What the Digerati Know

Exploring the Human-Computer
Interface

Learning Objectives

> Explain key ideas familiar to experienced users (the digerati):

* The advantages of having consistent features in information
technology

* The benefits of using feedback of clicking around and
blazing away in exploring new applications

* The basic principle of IT: form follows function
> Explain how a basic search is done
> Use common methods to search and edit text:

* Find (words, characters, spaces)

* Shift-select

* The placeholder technique

* Search-and-replace (substitution)

Exploration is really the essence of the human spirit.

—~FRANK BORMAN, US ASTRONAUT

Text processing has made it possible to right-justify any idea, even one

which cannot be justified on an); other grounds.

~-J FINNEGAN, USC

e

PERHAPS the most uncomfortable part of being an inexperienced
computer user is the suspicion that everyone but you knows how to use
technology. They seem to know automatically what to do in any situation.

Of course, experienced users don't really have a technology gene.
Through experience, however, they have learned a certain kind of
knowledge that lets them figure out what to do in most situations. Most
people don't “know” this information explicitly—it’s not usually taught
in class. They learn it through experience. But you can avoid long hours
of stumbling around gaining experience. This chapter reveals some
secrets of the digerati so that you, too, can “join the club.” (Digerati,
analogous to the word literati, means people who understand digital
technology.)

Our major goal in this chapter is to show you how to think
abstractly about technology. We do this by asking how people learn
technical skills and by considering what technology developers expect
from us as users. This chapter will also help you understand that:

> Computer systems use consistent interfaces, standard metaphors,
and common operations.

> Computer systems always give feedback while they are working.
Making mistakes does not break the computer.

The best way to learn to use new computer software is to experi-
ment with it.

> Asking questions of other computer users is not evidence of
being a dummy, but proof of an inquiring mind.

These ideas can help you learn new software quickly. A key abstract
idea about software is that it obeys fundamental laws. This fact can help
you in your everyday software use, as we illustrate when we explain the
principle “form follows function.” We show how this principle applies to
basic text searching by teaching the subject without using any specific
software. Such knowledge applies to every system and makes us versa-
tile users. You too, can become one of the digerati.

Learning about Technology 29

Learning about Technology

Human beings are born knowing how to chew, cough, stand, blink, smile, and so
forth. We are not born knowing how to ride a bicycle, drive a car, use a food
processor, or start a lawnmower. For any tool more complicated than a stick, we
need some explanation about how it works and possibly some training in how it’s
used. Parents teach their children how to ride bicycles and most products come
with an owner’s manual.

Some tools, such as portable CD players, are so intuitive that most people living
in our technological society find their use “obvious.” We don't need o refer to the
owner’s manual. We can guess what the controls do because we know what opera-
tions are needed to play music. (Without this knowledge, the icons on the buttons
would probably be meaningless.) And we can usually recover from our mistakes.
For example, if you were to insert a CD upside-down, it wouldn't work, so you'd

" turn it over and try again.

But the fact that we live in a technological society and can figure out how a CD
player works doesn't mean that we have any innate technological abilities. Instead,
it emphasizes two facts about technology that are key to our success:

> Our experience using (related) devices, including software, guides us in
what to expect.

> Designers who create these devices, including software, know we have
that experience and design products to match what we already know.

i

The Desktop

When a personal computer starts up, the image it displays on the monitor is
called the desktop. It usually has a colored background, but photos, patterns,
logos, and so on are also common background images. Information is displayed
along the top, bottom, or side of the desktop. Small icons of three basic kinds are
displayed on the “desk”:

> g Applications (programs), such as Internet Explorer, which are
identified by their logos

> @ Folders (directories), which have icons like small file folders

> 43 Files (documents), which are identified by an icon corresponding
to the application, such as Adobe Acrobat, that created them

There are other icons too, such as the wastebasket for trash.

The image is called the desktop because it implies a metaphor. In software, a
metaphor is an object or idea used as an analogy for computation. Working with
a personal computer is analogous to working at a desk: You keep your work in
files, you organize your files into folders, and you use applications (programs)
such as a calculator or photo-editing tool to perform your tasks. The designers at
Xerox PARC and Apple Computer, who created the idea of personal computing,

30

Chapter 2

fitBYTE

What the Digerati Know

wanted an analogy to represent the interaction between humans and computers.
They chose the analogy of working at a desk: all personal computing software
since is designed around that same metaphor.

Desktop. Many creative people have contributed to the invention of personal com-
puting, beginning in the late 1960s with Douglas Englebart and his team at SRl who
created devices such as the mouse. In the 1970s, researchers at Xerox's Palo Alto
Research Center (PARC) applied the ideas to office automation by creating the Alto,
the first personal computer with the features we've come 10 expect: bit-mapped dis-
play, mouse, windows, desktop metaphor, and so on. Although it was never mar-
keted, the Alto motivated Apple to create the Macintosh, laungkhed in 1984.
Eventually, Microsoft upgraded its DOS (disk operating system) to have these fea-
tures, making them effectively universal.

Playing Recorded Music

To illustrate how metaphors are used, consider listening to music. When we listen
to a CD on a computer, we control the software that plays the CD using a graphi-
cal user interface (GUI), as shown in Figure 2.1. This GUI (GOO-ey) is for the
iTunes software for the Mac OS X operating system, standard on Apple comput-
ers. Similar software plays CDs on the Windows operating system (see Figure
2.2). Even if the iTunes GUI is not familiar, anyone who has ever used a CD
player can look at it and figure out how it works.

We can successfully guess how the software works because the GUI shown in
Figure 2.1 graphically presents a familiar “music player” metaphor. In addition to
the red (close), yellow (minimize), and green (maximize) buttons common to all

H

@ 9'¥n Only Steeping

@ Love You To

@ Here, There And Everywhete
@ Yellow Submarine

@ She Sald She Soid

¥ Good Oay Sunshine

& And Your Bird Can Sing

@ for %o Ons

¥ Docror Robent

@ tWamt To Tell You

Got To Get You into My Life

-

N FIFSFEFFTTT-

Figure 2.1 Graphical user interface for the iTunes audio CD
player on an Apple Macintosh.

gl ‘f;.g,'.r,qu.l-_-p'i_-j'_;ﬁﬁlxi'!il;_:'}i .

Learning about Technology

* Windows Medtia Player

Figure 2.2 Graphical user interface for playing audio CDs
with Windows Media Player.

Mac OS X GUISs, it shows three white (plastic-looking) buttons with icons at the
upper left that are meaningful to us in the context of playing recorded music: last
track, pause, and next track. Below those buttons is a volume control. To the right
an LCD window shows the name of the CD—The Beatles—with elapsed time and
a diamond moving along a slot, which we can guess is a visual description of how
much of the track has been played. In the main window is the playlist titled “Song
Name” giving the usual information. Notice the icon by the track that is playing.
At the bottom are other buttons with icons, some of which are familiar, for exam-
ple, shuffle, repeat, and eject. We also see the number of songs, total time, and
memory size (MB is megabytes). On the left is a list of “Sources.” The highlighted
item is “Revolver”—the Beatles album we’re playing. The other items, we can
guess, are places where other recorded music is stored.

Because we know from experience that one “pushes” a button on a computer by
clicking it with the mouse, anyone who has played recorded music can intuitively
learn to control the iTunes GUI. We don't need instruction because the software
designers present a metaphor that we immediately understand. We apply what we
know about the metaphor; therefore, we can use the software without reading the
user’s manual.

That’s the idea behind all personal computing software: When you have a task, for
example, playing music, expect the software’s GUI to present a familiar metaphor,
such as a physical CD player. Apply your knowledge about the metaphor as a
guide for using the software.

