1. Phys	sical phenomena are used to represent information. How does the left directional
	signal in a car illustrate this?
	Phenomenon:
	Presence:
	Absence:
	Set to Present:
	Set to Absent:
2.	Jean Dominique Bauby answered yes/no questions with "one wink" == yes, "two
	winks" == no. This seems like a poor encoding since he was sending just one bit.
	Why didn't he use, "one wink" == yes, "no wink" == no?
3.	"A college teacher gave his class code for Assignment 12, but he accidently left
	out one instruction. Days later, only one student had discovered the problem."
	The teacher learned one bit of information: Only one student has started the
	assignment. Explain how he learned this in terms of the basic definition of a "bit."
4.	Think of 3 ways to encode information using coffee cups. Think of three more.
5.	How many bit patterns can be created with eight bits? (circle correct)
	2x8=16
	$2^{8}=256$
	$\frac{2-230}{4}$ for first 4 bits \times 4 for second 4 bits = 16
6	Give some examples of "abstracting".
	Encode the six characters "Hello!" in ASCII.
	Represent the decimal integer 202 as a binary number.
	Add together two 12-digit binary numbers show your carries. HESE DECLARATIONS IN THE FOLLOWING CODE:
int x	•
int y	
	z = 0;
	g letterz = "";
10.	What does X contain as a result of executing this code?
	if $(y\%x == 0) \{ x = x + 1; \}$
11.	Given that means 'or', what does x contain after executing this code?
	if $(x > 0 y < 0) \{ x=6; \}$ else $\{ x = 8; \}$
12.	What does letterz contain as a result of executing this code?
	letterz = letterz + 'a';
13	Define "algorithm"; give it's five properties
	Who was Herman Hollerith? What did he do that was so great?
	Computers are cheap and widely available because of three discoveries/inventions.
10.	a. The idea of allows engineers to switch electricity without any "moving parts" to wear out
	electricity without any "moving parts" to wear out
	b. The idea of means that the active and
	connective" parts of a computer can be built at the same time," no assembly
	c. The idea of means that a circuit can be
	"printed" onto a chip, so it doesn't matter how the

Snyder: Wi12

circuitry is.

- 16. What is the Fetch/Execute Cycle. What are its components?
- 17. In today's computer memory, every ______ has an address.
- 19. What is the purpose of the noLoop() and loop() functions?
- 20. Write a function to draw a "gray" box at some position given as a parameter.
- 21. Show your function from Q. 19 by drawing a white box at 200, 200.
- 22. Describe in words what the user sees when this program runs

```
int x = 0;
<other code here>
void draw() {
  fill(0, 255-x, 0);
  ellipse(100, 100, 50, 50);
  x = x - 1;
}
```

- 23. Say what the "3 statement exchange" does; show an example.
- 24. What is the principle that tells us that "bits are it", the only medium we need to representation information?
- 25. In computing, what or who is "the agent"?
- 26. What is the difference between a "function declaration" and a "function call"?
- 27. Write an if-statement to test if the float x is non-negative.
- 28. Write an if-statement that tests if **age** describes a teenager; that is, someone older than 12, but not yet 20.
- 29. What is the difference in the meaning of "+" in these two statements: lettersequence = lettersequence + 'a'; smallinteger = smallinteger + 10;
- 30. Look up the ASCII table in the lecture notes, and encode the text: FUN!