WA/ UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Algorithmic Complexity |

CSE 120 Spring 2017

Instructor: Teaching Assistants:
Justin Hsia Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee

Why UPS drivers don’t turn left and you probably shouldn’t either

UPS solves versions of the vehicle routing problem. In these mathematical problems, you
are given a set of points and the distances between them, and you have to find the best
route(s) to travel through all of them.

UPS have designed their vehicle routing software to eliminate as many left-hand turns as
possible. Typically, only 10% of the turns are left turns.
As a result, the company claims it uses 10m gallons
less fuel, emits 20,000 tonnes less carbon dioxide and
delivers 350,000 more packages every year.

* https://theconversation.com/why-ups-drivers-
dont-turn-left-and-you-probably-shouldnt-either-
71432

WA/ UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Administrivia

«» Assignments:
= Binary Practice (4/21)
= Creativity Assignment (4/24)

+» Midterm in class on Wednesday, 4/26
=] sheet of notes (2-sided, letter, handwritten)

= Fill-in-the-blank(s), short answer questions, maybe simple
drawing
- Questions will cover lectures, assignments, and readings

= Midterm Review sheet will be released tonight (4/19), will
be covered in lab next week (4/25)

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Outline

+ Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

WA/ UNIVERSITY of WASHINGTON L11: Algorithmic Complexity |

CSE120, Spring 2017

Algorithm Correctness

+» An algorithm is considered correct if for every input, it

reports the correct output and doesn’t run forever or
cause an error

+ Incorrect algorithms may run forever, crash, or not
return the correct answer

= But they could still be useful!

" e.g. an approximation algorithm

+» Showing correctness
" Mathematical proofs for algorithms

" Empirical verification of implementations ¢ Today’s ecture

WA UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Algorithm Analysis

+» One commonly used criterion for analyzing algorithms
IS computation time

®" How long does the algorithm take to run and finish its task?

= Can be used to compare different algorithms for the same
computational problem

+» How to measure this time?
®= Counting in my head
= Stopwatch
= Within your program

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Aside: Computation Time

+» Computers take time to complete their tasks

" Under the hood, it’s sort of like a bunch of buckets of water
filling up — you have to wait for water to reach the top of a
bucket for a single computation to complete

" Buckets take about a billionth of a second to fill
(~ 1 nanosecond)

- There are billions of them on a single chip!

+» A CPU can generally only execute one instruction at a
time

W UNIVERSITY of WASHINGTON

L11: Algorithmic Complexity |

CSE120, Spring 2017

Timing in Processing

» The function mi Il 1s() returns the number of
milliseconds since starting your program (as an 1nt)

" To start timing, call and store the value in a variable

= Call again after your computation and subtract the values

void draw() { srart
int time = millis();
someComputation(); d

println("Took " + (millis()-time) + " milliseconds to compute.");
noLoop () ;

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Outline

+» Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

WA UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Algorithm: Searching A Sorted Array

+ |nput: Numbers in a sorted array, desired number
+» Qutput: If desired number is in the array (true/false)

« Algorithm 1:

" Check each index starting from O for desired number
 If equal, then report true

- If not equal, then move to next index
- If at end of array, then report false

= Called Linear Search (also works for unsorted array)

| boolean linearSearch(int num) {
for(int 1 = 0; i < intArr.length; i =1 + 1) {
if(intArr[i] == num) {
return true;
}
}

return false;

WA UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Algorithm: Searching A Sorted Array

+ |nput: Numbers in a sorted array, desired number
+» Qutput: If desired number is in the array (true/false)

« Algorithm 2:

= Check “middle” index for desired number
 If equal, then report true

- If less than desired number, check halfway forwards next
- If greater than desired number, check halfway backwards next

" |f no halfway point left, then report Talse

= Called Binary Search
« http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html

10

YA UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Peer Instruction Question

+» On average, which algorithm would take less time to
complete a search?

