What's In It For Me?

More On Processing ...

Lawrence Snyder
University of Washington, Seattle

Programming, So Far ...

From the Lightbot 2.0, we've learned ...

Programming is giving instructions to an agent so
ne, she, it can perform the operations themselves

nstructions are given in sequence
nstructions are followed in sequence
nstructions come from a limited repertoire

Programs mix instructions and function calls

Programs are written first, and run later (without
intervention of the programmer)

The last point means, programming = planning

1/13/12 © 2010 Larry Snyder, CSE 2

Processing, So Far ...

We have seen that Processing is ...
A programming language that does graphics

That means, there are many functions for shapes
We give the positions of shapes in pixel units

To be successful, we must give
The window (a/k/a canvas) size, as in size(400,400);
The background color, as in background(o, 200, 0);
Correct punctuation, like matching parens, semicolons

The Processing IDE (interactive development
environment) is easy to use

1/13/12 © 2010 Larry Snyder, CSE 3

And, We've Modified Some Code

sketch_sep02b

An Angel

A Robot

We've also located the
Reference page, where
all known facts about

Processing are stored &
accessible to help us
create a program

1/13/12 © 2010 Larry Snyder, CSE 4

So, What Else?

There’s plenty to learn, but we only learn
what we need to know —it's a standard
computing idea:

Computing is ALL about getting the details right.

That's true for most things, of course, but it is
especially true when you’re programming computers.

Programmers don’t remember all the detail -
they either look it up, or they experiment to
figure it out ... you should, too.

Instead we focus on the “idea,” not specifics

1/13/12 © 2010 Larry Snyder, CSE 5

We introduce two important ideas ... you're
familiar with them both:

Variables

Functions

1/13/12 © 2010 Larry Snyder, CSE 6

Checking Out The References ...

Need an exp

anation? The

Shape

Structure PSha pe
|| (array access)
= (assign) s Phei
=dssldi) 2D Primitives
catch
class E?’;L
. (comma) ellinse()
// (comment) A .
{} (curly braces) *UEL(M'
qg.ayfij ‘ point()
*/ (doc comment) wuad()
. (dot) quad()
draw() rect()
exit() trianaglel
extends
false
Curves
bezier()
1/13/12 © 2010 Larry Snyder, CSE

Ref Page’s got it!

f\

Color

Setting
background()
fill()

noFill()
noStroke()
stroke()

Creating & Reading
alpha()
blendColor()

blue()

Looking At The Quad

Name

Examples

Description

Syntax

1/13/12

quad()

A quad is a quadrilateral, a four sided polygon. It is similar to a rectangle, but the angles
between its edges are not constrained to ninety degrees. The first pair of parameters (x1,y1)

sets the first vertex and the subsequent pairs should proceed clockwise or counter-clockwise
around the defined shape.

quad(xl, yl, x2, y2, x3, y3, x4, y4)

© 2010 Larry Snyder, CSE

So, We Try It Out

® OO sketch_jan03c | Processing 1.5.1

sketch_jan03c § -+
=ize(408, 400);
boackground(B, 288, 8);

quad(1@,18, 388,28, 358,358, 188,325);

1/13/12 © 2010 Larry Snyder, CSE 9

So, We Try It Out

® OO sketch_jan03c | Processing 1.5.1

sketch_jan03c

sketch_jan03c §

3i28(489, 498);
bOCkQPOUﬂd(B, 289, B);

quad(1@,18, 388,28, 358,358, 188,325);

1/13/12 © 2010 Larry Snyder, CSE 10

So, We Try It Out

® OO sketch_jan03c | Processing 1.5.1

sketch_jan03c

sketch_jan03c §

3i28(489, 498);
bOCkQPOUﬂd(B, 289, B);

quad(1@,18, 388,28, 358,358, 188,325);

1/13/12 © 2010 Larry Snyder, CSE 11

Recall setup() and draw()

The functions setup() and draw() allow the
Processing computations to be dynamic
Recall that they work as follows:

setup()

draw()

Make the Kite dynamic

1/13/12 © 2010 Larry Snyder, CSE 12

Dynamic Kite

. but it doesn’t move!

sketch_jan03c | Processing

sketch_janO3c §
vold setu P () {

size(408, 400);
background(B, 2688, 8);

void draw() E
fill{a,18a,8);
quad{2@6e,2a, 390,56, 266,398, 18,58);

1/13/12 © 2010 Larry Snyder, CSE 13

Introduce A Variable

Variables are a key computeridea

They look like “unknowns” in math, but they
are (really) very different ... more on that later
Variables must be declared, as in

inti=o; //declarei, aninteger, and set value

Once declared, a variable can be used as if it's a
number, like in pixel positions

1/13/12 © 2010 Larry Snyder, CSE 14

Using Variables w/ setup() draw()

Here’'s a strategy to use a variableii ...

