W UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Expressions & Control Flow
CSE 120 Spring 2017

Instructor: Teaching Assistants:
Justin Hsia Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Administrivia

«» Assignments:
= Events due Tuesday (4/11)
= Animal Functions due Wednesday (4/12)

+» Make sure to ask for help before deadlines

= All assignments (except Reading Checks) due at 11:59pm

" |f posting code, make the post private; see Piazza Usage
Guidelines

® Check rubrics —incomplete assignments submitted on time
still eligible for partial credit

+» “Big ldeas” this week: Algorithms

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow

Outline

+» EXpressions & Operators
+ Conditionals

" jf-statement
«» Loops

= while-loop

= for-loop

CSE120, Spring 2017

YA/ UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Expressions

+» “An expression is a combination of one or more
values, constants, variables, operators, and functions
that the programming language interprets and
computes to produce another value.”

" https://en.wikipedia.org/wiki/Expression (computer science)

+» Expressions are evaluated and resulting value is used

= Assignment: X =X + 1;
= Assignment: X_pos = min(x _pos + 3, 460);
= Argument: ellipse(60+x, 50+y, 50, 50);

= Argument: mouse(rowX+4*sp, rowY,rowC) ;

W UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Operators
+ Built-in “functions” in Processing that use special symbols:
= Multiplicative: * / %
= Additive: + -
= Relational: < > <= >=
= Equality: == 1=
= Logical: && |1 !

+» QOperators can only be used with certain data types and return
certain data types

= Multiplicative/Additive: give numbers, get number
= Relational: give numbers, get Boolean
" |ogical: give Boolean, get Boolean

= Equality: give same type, get Boolean

W UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Operators
+ Built-in “functions” in Processing that use special symbols:
= Multiplicative: * / %
= Additive: + -
= Relational: < > <= >=
= Equality: == 1=
= Logical: && |1 !

+ In expressions, use parentheses for evaluation ordering and
readability

" eg. X + (y * z)isthesameas X + y * Z, but easier to read

WA/ UNIVERSITY of WASHINGTON CSE120, Spring 2017

Modulus Operator: %

+ X % Yyisreadas “Xmod y” and returns the
remainder after y divides X

" For short, we say “mod” instead of modulus

+ Practice:
=0 % 3is =4 % 3is
=1 % 3is =5 % 3is ____
=2 % 3is "6 % 3is
3

% 3 is

YA/ UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Modulus Operator: %

+ X % Yyisreadas “Xmod y” and returns the
remainder after y divides X

" For short, we say “mod” instead of modulus

+» Example Uses:
= Parity: Number nis even if N"%2 ==
" Leap Year: Year year is a leap year if year%4 ==

= Chinese Zodiac: yearl and year?2 are the same animal if
yearl®l2 == year2%1l2

WA/ UNIVERSITY of WASHINGTON CSE120, Spring 2017

Modulus Example in Processing

+» Use mod to “wrap around”

= Replace min/max function to “connect” edges of drawing
canvas

min(x_pos + 3, 460);
(x_pos + 3) % 460;

« X_POS
« X _POS

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Control Flow

« The order in which instructions are executed

+» We typically say that a program is executed in
sequence from top to bottom, but that’s not always
the case:

® Function calls and return calls

= Conditional/branching statements
" Loops

+ Curly braces { } are used to group statements
®= Help parse control flow

" Remember to use indentation!
10

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow

Outline

+» Expressions & Operators
+» Conditionals

= jf-statement
«» Loops

= while-loop

= for-loop

CSE120, Spring 2017

11

W UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

If-Statements

+» Sometimes you don’t want to execute every
instruction

= Situationally-dependent

+» Conditionals give the programmer the ability to make
decisions

" The next instruction executed depends on a specified
condition
- The condition must evaluate to a boolean (i.e. true or false)

- Sometimes referred to as “branching”

"= This generally lines up well with natural language intuition

12

WA/ UNIVERSITY of WASHINGTON s CSE120, Spring 2017

If-Statements

«» Basic form:
iT(condition) {
// ‘“then”

// statements P
} Statements
I
\
+ Example conditions: ((Emd)

" Variable: 1IT(C done == true)

" Variable: 1T(done)

" Expression: 1T(X _pos > 460)

" Expression: 1T(X pos > 100 && y pos > 100)

13

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

If-Statements

+» With else clause:
iT(condition) {
// ‘“then”

|

// statements p— p—
} else { Statements Statements
_ | |
// “otherwise” (: y j)
End
// statements

14

nu UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

If-Statements

(Start)

+» With else 1T clause:
iT(condl) {
// ‘“then”

