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Let’s Begin W/ Idea From Last Time

We saw how to change the color of the
square and its direction with a mouse click

Reca” e 0O demo
demo § .
x = B;
dir = 1;
ro= 255; b = 8; temp;

mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;
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This Shows Assignment At Work

Rule: Assignment always moves information

from right to left, as in

d mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;
b
dir = 0 —dir;

Rule: Always evaluate (compute) the right

side, then assign the result to the name on
the left side ... so, O-dir = dir; 1S SO WRONG
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Variables ...

Variables “contain” their values like a mailbox
contains a letter, and so when we change them
using assignment, we “push the old value out”
and replace it with a new value
“Contain their value™: grade_point: | 3.8

3.9
“Assign to change: grade_point = 3.9; " grade_point: A

“Variables have a data type”: .

red:| FF 00 |
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A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:| --- |r:|FF | b: 00
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A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:| FF |r:| FF | b:/ 00
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A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:) FF |r:{ 00 | b: 00
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A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed( ) {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:! FF [r: |00 | b: FF

____/
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Expressions

Facts about expressions

Expressions are formulas using: + - * [ % || ! && ==
<<=>=>!l=

Operators can only be used with certain data
types and their result is a certain data type

Putting in parentheses is OK, and it's smart
Rules about expressions

Expressions can usually go where variables can go
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Expressions, the Picture

Facts

Expressions are formulas: a+b points*wqgt
(year4==0) 7!'=4 (age>12) && (age<20)

“Need & give data types” +-* /% < <==>>want
numbers; && ! || want logical (Boolean) values ==
and !'= want arguments to be the same type

“Parentheses are good: (a * b) + cis the same as
a*b+c, but easier to read

Rules

“Expressions replace vars’: rect(x, y, X+4, Y+4);
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Repetition (or looping)

Repeating commands is a powerful way to use

a computer ... we could repeat them, but all

programming systems have a way to loop:
Lightbot 2.0 used recursion, a function calling itself

Symbolic Lightbot prefixed a number, 2:Step
Processing (and other modern languages) use

a for loop:
for(i=o;i<gi=i+1)f
rect(10+20%*1,10,10, 10);

5

1/26/12 © 2010 Larry Snyder, CSE 11




Repetiton, the Picture

A for loop has several parts, all required ...

keyword
starting value

continuation test
increment

next, open paren next, close paren

next, open brace

for(j=0;j<10;j=j+1)¢§
<stuff to be repeated>

The result of this statement is 10

copies of the stuff to be repeated
last, close brace
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Repetition, Another Picture

As a further example con5|der a buIIseye
............

:L sketch_janlSa §

int i;

| size(200,200);
| background(8);
fill(255,0,8);
for (i = By 1 < 5; 1 =1 + 1) {
fill{18ae + 28*i, @8, 8);
ellipse(168, 188, 108-(28%i), 108-(28%));
i

Note the loop variable must be declared ...

could write: for (inti=o; ...
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Tests, A/K/A If statements

The instructions of a program are executed
sequentially, one after another ... sometimes
we want to skip some: Say "Hello” to the If
If also has a required form
if (year%s4 ==0) §

<stuff to do if condition true>;

5

if (chosen_tint!'=red) {
fill(chosen_tint);

5
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Tests, the Picture

An If-statement has a standard form

keyword
boolean

next, open paren expression next, close paren

next, open brace

if (bmi>18.5 && bmi<=24.9) {
fill(o, 255, 0);

} The result is that if bmi is in range

the fill color is green (indicating OK)
last, close brace
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Else Statement

What happens if we want to do something
else if the condition is false? What else? else!
The else statement must follow an if ...

if (year%y == 0) §

<stuff to do if condition true>; [[Then Clause
1 else §

<stuff to do if condition false>; [[Else Clause
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Else, the Picture

The standard form my now be obvious

if (year%y == 0) § Else must follow if
feb_days = 29; because it does the test
— /
} else { open brace, immediately after “else”
keyword fe b—days =28;
5

finally, close brace  The result is sets the number of
days in February based on leap year

1/26/12 © 2010 Larry Snyder, CSE 17



If/Else, The Demo

Let’s go to processing for an example

int next=1;

void EEtUD( |

® O 7 sketc... =ize(100,108);
fill(255, 8,08);

}

void dﬁﬂm( ){
bQ[PgPOUHd(B);
rect (mouseX, mouseY, 25, 25);

}

void mousePressed( ){
if (next == 1) {
filt{e, @, 255);
} else {
fill{255,8,8); /{ go to red
}
next=1-next;

}
1/26/12 © 2010 Larry Snyder, voc 18

-
O



Writing Programs

Naturally, programs are given sequentially, the
declarations at the top

Braces {} are statement groupers ... they make
a sequence of statements into one thing, like
the “true clause of an If-statement”

All statements must end with a semicolon
EXCEPT the grouping braces ... they don’ t
end with a semicolon (OK, it's a rare
inconsistency about computer languages!)
Generally white space doesn’t matter; be neat!
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