
Exercise 13: Loops Within Loops  

Goals	
  
Develop more experience working with images in Processing, and to apply the power of 
for-loops.  

Reminder	
  
Recall the following points from Assignment 12 and Lab 09: 

• Photos need to be in the same folder as the .pde file; jpg, .png and .gif are OK. 
• One or more PImage variables, like myImage, must be declared. 
• For us, it is much easier if the canvas size exactly matches the size of the photo. 
• Photos need to be loaded into the program and assigned a name as in 

 myImage = loadImage("greatPic.jpg"); 
• The photo must be placed on the canvas at a specific position, as in 

image(myImage,0,0); 
• To work with the actual pixels, they need to be placed into the pixels[ ] array 

with loadPixels( ) command. 
• To update the screen with the revised pixels, use the updatePixels( ) 

command. 
You will use all of that information in this lab. 

Thinking	
  in	
  2D	
  
Recall from the Assignment 12 that when we work with the pixels[ ] array, we need to 
use a linear view of the photo because the pixels are listed in row-major-order, that is 
from the top left corner, going right and then down row-by-row to the lower right. We 
used a diagram similar to this to describe the situation: 
 
 
 

 
This time, we will write a simple, value returning function that converts from the 2-D 
view we’d like to use with the photo to the 1-D view that the pixels[ ] array needs. 
 
The function convert( ) has two integer parameters, the x-position and the y-
position. It simply returns the value computed by multiplying ypos rows times width, 
and adding xpos. It’s a one-line function. 

width 

ypos 

xpos 
Referenced position 
xpos, ypos 

0  55 

CSE120: Computer Science: Principles  



In	
  Court	
  
Find a photo of someone who belongs in jail. Place it on 
the canvas using the steps mentioned in the Reminder 
above. Placing those operations, except for the last, in 
setup( ) is recommended. 
 
Our goal is to draw bars on top of the image. 

Draw	
  A	
  Line	
  	
  
Working in the draw( )function and before the 
updatePixels( ) command, we will draw a gray line, 
one pixel wide, down the left side of the image, say 20 
pixels in from the edge. Obviously, to change all of those 
pixels, we will need a for-loop. To refer to the right pixels 
in pixels[ ], we can use the convert(20, i) function, 
where 20 is the x-position value, and i, the y-position value 
determined by our for-loop, runs from 0 up to height. For 
each of those pixels we want to change it to gray, 
color(80). 

Draw	
  A	
  Thicker	
  Line	
  
The line doesn’t look much like a bar, so we need to 
thicken it. One way to do that is to apply the gray color to 
pixel columns 20, 21, 22, …, 29, not just column 20. That 
is, repeat what we did in Draw A Line for 10 pixels rather 
than one. Doing that only requires that we put the code for 
Draw A Line in as the body of another loop, say on j, that 
goes from 0 up to 10. By adding j to 20 in our function 
call convert(20+j, i). 

Draw	
  Lots	
  of	
  Bars	
  
To create a “jail” effect, I’ll draw six copies of the bar from 
the last step, spaced every 70 pixels. To do that, I’ll need 
yet another for-loop, say on k, that runs from 0 up to 6, and 
to put the code from the last step (yes, the loop-within-a-
loop) inside the body of this third loop. Again, we change 
our convert( ) call to include the 70-pixel offset, that 
is, convert(20+j+70*k, i). Notice that pictures of 
different sizes will need different numbers of bars, and 
different spacing. 
 



More	
  Realism	
  
As if being in jail were not real enough, we make the bars 
look more realistic by making them appear to be more 
rounded. We do this by adding some highlights, as shown at 
right.  
 
The problem is that the gray is flat in the earlier pictures. So 
we lighten it by adding 20 to the gray value for each pixel 
column making up a bar. Then, the color will get lighter 
from left to right. Because the width of the bars was handled 
by the j loop, we simply make our color call, 
color(80+20*j). 

Wrap	
  Up	
  
This exercise has introduced the idea of nested loops, a loop within a loop. As we have 
seen, it is common to create some effect using a loop, and then want to repeat the effect, 
which requires an additional loop. We accomplish the result by putting one loop in the 
body of another, as in 
 
 for (int i = 0; i < 10; i++) { 
    for (int j = 0; j < 10; j++) { 
        pixels[convert(100+i, 100+j)] = color(255,0,0); 
    } 
 } 
 
which places a red 10 x 10 square in position 100. That is, it does the work that the 
function rect(100,100, 10, 10) would do. The j-loop is called the inner loop, 
the i-loop is called the outer loop. 

Turn	
  In	
  
Place your commented program in the class dropbox. 