// statements v B P ——

} else if(cond2) { mem“ SWﬁmms
// “‘otherwise 1f” y |
// statements (s)

15

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

If-Statements

+ Notice that conditionals always go from Start to End

" Choose one of many branches

= A conditional must have a single 1T, as manyelse 1T as
desired, and at most one el se

% Can nest and combine in interesting ways:

1T(condl) {
1T(cond2) { 1T(condl && cond2) {
// statementl // statementl
} else { 4P } clse 1T(condl) {
// statement? // statement?
} }
}

16

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Processing Demo: Drawing Dots

Avoid draw() {
if(mousePressed) {

fill(e, 0, 255); // blue if mouse 1is pressed
} else {

fill(255, 0, 0); // red otherwise

ellipse(mouseX, mouseY, 5, 5); // draw circle
3 ° dot_drawing = X
L
. . .
Aot =9 e
X, . & *
}
e b
3 .
i 1
;. l .". 1 ' c.!
R ; rg E 2! -
. i : .-'z =' "u ».‘“‘ . -1

17

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow

Outline

+» Expressions & Operators
+» Conditionals

= jf-statement
«» Loops

= while-loop

= for-loop

CSE120, Spring 2017

18

W UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

Looping

+» Sometimes we want to do the same (or similar) things
over and over again

" Looping saves us time from writing out all of the instructions

+» Loops control a sequence of repetitions

19

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

While-Loop

<D

«» Basic form:
while(condition) {

T Loop Body
// loop False
// bOdy (End)

L

+» Repeat loop body until condition is Talse

" Must make sure to update conditional variable(s) in loop
body, otherwise you cause an infinite loop

» draw() is basicallyawhife(true) loop

20

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow CSE120, Spring 2017

While-Loop

(Start)

+» More general form: 1
// init cond var(s) | "y
while(condition) { %ﬁﬁa
// l1oop body t
// update var(s) Loop Body

+ This occurs so commonly that we create a separate
syntax for it!

21

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow

For-Loop

<D

for(init; cond; update){ |

// loop body

Initialize
Var(s)

L

+ First runs IN1t expression(s)
+» Then checks cond

+» If true, runs loop body (End)

followed by update statement(s)

CSE120, Spring 2017

True
Condition?

Update
Var(s)

f

Loop Body

WA UNIVERSITY of WASHINGTON

LO7: Expressions & Control Flow

For-Loop Example

NNNNNNN

Without loop:

line(20, 40, 80, 80);
line(80, 40, 140, 80);
line (140, 40, 200,
line (200, 40, 260,
line (260, 40, 320,
line(320, 40, 380,
line (380, 40, 440,

With loop:

for(int 1 = 20; i < 400; 1
line(i, 40, i + 60, 80);

1

80) ;
80) ;
80) ;
80) ;
80) ;

i+ 60) {

CSE120, Spring 2017

23

WA/ UNIVERSITY of WASHINGTON CSE120, Spring 2017

Understanding the For-Loop

initialization

Hfor@nt i = 203 1 < 400; i = i + 60) {

line(1, 40, i + 60, 80);

B

2 Choice of variable name(s) is not critical

= Represent the value(s) that vary between different
executions of the loop body

" Think of as temporary variable(s)

+ Variable scope: variable 1 only exists within this loop

24

WA/ UNIVERSITY of WASHINGTON CSE120, Spring 2017

Understanding the For-Loop

condition

for(int i = 2033 < 400) i = i + 60) {

line(1, 40, i + 60, 80);

+ Condition evaluated before the loop body and must
evaluate to true or false

= Reminder: > greater than
< less than
>= greater than or equal to
>= less than or equal to
== equal to

= not equal to

25

WA/ UNIVERSITY of WASHINGTON CSE120, Spring 2017

Understanding the For-Loop

update
N for(int i = 20; 4 < 400:;G = i + 60
g [line(i, 40, i + 60, 80);i
loop body

+» Update is an assignment that is executed after the
loop body

+» Loop body is enclosed by curly braces {} and should
be indented for readability

26

CSE120, Spring 2017

w UNIVERSITY of WASHINGTON LO7: Expressions & Control Flow

Processing Demo: Circles on Canvas Edge

[o circles_on_ed...

e X

1size (480, 120);
qbackground(255) ;
JnoStroke();
Afill(75, 47, 131);

8// loop for circles
fAfor(int x = 0; x <=
4 ellipse(x, 0, 40,
B

M // loop for circles
B for(int y = 0; y <=
1 ellipse(0, y, 40,
1 iy

along the top edge
widthy; x = x + 40){
40) ;

along the left edge
heighty; vy =y + 40){
40) ;

27