31

32

Chapter 2

What the Digerati Know

Understanding the Designers’ Intent

The designers of the iTunes player invested plenty of effort to make the GUI famil-
iar. For example, the volume control looks like the volume control on a physical
CD player. Its operation is identical to the blue slider bar at the bottom, but the
designers didn't use that kind of standard slider. They took the trouble to cus-
tomize the iTunes volume control to resemble one found on physical CD players,
including the “soft” and “loud” icons. They designed the buttons in the same way.
The buttons didn’t have to be special or look plastic. Instead of the icon, the word
“pause” could have been printed on the large button. The oval LCD display, com-
mon on physical CD players, was created purposely to match the loo#®and feel of
a physical CD player. There are easier and fancier ways to display the informa-
tion—so why do software designers go to so much trouble?

Everyone who invents a new tool, including software designers, has to teach users
how to operate their inventions. Developers do write manuals explaining the soft-
wares slick features, but its much faster and easier if users can figure out the soft-
ware without studying the manual. So software designers, like CD player
designers, try to pick easy-to-understand user interfaces. Instead of creating a GUI
that requires explanation, the designers guessed that the metaphor of the familiar
physical CD player would be intuitive. And they guessed right. By analogy, the
basic features of the software are obvious. The audio CD software for the
Windows operating system uses a similar interface, as shown in Figure 2.2.

To summarize, software designers want to make the GUI intuitive so that users
can figure it out. We should expect that we can “brain out” how it works. We use
this idea every time we use new software.

@aanl Consistent Interfaces

Because computers can do many things, GUIs use many different metaphors.
GUISs are built using simple metaphors, such as buttons. Software designers use
these metaphors similarly; they make them look and work alike (for their operat-
ing system). The result is a consistent interface. The consistent interface is one of
the secrets of the digerati: Whenever they see an icon or metaphor they have seen
before, they know immediately how it works, which explains why they always
seem to know what to do even if they have never used the software before. You
will do the same thing!

Although the iTunes GUI contains many custom features to make it more intu-
itive, it also uses many standard metaphors found in all GUIs. We'll take a
moment to look more closely at some of them.

Command Buttons

As we have seen, command buttons take a variety of forms such as a 3D rectangle,
an oval, or a circle. They are highlighted, as explained in Chapter 1, with an icon
or text centered on the button. This label says what the command does. To

fitrp

Consistent Interfaces 33

invoke the command——that is, to tell the software to perform the operation
shown on the label—we “press” the button by clicking it with the mouse. We
receive feedback telling us that the button has been clicked, usually by means of a
color change, shadow, highlight, text/icon change, or audible click. Some people
think audible clicks are obsessive attempts at realism by developers, but some
form of feedback is essential for effective computer use, as explained later in this
chapter.

A Click Is Enough. When clicking on a button, it is not a good idea to press
down on the mouse button slowly or for a long time, because the gomputer may
interpret a too-long click as a different action. -

ST1ider Control

The volume control shown in Figure 2.3(a) is a slider control. A slider control
sets a value from a “continuous” range, such as volume. To move the slider, place
the mouse pointer on the slider, hold down the (left) mouse button, and move in
the direction you want to change. The most common examples of sliders are the
scroll bars in a window display, usually shown at the right and bottom of the win-
dow, as shown in Figure 2.3(b). When the window is not large enough to display
all of the information in the horizontal or vertical direction, a scroll bar is shown
for each direction in which information has been clipped. For example, the com-
plete information of the playlist is not shown in Figure 2.1, so the horizontal
scroll bar is displayed at the bottom of the window. The range is the size of the
information in the direction that’s hidden. Often the size of the slider is scaled to
show what proportion of information is displayed. Thus, if the slider takes up half
of the length of the “slot,” about half of the information is displayed. There are
usually directional triangles "« [# at one or both ends of the scroll bar; clicking
on them moves the slider one “unit” in the chosen direction.

(a) REESEETS

- . SIS

(b) [e

Figure 2.3 Slider controls. (a) A volume control.
{b} A scroll bar.

Triangle Pointers

To reduce clutter, GUIs hide information until the user needs or wants to see it. A
triangle pointer indicates the presence of hidden information or an alternative
form of the information. Clicking on the triangle reveals that information. So, at
window. You can see other triangles in Figure 2.1. There is a triangle shown in the
LCD display [@; clicking on it reveals the familiar sound levels display, as shown

34

Chapter 2

| Name

1 1 & Taxman
| 2 © Eleanor Rigl
3 & I'mOnlySle

fitBYTE

What the Digerati Know

in Figure 2.4. A triangle in an iTunes column header indicates the order in which
the songs are displayed. In Figure 2.1, for example, the songs are displayed in
ascending numeric order as they occur on the CD. Clicking on the triangle
reorders the listed songs in reverse order.

Figure 2.4 The iTunes GUI displaying the hidden sound level information.

We have discussed a few examples to illustrate the metaphor concept. There are

many others, and beginning users should get to know them quickly. The point is
to emphasize that computer applications have many operations in common, and
software designers purposely use them consistently so that they can take advan-

tage of the user’s knowledge and experience. Experienced users look for familiar

metaphors, and when they recognize a new one they add it to their repertoire.

Mac or PC? Is the PC better than the Macintosh, or vice versa? The question usu-
ally sets off a pointless argument. Listening to the battle, many wrongly guess that
the other system must be very different and difficult to use. In fact, the two systems
are much more alike than they are different, sharing the concepts we discuss in this
chapter and much, much more. Any competent user of one system can quickly and
easily learn to use the other. And every Fluent user should.

Anatomy of an Interface

In addition to the window where users conduct most of their interactions by typ-
ing or clicking, there are menus. A menu is a list of operations that the software
can perform. Menus are grouped by the similarity of their operations and listed
across the top of the screen in the menu bar, as shown in Figure 2.5. All opera-
tions performed by the software are listed in a menu.

Menu Operation

Menus listed in the menu bar across the top of a window are called pull-down or
drop-down menus. All of the operations available with the software are listed
“under” the menus, even if they are also available by clicking on an icon elsewhere
in the window. In some situations, menus are also displayed at the spot where the
mouse is pointing when the mouse button is clicked; these are called pop-up
menus. Both menu types work the same way.

Anatomy of an Interface

View inset Format Font Tools Table Window Work Help

uUndo Cut xZ i | Documentl i

Aepe Y F,.L.'_.'_"_.';.'_':'_.'_.'_._'1'_ DL SO AP S
%X §

Clear »

Select All xA |

Find... xF |

Replace... O3XH >

Go To... %®G |

Figure 2.5 The Microsoft Word menu bar for Mac OS X with
the Edit menu selected.

To pull down or pop up a menu requires a mouse click, which reveals a list of
operations. Sliding the mouse pointer down the list highlights the items as it
passes over them. That is, they reverse color like the Paste command shown in
Figure 2.5. Clicking or releasing the mouse button on the highlighted (selected)
menu item causes the computer to perform the listed operation.

Reading a Menu

Menus give more information than just a list of items. They tell you whether an

operation is available or not, they indicate when more user input is needed, and
sometimes they give you shortcuts. Refer to Figure 2.5 as you read the following
descriptions.

Which Operations Are Available? Unlike restaurant menus that are
printed once and reused, GUI menus are created each time they are opened, so
they specify exactly which operations are available. An operation may not apply in
every context. For example, Copy is not available if nothing has been selected to
be copied. Operations that can be applied immediately are shown in a solid color
and operations that are not available at the moment are shown in a lighter color
or “grayed out,” as shown for the Copy operation in Figure 2.5. Unavailable items
are not highlighted as the cursor passes over them and, of course, they cannot be
selected.

Is More Input Needed? Some operations need further specification or more
input from the user. Menu items that need further specification have a triangle
pointer » at the right end of the entry (see Clear in Figure 2.5). Selecting such an
item pops up a menu with the additional choices. Making the selection causes the

35

36

Chapter 2

fitByTE

What the Digerati Know

operation to be performed unless it still needs more specification. Menu items show
that they need more input with an ellipsis * after their name. Selecting the item
opens a dialog box for specifying the extra input. For example, in Figure 2.5, the
operation Find has an ellipsis because it needs the user to specify what to look for.

