Algorithmic Complexity I

CSE 120 Spring 2017

Instructor: Teaching Assistants:

Justin Hsia Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee

Administrivia

- Assignments:
 - Binary Practice (4/21)
 - Creativity Assignment (4/24)
- Midterm in class on Wednesday, 4/26
 - 1 sheet of notes (2-sided, letter, handwritten)
 - Fill-in-the-blank(s), short answer questions, maybe simple drawing
 - Questions will cover lectures, assignments, and readings
 - Midterm Review sheet will be released tonight (4/19), will be covered in lab next week (4/25)

Outline

- Algorithm Analysis: The Basics
- Comparing Algorithms
- Orders of Growth

Algorithm Correctness

- An algorithm is considered correct if for every input, it reports the correct output and doesn't run forever or cause an error
- Incorrect algorithms may run forever, crash, or not return the correct answer
 - But they could still be useful!
 - e.g. an approximation algorithm
- Showing correctness
 - Mathematical proofs for algorithms
 - Empirical verification of implementations

Algorithm Analysis

- One commonly used criterion for analyzing algorithms is computation time
 - How long does the algorithm take to run and finish its task?
 - Can be used to compare different algorithms for the same computational problem
- How to measure this time?
 - Counting in my head
 - Stopwatch
 - Within your program

Aside: Computation Time

- Computers take time to complete their tasks
 - Under the hood, it's sort of like a bunch of buckets of water filling up – you have to wait for water to reach the top of a bucket for a single computation to complete
 - Buckets take about a billionth of a second to fill (~ 1 nanosecond)
 - There are billions of them on a single chip!
- A CPU can generally only execute one instruction at a time

Timing in Processing

- The function millis() returns the number of milliseconds since starting your program (as an int)
 - To start timing, call and store the value in a variable
 - Call again after your computation and subtract the values

```
void draw() {
  int time = millis();
  someComputation();
  println("Took " + (millis()-time) + " milliseconds to compute.");
  noLoop();
}
```

Outline

- Algorithm Analysis: The Basics
- Comparing Algorithms
- Orders of Growth

Algorithm: Searching A Sorted Array

- Input: Numbers in a sorted array, desired number
- Output: If desired number is in the array (true/false)

Algorithm 1:

- Check each index starting from 0 for desired number
 - If equal, then report true
 - If not equal, then move to next index
 - If at end of array, then report false
- Called Linear Search (also works for unsorted array)

Algorithm: Searching A Sorted Array

- Input: Numbers in a sorted array, desired number
- Output: If desired number is in the array (true/false)

Algorithm 2:

- Check "middle" index for desired number
 - If equal, then report true
 - If less than desired number, check halfway forwards next
 - If greater than desired number, check halfway backwards next
- If no halfway point left, then report false
- Called Binary Search
 - http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html

Peer Instruction Question

- On average, which algorithm would take less time to complete a search?
 - Vote at http://PollEv.com/justinh
 - A. Algorithm 1 (Linear Search)
 - B. Algorithm 2 (Binary Search)
 - C. They'd take about the same amount of time

Measuring Linear Search

Let's time Linear Search:

```
void draw() {
  int n = 3;
  println("Is " + n + " in intArr?");
  int time = millis();
  println(linearSearch(n));
  println("Took " + (millis()-time) + " milliseconds to compute.");
  noLoop();
}
```

- One issue: our algorithm seems to be too fast to measure!
 - How can we fix this?

Best Case vs. Worst Case vs. Average Case

- We were measuring close to the best case!
 - Didn't matter how long our array was
- Could measure average case instead
 - Run many times on random numbers and average results
- Instead, we'll do worst case analysis. Why?
 - Nice to know the most time we'd ever spend
 - Worst case happens often
 - Average case is often similar to worst case

Example of Worst Case in Action

- Many web servers out there run something called "The Apache HTTP Server" (or just Apache for short)
 - When a user enters a particular URL, Apache delivers the correct files from the server to the person on the internet
 - An old version of Apache had a bug where if you entered a URL with tons of consecutive slashes, it could take hours to complete the request
- Bottom line: an algorithm is often judged by its worst case behavior

What is the Worst Case?

