
Adam Blank Winter 2017Lecture 17

CSE
120

Computer Science Principles



CSE 120: Computer Science Principles

Proofs & Computation

q0 q1 q2 q3

qgarbage

w

h,e

h

w,e

e

w,h

e

w,h

w,h,e



CSE = Abstraction 1



CSE = Abstraction 2

At the very “lowest” level is hardware which Justin has talked about.

At the very “highest” level is Theory which is what today is about!



To Infinity And Beyond! 3

In this lecture, we will explore the abstract! And we will apply it to
computation!

But we start simple. . .

How many numbers are there?

. . . Infinity, of course!



To Infinity And Beyond! 3

In this lecture, we will explore the abstract! And we will apply it to
computation!

But we start simple. . .

How many numbers are there?

. . . Infinity, of course!



The Biggest Number Ever 4

What’s the biggest number you can name?

0, 1, 2, . . . , 4000000000000000, . . .

If you give me a number, I can get a bigger one by adding 1:

x↦ x+1

If we collect all of these numbers together, we call the resulting set “the
natural numbers”.



The Biggest Number Ever 4

What’s the biggest number you can name?
0, 1, 2, . . . , 4000000000000000, . . .

If you give me a number, I can get a bigger one by adding 1:

x↦ x+1

If we collect all of these numbers together, we call the resulting set “the
natural numbers”.



Listing Out Numbers 5

Imagine an incredibly large (infinite, actually) index of numbers:

0:
1:
2:
3:
4:
5:
6:
7:. . .
We say a set of numbers is countable (or the same size as the natural
numbers) whenever we can list them out.



Even Numbers 6

“Obvious” Theorem
There are as many even numbers as odd numbers.

Are there more even numbers than natural numbers?

0:
1:
2:
3:
4:
5:
6:
7:. . .



Even Numbers 6

“Obvious” Theorem
There are as many even numbers as odd numbers.

Are there more even numbers than natural numbers?

0:
1:
2:
3:
4:
5:
6:
7:. . .



Integers 7

Are there more integers than natural numbers?

0:
1:
2:
3:
4:
5:
6:
7:
8:. . .



Fractions 8

Are there more fractions than natural numbers?

0:
1:
2:
3:
4:
5:
6:
7:
8:. . .



Strings 9

Are there more Strings than natural numbers?

Program
1 List out Strings of length 1:

0 a
1 b
2 c
3 . . .

2 List out Strings of length 2:
4 aa
5 ab
6 ac
7 . . .

3 List out Strings of length 3:
7 aaa
8 aab
9 aac
10 . . .

4 . . .



Real Numbers 10

Are there more real numbers than natural numbers?



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”
“π”
“the smallest number with four million digits”



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”

“two”
“π”
“the smallest number with four million digits”



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”

“π”
“the smallest number with four million digits”



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”
“π”

“the smallest number with four million digits”



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”
“π”
“the smallest number with four million digits”



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”
“π”
“the smallest number with four million digits”



Describable Numbers 12

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Example
0 is interesting because it’s “the smallest non-negative number”
1 is interesting because it’s “1×x = x for all x”
2 is interesting because it’s “the smallest prime number”



Describable Numbers 12

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Example
0 is interesting because it’s “the smallest non-negative number”

1 is interesting because it’s “1×x = x for all x”
2 is interesting because it’s “the smallest prime number”



Describable Numbers 12

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Example
0 is interesting because it’s “the smallest non-negative number”
1 is interesting because it’s “1×x = x for all x”

2 is interesting because it’s “the smallest prime number”



Describable Numbers 12

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Example
0 is interesting because it’s “the smallest non-negative number”
1 is interesting because it’s “1×x = x for all x”
2 is interesting because it’s “the smallest prime number”



Describable Numbers 13

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Questions

What is the smallest uninteresting number?

Is every interesting number describable?

Is every real number describable?



Describable Numbers 13

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Questions
What is the smallest uninteresting number?

Is every interesting number describable?

Is every real number describable?



Describable Numbers 13

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Questions
What is the smallest uninteresting number?

Is every interesting number describable?

Is every real number describable?



Describable Numbers 13

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Questions
What is the smallest uninteresting number?

Is every interesting number describable?

Is every real number describable?



Computable Numbers 14

Definition (Computable)
A number is computable when it can unambiguously printed out by
some program.

Example
0 is interesting because text("0", 0, 0)

1 is interesting because text("1", 0, 0)

π is interesting because. . .

Question
Is every number computable?



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . .

which means it doesn’t work. So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work.

So, it can’t be written!



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!



Halting Problem 16

Suppose we have a program HALT such that:

HALT(P) returns true when P finishes and false if it doesn’t.

Our Program

1 void CONFUSE() {
2 if (HALT(SOURCE_CODE(CONFUSE))) {
3 while (true) {
4 text("ha ha", 0, 0);
5 }
6 }
7 else {
8 return;
9 }

10 }



A Flow Chart 17

Input: 0 1 1 0 1 0 1 1 0 1 ⋯

→

Work: ⋯

↑

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶



This is a Turing Machine! 18

Some infinite tapes:

(how many doesn’t matter; one tape for input and work, etc.)

Input: 0 1 1 0 1 0 1 1 0 1 ⋯

→

Work: ⋯

↑

A finite-state controller:

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

That’s it. These things can decide exactly the same languages as
register machines, and lambda calculus.



This is a Turing Machine! 18

Some infinite tapes: (how many doesn’t matter; one tape for input and work, etc.)

Input: 0 1 1 0 1 0 1 1 0 1 ⋯

→

Work: ⋯

↑

A finite-state controller:

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

That’s it. These things can decide exactly the same languages as
register machines, and lambda calculus.



This is a Turing Machine! 18

Some infinite tapes: (how many doesn’t matter; one tape for input and work, etc.)

Input: 0 1 1 0 1 0 1 1 0 1 ⋯

→

Work: ⋯

↑

A finite-state controller:

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

That’s it. These things can decide exactly the same languages as
register machines, and lambda calculus.



This is a Turing Machine! 18

Some infinite tapes: (how many doesn’t matter; one tape for input and work, etc.)

Input: 0 1 1 0 1 0 1 1 0 1 ⋯

→

Work: ⋯

↑

A finite-state controller:

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

That’s it. These things can decide exactly the same languages as
register machines, and lambda calculus.


	Infinity

