<td> Row 2, Cell 2</td>

</tr>
</table>

Row 1, Cell 1 Row 1, Cell 2
Row 2, Cell 1 Row 2, Cell 2

Row 1 specification

Row 2 specification

���
���

© 2001, University of Washington

Butterfly Table
Source.html

<table width = "80%" cellpadding ="3">
<tr bgcolor = "#CCCCCC">

<td>Name</td>
<td>Larva Diet</td>
<td align="center">Picture</td></tr>

<td>Behr’s Metalmark</td>
<td>Buckwheat</td>
<td align="center"></td>

<td>Bog Copper</td>
<td>Cranberries</td>
<td align="center"></td>

<tr><td>Satyr Comma</td>
<td>Nettles</td>
<td align="center"></td>

</tr>
</table>

���
���

© 2001, University of Washington

Source Page

Source.html

���
���

© 2001, University of Washington

Steps

❖ Is the bug reproducible? … reconstruct web page
❖ Check the “obvious stuff” … locate butterflies
❖ Isolate the problem … analyze page -- what’s wrong?
❖ Reason through the process

✛ Think about what should be happening
✛ Make predictions, and check if they are occur

❖ Assess your progress objectively
✛ What do you need to know or find out?

✛ Are there other things you can do?
✛ Don’t get frustrated

