Announcements

- Google gets caught! Twice!!
- Google "caves" on "do not track" for Chrome
- Tyler Clementi trial begins

Relating the "logical" with the "physical"

Domain Name System

Lawrence Snyder University of Washington, Seattle

Recall 2 Ways To Name Computers

- Logical: Humans use domain names
 - spiff.cs.washington.edu
- Physical: Computers use number-quads
 - **128.208.3.136**
- This is different than the phone system:
 - The people use numbers: 1 800 555 1212
 - The equipment uses the same numbers
- A key property of computers: they can separate the logical form (preferred by people) from the physical form they must use

Today ...

- Today, we explain how the logical/physical separation is implemented for domain names
- But, this is also a chance to illustrate the structure of LARGE systems
 - Study the basic components
 - Study design ideas that make the system work well
 - This matters to you because you'll probably have "big ideas" about using computers

Portion of Physical I'net

What's the Problem?

- The Internet is completely decentralized
 - No one is in charge ICANN

Internet Corporation for Assigned Names and Numbers

- A few companies get permission to give users or organizations IP-addresses – not much logic to it
- When a person or organization gets an IP-address, it picks a domain name – few rules except to tell the company that gave it out, what the domain is
- Once connected to l'net, users start using domain name ... but when someone refers to it, how does their computer get its number??

Recall mail to "friend@cise.ufl.edu"

68.87.205.1	-	Mt Laurel, usa
68.85.240.101	be-70-ar01.burien.wa.seattle.comcast.net	Mt Laurel, usa
68.85.240.69	be-30-ar01.seattle.wa.seattle.comcast.net	Seattle, WA, USA
68.86.90.213	pos-0-5-0-0-cr01.seattle.wa.ibone.comcast.net	Seattle, WA, USA
68.86.85.206	pos-0-8-0-0-cr01.portland.or.ibone.comcast.net	Portland, OR, USA
68.86.85.197	pos-1-15-0-0-cr01.sacramento.ca.ibone.comcast	Sacramento, CA, USA
68.86.85.181	pos-0-9-0-0-cr01.sanjose.ca.ibone.comcast.net	San Jose, CA, USA
154.54.11.105	te3-3.mpd01.sjc04.atlas.cogentco.com	San Jose, CA, USA
154.54.0.177	te9-1.ccr02.sfo01.atlas.cogentco.com	San Francisco, CA, USA
154.54.3.137	te3-8.ccr01.lax01.atlas.cogentco.com	Los Angeles, CA, USA
154.54.0.226	te3-8.ccr01.iah01.atlas.cogentco.com	Houston, TX, USA
154.54.24.194	te3-2.ccr01.mia01.atlas.cogentco.com	Miami, FL, USA
154.54.1.186	te3-3.ccr01.mia03.atlas.cogentco.com	Miami, FL, USA
38.112.31.66	florida_lambdarail_llc.demarc.cogentco.com	Washington, DC, USA
198.32.155.10	tpa-fircore-7609-1-te21-1.net.firnet.org	Marina del Rey, usa
198.32.173.161	tlh-fircore-7609-1-te41-1907.net.firnet.org	Marina del Rey, usa
198.32.173.162	ctx36-ewan-msfc-1-v1907-1.ns.ufl.edu	Marina del Rey, usa
128.227.236.85	ctx36-nexus-msfc-1-v50-1.ns.ufl.edu	Gainesville, FL, USA
128.227.236.14	csev1-core-msfc-1-v41-1.ns.ufl.edu	Gainesville, FL, USA
128.227.254.74	-	Gainesville, FL, USA
128.227.205.2	<u>cise.ufl.edu</u>	Gainesville, FL, USA

A packet sent to 128.227.205.2 finds its way

But, how do we get 128.227.205.2?

When we send mail to a friend at the U of FL, we type friend@cise.ufl.edu and the computer that sends mail for us on campus needs to find out this fact:

cise.ufl.edu == 128.227.205.2

 We said it asks the Domain Name System, or DNS ... so what happens

But Wait!

- How does it know the address of the DNS?
- You (or someone or something who set up your computer) told it when connecting it to the network ... look in net control panel

First Step

- The DNS server answers the question "what number is cise.ufl.edu?" by this method
- First Step: Look it up in its "address book"
 - The DNS server does that
 - It keeps its own address book, a list of all of the domain names like cise.ufl.edu that it has been asked about and found
 - We say it caches the addresses it's found
 - caching keeping a copy around in case its needed again
 - It checks the cache first

If It Has Never Been Asked ...