- Discuss with your neighbor (no voting):
 - Assume intArr.length is 1000000 and intArr[i] = i;
 - What is a worst case argument for num for Linear Search?
 - What is a worst case argument for num for Binary Search?
 - A. 1
 - B. 500000
 - C. 1000000
 - D. 1000001

```
boolean linearSearch(int num) {
   for(int i = 0; i < intArr.length; i = i + 1) {
      if(intArr[i] == num) {
        return true;
      }
   }
   return false;
}</pre>
```

E. Something else

Timing Experiments

- Let's try running Linear Search on a worst case argument value
 - Results:
- Now let's run Binary Search on a worst case argument value
 - Results:

Runtime Intuition

Does it seem reasonable that the runtimes were inconsistent?

Some reasons:

- Your computer isn't just running Processing there's a lot of other stuff running (e.g. operating system, web browser)
- The computer hardware does lots of fancy stuff to avoid slowdown due to physical limitations
 - These may not work as well each execution based on other stuff going on in your computer at the time

Empirical Analysis Conclusion

- We've shown that Binary Search is seemingly much faster than Linear Search
 - Similar to having two sprinters race each other
- Limitations:
 - Different computers may have different runtimes
 - Same computer may have different runtime on same input
 - Need to implement the algorithm in order to run it
- Goal: come up with a "universal algorithmic classifier"
 - Analogous to coming up with a metric to compare all athletes (or fighters)

Outline

- Algorithm Analysis: The Basics
- Comparing Algorithms
- Orders of Growth

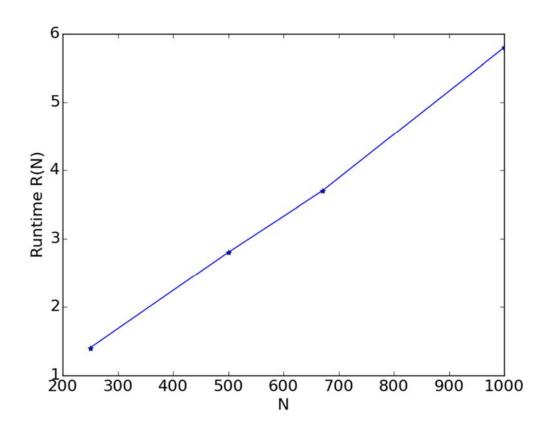
Characterizing Algorithms

- The method computer scientists use is roughly:
 - 1) Measure the algorithm's runtime on many different input sizes N (e.g. arrays of length 100, 200, 400, 800, ...)
 - To avoid runtime issues, can also count number of "steps" involved
 - 2) Make a plot of the runtime as a function of N, which we'll call R(N)
 - 3) Determine the general shape of R(N)
 - Does R(N) look like N (linear), N^2 (quadratic), N^3 (cubic), $\log N$ (logarithmic), etc.

Linear Search

- As the name implies, Linear Search is linear
 - If you double N, then R(N) should roughly double

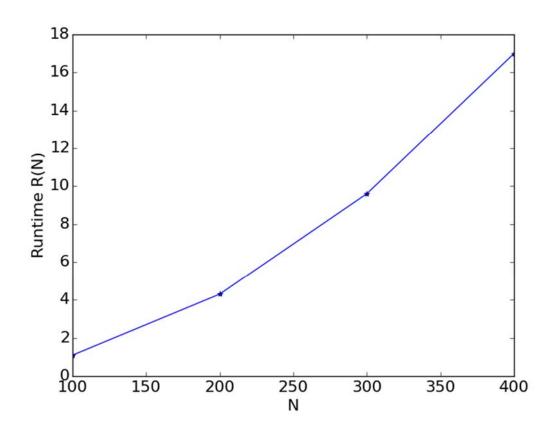
N (input size)	R(N) (time)		
250 items	1.4 sec		
500 items	2.8 sec		
671 items	3.8 sec		
1000 items	5.7 sec		



