• }

Numbers and Information

INFO/CSE 100, Autumn 2004 Fluency in Information Technology

http://www.cs.washington.edu/100

17-Nov-2004

cse100-18-binary © 2004 University of Washington

Readings and References

• Reading

- » Fluency with Information Technology
 - Chapter 11, Representing Multimedia Digitally

• References

- » Some clip art is from the Open Clip Art Library
 - permission to use is granted on their web site
 - http://www.openclipart.org/index.php
- » Wolfram Research
 - http://mathworld.wolfram.com/
 - http://www.wolfram.com/

```
17-Nov-2004
```

cse100-18-binary © 2004 University of Washington

2

Recall: Info Representation

- Digitization: representing information by any fixed set of symbols
 - » decide how many different items of information you want to represent
 - Tic Tac Toe: 3 items *empty cell* or *player 1* or *player 2*
 - » decide how many "digits" or positions you want to use
 - Tic Tac Toe: 9 positions one per board square
 - » decide on a set of symbols

player 1: ★ empty cell: ⊗ player 2: O

Empty position: \otimes

use this set of symbols

- empty cell: \otimes
- player 1: X
- player 2: O

0	\otimes	\otimes
×	×	0
\otimes	\otimes	\otimes

- We can represent this game as one 9-digit string:
 ⊗ ⊗ × × ⊗ ⊗ ⊗
- How many possible game states are there?
 3×3×3×3×3×3×3×3×3 = 3⁹ = 19683

Another encoding

use a different set of symbols

- empty cell: 0
- player 1: 1
- player 2: 2

- We can represent this game as one 9-digit number: 200112000
- How many possible game states are there?
 - $3 \times 3 = 3^9 = 19683$

17-Nov-2004	cse100-18-binary © 2004 University of Washington	5	17-Nov-2004	cse100-18-binary © 2004 University of Washington

7

What's your tooth number?

incisors	canines	pre-molars	molars
			\longrightarrow
000000000	0000	00000000	00000000000000

How many possible combinations? $2 \times 2 \times 2 \times 2 \times ... \times 2 = 2^{32} \approx 4$ Billion

Info Representation

- Adult humans have 32 teeth
 - » sometimes a tooth or two is missing!
- How can we represent a set of teeth?
 - » How many different items of information?
 - 2 items *tooth* or *no tooth*
 - » How many "digits" or positions to use?
 - 32 positions one per tooth socket
 - » Choose a set of symbols no tooth: 0 tooth: 1

Info Representation

- Color monitors combine light from Red, Green, and Blue phosphors to show us colors
- How can we represent a particular color?
 - » How many different items of information?
 - 256 items distinguish 256 levels of brightness
 - » How many "digits" or positions to use?
 - 3 positions one Red, one Green, one Blue
 - » Choose a set of symbols

brightness level represented by the numbers 0 to 255

What is the pixel's color?

How can we store numbers?

- We want to store numbers
 - » 0 to 255 for color brightness
 - » 0 to 4B for tooth configuration
 - » 0 to 255 for ASCII character codes
- What do we have available in memory?
 - » Binary digits
 - 0 or 1
 - on *or* off
 - clockwise or counter-clockwise

 $\cdots 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 \cdots$

```
17-Nov-2004
```

cse100-18-binary © 2004 University of Washington

10

The hardware is binary

- 0 and 1 are the only symbols the computer can actually store directly in memory
 - » a single bit is either off or on
- How many numbers can we represent with 0 and 1?
 - » How many different items of information?
 - 2 items off or on
 - » How many "digits" or positions to use?
 - let's think about that on the next slide
 - » Choose a set of symbols
 - already chosen: 0 and 1

17-Nov-2004

11

How many positions should we use?

It depends: how many numbers do we need?

The sky's the limit

- We can get as many numbers as we need by allocating enough positions
 - » each additional position means that we get *twice* as many values because we can represent *two* numbers in each position

13

» these are *base 2* or *binary* numbers

17-Nov-2004

- each position can represent two different values
- How many different numbers can we represent in base 2 using 4 positions?

cse100-18-binary © 2004 University of Washington

FC	sition mat	ters!		
$\begin{array}{c} \text{binary}\\ \text{base 2} \end{array} \begin{array}{c} \text{decimal}\\ \text{base 10} \end{array}$	position represents -	position represents 4	position represents 2	position represents 1
$\begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1	0	1	0

How can we read binary numbers?

Let's look at the equivalent *decimal* (ie, *base 10*) numbers.

What do the positions represent?

2 ⁷ = 128	2 ⁶ = 64	2 ⁵ = 32	$2 \times 2 \times 2 \times 2$ $2^4 = 16$	$2 \times 2 \times 2$ $2^3 = 8$	2×2 $2^2 = 4$	$2 2^1 = 2$	$1 2^0 = 1$	base 10
1	0	0	0	1	0	1	0	
								base 2

Each position represents one more multiplication by the base value. For binary numbers, the base value is 2, so each new column represents a multiplication by 2.

What base 10 decimal value is equivalent to the base 2 binary value 10001010_2 shown above?

Some Examples

2 ⁷ = 128	2 ⁶ = 64	$2^{5} = 32$	2 ⁴ = 16	2 ³ = 8	2 ² = 4	2 ¹ = 2	2 ⁰ = 1	base 10
_	_	_	_	_	_	_	_	
						1	1	base 2
		10. = 2						
	1	$10_2 - 2$	10					
	1	$100_2 = 4$	10					
	1	$10_2 = 4$	$+2_{10}$	$= 6_{10}$				
$111_2 = 4_{10} + 2_{10} + 1_{10} = 7_{10}$								
	10	$000_2 = 8$	10					
	10	$001_2 = 8$	$_{10} + 1_{10} =$	= 9 ₁₀				
7-Nov-2004		cse100)-18-binary ©	2004 Universi	ty of Washing	ton		17

This is an old and very important idea

- "You see, more than 5000 years ago, the Babylonians--and probably the Sumerians before them--had the idea of positional notation for numbers. They mostly used base 60--not base 10--which is actually presumably where our hours, minutes, seconds scheme comes from. But they had the idea of using the same digits to represent multiples of different powers of 60."
- "Well, this fine abstract Babylonian scheme for doing things was almost forgotten for nearly 3000 years. And instead, what mostly was used, I suspect, were more natural-language-based schemes, where there were different symbols for tens, hundreds, etc."
- Quoted from Mathematical Notation: Past and Future Keynote address presented by Stephen Wolfram at MathML and Math on the Web: MathML International Conference 2000
 - » http://www.stephenwolfram.com/publications/talks/mathml/

cse100-18-binary © 2004 University of Washington

18