
Lab 9: The Colors of Silver  

Goals	  
Develop more experience working with images in Processing.   

Warm	  Up	  
Recall the following points from Assignment 12: 

• Photos need to be in the same folder as the .pde file; jpg, .png and .gif are OK. 
• One or more PImage variables, like myImage, must be declared. 
• For us, it is much easier if the canvas size exactly matches the size of the photo. 
• Photos need to be loaded into the program and assigned a name as in 

 myImage = loadImage("greatPic.jpg"); 
• The photo must be placed on the canvas at a specific position, as in 

image(myImage,0,0); 
• To work with the actual pixels on the canvas, they need to be placed into the 

pixels[ ] array with the loadPixels( ) command. 
• To update the screen with the revised pixels, use the updatePixels( ) 

command. 
You will use all of that information in this lab. 

Display	  The	  Image	  
Find a color photo that you’d like to use for the assignment, and write a Processing 
program to display it. Divide the items listed in the Warm Up above so that all but the 
last two items are performed in setup( ); the remaining two should be performed in 
draw( ). I will use a photo of Nate Silver, a statistician who predicted the presidential 
election and the Seahawks victory!  

Extract	  A	  Color	  	  
Next we want to display only the red pixels when the user clicks the 'r' key. As usual, 
this uses an if-statement in a keyPressed( ) function. If the user clicks 'r', then 
refill the pixels[ ] array with only the red component of the pixels. To do that, we 
make an assignment of the form 

pixels[i] = color(red(pixels[i]), 0, 0); 
which must be inside of a for-loop in 
which i, the index, runs from 0 up to 
the width*height. Notice that this 
assignment effectively “zeroes out” the 
green and blue components of the 
pixel, keeping only the red. Once the 
pixels[ ] array is refilled, the 
screen update in the draw( ) 
function will display the “reddened” 

CSE120: Computer Science: Principles  



image. (Be sure draw( ) does the updatePixels( ).) Try it out! 

Restoring	  the	  Image	  
Once the pixels have been modified, as described in the last step, then we’d like to 
restored them so we can try other changes. For that, we add a mousePressed( ) 
function that simply repositions the original image (myImage) back at position 0,0. 
Now, running the program can change to only red pixels by pressing 'r', and then 
restore the original image by clicking the mouse. Try it! 

Finishing	  Up	  
Return to your keyPressed( ) function. Using copy/paste/edit, replicate the if-
statement recognizing each of the letters and displaying the image as follows: 

g displays only the green component of the pixel 
b displays only the blue component of the pixel 
c displays the green and blue components of the pixel 
m displays the red and blue components of the pixel 
y displays the red and green components of the pixel 

where c stands for cyan, the complement of red, m stands for magenta, the complement 
of green, and y stands for yellow the complement of blue. 
Once that’s done, it is possible to look at the photo in all of its parts. 



 

Wrap	  Up	  
You have practiced working with images in Processing, and displayed an image with less 
than the full RGB components of each pixel. 

Turn	  In	  
Submit your commented program and photo to the class dropbox. 
 