= \/ote at http://PollEv.com/justinh

A.
|B. Algorithm 2 (Binary Search) (hiw bo you 'prove ' thisT

C. They’'d take about the same amount of time

11

WA/ UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Measuring Linear Search

« Let’s time Linear Search:

HVvoid draw() {

int n = 33

println("Is " + n + " in intArr?");

int time = millis();

println(linearSearch(n));

println("Took " + (millis()-time) + " milliseconds to compute.");
noLoop () ;

% One issue: our algorithm seems to be too fast to
meaSU FE! (kee‘,; Sl\o;\f\s 0 M.'\\l',e(g,\c)‘5>

" How can we fix this? Try lower arcay s

12

YA UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Best Case vs. Worst Case vs. Average Case

+ We were measuring close to the best case! (3 duws d o

N r&y

"= Didn’t matter how long our array was

+» Could measure average case instead
" Run many times on random numbers and average results

+ Instead, we’ll do worst case analysis. Why?
= Nice to know the most time we’d Jitsess it s
ever spend
= Worst case happens often

= Average case is often similar to
worst case

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Example of Worst Case in Action

+» Many web servers out there run something called
“The Apache HTTP Server” (or just Apache for short)

"= When a user enters a particular URL, Apache delivers the
correct files from the server to the person on the internet

" An old version of Apache had a bug where if you entered a
URL with tons of consecutive slashes, it could take hours to
complete the request

- e.g. http://someurl.com////////////1]]]/1]1]]]

+» Bottom line: an algorithm is often judged by its worst
case behavior

14

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity |

What is the Worst Case?

+ Discuss with your neighbor (no voting):
= Assume intArr.length is 1000000 and intArr[i] = i

" What is a orst ase a gument for num for Linear Search?
Y‘Ob\g \/ c SamCe -h,, eChh " (ur«y G~ \5\5'\' d(’"‘f‘;\ S(: dvr&y

" What is a worst case argument for num for Binary Search?

YQ\ASL‘\, +Ae Sane ‘,e‘l‘v@en <Y\6\ ih Gr 6\\/> OP\)\ G\c)f O—F Qv C\\/X

CSE120, Spring 2017

| boolean linearSearch(int num) {

for(int i = 0; 1 < intArr.length; 1 = 1 + 1) {

A

8. 500000 W TS
C. 1000000 W ;’

D. 1000001 B, " T

E. Something else

15

CSE120, Spring 2017

W UNIVERSITY of WASHINGTON L11: Algorithmic Complexity |

Timing Experiments (& sy logfh 1000)

SeArd«w‘-As ‘E‘W A.d)_,w,l)):_

+ Let’s try running Linear Search on a worst case
argument value
= Results: 54, 31, 53, 34 ;s

+» Now let’s run Binary Search on a worst case argument

value
" Results: 0,0,0,0 ws

16

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Runtime Intuition

« Does it seem reasonable that the runtimes were
inconsistent?

+» Some reasons:
" Your computer isn’t just running Processing — there’s a lot of
other stuff running (e.g. operating system, web browser)

" The computer hardware does lots of fancy stuff to avoid
slowdown due to physical limitations

- These may not work as well each execution based on other stuff going
on in your computer at the time

17

WA/ UNIVERSITY of WASHINGTON L11: Algorithmic Complexity |

CSE120, Spring 2017

Empirical Analysis Conclusion

+» We’ve shown that Binary Search is seemingly much
faster than Linear Search

= Similar to having two sprinters race each other

+ Limitations:
= Different computers may have different runtimes

= Same computer may have different runtime on same input
"= Need to implement the algorithm in order to run it

+» Goal: come up with a “universal algorithmic classifier”

" Analogous to coming up with a metric to compare all
athletes (or fighters)

18

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Outline

+» Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

19

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Characterizing Algorithms

+» The method computer scientists use is roughly:

1) Measure the algorithm’s runtime on many different input
sizes N (e.g. arrays of length 100, 200, 400, 800, ...)

