Announcements...

Please fill out the “pre-course” survey if you
have not yet done so
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We’ re underway ...

Following Lightbot

Lawrence Snyder
University of Washington, Seattle




As Experienced Lightbot Hackers ...

What are you doing in Lightbot?
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Commanding a robot through a “blocks world”
Programming is commanding an agent
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Agent, Instructions, Intent

When you are commanding (programming),
you direct an agent (by instructions) to a goal

The agent is usually a computer, but it can be a
person, or other device (animated robot?)

The agent follows the commands a/k/a
instructions, flawlessly, and mindlessly, doing
only what it is asked

The program implements human intent — you are
trying to get the robot to the Blue Tile goal —it's
the point of your instructions
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Sequencing

Instructions are given in sequence, i.e. in order
They are followed in sequence, i.e. in order

YOU give the EEEEEEERE]
instructions ... it's ggg
called programming aaas

The AGENT follows

them ... it's called

the program
A program counter marks the agent’s place
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Order of Events

The instructions are programmed ahead of time
They are executed later, w/o programmer’s

intervention (RRDEPREMWD!
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Point of View

Programming REQUIRES you to take the
agent’s point of view ... it's a essential idea
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Point of View

Programming REQUIRES you to take the
agent’s point of view ... it's a essential idea

)
7

\VAVA
Vi
W

"‘

From this cell, a turn is required ... Ror L?
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Limited Instruction ‘Repertoire’

The number and type of instructions is always
limited — you need a solution using only them
Instructions ...

The agent can do only certain things ... nothing else
The Lightbot’s instructions —2 (RS REREMD!

Thereisno JUMP_3 gggg
i , DL
... Lightbot's even tougher than aees

normal programming b/c in some LB games, some
instructions are unavailable ... but it's a game!

Executed the instructions one-at-a-time
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An Amazing Fact ...

The limited repertoire is a fact of all
computing, but how limited?

A computer’s circuitry (the hardware) has
very few instructions ... usually about 100,
and many are just different versions of the
same idea:add 2 bytes,add 2 words,
add 2 decimal numbers, etc.
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If that were the end of the story

Programming would be amazingly tedious if
all programming had to use only the basic
instructions — I mean REALLY REALLY tedious

No one would be a programmer no matter how
much it paid
Apps as we know them would not exist

BTW programming was like this in the beginning
This is why they are called the “"bad old days”

Luckily, there are functions
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Functions Package Computation

We make new instructions using functions!
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F1() packages actions: E.G. “process a riser”
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Functions Package Computation
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F1(), A Process a Riser Instruction

We have a new instruction: Process_A_Riser
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Call the function to use the new instruction
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It's BIG!

Functions may seem “obvious” but they are a
HUGE idea ...

They allow us to solve problems by first
creating some useful instructions, and then
using them to get the agent to do our work
Sweet!

... Let's see how this works
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The Function Becomes A Concept

Because Fa() “processes ariser,” we think of
the programming task as

Process a riser( ) F1()

Move to next riser

Process a riser( ) F1() ; 2= L 1 1 1
Move to next riser 38 = e

Process a riser( ) F1() g Sl |
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The Function Becomes A Concept

Because Fa() “processes ariser,” we think of
the programming task as

Process a riser( ) F1()
Move to next riser
Process a riser( ) F1()
Move to next riser
Process a riser( ) F1()

With F1(), we simp\lify the programming to
just 5 conceptual steps rather than 21

1/7/12 © 2010 Larry Snyder, CSE 17



The Function Becomes A Concept

Because Fa() “processes ariser,” we think of
the programming task as

Process a riser( ) F1()
Move to next riser
Process a riser( ) F1()
Move to next riser
Process a riser( ) F1()

With F1(), we simp\lify the programming to
just 5 conceptual steps rather than 21
But, WAIT! What is "Move to next riser”?

It's a concept ... make it a function!

Move_to_next_riser ()
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The Function Becomes A Concept

Because Fa() “processes ariser,” we think of
the programming task

Process a riser( ) F1
Move to nextriser() F2
Process a riser( ) F1
Move to nextriser() F2
Process a riser( ) F1
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With Fa(), we simplify the programming to

just 5 conceptual steps rather than 21

But, WAIT! What is "Move to next riser”?
It's a concept ... make it a function!
Move_to_next_riser ()
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A Five Instruction Program
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Abstraction ...

Formulating blocks of computation as a
“concept” is functional abstraction [A better
definition in a moment]

What we did just now is important ...

1/7/12

We spotted a coherent (to us) part of the task
We solved it using a sequence of instructions

We put the solution into a function “package”, gave
it a name, “process ariser,” and thus created a new
thing, a concept, something we can talk about & use

Then we used it to solve something more
complicated ... and then we did it again!
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Collecting operations together and giving them
a name is functional abstraction

The operations perform a coherent activity or action
—they become a concept in our thinking

The operations accomplish a goal that is useful —
and typically — is needed over and over again

Functions implement functional abstraction: 3 parts
A name
A definition, frequently called a "body”
Parameters —stuff inside the parentheses, covered later
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People Abstract All The Time

Functional abstractions in which you are the
agent, but someone taught you:

Parallel parking

Backstroke in swimming
Functional abstractions you recognized and
in which you are the agent

Doing a load of laundry

Making your favorite {sandwich, pizza, cookies, ...}
Others?
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The Function Is Just The Packaging

Another way to use a function for the risers
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Summary From Lightbot 2.0

Programming is commanding an agent
Agent: usually a computer, person, or other device
Agent follows instructions, flawlessly & mindlessly

The program implements human intent
Instructions are given in sequence
... and executed in sequence

Limited repertoire, within ability, one-at-a-time

“Program counter” keeps track current instruction
Formulating computation as a “concept” is
functional abstraction
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