Digital Information

INFO/CSE 100, Autumn 2004
Fluency in Information Technology

http://www.cs.washington.edu/100

Readings and References

- Reading
» Fluency with Information Technology
- Chapter 11, Representing Multimedia Digitally
- Wikipedia - The Free Encyclopedia
» Arabic numerals, ASCII
- http://en.wikipedia.org/wiki/Arabic_numerals
- http://en.wikipedia.org/wiki/Ascii
- Cyrillic Text
- http://www.dimka.com/ru/cyrillic/
19-Nov-2004 \quad cse100-19-more-digital © 2004 University of Washington 2

Use the base, Luke

- Each position represents one more multiplication by the base value
» The base value can be 2 - binary numbers
- Two symbols: 0 and 1
- Each column represents a multiplication by two
» The base value can be $\mathbf{1 0}$ - decimal numbers
- Ten symbols: $0,1,2,3,4,5,6,7,8,9$
- Each column represents a multiplication by ten

Base 16 Hexadecimal

- The base value can be 16 - hexadecimal numbers
» Sixteen symbols: $0,1,2,3,4,5,6,7,8,9$, A, B, C, D, E, F
» Each column represents a multiplication by sixteen
»Hex is easier to use than binary because the numbers are shorter even though they represent the same value

$16 \times 16 \times 16$ $16^{3}=4096$	16×16 $16^{2}=256$	16 $16^{1}=16$	1 $16^{0}=1$	base 10
0 0 8 A base 16				

$$
8 \cdot 16+10 \cdot 1=138_{10}
$$

Binary to Hex examples

$10000010000001111010000100001111_{2}=8207 \mathrm{Al}^{2} \mathrm{~F}_{16}$

$10000011010001010110100110111110_{2}=\square_{16}$

Four binary bits \Leftrightarrow One hex digit

		inary		hexdec		decim
		0		0		0
	0	0		1		1
	0			2		2
	0	1	\Leftrightarrow	3	\Leftrightarrow	3
	1	0		4	\Leftrightarrow	4
	1	0		5		5
	1	1		6		6
	1	1		7		7

Whew! We are now official geeks ..

Think Geek

http://www.thinkgeek.com/tshirts/frustrations/5aa9/

Recall: The hardware is binary

- How many numbers can we represent with 0 and 1 ?
» As many as we want, it just takes a little more space to get a bigger range
- So what can we represent with these numbers?
» Anything that has a numeric value or can be associated with a numeric value
» Number of people, index into a list, account balance, ..
» Alphabetic characters, punctuation marks, display tags
» Any signal that can be converted into numeric values
- colors, sounds, water level, blood pressure, temperature
» Computer instructions

Represent Text - ASCII

- Assign a unique number to each character
» 7-bit ASCII
- Range is 0 to 127 giving 128 possible values
- There are 95 printable characters
- There are 33 control codes like tab and carriage return

- How many bit positions to allocate?
» Depends on the desired range
» 8 bits $\rightarrow 0$ to 255
- or -128 to +127
» 16 bits $\rightarrow 0$ to 65535
- or -32768 to +32767
» 32 bits $\rightarrow 0$ to 4294967296
- or $-2 B$ to $+2 B$

Represent numbers

ASCII text

Represent Text - Unicode

- The goal of Unicode is to provide the means to encode the text of every document people want to store in computers
- Unicode aims to provide a unique number for each letter, without regard to typographic variations used by printers
- Unicode encodes each character in a number
» the number can be $7,8,16$, or 32 bits long
» 16 -bit encoding is common today

Represent Text - Postscript

- Postscript is a page description language somewhat like HTML
» The file is mostly text and can be looked at with a regular text editor
» programs that know what it is can interpret the embedded commands
» Programs and printers that understand Postscript format can display complex text and graphical images in a standard fashion

Represent Text - PDF

- PDF is another page description language based on Postscript
- The file is mostly text
» can be looked at with a regular text editor
» programs that know what it is can interpret the embedded commands
» just like Postscript and HTML in that respect

Represent Color - Bit Map

- Numbers can represent anything we want
- Recall that we can represent colors with three values
» Red, Green, Blue brightness values
- There are numerous formats for image files
» All of them store some sort of numeric representation of the brightness of each color at each pixel of the image
» commonly use 0 to 255 range (or 0 to FF_{16})

What about "continuous" signals?

- Color and sound are natural quantities that don't come in nice discrete numeric quantities
- But we can "make it so!"

Digitized image contains color data

Summary

- Bits can represent any information
» Discrete information is directly encoded using binary
» Continuous information is made discrete
- We can look at the bits in different ways
» The format guides us in how to interpret it
» Different interpretations let us work with the data in different ways

