Changing Control

Testing and Repetition

Lawrence Snyder
University of Washington, Seattle

Let’s Begin W/ Idea From Last Time

We saw how to change the color of the
square and its direction with a mouse click

Reca” e 0O demo
demo § .
x = B;
dir = 1;
ro= 255; b = 8; temp;

mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

1/26/12 © 2010 Larry Snyder, CSE 2

This Shows Assignment At Work

Rule: Assignment always moves information

from right to left, as in

d mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;
b
dir = 0 —dir;

Rule: Always evaluate (compute) the right

side, then assign the result to the name on
the left side ... so, O-dir = dir; 1S SO WRONG

1/26/12 © 2010 Larry Snyder, CSE 3

Variables ...

Variables “contain” their values like a mailbox
contains a letter, and so when we change them
using assignment, we “push the old value out”
and replace it with a new value
“Contain their value™: grade_point: | 3.8

3.9
“Assign to change: grade_point = 3.9; " grade_point: A

“Variables have a data type”: .

red:| FF 00 |

1/26/12 © 2010 Larry Snyder, CSE 4

A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:| --- |r:|FF | b: 00

1/26/12 © 2010 Larry Snyder, CSE 5

A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:| FF |r:| FF | b:/ 00

1/26/12 © 2010 Larry Snyder, CSE 6

A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:) FF |r:{ 00 | b: 00

1/26/12 © 2010 Larry Snyder, CSE 7

A 3 Statement Exchange

How does the 3-statement exchange work?

d mousePressed() {
dir = 8 - dir;

temp = r;
r = b;
b = temp;

temp:! FF [r: |00 | b: FF

____/

1/26/12 © 2010 Larry Snyder, CSE 8

Expressions

Facts about expressions

Expressions are formulas using: + - * [% || ! && ==
<<=>=>!l=

Operators can only be used with certain data
types and their result is a certain data type

Putting in parentheses is OK, and it's smart
Rules about expressions

Expressions can usually go where variables can go

1/26/12 © 2010 Larry Snyder, CSE 9

Expressions, the Picture

Facts

Expressions are formulas: a+b points*wqgt
(year4==0) 7!'=4 (age>12) && (age<20)

“Need & give data types” +-* /% < <==>>want
numbers; && ! || want logical (Boolean) values ==
and !'= want arguments to be the same type

“Parentheses are good: (a * b) + cis the same as
a*b+c, but easier to read

Rules

“Expressions replace vars’: rect(x, y, X+4, Y+4);

© 2010 Larry Snyder, CSE 10

Repetition (or looping)

Repeating commands is a powerful way to use

a computer ... we could repeat them, but all

programming systems have a way to loop:
Lightbot 2.0 used recursion, a function calling itself

Symbolic Lightbot prefixed a number, 2:Step
Processing (and other modern languages) use

a for loop:
for(i=o;i<gi=i+1)f
rect(10+20%*1,10,10, 10);

5

1/26/12 © 2010 Larry Snyder, CSE 11

Repetiton, the Picture

A for loop has several parts, all required ...

keyword
starting value

continuation test
increment

next, open paren next, close paren

next, open brace

for(j=0;j<10;j=j+1)¢§
<stuff to be repeated>

The result of this statement is 10

copies of the stuff to be repeated
last, close brace

1/26/12 © 2010 Larry Snyder, CSE 12

Repetition, Another Picture

As a further example con5|der a buIIseye
............

:L sketch_janlSa §

int i;

| size(200,200);
| background(8);
fill(255,0,8);
for (i = By 1 < 5; 1 =1 + 1) {
fill{18ae + 28*i, @8, 8);
ellipse(168, 188, 108-(28%i), 108-(28%));
i

Note the loop variable must be declared ...

could write: for (inti=o; ...

1/26/12 © 2010 Larry Snyder, CSE

D WwnN -0

13

Tests, A/K/A If statements

The instructions of a program are executed
sequentially, one after another ... sometimes
we want to skip some: Say "Hello” to the If
If also has a required form
if (year%s4 ==0) §

<stuff to do if condition true>;

5

if (chosen_tint!'=red) {
fill(chosen_tint);

5

1/26/12 © 2010 Larry Snyder, CSE 14

Tests, the Picture

An If-statement has a standard form

keyword
boolean

next, open paren expression next, close paren

next, open brace

if (bmi>18.5 && bmi<=24.9) {
fill(o, 255, 0);

} The result is that if bmi is in range

the fill color is green (indicating OK)
last, close brace

1/26/12 © 2010 Larry Snyder, CSE 15

Else Statement

What happens if we want to do something
else if the condition is false? What else? else!
The else statement must follow an if ...

if (year%y == 0) §

<stuff to do if condition true>; [[Then Clause
1 else §

<stuff to do if condition false>; [[Else Clause

1/26/12 © 2010 Larry Snyder, CSE 16

Else, the Picture

The standard form my now be obvious

if (year%y == 0) § Else must follow if
feb_days = 29; because it does the test
— /
} else { open brace, immediately after “else”
keyword fe b—days =28;
5

finally, close brace The result is sets the number of
days in February based on leap year

1/26/12 © 2010 Larry Snyder, CSE 17

If/Else, The Demo

Let’s go to processing for an example

int next=1;

void EEtUD(|

® O 7 sketc... =ize(100,108);
fill(255, 8,08);

}

void dﬁﬂm(){
bQ[PgPOUHd(B);
rect (mouseX, mouseY, 25, 25);

}

void mousePressed(){
if (next == 1) {
filt{e, @, 255);
} else {
fill{255,8,8); /{ go to red
}
next=1-next;

}
1/26/12 © 2010 Larry Snyder, voc 18

-
O

Writing Programs

Naturally, programs are given sequentially, the
declarations at the top

Braces {} are statement groupers ... they make
a sequence of statements into one thing, like
the “true clause of an If-statement”

All statements must end with a semicolon
EXCEPT the grouping braces ... they don’ t
end with a semicolon (OK, it's a rare
inconsistency about computer languages!)
Generally white space doesn’t matter; be neat!

1/26/12 © 2010 Larry Snyder, CSE 19