1/13/12

int1=0;
setup() {

}

draw() {

=1+ 1;

© 2010 Larry Snyder, CSE

15

Using Variables w/ setup() & draw()

Here's a strategy to a variablei ...

int1=0;
setup() {
Valueofi:0 1 2 3 4 5 6 7 ...
} Times around draw “loop™ 0 1 2 3 4 5 6 7 ...
draw() {
=1+ 1;
}

1/13/12 © 2010 Larry Snyder, CSE

16

Using Variables w/ setup() & draw()

Here's a strategy to a variablei ...

int1=0;
setup() {
Valueofi:0 1 2 3 4 5 6 7 ...
} Times around draw “loop™ 0 1 2 3 4 5 6 7 ...
draw() {
=1+ 1;
}

1/13/12 © 2010 Larry Snyder, CSE

17

Using Variables w/ setup() & draw()

Here's a strategy to a variablei ...

int1=0;
setup() {
Valueofi:0 1 2 3 4 5 6 7 ...
} Times around draw “loop™ 0 1 2 3 4 5 6 7 ...
draw() {
=1+ 1;
}

JustDolt

1/13/12 © 2010 Larry Snyder, CSE 18

Kite Moves Right

Each redrawing positions kite one more pixel R

kiteComplete kiteComplete

1/13/12 © 2010 Larry Snyder, CSE

Recall The “Logo Lab”

Yesterday in lab you drew UW logos in
Processing

These columns were created as

follows:

1) Draw the first column

2) Copy and paste 3 more
instances into the program

3) Change the x-coordinate of
each copy by an amount (100,
200, 300) to draw them in
different (and proper) positions

| |
+100 +200 +300

1/13/12 © 2010 Larry Snyder, CSE 20

The Program Code

uwlogoComplete §

L 1{255);
(2@, 2508, 6@, 208);
(38, 278, 48, 18);
(38, 275, 18, 18);
, (7@, 275, 18, 18);
(35, 288, 308, 68);

+100 +200 +3OO rect(28+188, 258, 68, 28);

ct(30+188, 278, 48, 18);
-(38+188, 275, 18, 18);
‘ (78+188, 275, 18, 18);
(35+18@, 288, 38, 60);

(28+2688, 258, 68, 28);
(38+288, 278, 48, 18);
-(38+2688, 275, 18, 18);
L (78+288, 275, 18, 18);
(35+208, 2868, 38, 68);

ot (20+388, 258, 68, 28);
ot (30+3088, 278, 48, 18);

-(38+388, 275, 18, 18);

‘ (78+308, 275, 18, 18);
(35+3688, 288, 38, 60);

1/13/12 © 2010 Larry Snyder, CSE 21

The Program Code

A columnis a “concept”

uwlogoComplete §

L 1{255);
(2@, 2508, 6@, 208);
(38, 278, 48, 18);
(38, 275, 18, 18);
. (7@, 275, 18, 18);
(35, 288, 308, 68);

+O +100 +200 +3OO rect (28+188, 258, 68, 28);

ct(30+188, 278, 48, 18);
-(38+188, 275, 18, 18);

Abstract! Think “function!” -t o w0, o;

(35+18@, 288, 38, 60);

(20+288, 258, 68, 28);

. rect (38+208, 278, 48, 18);
fill(255); Lipse(30+200, 275, 18, 10);
. | lipse(78+2088, 275, 18, 18);

draw_column(0); // Col 1 ~ect (354288, 200, 38, 60);

draw_column(100); // Col 2

28+388, 258, 68, 28);

draw_column(200); // Col 3 - Ewm, 270, 40, 1g§;
draw_column(300); // Col 4 | Lipse(30+300, 275, 18, 10);
— : | -(7B+388, 275, 18, 18);

(35+3688, 288, 38, 60);

1/13/12 © 2010 Larry Snyder, CSE 22

The draw_column() Function

Code that draws a column becomes
the function ... “"package” it (below)
and change the “hundreds” to a
variable, X

uwlogoComplete §

| 1{255);
=t (28, 258, 68, 208);

rv,_(35 268, 38, 68)
draw_column{ 8);
w=ct (20+1008, 2508, 68, 28

5, 18, 18);
@, 18);
+O +100 +200 +3OO d%wcﬂwm“%)
\--1(29+2aa 258, 68, 20
'd draw_column (int x) { ecTeoe -/‘%“1?)%y
{(2@+x, 258, 6@, 28); 200, 2Tpal0, 16):
’ ’ . ; *”§é+2aa 280, 35\\\7r,

(38+x, 278, 48, 18); .
lipse(38+x, 273, 18, 18); e
Lipse(7B+x, 273, 18, 18);
(35+x, 2868, 38, 68);

ref f35+389 2848, 38 69 -
} draw_ column(388)

1/13/12 © 2010 Larry Snyder, CSE 23

The draw_column() Function

Like Lightbot,
The function declaration defines the function
The function call runs the function
Both parts are needed

'd draw—_column (int x) { i 11(255);
ect (28+x, 258, 68, 28);

"(3B'E§é+§?aé?ga,lég};19). draw_co lumn{ 188);

linee(784%. 275, 18, 18): draw_co lumn{ 288);
nect (35+x, 2808, 30, 6@); draw_co lumn{ 388);

draw_columni 8);

Function Declaration 4 Function Calls

More on functions later ...

1/13/12 © 2010 Larry Snyder, CSE 24

The “idea” in this lecture is a variable

It's a name, like X or I or radius, that has a value
Variables must be declared —int and float are
two kinds of variables

The best, meaning the most powerful, partis
variables can be changed ... they vary!

We change them by giving them a new value

| =1+ 1 says, givelits old value plus 1

We use variables just like we'd use numbers,
say in pixel positions or function parameters

1/13/12 © 2010 Larry Snyder, CSE 25

