
(c) 2011-2012 Lawrence Snyder
1

Lab Exercise 4: Drawing and Redrawing

Goal: To write a Processing program yourself – the steps are given – and to practice
using variables and assignment statements. These are the primitive parts of most
programming, meaning that you will use them daily in this class. (You’ll use the concepts
everywhere, too!)

All you need to do is follow the steps, doing what they say.

Step 1: Open the Processing development page, and set the size to
200x200. Draw a 50x50 rectangle with upper left corner at position 20,
20. Run it. Save it. This is what you should have so far.

Patter: Your program has two statements, and is a static program that
draws a single figure. Next we turn it into an active program, because
we want it to do something.

Step 2: Revise your program to be active by adding the void setup() { … } and
void draw() { … } blocks. The setup block should contain the size() statement as
its first statement and the draw block should contain the rect() statement. Run it,
getting the same result. Save it.

Patter: Remember that size is ALWAYS the first thing in setup(). Always. So when
we add more stuff to setup() below, don’t put it in front of size!

Your program will now have six lines (unless you’ve added blanks), because we
generally write methods like setup on two lines: the first line is everything up to and
including the open brace ({) for the body, and the matching closing body brace (}) goes
on its own line, as in

void setup() {
}

This is only custom, but you MUST follow it in CSE120. Computers are completely
content to have the text all packed together, leaving spaces only between words, but
people hate it. Placing the braces in these standard positions lets people see where the
code begins and ends. Hence, the custom.

Notice that when your cursor is near a parenthesis or brace, Processing highlights the
other matching one.

Step 3: Dump the line around the box using the noStroke() operation. Set a nice gray
background color, say, 64, 64, 64. Of course, both of these operations go into setup().
Run it. Save it. This is what you should have so far:

CSE120: Computer Science: Principles

(c) 2011-2012 Lawrence Snyder
2

Patter: Recall from the discussion of color, that black, gray and white
are produced by setting the RGB values to be the same. So, to get our
gray background we can write background(64, 64, 64), but if we
don’t specify all three, as in background(64), the language assumes
we mean the same value for all three.

Step 4: Declare four integer variables at the start of your program, that is, before
setup(). Two are x and y, which should both be initialized to 20; two are over and
down, which should be initialized to 50. When we say “initialized to” we mean, setting
them to a value in the declaration, as in

int x=20;

Replace the constants in your rectangle specification with these four variables: x and y
will be the corner position, over will be the width and down will be the height of the
rectangle. Run it. Save it. There should be no change from step 3.

Patter: The point of changing the constants of the rectangle specification to variables is
so that we can make them vary. By varying the position of the rectangle, we can make it
appear to move, which is what we start next.

Step 5: To refresh the screen – that is, draw a new version of the design repeatedly –
place a frameRate(30) command in the setup() block of the program. This tells
how fast the draw() block should be run, i.e. 30 times per second. Then, as the
rectangle is repositioned, it will be displayed. (A frame rate of 30 is fast enough to fool
our eyes into seeing motion from a sequence of stills; it is standard.)

Continuing, we next think about which position variable to increase to make the box look
like it is moving DOWN the window: x or y? Obviously, y because larger values are
further down in the window. So, add a statement to “increment y by 2” after drawing the
box. (“Increment” means make it larger, of course, which is adding.) Run it. Save it. This
is what you should have now:

Patter: Is that what you want? No. You want to see a square
falling. What’s happening? (I have purposely introduced an error
into this lab, because programming involves a lot of trying to do
something and not having it quite work right; this is an example.)
The kind of debugging we’re about to do is typical, so think it
through with me.

Since everything has been going along fine so far, the problem must be with our last
change. Is the problem with the frameRate() or the increment statement? Both or
neither? Pretty obviously, the frameRate() is OK, because the image does keep changing
and that is what it is supposed to do. Is it the increment statement? Pretty obviously, it’s

(c) 2011-2012 Lawrence Snyder
3

OK, too, because the box is moving down the window. It just doesn’t look much like a
square. And that’s odd, because from our instruction

rect(x, y, over, down);

and the fact that over and down have been initialized to the same value, 50, it should be a
square. What if we were drawing a square on top of the old square(s)? What would that
look like? Like what we just produced! So, we have a theory of what’s wrong. We are
overwriting the old square. How do we get a new square each time? We need to erase the
old one, and the way to do that is to specify the background
again. Ah, ha! We only specify the background once. So, let’s
try moving the background command into the draw() block,
at its start. And when we do that, this is what we get:

Step 6: The amount that we incremented y by determines the
speed of the drop, of course, because we move 2 pixels with
each frame (recall there are 30 per second), ours moves down at
60 pixels per second. Play with the increment amount. It’s a
good time to try alternatives.

Patter: It is possible to slow this way down by reducing the frameRate(), or using
fractional increments, like 0.5. But, to do that, you need to declare y to be a float
because 0.5 is a decimal number. Check it out!

Step 7: Next we make the square turn green as it drops. (No one knows why.) Recall
that we change color by setting the fill statement. The default is fill(255,255,255),
which obviously fills with white. To get it to progressively turn green, we need to move
progressively to 0, 255, 0. We do that be subtracting from the red
(the first 255) and blue (the last 255) values. So, declare a new
integer variable, change and initialize it to 0. Add a fill statement
before drawing the rectangle, and for the first and last arguments
subtract change. Finally, after the increment of y, increment
change by 2, too. When you’re finished, your program will look like
this:

Patter: Where does the box go when it disappears off of the bottom of the screen? It
just keeps going. The coordinates extend (effectively) to infinity, so as long as the
program keeps running, the square drops. Would it be possible for the square to reverse?
That is, start off the screen and move up? Sure. It’s a computer, anything is possible.

Step 8: Modify your program so that the square starts below the window and moves
up, turning green as it goes. As a hint, keep in mind that the rectangle was set in its
original position by how we initialized the x and y variables. Obviously, a different
initialization is needed. And keep in mind that rather than referring to the window height,
for example, as 200, refer to it as height. That way things will be more flexible. Your
result should look like this:

(c) 2011-2012 Lawrence Snyder
4

Wrap	 Up	
You have written an entire Processing program. Although it was a
simple program for you to write, the computer needs millions of
instructions to perform the operations that you specify. So, it may
look simple, but you’ve already commanded the computer to do a lot
of work.

To	 Turn	 In	
Rename your .pde file with your name and turn it in to the class drop box.