- The address will not be in the cache if this is the first request
- Second Step: The DNS server begins a process of finding the address on behalf of your computer ...

That process uses 2 Facts of I'net

The DNS Design: Fact 1

 Every domain has an authoritative name server, which I'll call autho

 Two Cases: Autho knows the number of every computer in its domain

The DNS Design: Fact 1 (Continued)

 OR Autho knows the number of every autho computer in its domain

The DNS Design: Fact 2

There are 13 Internet "root name servers" scattered around the world ... all the same

All DNS servers have their numbers

www.root-servers.org

"J" Root Name Server

Sites: 70 VeriSign, Inc. IPv4: 192.58.128.30 Global: 63 IPv6: Local: 5 2001:503:C27::2:30 Dulles, VA, US (2 sites); Dulles, VA, US (1 sites); Ashburn, VA, US *; Miami, FL, US; Atlanta, GA, US; Seattle, WA, US; Chicago, IL, US; New York, NY, US *; Honolulu, HI, US; Mountain View, CA, US (1 sites); Mountain View, CA, US (1 sites); San Francisco, CA, US (2 sites) *; Dallas, TX, US; Amsterdam, NL; London, UK; Stockholm, SE (2) sites); Tokyo, JP; Seoul, KR; Beijing, CN; Singapore, SG; Dublin, IE; Kaunas, LT; Nairobi, KE; Montreal, CA; Perth, AU; Sydney, AU; Cairo, EG; Cairo, EG; Warsaw, PL (2 sites); Brasilia, BR; Sao Paulo, BR; Sofia, BG; Prague, CZ; Johannesburg, ZA; Toronto, CA; Buenos Aires, AR; Madrid, ES; Fribourg, CH; Hong Kong, HK (2 sites); Turin, IT; Mumbai, IN; Oslo, NO; Brussels, BE; Paris, FR (2) sites); Helsinki, FI; Frankfurt, DE *; Riga, LV; Milan, IT; Rome, IT; Lisbon, PT; San Juan, PR; Edinburgh, UK; Tallin, EE; Taipei, TW; New York, NY, US *; Palo Alto, CA, US *; Anchorage, US; Moscow, RU; Manila, PH; Kuala Lumpur, MY; Luxembourg City, LU; Guam, GU, US; Vancouver, CA; Wellington, NZ

So, Here's How It Goes ...

- Your computer's DNS server never heard of cise.ufl.edu.root ... so it pulls the domain name apart:
 - cise, a computer in the .ufl domain
 - ufl, a domain in the .edu domain
 - edu, a domain in the .root domain
- So, the DNS begins at the end and starts asking for the numbers of the autho computers ... who's the autho for the .root domain?

so don't bother with it

Your DNS Asks the .root NS

- Please give me the number of .edu autho
 - Getting that it asks it, ...
- Please give me the number of .ufl autho
 - Getting that it asks it, ...
- Please give me the number of the cise machine
 - Getting 128.227.205.2, it addresses your email and sends it on
- Simplification: it might have cached .edu autho and .ufl autho, which saves those requests

Logical Names Form Hierarchy

As a hierarchy, it can be shown as a tree:

The DNS is simply "walking" down the tree asking each autho for the number of next item

Exercise:

- I was in NYC last week working at a hotel and went to log into my computer at UW
 - spiff.cs.washington.edu
- How did the hotel's ISP find 128.208.3.136?

Think About This Scheme: Huge

Suppose A Domain Adds Computer

- When a domain, say .ufl, adds a new computer it gets a name and an IP-address
- They add its name and number to the list in ufl autho's memory and its up and running, "known to the world"
- This is a completely decentralized solution no one needs to be in charge except to make sure that the domain autho is up & correct

Properties ...

- Fault tolerant: when a hurricane takes out Miami's power, only the domains without power are affected ...
- Robust: when a fire burns down the building of a .root name server, 12 others can carry the load
- Enormous capacity: most lookups are independent and do not collide (b/c higher level domain authos are cached), but more capacity is possible by replicating authos

Compare DNS Structure To ...

- Master List Solution ...
 - Suppose the design was for the root NS computers to have a master list of all

domain_name: IP-address

- pairs connected to the Internet
- How would it be different, better or worse?