When the software has enough information, it performs the operation immedi-
ately and closes the menu(s) and window(s). If not, it continues to ask for more
information by opening another window. Answering these questions may lead to
more information requests. Eventually the command will be fully specified and
can be performed. You can stop the dialog at any time by simply moving your
mouse pointer away from the menu or by clicking Cancel. Clicking @#ncel is the
same as never having looked at the menu in the first place, no matter how much
information you have entered.

Is There a Shortcut? Sometimes its more convenient to type a keyboard
letter than to pull down a window with the mouse and slide the cursor down the
list. So some menu items have shortcuts. A shorteut is a combination of keyboard
characters, shown next to the menu item, that have the same effect. The shortcut
is specified by a combination of a special key and a letter. In Figure 2.5, the short-
cut for Cut is (X), shown to the right of the operation in the menu entry, the
shortcut for Copy is

The special character for the Mac is Command (G28), sometimes referred to as a
clover. The special character for the Windows operating system is Control
(see Figure 2.6). To use the shortcut it is not necessary to pull down the menu. It
is enough to hold down the special key—Command or Control depend-
ing on which operating system you are using—and type the letter. Even though
the letter is shown as a capital, it is not correct to hold down the key while
performing this action.

The important thing to notice about the shortcuts is that the same letter command
is used for both operating systems. Compare Figures 2.5 and 2.6. Once you have
learned the shortcuts for an application running on one operating system, you can
easily switch to another operating system because the vendors keep the short-
cuts—and nearly everything else—consistent. In fact, basic operations like Copy,
Paste, Print, Find, and so on that are used in most applications use these same let-
ters. This is another way in which the interface is kept consistent.

Shortcuts are not very important for a casual user, but they are extremely handy
for people who use a single application intensively.

A Win for Users. The Microsoft Windows operating system includes most of
the GUI metaphors developed for the Apple Macintosh, so in 1988 Apple sued
Microsoft for patent infringement. Apple claimed Microsoft illegally used the “look
and feel” of its Mac. The legal issues were complex, but the judge ruled that
Microsoft could freely use the metaphors Apple had developed. This might not seem
fair to Apple, but it was a great win for users, because it meant that GUIs could work
pretty much the same on the Mac and the PC.

Standard GUI Functionality 37

Al ocumentd - Microsoft Word

Bie | Edr | Yiow Insert Fgrmat Tools Table Window Help

Figure 2.6 The Microsoft Word menu bar for Windows with
the Edit menu selected.

" Standard GUI Functionality

There are some operations that almost all personal computer applications should
be expected to perform simply because they process information. That is, whether
the information is text, spreadsheets, circuit diagrams, or digitized photographs,
the fact that it is information stored in a computer means that certain operations
will be available in the software. We call these operations the standard function-
ality. For example, it should be possible to Save the information to a file, Open a
file containing the saved information, Print the file, and so on. You should expect
to find these functions in almost every software application.

File Operations

To help users, the standard operations are usually grouped——possibly with other
operations specific to the application—into two menus labeled File and Edit.
Generally, the operations under the File menu apply to whole instances of the
information being processed by an application. An instance is one of whatever
kind of information the application processes. For example, for word processors,
an instance is a document; for MP3 players, an instance is a song; for photo edi-
tors, an instance is a picture. The File menu items treat a whole document. The
operations you can expect to see under the File menu and their meanings are as
follows:

> New Create a “blank” instance of the information.

> Open Locate a file on the disk containing an instance of the informa-
tion and read it in.

38

Chapter 2 What the Digerati Know

> Close Stop processing the current instance of the information, close the
window, but keep the program available to process other instances.

> Save Write the current instance to the hard disk or a floppy disk, using
the previous name and location.

> Save As Write the current instance to the hard disk or a floppy disk
with a new name or location.

> Page Setup Specify how the printed document should appear on
paper; changes to the setup are rare.

K
> Print Print a copy of the current instance of the information.
> Print Preview Show the information as it will appear when printed.
> Exit or Quit End the entire application.

There are usually other operations unique to the application.

New Instance

Notice that New under the File menu creates a “blank” instance. What is “blank
information”?

To understand this fundamental idea, notice that all information is grouped into
types, based on its properties. Photographs (digital images) are a type of informa-
tion; among the properties of every image is its height and width in pixels.
Monthly calendars are a type of information with properties such as the number
of days, day of the week on which the first day falls, and year. Text documents are
another type of information and the length of a document in characters is one
property. Any specific piece of information—an image, month, or document—is
an instance of its type. Your term paper is an instance of the document type of
information; June 2008 is an instance of calendar type information.

To store or process information of a given type, the computer sets up a structure
to record all of the properties and store its content. A “new” or “blank” instance is
simply the structure without any properties or content filled in. For example,
imagine an empty form for contact information in an electronic address book, as
shown in Figure 2.7. That’s a new contact, ready to receive its content.

Edit Operations

The Edit operations let you make changes within an instance. They often involve
selection and cursor placement. The operations are performed in a standard
sequence: select, cut/copy, indicate, paste, and revise. Selection identifies the
information to be moved or copied. Selection is usually done by moving the cur-
SOT to a particular position in the instance and, while holding down either the
(left) mouse button or keyboard keys, moving the cursor to a new position. All
information between the two positions is selected. Highlighting, usually color
reversal, identifies the selection. If the information is to be recorded and deleted

LSSl

i

Standard GUI Functionality

@60 §CeateContact
{88 s s Close FsivesNew =) > [Detete
Name & E-matl
First:| }
Last:
Company: 1
Department:
Job title: J
Work E-mail: |
1 [Home emal ¥ : o~
1 Phone Numbers]
Work phone: | i
Home phone: |

R C }

Address

Figure 2.7 A new contact (i.e., a “blank”
instance) in an electronic address book.

from its current position, the Cut command is used. The Copy command records
but does not delete the information. Then, the new location for the information is
indicated in preparation for pasting it into position, although in many applications
the indicate step is skipped and the text is pasted into a standard place. The Paste
command copies the information recorded in memory into the indicated position.
Because a copy is made in memory, the information can be pasted again and
again. Often, revisions or repositioning are required to complete the editing
operation.

The operations under the Edit menu and their meanings are as follows:

> Undo Cancel the most recent editing change, returning the instance to
its previous form.

> Repeat Apply the most recent editing change again.

> Cut Remove the selected information and save it in temporary storage,
ready for pasting.

> Copy Store a copy of the selected information in temporary storage,
ready for pasting.

39

40

Chapter 2

fittzp

What the Digerati Know

> Paste Insert into the instance the information saved in the temporary
storage by Cut or Copy; the information is placed either at the cursor
position or at a standard position, depending on the application.

Y Clear Delete the selected information.
) Select All Make the selection be the entire instance.

Undo is not always available because not all operations are reversible. Redo may
not be available because some operations cannot be repeated.

Because these operations are standard—available for most applications and consis-
tent across operating systems—it is a good idea to learn their shortcuts, 85 shown
in Table 2.1. (To prevent accidents, Clear often does not have a shortcut.) In addi-
tion, “double-click>—two (rapid) clicks with the (left) mouse button—often
means Open.

Table 2.1 Standard Shortcuts. These common shortcut letters for standard
software operations combine with “Control” for Windows or “Command”
for Mac OS X.

File Functions : Edit Functio_ns

New N Cut X
Open 0 Copy C
Save S Paste v
Print P Select All A
Quit Q Undo z

Redo Y

Find F

Command and Control. Sometimes it is necessary to refer to an operation like
Copy by its shortcut without being specific about which operating system is used.
In such cases we write AC to indicate that the operation takes either Command
or Control (Cri), depending on the OS.

