Numbers and Information

INFO/CSE 100, Autumn 2004
Fluency in Information Technology
http://www.cs.washington.edu/100

Readings and References

- Reading
» Fluency with Information Technology
- Chapter 11, Representing Multimedia Digitally
- References
» Some clip art is from the Open Clip Art Library
- permission to use is granted on their web site
- http://www.openclipart.org/index.php
» Wolfram Research
- http://mathworld.wolfram.com/
- http://www.wolfram.com/

Recall: Info Representation

- Digitization: representing information by any fixed set of symbols
» decide how many different items of information you want to represent
- Tic Tac Toe: 3 items - empty cell or player 1 or player 2
» decide how many "digits" or positions you want to use
- Tic Tac Toe: 9 positions - one per board square
» decide on a set of symbols

```
player 1: X
empty cell: \otimes
player 2: \(O\)
```


Empty position: \otimes

use this set of symbols

- empty cell: \otimes
- player 1: \times
- player 2: O

O	\otimes	\otimes
\times	\times	O
\otimes	\otimes	\otimes

- We can represent this game as one 9-digit string:
$\mathrm{O} \otimes \otimes \mathbf{X} \mathbf{X} \mathrm{O}_{\otimes \otimes \otimes}$
- How many possible game states are there?
» $3 \times 3 \times 3=3^{9}=19683$

Another encoding

use a different set of symbols

- empty cell: 0
- player 1: 1
- player 2: 2

$\mathbf{2}$	0	0
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
0	0	0

- We can represent this game as one 9-digit number: 200112000
- How many possible game states are there?
» $3 \times 3 \times 3=3^{9}=19683$
17-Nov-2004

What's your tooth number?

no teeth $\leftrightarrow 00000000000000000000000000000000$

no molars $\leftrightarrow 11111111111111111111000000000000$

Info Representation

- Adult humans have 32 teeth
» sometimes a tooth or two is missing!
- How can we represent a set of teeth?
» How many different items of information?
- 2 items - tooth or no tooth
» How many "digits" or positions to use?
- 32 positions - one per tooth socket
» Choose a set of symbols no tooth: 0 tooth: 1

17-Nov-2004 cse100-18-binary © 2004 University of Washington

Info Representation

- Color monitors combine light from Red, Green, and Blue phosphors to show us colors
- How can we represent a particular color?
» How many different items of information?
- 256 items - distinguish 256 levels of brightness
» How many "digits" or positions to use?
- 3 positions - one Red, one Green, one Blue
» Choose a set of symbols
brightness level represented by the numbers 0 to 255

What is the pixel's color?

How many possible combinations? $256 \times 256 \times 256=256^{3} \approx 16$ Million

16 M colors is often called "True Color"

How can we store numbers?

- We want to store numbers
» 0 to 255 for color brightness
» 0 to 4B for tooth configuration
» 0 to 255 for ASCII character codes
- What do we have available in memory?
»Binary digits
- 0 or 1
- on or off
- clockwise or counter-clockwise
$\left.\ldots \begin{array}{l|l}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

The hardware is binary

- 0 and 1 are the only symbols the computer can actually store directly in memory
» a single bit is either off or on
- How many numbers can we represent with 0 and 1 ?
» How many different items of information?
- 2 items - off or on
» How many "digits" or positions to use?
- let's think about that on the next slide
» Choose a set of symbols
- already chosen: 0 and 1

How many positions should we use?
It depends: how many numbers do we need?

The sky's the limit

- We can get as many numbers as we need by allocating enough positions
» each additional position means that we get twice as many values because we can represent two numbers in each position
these are base 2 or binary numbers
- each position can represent two different values
- How many different numbers can we represent in base 2 using 4 positions?

Position matters!

binary base 2	decima base 1
000	0
0 (1)	1
(1)0	2
011	\Leftrightarrow
(1)0 0	\wedge
101	5
110	6
111	7
(1) 000	

How can we read binary numbers?

Let's look at the equivalent decimal (ie, base 10) numbers.

binary
base 2

| $\frac{0}{1}$ |
| :---: |\Leftrightarrow| decimal |
| :---: |
| base 10 |
| 1 |

binary base 2
0 0 0 1 1 0 1 1\Leftrightarrow0 decimal base 10
1

binary base 2	decima base 1
000	0
001	1
010	2
0 1 1	$\Leftrightarrow 3$
100	4
101	5
110	6
111	7

111_{2} represents exactly the same quantity as 7_{10}
7

They are just different ways of representing the same number

What do the positions represent?

$2^{7}=128$	$2^{6}=64$	$2^{5}=32$	$\begin{gathered} 2 \times 2 \times 2 \times 2 \\ 2^{4}=16 \end{gathered}$	$\begin{aligned} & 2 \times 2 \times 2 \\ & 2^{3}=8 \end{aligned}$	$\begin{gathered} 2 \times 2 \\ 2^{2}=4 \end{gathered}$	$\begin{gathered} 2 \\ 2^{1}=2 \end{gathered}$	$\begin{gathered} 1 \\ 2^{0}=1 \end{gathered}$	base 10
1	0	0	0	1	0	1	0	

Each position represents one more multiplication by the base value. For binary numbers, the base value is 2 , so each new column represents a multiplication by 2 .

What base 10 decimal value is equivalent to the base 2 binary value 10001010_{2} shown above?

Some Examples

$$
\begin{aligned}
10_{2} & =2_{10} \\
100_{2} & =4_{10} \\
110_{2} & =4_{10}+2_{10}=6_{10} \\
111_{2} & =4_{10}+2_{10}+1_{10}=7_{10} \\
1000_{2} & =8_{10} \\
1001_{2} & =8_{10}+1_{10}=9_{10}
\end{aligned}
$$

This is an old and very important idea

- "You see, more than 5000 years ago, the Babylonians--and probably the Sumerians before them--had the idea of positional notation for numbers. They mostly used base 60 --not base 10 --which is actually presumably where our hours, minutes, seconds scheme comes from. But they had the idea of using the same digits to represent multiples of different powers of 60."
- "Well, this fine abstract Babylonian scheme for doing things was almost forgotten for nearly 3000 years. And instead, what mostly was used, I suspect, were more natural-language-based schemes, where there were different symbols for tens, hundreds, etc."
- Quoted from Mathematical Notation: Past and Future Keynote address presented by Stephen Wolfram at MathML and Math on the Web: MathML International Conference 2000
» http://www.stephenwolfram.com/publications/talks/mathml/