- To avoid runtime issues, can also count number of “steps” involved

2) Make a plot of the runtime as a function of N, which we’ll
call R(N)

3) Determine the general shape of R(N)

- Does R(N) look like N (linear), N* (quadratic), N3 (cubic), log N
(logarithmic), etc.

20

WA UNIVERSITY of WASHINGTON

Linear Search

L11: Algorithmic Complexity |

+ As the name implies, Linear Search is linear
= |f you double N, then R(N) should roughly double

N
IN

4N

N (input size) R(N) (time)

250 items 1.4 sec
500 items 2.8 sec
671 items 3.8 sec
1000 items 5.7 sec

5_
Z 4|
o
Q
£
R 53}
a'e
o
"\\L\K 2100

300 400 500 600 700 800 900 1000
N

CSE120, Spring 2017

21

WA UNIVERSITY of WASHINGTON

Peer Instruction Question

+ Algorithm for: do any pairs in array sum to zero?

+ Which function does R(N) look like?
= Vote at http://PollEv.com/justinh

A.
B. log(N)
C. N

[D._ N2

E 2N

N (input size) R(N) (time)

Z

100 items

1.1 seconds

7N| 200 items

4.3 seconds

SN 300 items

9.6 seconds

9\ 400 items

17.0 seconds

CSE120, Spring 2017

L11: Algorithmic Complexity |

Runtime R(N)

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Orders of Growth

+ The order of growth of R(N) is its general shape:

Constant 1 ‘ R ,
Exponential Cubic Quadratic

Logarithmic logN

Linear N
Quadratic N? /Lineak
Cubic N3

Exponential 2N

Factorial N! Logarithmic

Constant

Graph of order of growth curves
on log-log plot

23

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Orders of Growth

+ The order of growth of R(N) is its general shape:

= Use dominant term

Exponential Cubic Quadratic
" e.qg. ‘ + 41logN
|s quadratic

({‘)ro\» ‘Fﬂ’fl’ ’H\m\ Llﬂog/\/ X N"'>00

7 Linear

Logarithmic

Constant

Graph of order of growth curves
on log-log plot

24

WA UNIVERSITY of WASHINGTON

Binary Search

L11: Algorithmic Complexity |

+» What order of growth is Binary Search?

= Analyze using number of “steps” in worst case

N (input size) Indices to Check

1 items

2 items

4 items

8 items

16 items

0
B
)

0 @a

T\

RN ﬁCh—\f
64 e~y

EUNN N VA Bn APV N

CSE120, Spring 2017

W UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

Which is Faster?

L)

» Suppose we have two algorithms: one is linear in N
and the other is quadraticin N

" No voting
2500 .
— N*N
< Which is faster? sgeaLL T =N
A. Z 1500/ [
B. Quadratic Algorithm { /]

)C.Itdepends

- !

500¢

0 10 20 30 20 50
C(\&G\Arcd'(\c <N , - l ineav
'(:M’I‘E 4 ‘ F&Her

26

w UNIVERSITY of WASHINGTON L11: Algorithmic Complexity | CSE120, Spring 2017

The Reason Order of Growth Matters

+» Roughly speaking, we care about really big N in real
world applications

" e.g. For Facebook, N (users) is ~ 1 billion

- Want to generate list of suggested friends? Better be a fast algorithm
as a function of N

+» Order of growth is just a rough rule of thumb

" There are limited cases where an algorithm with a worse
order of growth can actually be faster

" |n almost all cases, order of growth works very well as a
representation of an algorithm’s speed

27

WA UNIVERSITY of WASHINGTON

L11: Algorithmic Complexity | CSE120, Spring 2017

Orders of Growth Comparison

+» The numbers below are rough estimates for a “typical”
algorithm on a “typical” computer — provides a qualitative
difference between the orders of growth

Linearithmic

Linear Quadratic Cubic Exponential Exponential Factorial

n nlog, n n? n? 576 22 n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 < 1 sec <1lsec < 1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec 1sec 12,892years 107 years very long
n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10*° years, we simply record the algorithm as
taking a very long time.

28