The Ribbon

Microsoft Office 2007, new with the Vista operating system, presents an applica-
tion’s operations as a “ribbon” at the top of the editing window, as shown in
Figure 2.8. The ribbon dispenses with some of the traditional menu structure,
which hides the operations until they are needed, and instead displays the opera-
tions continuously as icons. Of course, all of the standard functionality is avail-
able, but its not as neatly bundled as in earlier versions of Office.

The standard File operations (listed in the left colurmn of Table 2.1) are in a drop-
down menu under the Microsoft Office button in the upper left corner (with the

Standard GUI Functionality 41

| netncrx AaBBC: Azmbee AAY omhce somen aomon - A
Mo 3pac. Hesangl Heeng2 e Subnte SuOUsEm. Emphans Tm'

f e

Words® | o =

Figure 2.8 The ribbon from the Microsoft Office 2007 Word application.

Microsoft Office logo on it). Thus, the Office button is the File menu, but it is not
labeled as such. The Edit operations (in the right column of Table 2.1) are found
in several locations. The Cut, Copy, and Paste operations are near the Office but-
ton, under the Home tab; Undo is above the Home tab, in the Quick Access toolbar;
Find, Replace, and Select are all at the extreme right end of the ribbon. This
redesign of Office nicely illustrates that no matter how it’s presented, the standard
functionality is always available.

Expecting Feedback

A computer is our assistant, ready to do whatever we tell it to do. It is natural that
when any assistant performs an operation, he, she, or it must report back to the
person who made the request, describing the progress. This is especially true
when the assistant is a computer, because the user needs to know that the task
was done and when to give the next command. So a user interface will always

»»

give the user feedback about “what’s happenin’.

In a GUI, feedback is any indication that the computer is still working, or has
completed the request. Feedback takes many forms, depending on what operation
a user has commanded. If the operation can be performed instantaneously—that
is, so fast that a user does not have to wait for it to complete—the GUI simply
indicates that the operation is complete. When the operation is an editing change,
for example, the proof that it is done is that the revision is visible. When the effect
of the command is not discernable—say, when one clicks a button—then there is

42

Chapter 2

fitTI

What the Digerati Know

some other indication provided; for example, highlighting, shading, graying,
underlining, changing color, or an audible click.

The most common form of feedback is the indication that the computer is contin-
uing to perform a time-consuming operation. As the operation is carried out, the
cursor is replaced with an icon such as an hourglass & (on Windows systems) or
a rainbow spinner & (on Macintosh systems). Applications can also give the user
custom feedback. A common indicator is the busy spinner @, a revolving circle
divided into quarters, two white and two black. When the completion time can be
predicted, applications show a meter that “fills” as the operation progresses. Often
these displays give a time estimate for 100 percent completion. Finallgswhen an
operation is processing a series of inputs, the “completion count” gives the tally of
the completed instances, or equivalently, the number remaining.

Be Selective. New users can get confused when an operation they want to use
is not available (that is, it is “grayed out”). This happens because the operation
needs the user to select something and nothing is selected. For example, the com-
puter cannot perform Copy untit you have selected what you want to copy.

“Clicking Around”

When the digerati encounter new software, they expect a consistent interface.
They expect to see the basic metaphors, find standard operations, and receive
feedback while the application is working. Digerati automatically look for these
interface features and begin to explore. The purpose of their exploration is to
learn what the software can do.

We call the act of exploring a user interface clicking around. It involves noting
the basic features presented by the GUI and checking each menu to see what
operations are available. For example, when experienced users see a slider bar,
they slide it to see what happens. When we slide the volume slider in iTunes we
notice a change in volume, and in accordance with the feedback principle, we see
in Figure 2.3 that the circle in the middle of the slider is colored blue ® while
we drag it.

When the digerati see a button, they hover their cursor over the button—not
clicking it, yet—until the “balloon help” explanation tells them what the button
does. For example, in the iTunes GUI, as shown in Figure 2.1, there are several
buttons at the bottom that we don’t immediately understand. Hovering over them
reveals the explanation, as seen in Figure 2.9. Then, like the digerati, if our
curiosity isn’t satisfied, we click the button to see what happens. Perhaps we don't
know what “visual effects” means, but noting that it is an “on or off” type of con-
trol, we click it (see Figure 2.10).

“Clicking around” can help us figure out what operations are available without
having to be taught or to read the manual. Software manuals are notoriously dull
reading and hard to use. But “clicking around” does not make them obsolete.

fittIp

“Clicking Around”

A Fast Start. When you're using software for the first time, practice "clicking
around”:

) Take a minute to study the GUI graphics.
2 Open each window to see what operations are available.
) Determine the purpose of icons and controls.

> Hover the cursor over unknown buttons or GUI features for a short
explanation of their purpose.

Figure 2.9 Hovering the cursor over unknown buttons shows the help
description: (a) equalizer window, (b) visual effects.

Figure 2.10 Clicking on the Visual Effects button in iTunes.

Manuals—mostly online Help resources—are still necessary and useful. “Clicking
around” works because (a) we come to the new software with technological expe-
rience and (b) software designers try to build on what we know by using

metaphors and consistent interfaces. When new software works like the last soft-

43

-

44

Chapter 2

fittIp

What the Digerati Know

ware did, we already “know” how to use it. The manual is usually needed only to
understand advanced features or subtleties of operation. Ironically, then, manuals
are most useful for experienced users, not beginners.

“Clicking around” is exploration and may not reveal all of the software’s features.
We may need to experiment, test repeatedly, and try again. But this “clicking
around” technique usually gives useful information quickly. If it doesn, the soft-
ware design has undoubtedly failed to some extent.

Following Protocol. Our normal interactive use of computers alternates
between our commanding the computer to do something and the computer doing
it. If the computer can’t finish immediately, it gives feedback showing the operation
is in progress. If the computer is finished, we can see the effects of the command.
Be attuned to this alternating protocol. If nothing seems to be happening, the com-
puter is waiting for you to give a command.

“Blazing Away”

After getting to know a software application by “clicking around,” the next step is
to try it. We will call this blazing away. The term suggests a users trying an appli-
cation assertively—exploring features even without a clear idea of what they will
do. “Blazing away” is sometimes intimidating for beginning users because they're
afraid they’ll break something if they make a mistake. A basic rule of information
processing is: Nothing will break! If you make a mistake, the software is not going to
screech and grind to a halt, and plop on the floor with a clunk. When you make a
mistake, the software may “crash” or “hang,” but nothing actually breaks. Most of
the time nothing happens. The software catches the mistake before doing some-
thing wrong and displays an error message. By paying attention to these messages,
you can quickly learn what’s legal and what isn't. Therefore, “blazing away” is an
effective way to learn about the application even if you make mistakes.

Of course, saying that nothing will break is not the same as saying that it’s impos-
sible to get into a terrible mess by “blazing away.” Creating a mess is often very
easy. Beginners and experts do it all the time. The difference between the two is
that the experts know another basic rule of information technology: When stuck,
start over. That may mean exiting the program. It may mean rebooting the com-
puter. It may simply mean “undoing” a series of edits and repeating them. The
simple point is that the mess has no value. It does not have to be straightened out
or fixed, because it didn't cost anything but your time to create in the first place.
Because your time is chalked up to “experience” or “user training,” there’s no harm
in throwing the mess out. Therefore, an experienced user who is “blazing away”
on a new software system will probably exit the software and restart the applica-
tion over and over, without saving anything.

Usually, we are working with new software because we have something specific
we want to do, so it pays to focus on getting that task done. This means that we
should “blaze away” on those operations that will contribute to completing the

TR,

fitBYTE

Watching Others

task; we don't have to become experts. It’s common for Fluent users to know only
the most basic functions of the software systems they use infrequently. And,
because they are not regular users of these programs, they usually forget how the
applications work and have to “click around” and “blaze away” each time.