Peer Instruction Question

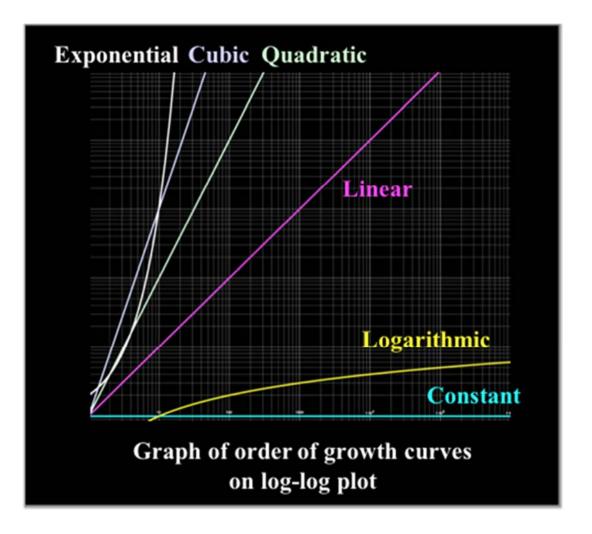
- Algorithm for: do any pairs in array sum to zero?
- Which function does R(N) look like?
 - Vote at http://PollEv.com/justinh
 - A. sqrt(N)
 - B. log(N)
 - C. N
 - $D. N^2$
 - E. 2^N

N (input size)	R(N) (time)
100 items	1.1 seconds
200 items	4.3 seconds
300 items	9.6 seconds
400 items	17.0 seconds



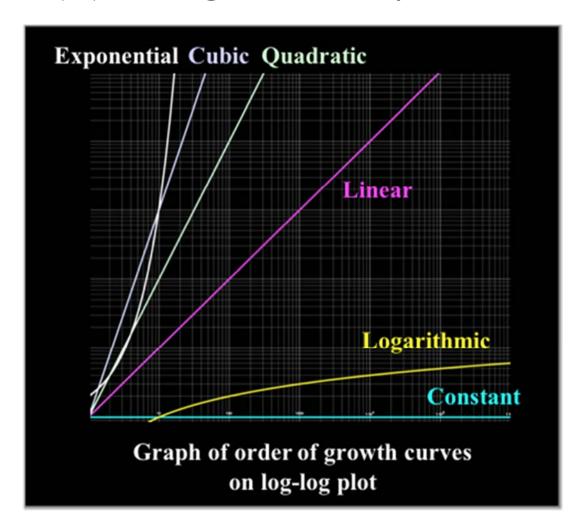
Orders of Growth

- \bullet The order of growth of R(N) is its general shape:
 - Constant 1
 - Logarithmic log N
 - Linear N
 - Quadratic N²
 - Cubic
 N³
 - Exponential 2^N
 - Factorial N!



Orders of Growth

- \star The order of growth of R(N) is its general shape:
 - Use dominant term
 - e.g. $10N^2 + 4 \log N$ is quadratic



Binary Search

- What order of growth is Binary Search?
 - Analyze using number of "steps" in worst case

N (input size)	Indices to Check
1 items	
2 items	
4 items	
8 items	
16 items	

Which is Faster?

- Suppose we have two algorithms: one is linear in N
 and the other is quadratic in N
 - No voting
- Which is faster?
 - A. Linear Algorithm
 - **B.** Quadratic Algorithm
 - C. It depends

The Reason Order of Growth Matters

- Roughly speaking, we care about really big N in real world applications
 - e.g. For Facebook, N (users) is ~ 1 billion
 - Want to generate list of suggested friends? Better be a fast algorithm as a function of N
- Order of growth is just a rough rule of thumb
 - There are limited cases where an algorithm with a worse order of growth can actually be faster
 - In almost all cases, order of growth works very well as a representation of an algorithm's speed

Orders of Growth Comparison

 The numbers below are rough estimates for a "typical" algorithm on a "typical" computer – provides a qualitative difference between the orders of growth

-	•		• .1			•		
	.11	nea	11	th	m	110		
	7	154				116		

	Linear	-	Quadratic	Cubic	Exponential	Exponential	Factorial
	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.