Computing's Greatest Hits

Lawrence Snyder University of Washington, Seattle

A Short History of Digital Info

 One goal of CS Principles is to understand how computers and digital information are "game changers," how they *create* opportunities

I start that by highlighting progress of "data processing" over last 120 years or so (it's very

incomplete)

1/24/14

 Think back to the days when we used quill pens and did everything by hand

We Consider only BIG Milestones

- Digitization make information machine readable
- Electronic computers a machine with "soft" programming
- Transistor a switch with no moving parts
- Integrated circuits logic + connective circuits created together by photolithography
- "Personal" computer make everyone digital
- Internet connected computers are better
- WWW one universal language (http) lets us communicate!

The Problem with Writing ...

- Only people can read it ... [Though recently, some progress in handwriting analysis has occurred; limited use.]
- First serious advance in digitization: punch cards
- Herman Hollerith develops idea for 1890 census

Hollerith Card, Courtesy IBM

Machines Process Digital Data

 Mechanical methods – sensing a hole in a card or not – allows machines to help w/work

Card Sorter It's **not** a computer!

No Computer Needed To Process Data

A mechanical machine can "read" a card with
... a "metal brush" ... notice card motion

Sensing Punch Allows Some Action

When the circuit closes, some mechanical action can happen

Computing w/o Computers

Suppose Hollerith coded men as o, women a 1

How many men and women in the population?

card counter

census data

Machine Reads Cards,
Puts women in this slot
Puts men in this slot
... producing 2 piles
Run each pile through again
just to count them -- done

Meanwhile, w/o Digital Data

 Poor Kermit must go through census sheets, counting (and probably making mistakes)

The message: "Digitizing" makes information discrete, it's either there (1) or not (0), and a machine can determine that fact using mechanical or electronic means. Once data is digital, it is just a matter for engineers to build more capable machines

Next Big Things ... Very Big!

Electronic computers came just after WWII

By Mid 20th Century ~ 1960

- Large and medium-size companies used card based digital data; mechanical processing
- Computers began to replace mechanical b/c a computer's "processing instructions" (program) could be easily changed, & they perform more complex operations – flexibility
- Computers & memory much more expensive this sets conditions for the "Y2K Problem"

Message: Computers take the task specification (program) and digital data as inputs, making them very versatile machines; one machine does it all! Programming becomes critical technology.

Next Big Things: Integrated Circuits

Transistors – solid state switching

Integrated Circuit – all circuit parts fabbed at

once from similar materials

1st transistor

1st integrated circuit

Solid State Electronics

A transistor is a switch: If the gate (black bar) is neutral, charge cannot pass; if gate is charged, the wires are connected

Solid State Electronics

 Transistors are smart, but "wiring them up" with other parts is labor intensive

 Integrated circuits – transistors + resistors + capacitors – are created together in one long recipe – small, cheap, reliable

Key fabrication process is photolithography – the transistors are "printed" on the silicon!

Photolithography

Integrated Circuits

Message: Transistors switch wires on and off in solid material (no moving parts to wear out) and ICs are fabbed as a unit (no wiring) by using photolithography—complexity of circuit doesn't matter! We can all have a computer.

Next Big Thing: Personal Computers

Ken Olsen, Founder of Digital Equipment, "There is no reason for any individual to have a computer in their home [1977]"

Computing Comes To Everyone

- Regular folks not just government, military, scientists, banks and companies – could now apply computers to their interests
- Created a demand for digital data: news, pics, audio, video, books, etc., causing old technologies to digitize rapidly. Now it matters to everyone if a machine can "read" it
- From about 1985 most "new" information has been digital
- Quickly, people acquired enormous amounts of information

Digital Rocks

Next Big Thing: Internet

Invented in 1969, it took almost 20 years to get out of the lab and into public consciousness

"On the Internet, nobody knows you're a dog."

Connecting Up

- Computers are useful; connected computers are awesome
- If n computers are connected, adding one more gives n new connections!
- Communication with friends or businesses all over the world became easy and casual – some people even found out about time zones
- Digital media allows people to share each other's information at no cost

Connectivity to Change the World

1/24/1

Next Big Thing: WWW + http

 Today, all computers "speak" a common language: hyper-text transfer protocol

WWW Is The Servers + The Data

- Two phenomena make the WWW brilliant
 - All computers use one standard protocol (http)
 meaning for once all of the world's people who
 don't speak the same natural language have a
 surrogate that does
 - Publishing and accessing information is completely decentralized – generally, no one limits what you put out or go after

Seeing Other People's Digital Info

In Summary

- Punch cards, first wide use of digitization
- Digital info can be processed by machines
- Computers are digital processing machines in which instructions are easily changed
- (Solid state) transistors give a "no moving parts" switch implementing computers
- Integrated circuits (ICs) make fab easy/cheap
- Photolithography allows ICs to be complex
- Networking connecting computers is power
- WWW unifies worlds with 1 protocol and access to "all" digital data