Getting Out and Getting Back In. Starting overis so common for com-
puter users—it's called, getting out and getting back in—that it has become the sub-
ject of some geek humor. A mechanical engineer, an electrical engineer, and a com-
puter engineer are camped at Mt. Rainier. In the morning, they pack up to leave and
get into their car, but it doesn’t start. The ME says, “The starter motor is broken, but
| can fix it,” and he gets out of the car. The EE says, “No way. It's the battery, but |
know what to do,” and she gets out of the car. The CE says while getting out of the
car, "Now, let's get back in.”

Obviously, if you are “blazing away” and starting over when you get into trouble,
you shouldn't spend too much time creating complicated inputs. For example, if
the software asks for text input and gives you space for several paragraphs, just
enter Test text and continue to explore. Once you understand how to do the
task, you can focus on using the software productively.

| Watching Others

“Clicking around” and “blazing away” are the first steps when learning new soft-
ware because you are likely to succeed using your own observation and reasoning
skills. And, if you need to know something very specific about the software, you
can always read the manual or online help. However, these two extremes may not
cover all of the possibilities. Complicated software systems usually have some fea-
tures that are not obvious, too advanced, or too specialized to learn on our own.
They include GUI features that most of us do not think to look for and they pro-
vide capabilities that we may not even know we need.

The Shift-Select Operation

An example of a not-so-obvious feature is the key in selection operations.
Suppose we want to select only the red and green circles of the stoplight in Figure
2.11(a). Clicking on the red circle selects it (Figure 2.11(b)), as shown by the small
boxes around the circle. Clicking on the green circle selects it and deselects the red

{a) {b) (c) {d) {e)

Figure 2.11 Examples of selection.

46

Chapter 2

fittIp

What the Digerati Know

circle (Figure 2.11(c)). Dragging the cursor vertically from the red circle to the
green circle selects all the circles (Figure 2.11(d)). So how do we select just red and
green without the yellow? The problem is that when we select something (e.g., the
green circle), anything that is already selected (e.g., the red circle) becomes dese-
lected automatically. We need some way to bypass that automatic protocol.

The solution is to select the first item (e.g., click on the red circle) and then hold
down the key while selecting the second item (e.g., clicking on the green cir-
cle). Using the key during a selection means to “continue selecting every-
thing that is already selected.” Because the red circle is already selected when the
green circle is shift-selected, both become selected, completing the task.

Learning from Others

The shift-select operation, meaning “continue to select the item(s) already
selected,” is a common feature in commercial software. Without knowing about
shift-select, however, we probably wouldn’t discover it by “clicking around” or
“blazing away.” We would not think to try it. We might not even know that we
need the feature in the first place. So how do we learn about this kind of feature?

We can take a course on the specific software or read the users manual, but an
alternative is to observe others as they use a program we are familiar with. As we
watch, we should be able to follow what they are doing, though it might seem
very fast. If we see an operation that we do not understand, we ask about it. Most
people are eager to share their expertise. Many an obscure feature, trick, or short-
cut is learned while looking over the shoulder of an experienced user, so it pays to
watch others.

Toggling Shift-Select. Generally when you use shift-select, one or more
additional items are selected, because you usually click on an unselected item. But
what happens when you use shift-select on an item that is already selected? It des-
elects that item only, leaving all other items selected. This property of changing to
the opposite state—selecting if not selected, deselecting if selected—is called
toggling. It's a handy feature in many situations.

Principle: Form Follows Function

A theme of this chapter is that computer systems are very similar because software
designers want us to figure out how to use them based on our previous experi-
ence with other software. So, they use consistent interfaces and metaphors. When
features of a new system work like the same features in a familiar system, we
already know how to use parts of the new system. But there is a much deeper
principle at work to explain the similarity among software systems. We state this
principle as “form follows function.”

The form follows function principle states that the fundamental operations of a
software system and the way they work are determined by the task being solved.

Principle: Form Follows Function

This doesn’t mean that two software systems for the same task look alike; it means
that they will have the same basic operations and those operations will work simi-
larly. Of course, their GUIs can be very different with fancier icons and glitzier
buttons, but those differences are superficial. At the core, the application defines
the operations and how they work. Performing the task requires that the informa-
tion is processed in a specific way.

Similar Applications Have Similar Features

To illustrate the principle, text processing applications such as Word, Word
Perfect, BBEdit, SimpleText, AppleWorks, Notepad, and a dozen others use a cur-
sor to mark your place in text. They all have operations for typing text, deleting
text, selecting text, copying text, searching text, replacing text, and other common
actions. The software vendors did not invent these operations; they are fundamen-
tal in text processing. Furthermore, the operations work in much the same way in
every system. For example, the (Backspace) (or (Delete]) key removes the character to
the left of the cursor’s present position, and it is impossible to select disconnected
blocks of text. These are the natural and sensible meanings of those operations in
the context of text, which is why they share many features.

If vendors cannot make better software by changing the fundamental operations,
how can they compete? Easy, they add other nonfundamental features that make
their systems more convenient, friendlier, faster, less error prone, and so on. For
example, in some, but not all, text processing systems, it’s possible to select text
and drag it to a new position. This is not a fundamental text processing operation,
since it can be achieved with a select, cut, reposition-the-cursor, and paste
sequence of operations. But text dragging is convenient, and so it has been added
to many systems. Software vendors also try to attract new customers by making
their software more appealing by adding cool icons or animated “helpers.”

Take Advantage of Similarities

Form follows function in browser software, spreadsheet software, drawing soft-
ware, photo-editing software, and so on. Because it’s a general principle, when we
learn an application from one software maker, we learn the core operations for
that task as well as the handy features and annoying quirks of that vendors prod-
uct. Then when we use software from a different vendor, we should look for and
expect to recognize the basic operations. The features and quirks may or may not
be present. The basic operations will have a different look and feel, but they will
still be there and work roughly the same way.

The form follows function principle is important to our everyday use of comput-
ers for three reasons:

> When a new version of familiar software is released, we should expect
to learn it very quickly because it shares the core functions and many of
the features and quirks of the earlier version.

47

48

Chapter 2

fittp

What the Digerati Know

> When we must perform a familiar task using unfamiliar software, we
should expect to use its basic features immediately because we’re
already familiar and experienced with them.

> When we are frustrated with one vendors software, we should try
anothers. Because of our experience with the first system, we will learn
the new system quickly. (And “voting” by purchasing better software
helps to improve overall software quality)

In summary, because the function determines how a system must work, different
software implementations for a task must share basic characteristicg; You don't
need to feel tied to a particular software system that you learned years ago. You
should experiment with new systems because you already know the basic func-
tional behavior of the program.

Mixed Messages. Software is notorious for confusing error messages. It's a dif-
ficult problem to fix: Finding errors is easy, but diagnosing the cause is difficult. And
programmers explain errors in programming jargon. The result is an incomprehensi-
ble error message. But, don't ignore it entirely; a hint of the cause may be buried in
the message. For example, this error message

3 1

The value to be entered must be a whole
number greater than or equal to
~9.9999999999999E +307.

resulted from typing a letter rather than a number. Why doesn’t it say, “Enter a num-
ber!”? In fact, it does, but in a very complicated way. The conclusion: Spend a
moment trying to understand the error message; a useful hint may be hidden there.

| Searching Text Using Find

The principle that form follows function has another advantage: It lets us learn
how certain computer operations work without referring to any specific software
system. Of course, we must focus only on the basic processing behavior rather than
on the “bells and whistles” of the GUI, but learning in this way lets us apply our
knowledge to any vendor’s software. We illustrate this idea with text searching.

Many applications let us search text. Text searching, often called Find, is used by
word processors, browsers (to look through the text of the current page), email
readers, operating systems, and so on. Find is typically available under the Edit
menu, because locating text is the first step in editing it. In cases where editing
doesn't make sense—for example, when looking through a file structure in an
operating system—Find may be listed under the File menu or as a “top-level”
application. The shortcut for Find—CtriHF) for Windows and for Mac OS
X—is standard in most applications.

