Digital Representation

INFO/CSE 100, Autumn 2004
Fluency in Information Technology
http://www.cs.washington.edu/100

Readings and References

- Reading
» Fluency with Information Technology
- Chapter 8, Bits and the "Why" of Bytes

Are two symbols enough?

We can represent each player's move this way, but what about representing the whole game?

Empty position: \otimes
use this set of symbols

- empty cell: \otimes
- player 1: \times
- player 2: O

- Now we can represent this game as one 9-digit string: $\mathrm{O} \otimes \otimes \boldsymbol{X} \mathbf{X} \mathrm{O}_{\otimes \otimes \otimes}$
- How many possible game states are there?
» $3 \times 3 \times 3=3^{9}=19683$
- Telephone Tone dialing
» decide how many different items of information you want to represent
- 16 keypad buttons (including rarely used A, B, C, D) » decide how many "digits" or positions you want to use
- 2 simultaneous tones
» decide on a set of symbols
- 8 different tones

	1209hz	1336 hz	1477 hz	1633 hz
697 hz	1	2	3	A
770 hz	4	5	6	B
852 hz	7	8	9	C
941 hz	$*$	0	$\#$	D

Another encoding

use a different set of symbols

- empty cell: 0
- player 1: $\mathbf{1}$
- player 2: 2

$\mathbf{2}$	0	0
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
0	0	0

- Now we can represent this game as one 9-digit number: 200112000
- How many possible game states are there?
» $3 \times 3 \times 3=39=19683$

15-Oct-2004

Telephone Tones

Use this set of symbols

- tone 1 :
[697 hz], [770 hz], [850 hz], or [941 hz]
- tone 2 :
[1209 hz], [1336 hz], [1477 hz], or [1633 hz]

	1209hz	1336hz	1477 hz	1633 hz
697hz	1	2	3	A
770hz	4	5	6	B
852hz	7	8	9	C
944hz	$*$	0	$\#$	D

- Now we can represent each button as a 2-tone sound
- How many possible combinations of tones are there?
» $4 \times 4=4^{2}=16$

Info in the Physical World

- Physical world:
» The most fundamental representation of information is presence/absence of a phenomenon
- matter, light, magnetism, flow, charge, ...

The PandA representation

- detect: "Is the phenomenon present?"
- set: make phenomenon present or absent

Any controllable phenomenon works: define it right

Connect Physical/Logical

- The power of IT comes from the fact that physical and logical worlds can be connected
Present represents true / Absent represents false
- or maybe vice versa --

Pavement Memory

false true false false false true true false true false true false false false

0	1	0	0	0	1	1	0	1	0	1	0	0	0

Info in the Logical World

- Logical World:
» Information, reasoning, computation are formulated by true/false and logic
- All men are mortal
- Aristotle is a man
- Aristotle is mortal
- True and false can be the patterns for encoding information

$0 \quad 0 \quad 1 \quad 0$

5-Oct-2004
cse100-08-digital © 2004 University of Washington

Bits

- PandA is a binary representation because it uses 2 patterns
- The word "bit"
» is a contraction for "binary digit"
" represents a position in space/time capable of being set and detected in 2 patterns

Sherlock Holmes's Mystery of Silver Blaze -a popular example where "absent" gives information ... the dog didn't bark, that is the phenomenon wasn't detected

Bytes

- A byte is eight bits treated as a unit
» Adopted by IBM in 1960s
» A standard measure ever since
» Bytes encode the Latin alphabet using ASCII -the American Standard Code for Information Interchange

01000110
01001001
01010100

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 0 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1	1 1 1 1
0000	"	s_{4}	${ }^{1}$	5_{5}	\&			\%	E_{1}	${ }_{5}$	s	${ }_{T}$	${ }^{\circ}$	${ }_{T}$		${ }^{\text {F }}$	${ }^{\circ}$	${ }_{5}$		${ }_{1}$
0001	${ }^{\circ} \mathrm{L}$	O_{1}	O_{2}	0_{3}	0_{4}	"		\%	E_{8}	-	${ }^{\prime}$	$\mathrm{in}^{\text {n }}$	5_{8}	ε_{0}		${ }_{5}$	${ }_{5}$	F_{5}		v_{5}
0010		$!$	"	\#	8	\%		${ }_{8}$			()	*	+						'
0011	0	1	2	3	4	5		6	7	8	8	9		,		<	$=$	$>$?
0100	@	A	B	C	D			F	G		H	I	J	K		L	M	N		0
0101	P	Q	R	S	T			V	W	X	X	Y	z	[1]	${ }^{\circ}$		
0110		a	b	c	d	e		f	g		h	i	j	k		1	m	n		0
0111	p	q	r	s	t	u		v	w		8	y	z			1	\}	\sim		${ }^{\circ}$
1000	\%	E_{1}	:	B_{3}	${ }_{5}$	"		5	E_{5}	-	s	${ }^{\prime}$	${ }^{5}$	\%		${ }^{\circ}$	${ }^{1}$	5		3
1001	\%	P_{1}	$\stackrel{\circ}{\text { a }}$	s_{8}	\circ	"		${ }^{\text {sp }}$	${ }_{\text {F }}$		=	\because	${ }^{\circ}{ }^{*}$	${ }^{\circ}$		${ }_{5}$	${ }^{\circ} \mathrm{s}$	${ }^{\circ}$		\%
1010	\%	1	¢	E	0	\#		+	§			©	\%	"		\checkmark	-	(1)		
1011	-	\pm	${ }^{2}$	=		म		π	\cdot			1	${ }^{\circ}$	B		1/4	1/2	\%		ι
1100	A	A	A	A	A			E	C			Ė	Ê	E		I	f	I		İ
1101	Đ	N	-	ó	ó			0	\times			U̇	Ú	0		U	Y	p		B
1110	à	á	à	å	à			※	9			é	ê			i	i	í		1
1111	ŏ	ni	ò	ó	ô			0	\div			ù	ú	û		ü	¢́	p		y

