Announcements

 Please fill out the "pre-course" survey if you have not yet done so We're underway ...

Following Lightbot

Lawrence Snyder University of Washington, Seattle

As Experienced Lightbot Hackers ...

What are you doing in Lightbot?

- Commanding a robot through a "blocks world"
- Programming is commanding an agent

Agent, Instructions, Intent

- When you are commanding (programming), you direct an agent (by instructions) to a goal
 - The agent is usually a computer, but it can be a person, or other device (animated robot?)
 - The agent follows the commands a/k/a instructions, flawlessly, and mindlessly, doing only what it is asked
 - The program implements human intent you are trying to get the robot to the Blue Tile goal – it's the point of your instructions

Sequencing

- Instructions are given in sequence, i.e. in order
- They are *followed* in sequence, i.e. in order
 - YOU give the instructions ... it's called programming
 - The AGENT follows them ... it's called
 executing or running
 the program

A program counter marks the agent's place

Order of Events

The instructions are programmed ahead of time

- They are executed *lαter*, w/o programmer's

intervention

- Each instruction makes progress towards the goal
- The order must
 be right to
 achieve the goal

Point of View

Programming REQUIRES you to take the agent's point of view ... it's a essential idea

Point of View

Programming REQUIRES you to take the agent's point of view ... it's a essential idea

From this cell, a turn is required ... R or L?

Limited Instruction 'Repertoire'

- The number and type of instructions is always limited – you need a solution using only them
 - Instructions ...
 - The agent can do only certain things ... nothing else
 - The Lightbot's instructions =

There is no JUMP_3

... Lightbot's even tougher than

Executed the instructions one-at-a-time

An Amazing Fact ...

- The limited repertoire is a fact of αll computing, but how limited?
- A computer's circuitry (the hardware) has very few instructions ... usually about 100, and many are just different versions of the same idea: add_2_bytes, add_2_words, add_2_decimal_numbers, etc.

In theory, a computer with only 6 instructions could compute all known computations

If that were the end of the story

- Programming would be amazingly tedious if all programming had to use only the basic instructions – I mean REALLY REALLY tedious
 - No one would be a programmer no matter how much it paid
 - Apps as we know them would not exist
 - BTW programming was like this in the beginning
 - This is why they are called the "bad old days"
- Luckily, there are functions

Functions Package Computation

We make new instructions using functions!

F1() packages actions: E.G. "process a riser"

Functions Package Computation

Just Do It!

F1(), A Process a Riser Instruction

We have a new instruction: Process_A_Riser

Call the function to use the new instruction

It's BIG!

- Functions may seem "obvious" but they are a HUGE idea ...
- They allow us to solve problems by first creating some useful instructions, and then using them to get the agent to do our work
- Sweet!

... Let's see how this works

 Because F1() "processes a riser," we think of the programming task as

Process a riser()	F1()
Move to next riser Process a riser()	F1()
Move to next riser	E1()
Process a riser()	F1()

Because F1() "processes a riser," we think of the programming task as

Process a riser() Move to next riser	F1()
Process a riser()	F1()
Move to next riser Process a riser()	F1()

 With F1(), we simplify the programming to just 5 conceptual steps rather than 21

Because F1() "processes a riser," we think of the programming task as

Process a riser()	F1()
Move to next riser Process a riser()	F1()
Move to next riser Process a riser()	F1()

- With F1(), we simplify the programming to just 5 conceptual steps rather than 21
- But, WAIT! What is "Move to next riser"?
 - It's a concept ... make it a function!
 - Move_to_ next_ riser ()

Because F1() "processes a riser," we think of the programming task Show that text

Process a riser() F1()

Move to next riser() F2()

Process a riser() F1()

Move to next riser() F2()

Process a riser() F1()

how that text is a function with parens

- With F1(), we simplify the programming to just 5 conceptual steps rather than 21
- But, WAIT! What is "Move to next riser"?
 - It's a concept ... make it a function!
 - Move_to_ next_ riser ()

A Five Instruction Program

Abstraction ...

- Formulating blocks of computation as a "concept" is functional abstraction [A better definition in a moment]
- What we did just now is important ...
 - We spotted a coherent (to us) part of the task
 - We solved it using a sequence of instructions
 - We put the solution into a function "package", gave it a name, "process a riser," and thus created a new thing, a concept, something we can talk about & use
 - Then we used it to solve something more complicated ... and then we did it again!

Abstracting

- Collecting operations together and giving them a name is functional abstraction
 - The operations perform a coherent activity or action
 they become a concept in our thinking
 - The operations accomplish a goal that is useful and typically – is needed over and over again
 - Functions implement functional abstraction: 3 parts
 - A name
 - A definition, frequently called a "body"
 - Parameters –stuff inside the parentheses, covered later

People Abstract All The Time

- Functional abstractions in which you are the agent, but someone taught you:
 - Parallel parking
 - Backstroke in swimming
- Functional abstractions you recognized and in which you are the agent
 - Doing a load of laundry
 - Making your favorite {sandwich, pizza, cookies, ...}
- Others?

Keep Using Abstraction ...

If M.C. Escher handed us a problem ... what would we do?

It only simplifies our **thinking**; the bot still does all the work

The Function Is Just The Packaging

Another way to use a function for the risers

Summary From Lightbot 2.0

- Programming is commanding an agent
 - Agent: usually a computer, person, or other device
 - Agent follows instructions, flawlessly & mindlessly
 - The program implements human intent
- Instructions are given in sequence
- ... and executed in sequence
 - Limited repertoire, within ability, one-at-a-time
 - "Program counter" keeps track current instruction
- Formulating computation as a "concept" is
 functional abstraction

We'll See It Again & Again