Searching Text Using Find

Things to be searched are called tokens. Most often, tokens are simply the letters,
numbers, and special symbols like @ and & from the keyboard, which are also
called characters. However, sometimes we search for composite items, such as
dates that we want to treat as a whole. In such cases, the date is the token, not its
letters and digits. For the purposes of searching, tokens form a sequence, called
the search text, and the tokens to be found are called the search string. One
property of the search string is that it can contain any tokens that may be in the
text. In other words, if the text contains unprintable characters like tabs, the
search string is allowed to contain those characters.

How to Search =~

To illustrate searching, suppose the search string is content and the text is a

3

sentence from Martin Luther King’s “I Have a Dream” speech:

I have a dream that my four little children will one day live
in a nation where they will not be judged by the color of their
skin, but by the content of their character.

Searching begins at the beginning or at the current cursor position. Although
computers use many clever ways to search text, the easiest one to understand is to
think of “sliding” the search string along the text. At each position, compare to see
if there is a token match. This simply means looking at corresponding token pairs
to see if they are the same:

I have a dream ...

content

(Notice that spaces are characters too.) If there is a match, then the process stops
and you see the found instance. But if there is no match, slide the search string
along and repeat:

... by the content of ...
AAMAL
YYYYYYY

... cccccceccontent

If the search string is not found when the end of the text is reached, the search
stops and is unsuccessful. (Search facilities typically give you the option to con-
tinue searching from the beginning of the text if the search did not start there.)
The search ends where it began when the search string is not found.

Search Complications

Character searching is easy, but to be completely successful, you should be opera-
tionally attuned, as explained in Chapter 1. There are four things to keep in mind
when you are searching; case sensitivity, hidden text, substrings, and multiword
strings.

49

50

Chapter 2

SCENE 11 Capulet’s orchard.

What the Digerati Know

Case Sensitivity. One complication is that the characters stored in a com-
puter are case sensitive, meaning that the uppercase letters, such as R, and lower-
case letters, such as r, are considered different. So a match occurs only when the
letters and the case are identical. A case-sensitive search for unalienable
rights fails on Jefferson’s most famous sentence from the Declaration of
Independence:

We hold these truths to be self-evident, that all men are cre-
ated equal, that they are endowed by their Creator with certain
unalienable Rights, that among these are Life, Liberty and the
pursuit of Happiness.

To find unalienable rights in a text that uses the original capitalizétion, we
would have to ignore the case. Search tools are case sensitive if case is important
to the application. For example, word processors are usually case sensitive, but
operating systems are not. If the search has case-sensitive capabilities, the user has
the option to ignore them.

Hidden Text. Characters are stored in the computer as one continuous
sequence. There are two types of characters: keyboard characters that we type and
formatting information added by the software application using tags. Because
every system uses a different method for the formatting information and because
it is usually not important to the search anyhow, we will show the formatting
information using our own invented tags.

Tags are abbreviations in paired angle brackets, such as <1tal>, that describe
additional information about the characters (in this case that they should be in ital-
ics). Tags generally come in pairs so that they can enclose text like parentheses.
The second of the pair is the same as the first, except with a slash (/) or backslash
(\) in it. (Tags are used often in our Fluency study, so backslash (\) is used here for
the invented tags of our generic application to distinguish them from later uses in
HTML, the OED digitization, and XML, which use slash.) For example, to show
that the word “Enter” should appear in italics, a software application might repre-
sent it as <Ital>Enter<\Ital>. These formatting tags are invisible to the reader.

For example, the balcony scene from Romeo and Juliet appears in a book of

Enter Romeo.

Romeo. He jests at scars that never felt a wound.

[Juliet appears above at a window.
But, soft ! what light through yonder window breaks?
It is the east, and Juliet is the sun.

Shakespeare’s plays as:

But, this scene might be stored in the computer as follows:

Searching Text Using Find

SCENE-II.-—<Ital>Capulet's-orchard.<\Ital>.J.J<Center><Ital>Ent
er<\Ital>Romeo.<\Center>J.I<Ital>Romeo.<\Ital>—He+jests-at+sca
rs-that-never-: felt-a-wound.J<Right>[<Ital>Juliet-appears-above:
at-a-window.<\Ital><\Right>.But, -+ soft-!-what-light-through:yon
der -window+breaks?+.JIt-is-the-east,-and-Juliet+is-the-sun.

The word processor’s tags surround the italic text (<Ital>, <\Ital>), the text to
be centered, (<Center>, <\Center>), and right-justified (<Right>, <\Right>).
The user typed the other characters and they are the ones we are interested in
now. These characters include the text we see as well as formattingsharacters we
can't see: spaces (), tabs (=), and new lines (). Because these characters con-
trol formatting and have no printable form, there is no standard for how they are
displayed; for example, the new line character is the paragraph symbol (1) in
some systems. Users can ask that all the characters they type be displayed:

SCENE-II.-—> Capulet's-:orchard..]

o
Enter:Romeo.
o
Romeo.—> He-jests-at-scars-that-never-felt-a-wound..
[Juliet-appears-above-at-a-window.
o

But,--soft-!-what-light-through-yonder-window-breaks?J
It-is-the-east,+and-Juliet-is-the-sun.d

Because the effects of the formatting are shown, it is easy to see where the non-
printed formatting characters are. During a search, the softwares formatting tags
are generally ignored, but all of the characters typed by the user are considered.
Some systems allow tags to be searched by giving you a way to search for format-
ted text such as italic.

Substrings. It gets more complicated when we think of search strings as hav-
ing a meaning more complex than tokens. For example, we often look for words,
although the tokens are characters. The problem is that the software may be
searching for token sequences, not the more complicated objects that we may
have in mind. So searches for the search string you in President John Kennedy’s
inaugural address turn up five hits:

And so, my fellow Americans: ask not what
your country can do for you—ask what you
can do for your country._ i

My fellow citizens of the world: ask not
what America will do for you, but what
together we can do for the freedom of man.

51

52

Chapter 2

fittze

What the Digerati Know

Of the five hits, only three are the actual word we’re looking for; the other two
hits contain the search string. To avoid finding your, we can search for -you-
because words in text are usually surrounded by spaces. However, that search dis-
covers no hits in this quote because you doesn't appear with spaces on both sides.
The five hits for you are followed by r, a dash, a new line, an r, and a comma,
respectively. The you at the end of the second line probably should have had a
space between it and the new line, but the typist left it out.

Because looking only for the word you and avoiding your means checking for all
of the possible starting and ending punctuation characters and blanks, it’s proba-
bly better to give up on finding the exact word matches and simply igngre the
cases where the search string is part of another word. If the search is part of a sys-
tem such as a word processor, where words are a basic element, the ability to
search for words is available. Such cases amount to changing the tokens from
characters to words.

Multiword Strings. A similar problem occurs with multiword search strings.
The words of a multiword string are separated by spaces, but if the number of
spaces in the search string is different from the number in the text being searched,
no match is found. For example, the search string

That's-one-small-step-for-man

Neil Armstrong’s words on first stepping on the moon, will not be found in the
quote

That's-one-small-step-for- -man, *one- giant-leap-for-mankind.

because there are two spaces between for and man in the text.

One Small Step. Itis a good idea to look for single words in your search instead
of longer phrases. For example, looking for leap or mankind might work because
they are probably not used again in the moon walk transcript.

In summary, searching is the process of locating a sequence of tokens, the search
string, in a longer sequence of tokens, the text. Character searches are usually lim-
ited to the characters typed, even though other characters may be present. Typed
characters can include nonprinting formatting characters such as new line charac-
ters. Searches look for token sequences and the tokens (for example, characters)
are often more basic than what we can build from them (for example, words). To
be successful, we must create search strings so that we find all the matches we're
interested in.

Editing Text Using Substitution

Search-and-replace, also known as substitution, is a combination of searching
and editing documents to make corrections. The string that replaces the search
string is called the replacement string. Although substitution can apply to a sin-

Editing Text Using Substitution 53

gle occurrence of the search string in the text if necessary, there is little advantage
to using a search-and-replace facility over simply searching and editing the single
occurrence directly. The real power of substitution comes from applying it to all
occurrences of the search string. For example, if you typed “west coast” in your
term paper but then realized that regions are usually capitalized, it is simple to
search for all occurrences of west coast and replace them with west Coast.