Encoding Information

- Bits and bytes encode the information, but that's not all
» Tags encode format and some structure in word processors
» Tags encode format and some structure in HTML
» In the Oxford English Dictionary tags encode structure and some formatting

OED Entry For Byte

[^0]- IT joins physical \& logical domains so physical devices do our logical work
» Symbols represent things 1-to-1
» Create symbols by grouping patterns
» PandA representation is fundamental
- presence and absence
» Bit, a place where 2 patterns set/detect
" ASCII is a byte encoding of Latin alphabet
» In addition to content, encode structure

[^0]: byte (balt). Computers. [Arbitrary, prob. influenced by bit $s b .{ }^{4}$ and bite $s b$.] A group of eight consecutive bits operated on as a unit in a computer. 1964 Blaauw \& Brooks in IBM Systems Jrnl. III. 122 An 8-bit unit of information is fundamental to most of the formats [of the System/360]. A consecutive group of n such units constitutes a field of length n. Fixed-length fields of length one, two, four, and eight are ermed bytes, halfwords, words, and double words respectively. 1964 IBM Jrnl. Res. \& Developm. VIII. $97 / 1$ When a byte of data appears from an I/O device, the CPU is seized, dumped, used and restored. 1967 P. A. Stark Digital Computer Programming xix. 351 The normal operations in fixed point are done on four bytes at a time. 1968 Dataweek 24 Jan. 1/1 Tape reading and writing is at from 34,160 to 192,000 bytes per second.
 <e><hg><hw>byte</hw> <pr><ph>balt</ph></pr></hg>. <la>Computers</la>. <etym>Arbitrary, prob influenced by $<\mathrm{xr}><\mathrm{x}>\mathrm{bit}</ \mathrm{x}></ \mathrm{xr}><\mathrm{ps}>\mathrm{n}$. $<\mathrm{hm}>4</ \mathrm{hm}></ \mathrm{ps}>$ and $<\mathrm{xr}><\mathrm{x}>\mathrm{bite}</ \mathrm{x}><\mathrm{ps}>\mathrm{n}$. $</ \mathrm{ps}>$ $</ \mathrm{xr}></$ etym $><$ s $4>$ A group of eight consecutive bits operated on as a unit in a computer.</s4> $<$ qp $><$ q $><$ qd $>1964<$ qd $><$ a $>$ Blaauw $<$ a $>$ \&. $<$ a $>$ Brooks $<$ a $><$ bib $>$ in $</$ bib $><w>$ IBM Systems Jrnl. $</ \mathrm{w}><$ lc $>$ III. $122</ \mathrm{lc}><\mathrm{ql}>$ An 8 -bit unit of information is fundamental to most of the formats ed $>$ of the System $/ 360</$ ed $>$. \&es.A consecutive group of $<\mathrm{i}>\mathrm{n}<\mathrm{i}\rangle$ such units constitutes a field of
 length $\langle\mathrm{i}>\mathrm{n}<\mathrm{i}\rangle$. \&es. Fixed-length fields of length one, two, four, and eight are termed bytes, halfwords, length $<\mathrm{i}>\mathrm{n}<\mathrm{i}>$. \&es. Fixed-length fields of length one, two, four, and eight are termed bytes, halfwords,
 words, and double words respectively. $<$ q $\downarrow><\mathrm{q}><\mathrm{q}><\mathrm{qd}>1964</ \mathrm{qd}><\mathrm{w}>$ IBM Jrnl. Res. \&. Developm. $</ \mathrm{w}><\mathrm{lc}>$ VIII. $97 / 1</ \mathrm{lc}><\mathrm{q} \mid>$ When a byte of data appears from an I/O device, the CPU seized, dumped, used and restored. $</ \mathrm{q} \mid></ \mathrm{q}><\mathrm{q}><\mathrm{qd}>1967</ \mathrm{qd}><\mathrm{a}>$ P. A. Stark $</ \mathrm{a}><\mathrm{w}>$ Digital Computer Programming $</ \mathrm{w}><\mathrm{lc}>x$ xix. $351</ \mathrm{lc}><\mathrm{q} \mid>$ The normal operations in fixed point are done on four bytes at a time. $</ \mathrm{q}\rangle></ \mathrm{q}\rangle<\mathrm{q}\rangle<\mathrm{qd}>1968</ \mathrm{qd}\rangle<\mathrm{w}>$ Dataweek $</ \mathrm{w}><\mathrm{lc}>24$ Jan. $1 / 1</ \mathrm{lc}><\mathrm{q}\rangle$ Tape reading and writing is at from 34,160 to 192,000 bytes per second. $</ \mathrm{q} \mid></ \mathrm{q}></ \mathrm{qp}></ \mathrm{e}>$

