Announcements

Friday, there is a _ _ _ term _x__

Explaining What's Happening So It Makes Sense

Quick Return To ... "Explaining Why Your Algorithm Works"

Lawrence Snyder University of Washington, Seattle

Know Why The Algorithm Works

- Last time we discussed sorting algorithms,
 - Algorithms that put words and numbers in order
 - We gave 3 algorithms
 - Exchange sort
 - Bubble sort
 - Merge sort
 - For all 3, we said why the algorithm works ...

Give me a chance to try it one more time ... to get it right!

Explaining Why Algorithm Works

- Say What You're Claiming: "Exchange Sort Puts Numbers or Words in Ascending Order"
- It's not automatically obvious

Explaining Why Algorithm Works

 Say What You're Claiming: "Exchange Sort Puts Numbers or Words in Ascending Order"

Explain how to do it "big picture-wise" ... use

an analogy:

Explain Why Code Works That Way

- If Minimizer Sorts, So
 Does Exchange Sort
- The Operation of Exchange Sort Works Like The Minimizer ... each pass "emits" the smallest item


```
1 4 5 9 7
1 4 5 7 9
```

How About Bubble Sort?

Recall, Bubble Sort
 "pushes" the largest as
 far as possible to the
 right


```
4 1 5 7 9
1 4 5 7 9
```

Explaining Why Algorithm Works

 Say What You're Claiming: "Bubble Sort Puts Numbers or Words in Ascending Order"

Explain how to do it "big picture-wise" ... use

an analogy:

How About Bubble Sort?

 If The Maximizer Sorts then so does Bubble sort ... the operation works like the maximizer


```
4 1 5 7 9
1 4 5 7 9
```

Remember Back To The Lightbot

Instruction Execution is ... So Simple Even A Computer Can Do It

Lawrence Snyder University of Washington, Seattle

Computers ...

Deterministically execute instructions to process information

"Deterministically" means that when a computer chooses the next instruction to perform it is required by its construction to execute a specific instruction based only on the program and input it is given

Computers have no free will and they are not cruel

Fetch/Execute Cycle

- Computer = instruction execution engine
 - The fetch/execute cycle is the process that executes instructions

Instruction Fetch (IF)
Instruction Decode (ID)
Data Fetch (DF)
Instruction Execution (EX)
Result Return (RR)

The computer internal parts implement this cycle

Anatomy of a Computer: The CPU

The Hard Disk is the α -device

Memory ...

 Programs and their data must be in the memory while they are running

Control

Fetch/Execute cycle is hardwired in computer's control; it's the "engine"

The instructions executed have the form ADDB 20, 10, 16

Put in memory location 20 the contents of memory location 10 + contents of memory location 16

Indirect Data Reference

 Instructions tell where the data is, not what the data is ... contents change

One instruction has many effects ADDB 20, 10, 16

10	11	12	13	14	15	16	17	18	19	20	21
8						7				15	

Indirect Data Reference

 Instructions tell where the data is, not what the data is ... contents change

One instruction has many effects ADDB 20, 10, 16

10	11	12	13	14	15	16	17	18	19	20	21
8						7				15	
10	11	12	13	14	15	16	17	18	19	20	21
60						-55				5	

ALU

 Arithmetic/Logic Unit does the actual computing

Each type of data has its own separate instructions

ADDS: add short decimal numbers ADDD: add long decimal numbers

Most computers have only about a 100-150 instructions hard wired

Input/Output

- Input units bring data to memory from outside world; output units send data to outside world from memory
 - Most peripheral devices are "dumb" meaning that the processor assists in their operation
 - Disks are memory devices because they can output information and input it back again

The PC's PC

- The program counter (PC) tells where the next instruction comes from
 - Instructions are a word long, so add 4 to the PC to find the next instruction

Suppose You Write a Program

- In your program you write x = y + z;
- What happens?
 - A compiler translates the program written in the high level language (== Processing, Java, C, C#) into assembly language
 - Assembly language is a symbolic form of a computer's binary code
 - An assembler translates assembly code to binary
 - The OS places the binary code into the computer's memory, and begins performing the first instruction. Eventually, it gets to ADD 800,428,884

Instruction Execution: The Setup

Run Instruction: 2200: Add 800, 428, 884

Instruction Fetch: Get Some Work

Instruction Decode: What To Do?

Data Fetch: What's The Input

Instruction Execution: Just Do It

Result Return: Put It Away 4 Future

Clocks Run The Engine

- The rate a computer "spins around" the Fetch/Execute cycle is controlled by it's clock
 - Current clocks run 2-3 GHz
 - In principle, the computer should do one instruction per cycle, but often it fails to
 - Modern processors try to do more than one instruction per cycle, and often succeed

Clock rate is not a good indicator of speed

Jack Kilby, Mr. Integrated Circuits

Semiconductors

- Silicon, a semiconductor -- sometimes it conducts and sometimes it doesn't
 - It's possible to control when semiconductors do and don't conduct

Compute by controlling conducting

Ex.: AND 428, 884, 800

Make semiconductor conduct if memory location 428 is true if memory location 884 is true

Send "yes" signal on wire

Detect presence/absence of "yes"

Field Effect

 Charged objects are familiar -- use a nylon comb on a dry day

A charged field can control whether

a semiconductor conducts or not

A transistor has 3 wires

The charge of the control wire (gate) is key

- Neutral gate, channel doesn't conduct
- Charged gate, channel conducts

MOS Transistors

- The field-effect idea is implemented in metal-oxide-semiconductor transistors
- Schematic in Si

nMOS Transistor

Fabrication ...

- Check it out ...
 - http://umumble.com/blogs/company_intel/385/

Summary

- Fetch/execute cycle runs instructions
 - 5 steps to interpret machine instructions
 - Programs must be in the memory
 - Data is moved in and out of memory

Instructions, data are represented in binary