Because substitution is a powerful tool that we want to study closely, we will
express it in this book using a left-pointing arrow («) between the search string
and the replacement string. The capitalization example is shown as

west coast <« West Coast &

Pra

Such an expression can be read “west coast is replaced by West Coast” or
“West Coast substitutes for west coast.” Another example is

Norma Jeane Mortensen < Marilyn Monroe
describing her 1946 name change when she signed her first movie contract.

We emphasize that the arrow is only a notation that helps us discuss substitutions
in this book; it doesn’t appear within the application. When using an application,
a GUI is used to specify the replacement (see Figure 2.12). For example, the two
text fields of the GUI correspond to the information on each side of the arrow.
Find is the left side of the arrow and Replace is the right side. We don't type the
arrow in applications. It is only for our use here.

@O0 FindandReplace i
e { ¥iod DGR GO T o,

Find wha: [| 155)

Replace with: | 16

® Ereplace At (Replace) (CCancel) (Find Next) |

R

Figure 2.12 A Find and Replace GUI.

Unwanted Spaces

In the last section, we noted that multiple spaces separating words in a text string
complicates searching for multiword strings. Substitution can fix the “multiple
spaces in a document” problem: Simply collapse double spaces to single spaces.
That is, if the search string is « - and the replacement string is -, a search-and-
replace of the whole document results in all double spaces becoming single
spaces. Expressed using the arrow notation, the “two spaces are replaced by one
space” substitution is

e &— o

54

thicle 1 All human beings are born free and equal in dignity and rights. They are endowed with reason and

|
|

Chapter 2

What the Digerati Know

Changing from curly quotes, often called smart quotes, to straight quotes is easy
enough by writing

“ e m
" m
Can we change simple quotes to smart quotes? We can't write
woe

because that changes all of the simple quotes to opening smart quotes, including
the closing quotes. But we can use the context around the quotes: Qpening quotes
are preceded by a space, and after changing them, we replace the Temaining
quotes with close quotes. So we write

«

« N e .

" P

solving the problem.

Formatting Text

One situation where substitution is particularly handy is when text is imported
into a document from another source and the formatting becomes messed up. For
example, suppose you find the Articles from the UN’s Universal Declaration of
Human Rights on the Web:

conscience and should act towards one another in a spirit of brotherhood.

Article 2 Everyone is entitled to all the rights and freedoms set forth in this Declaration, without distinction of any
kind, such as race, color, sex, language, religion, political, or other opinion, national or social origin,
property, birth or other status.

Furthermore, no distinction shall be made on the basis of political, jurisdictional or international status of
the country or territory to which a person belongs, whether it be independent, trust, non-self-governing,
or under any other limitation of sovereignty. :

LArticl(-: 3 Everyone has the right to life, liberty and security of person.

But when you copy the first three articles and paste them into your document,
they come out looking like this:

Article 1 All human beings are born free and equal in dignity and

| rights. They are endowed with reason and

conscience and should act towards one another in a spirit
of brotherhood.

Article 2 Everyone is entitled to all the rights and freedoms set forth
in this Declaration, without distinction of any
kind, such as race, color, sex, language, religion, political
or other opinion, national or social origin,
property, birth or other status.

Editing Text Using Substitution

Furthermore, no distinction shall be made on the basis of
political, jurisdictional or international status of

the country or territory to which a person belongs, whether
it be independent, trust, non-self-governing,

or under any other limitation of sovereignty.

Article 3 Everyone has the right to life, liberty and security of person.

The formatting is a mess. Displaying the text with the formatting characters
reveals:

-------- Article-1.-All-human-beings-are-born free-and-equal-in-dignity-and- |
rights.-They-are-endowed-with-reason-and-.J |
-------- conscience-and-should-act-towards-one-another-in-a-spirit-.J i
of brotherhood.- i

|

-------- Article-2--Everyone-is-entitled-to-all-the-rights-and-freedoms-set-forth.J
-in-this-Declaration,-without-distinction-of-any.J

-------- kind,-such-as-race,-color, sex, language, religion,-political .|
or-other-opinion,-national-or-social-origin, .

-------- property,-birth-or-other-status.- -

o

-------- Furthermore,-no-distinction-shall-be-made-on-the-basis-of-J :
political, jurisdictional-or-international-status-of-.J '
-------- the-country-or-territory-to-which-a-person-belongs, whether- .1 '
it-be-independent,-trust, non-self-governing, -

-------- or-under-any-other-limitation-of-sovereignty...|

-------- Article-3.-Everyone has-the-right-to-life, liberty-and-security-of person.- i

We see that extra leading spaces and new lines have been inserted when we
imported the text into the document.

Clearly, removing the groups of eight spaces at the beginning of lines is simple: we
replace them with nothing. When writing the substitution expression, we express
“nothing” with the Greek letter epsilon, which is called the empty string; that is,
the string with no letters. (Notice that epsilon is used only for writing out substi-
tution expressions for ourselves. In the find-and-replace facility of an application,
we simply leave the replacement string empty.)

Removing these leading spaces is easy because they appear only at the beginning
of the lines. Correcting the new line characters is more difficult.

We want to get rid of the new line characters that have been inserted within a
paragraph but we want to keep the double new lines that separate the paragraphs.
But getting rid of the single new line

Jd e« &

will get rid of all the new lines! How can we keep the double new lines but
remove the singles?

55

56 Chapter 2 What the Digerati Know

The Placeholder Technique

An easy strategy, called the placeholder technique, solves our problem. It begins
by substituting a placeholder character for the strings we want to keep; that is, the
new line pairs in the example. We pick # as the placeholder because it doesn't
appear anywhere else in the document, but any unused character or character
string will work. The substitution expression is

dd « #

Our text without the leading blanks and double new lines now looks like this:
e]

Article-1.-All human-beings-are-born-free-and-equal-in-dignity-and- 1
rights.-They-are-endowed-with-reason-and .
conscience-and-should-act-towards-one-another-in-a-spirit-.|

of brotherhood #Article-2--Everyone-is-entitled-to-all- the-rights-and.freedoms-set-forth-.J
in-this-Declaration, without-distinction-of-any.!
kind,-such-as-race,-color, sex,-language, religion, political .

or-other-opinion, national-or-social-origin, -
property,-birth-or-other-status.#Furthermore,-no-distinction-shall-be-made-on-the-basis-of-.
political,-jurisdictional-or-international-status-of..J
the-country-or-territory-to-which-a-person-belongs, whether-.!
it-be-independent,-trust,-non-self-governing, .}
or-under-any-other-limitation-of sovereignty #Article-3--Everyone-has-the-rightto life, liberty-and-security-of-person.

The new lines that remain are the ones to be removed, so we need to replace them
with nothing

Jd « €

The resulting text has no new line characters left:

Article-1--All-human beings-are-born-free-and-equal-in-dignity-and-rights.- They-are-endowed-
with reason-and-conscience-and-should-act-towards-one-another-in-a-spirit-of-brotherhood.#
Article-2--Everyone-is-entitled-to-all-the rights-and-freedoms-set-forth-in-this-Declaration,-
without.distinction-of-any-kind, -such-as race,-color, sex,-language, religion, -political-or-
other-opinion,-national-or-social-origin,-property, birth-or-other-status #Furthermore, no-
distinction-shall-be-made-on-thebasis-of political, jurisdictional -or-international-status-of-the-
country-or-territory-to-which-a-person-belongs, whether:-it-be-independent,-trust,-non-self-
governing,-or-under-any-other-limitation-of-sovereignty #Article-3-Everyone-has.the right-to-
life, liberty-and-security-of-person.

