
Homework 11: Looking At The Code

Goal: The basis of this assignment is a small “game” like Lightbot 2.0 … so we’ll call it
Ninjabot. You get all the code for the game, you will play it, study it, and answer
questions about it. This is making the point that “code is not gibberish” … you can
understand it. It also shows how you can modify existing programs to make something
better for yourself.

The	 Plan	
Grab a copy of the code from the Calendar. Also load the font "LucidaSans-20.vlw".
In the next sections, we will

1) Explain how the game works
2) Explain at a high level how the code works
3) Illustrate a sample question and how to answer it
4) Present a series of questions about the program for you to answer

You will be preparing a text document (e.g. Word) of your answers, not a program. But
you will be doing a little programming. Also grab the line-numbered version, too.

The	 Game	
Here is the game board. It’s similar to like Lightbot. You pick a Ninja, which is
highlighted by a triangle pointer, and then you give commands, such as RIGHT, which
means for the Ninja to move 1 square right. The commands are listed at the top, and

CSE120: Computer Science: Principles

when the program Runs, the code follows the instructions just like in Lightbot. Notice
that the instructions are color coded for each Ninja. Verify that you see how the Ninja’s
moved from the upper left corner (starting place) to their present positions in the figure.
The goal is to move the Ninja’s to the yellow square, which is positioned at random.
Once the program has run, it is possible to continue giving the turtles instructions by
clicking on the Plus button. Play it. (Note, this is not a polished, production-grade game;
its only a homework exercise. It’s OK, but it could be made better.)

How	 It	 Works	
The program is written in Processing. Take a look at the code now. Notice these parts as
you look through the file:

• A series of declarations defining values and variables used in the program.
• A setup() that specifies a few basic items, and then does the initial layout of

the board.
• A draw() function of just a few statements which perform the game.
• A series of functions that are either called in draw() or are called by functions

called in draw(), etc.
Except for the loaded font, there’s nothing more. Play the game for at least 5 minutes.

To see how it works notice that setup() just lays out the canvas. Recall that the
draw() function is being called over and over again. If the image looks static –
nothing is happening – then it’s still being completely redrawn every few milliseconds.

Continuing with the draw(), showselect() simply prints out the program at the
top.

The rest of draw() is three if-statements followed by execute(). These are the
only active parts of the program. To understand how they work, notice that only four
things can be done:

• Click a Turtle Name, which is clicktype == 1
• Click a Command, which is clicktype == 2
• Click the Run/+ buttons, which are the clicktype == 3
• Execute the actual commands, moving the turtles around

Find these four parts in draw().

For the first two and the beginning of the third parts, all of the action happens in the
mousePressed() function which you will study later. The remainder of the third
step is fetch instructions, decode instructions, and assign work to the right turtle to do it.
Notice that if the next instruction is for a turtle that is already busy, the assignment waits
until the turtle is done with his work.

The execute() function simply does the work once it has been assigned; note in
each call, it just moves things along one step.

The workings of the program will become clearer as the discussion continues.

Sample	 Question	
This assignment asks a series of questions about the Turtlebot program, which you will
answer in a Word document. Here is an example of a question and (part of) the answer.

Q. Suppose we add a new turtle button for a turtle named Bud. What changes would have
to be made from the original program?

A. A new call to the tbutton() function must be added in the setup() after line
59. [Refer to the numbered copy of the original code.] The new call has the form
 tbutton(100,340, budc, color(255), "Bud");
where “budc” is the color of the Bud button, defined in the declarations after line 20.

There are more changes that need to be made to add a turtle to the processing of the
program, of course, but this is all that’s necessary to show the button.

Why is this a good answer? It is explicit … it tells what needs to be done, and someone
could do it to check your answer. Did you try it? Also, it showed the exact code.

Questions	
Answers should include the exact code wherever appropriate.

1. This screen was produced by running a program; what clicks created this result,

and why is the yellow square so strange?

2. Calling the grid() function is the first thing that happens in draw().
Explain what happens when grid() is moved to the last line of draw(), and
explain why it happens.

3. To change the UP button, which is now pink or magenta, to a light blue, say

color(240, 240, 255), with black writing, what would change in the
program?

4. When the user clicks on Leo, which lines in the mousePressed() function

run? And what variable (besides i) has its value changed, and to what?

5. Assuming we have added the “Bud” button, as described in the Sample answer
above, what changes are required to the program so that Bud could be selected?

6. Using the mouse to select turtles and to choose commands causes a lot of

annoying mouse motion. What code (included it in your answer by copy and
paste) would be needed to select turtles by typing keys? Notice that adding key
input does not mean that you need to remove the ability to click a turtle; both can
be available.

7. Mike thinks he’s so tough and important that his commands should be listed as if

they were placed on a pedestal:

What changes to the program are needed to accommodate Mike’s ego? Show your
commented code, and an illustration of it operating.

8. If Mike is programmed to move 3 squares down, and three squares right, what

values would guy and inst variables have? Where does the content come from?

9. The + button doesn’t do much now. When more code is added to the command
list, the new instructions are executed, which continues the action, because the pc
– the marker that tells which command is being executed – doesn’t get reset to the
start of the program. Add pc=0; to restart execution at the beginning. This
should happen at the very end of the mousePressed() function, where the +
button is recognized and clicktype=1; is set. In addition, at this place you
must:

• Erase the turtles in their current position.
• Reset the positions of the turtles to square 1.
• Redraw the turtles in their new positions.

Make those changes and notice that you can now restart the computation. Answer
by copy/pasting the code you added – just the relevant lines, commented – into
your document.

10. Explain how the spring variable makes a turtle jump, and include in your
explanation how it avoids making all turtles jump.

Wrap	 Up You have studied a “complex” program and figured out how it works –
maybe not completely, but the basic idea. You can navigate the code, and identify the
place where a specific activity happens. You recognize that this 400 line program is not
gibberish, but is a careful description of what a computer must do to implement a game.