Finally, replace the placeholder with the desired character string
o« Jdd

which gives us

Article-1.-All human-beings-are-born-free-and-equal-in-dignity-and-ights.- They-are-endowed
with-reason-and-conscience-and-should-act-towards-one-another-in-a-spirit-of-brotherhood.

Article-2--Everyone-is-entitled-to-all-the rights-and.freedoms-set-forth-in-this-Declaration,
without-distinction-of-any-kind,-such-as race,-color, sex, language, religion,-political-or-
other-opinion,-national-or-social-origin, property,-birth-or-other-status.

Technology: Take It Personally 57

Furthermore, -no-distinction-shall-be-made-on-the-basis-of-political, -jurisdictional-or-
international status-of-the-country-or-territory-to-which-a-person-belongs, whether-it-be-
independent, trust,-non-self-governing,-or-under-any-other-limitation-of-sovereignty.

Article-3--Everyone has-theright-to-life,-liberty-and-security-of-person.

Except for the bold font for the Article titles and numbers, the resulting file looks
like the original document showing the double new lines as appropriate. The final
replacements:

Article 1 ¢« Article 1 -~

'

Article 2 <« Article 2
Article 3 « Article 3
complete the task. You may also change the titles to bold directly by editing.

To summarize, the placeholder technique is used to remove short search strings
that are part of longer strings that we want to keep. If we were to remove the short
strings directly, we would trash the longer strings. The idea is to convert the longer
strings into the placeholder temporarily. Of course, a single placeholder character
can replace the long strings because all we're keeping track of is the position of the
longer string. With the longer strings replaced by the placeholder, it is safe to
remove the short strings. Once they are gone, the longer string can replace the
placeholder. The following substitution expressions summarize the idea:

LongStringsContainingInstance(s)OfAShortString < Placeholder
ShortString « €
Placeholder « LongStringsContainingInstance(s) OfAShortString

ji Technology: Take It Personally

We have revealed some secrets known to expert computer users. Now, it’s not
miraculous that the digerati appear to know how to use software they have never
seen before. They expect consistent interfaces and intuitive icons that allow them
to apply their previously learned knowledge. Now we can exploit that strategy, too.

The important thing about our discussion of learning to use technology is how we
figured it all out. We thought about technology as it relates to us. We thought,
“We need to learn how to use this technology,” so we asked, “How did the inven-
tors of this technology expect us to learn it?” We thought about tool inventors
who want people to use their inventions. Inventors can write manuals and we can
read them, but they will have more users and users will have more success if the
inventions are intuitive, allowing people to “brain out” how to use them. We con-
cluded that we should expect intuitive interfaces. This approach of thinking about
technology as it relates to us personally and analyzing the situation in that context
is essential for any technology use.

58 Chapter 2 What the Digerati Know

4
CVcheck LIST) There is a series of similar questions that we should ask ourselves when we
need to use new technology, especially software:

¥ What do I have to learn about this software to do my task?

& What does the designer of this software expect me to know?

@ What does the designer expect me to do?

& What metaphor is the software showing me?

& What additional information does the software need to do its iask?

& Have I seen these operations in other software?

y 4
(Vcheck LISﬂ When we think about information technology in terms of our personal or
workplace needs, we may also ask questions such as:

@ Is there information technology that I am not now using that could help me
with my task?

& Am I more or less productive using this technological solution for my task?
& Can I customize the technology I'm using to make myself more productive?
& Have I assessed my uses of information technology recently?
These and similar questions can help you use technology more effectively.
Information technology, as a means rather than an end, should be continually

assessed to ensure that it is fulfilling your needs as the technology changes and
evolves.

m Clearing Italics. Suppose in your term paper you used italics
really often to emphasize your meaning, but now you find that your grumpy profes-

sor hates this use of italics. Describe how to remove all italics in the term paper.

Answer: Although your word processor might allow you to search for italicized
words, changing each occurrence is too slow. Instead, use the idea of toggling:
Select all of the text of your term paper, make it all italic, and then make it all italic
again—that is, toggle it. When you change the whole paper to italics, the positions
of all of the previous italics are lost; when the whole document is italicized again—
that is, changed back—all of the italics will be removed.

SUMMARY

This chapter began by exploring how we learn to use technology. We concluded
that:

> People are either taught technology or they figure it out on their own.

> We can figure out software because designers use consistent interfaces,
suggestive metaphors, and standard functionality.

Review Questions 59

> We apply our previous experience to learn new applications.

Features of the iTunes GUI are familiar, even if we have never seen it
before.

In computer software, if we make a mistake, nothing breaks.

We should explore a new application by “clicking around” and “blazing
away.”

We should watch other users and ask questions.

Form follows function. -

Searching and substituting, which are available with maﬁy applications,
work consistently, demonstrating the idea behind form follows function.

We should think personally about technology and apply general princi-
ples and ideas to become more expert users.

Cozal Review Questions

Multiple Choice

1. Experienced computer users are known as

a.
b.
c.
d.

digerati
literati
mazzerati
culturati

2. What is a GUI?

a.
b.
C.
d.

graphical update identification
general user identification
graphical user interface
general update interface

3. Software designers use analogies to help a user understand software because

doing so

a. makes it easier for the user to learn and use the software
b. makes the software more popular

c. isrequired by law

d. more than one of the above

4. An example of a metaphor is

2

b.
c.
d.

The player played with the heart of a lion.

The silence was deafening,

The computer played chess as well as the best humans.
all of the above

60 Chapter 2 What the Digerati Know

5. Which of the following is not a common computer metaphor?

a. buttons

b. door handles
c. menus

d. sliders

6. A slider control is used for selecting
a. one of several options
b. one or more of several options
¢. within a continuous range of options
d. one or more items from a list >

7. In Windows, closing a subwindow
a. is not allowed
b. leaves the application running
c. quits the application
d. automatically saves your file

8. A dialog will open when a menu has a(n) in it.
a. shortcut
b. ellipsis

¢. check mark
d. separator

9. Menu options that are unavailable
a. have a check mark by them

b. are gray
c. have a line through them
d. are hidden

10. Which of the following is not an instance?
a. animage
b. asong file
c. aword processing document
d. amenu

11. The Greek letter epsilon € can be used to represent “nothing.” In a find and
replace, you would have to use

a —
b. null

c. nothing (empty)
d <

Short Answer

1. is the word used to describe people who understand digital
technology.

2. GUI stands for .
3. Software designers help users understand their software through the use of

6. Open, New, Close, and Save can usually be found in the

Review Questions 61

A(n) is a figure of speech where one object is compared to another.

are used to indicate there is information available that is usually
hidden.

menu.

7. To avoid cluttering the screen with commands, software designers put most
of their commands in
8. Undo, Cut, Copy, and Paste can usually be found in the menu.
9. The online manual can usually be found in the menu.
10. Menus that can show up anywhere on the screen are called & .
11. Another name for a pull-down menu is a
12. When the computer needs more information from the user before it com-
pletes an action, it gets the information via a
13. Menus that are unavailable are generally colored
14. Menu options that will open a dialog display can be identified because they
contain a(n)
15. The clover-shaped shortcut key on a Macintosh is called the key.
16. Menus are grouped by similarity of operation and listed across the top of the
screen in the
Exercises

1. Explain the desktop metaphor.

Discuss the advantages of a consistent interface. Look at it from the con-
sumers view and from the developer’s view.

List the technology tools you can typically use without reading the owners
manual.

4. What are the two keys to success with information technology?

5. Match the buttons on the two CD interfaces in Figures 2.1 and 2.2. Label

the commands. Speculate on how the features found on only one are imple-
mented on the other.

What happens when we apply the ** « * replacement to *****? Try this
out with your text editor. How many times did it find and replace? How
many were left? Explain how this process worked.

. Using Lincolns Gettysburg Address, what appears more often, “that” or

“here™

. How many times does the word “the” appear in Lincoln’s Gettysburg

Address? How many times do the letters “the” appear together in it?

