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CSE 120: Computer Science Principles

Proofs & Computation
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CSE = Abstraction 1



CSE = Abstraction 2

At the very “lowest” level is hardware which Justin has talked about.

At the very “highest” level is Theory which is what today is about!



To Infinity And Beyond! 3

In this lecture, we will explore the abstract! And we will apply it to
computation!

But we start simple. . .

How many numbers are there?

. . . Infinity, of course!
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The Biggest Number Ever 4

What’s the biggest number you can name?

0, 1, 2, . . . , 4000000000000000, . . .

If you give me a number, I can get a bigger one by adding 1:

x↦ x+1

If we collect all of these numbers together, we call the resulting set “the
natural numbers”.
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Listing Out Numbers 5

Imagine an incredibly large (infinite, actually) index of numbers:

0:
1:
2:
3:
4:
5:
6:
7:. . .
We say a set of numbers is countable (or the same size as the natural
numbers) whenever we can list them out.



Even Numbers 6

“Obvious” Theorem
There are as many even numbers as odd numbers.

Are there more even numbers than natural numbers?
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Integers 7
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Fractions 8

Are there more fractions than natural numbers?

0:
1:
2:
3:
4:
5:
6:
7:
8:. . .



Strings 9

Are there more Strings than natural numbers?

Program
1 List out Strings of length 1:

0 a
1 b
2 c
3 . . .

2 List out Strings of length 2:
4 aa
5 ab
6 ac
7 . . .

3 List out Strings of length 3:
7 aaa
8 aab
9 aac
10 . . .

4 . . .



Real Numbers 10

Are there more real numbers than natural numbers?



Describable Numbers 11

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Example
“one”
“two”
“π”
“the smallest number with four million digits”
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Describable Numbers 12

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Example
0 is interesting because it’s “the smallest non-negative number”
1 is interesting because it’s “1×x = x for all x”
2 is interesting because it’s “the smallest prime number”
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Describable Numbers 13

Definition (Describable)
A number is describable when it can unambiguously be described by
some String.

Definition (Interesting)
A number is interesting when it’s the smallest number with some
interesting property.

Questions

What is the smallest uninteresting number?

Is every interesting number describable?

Is every real number describable?
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Computable Numbers 14

Definition (Computable)
A number is computable when it can unambiguously printed out by
some program.

Example
0 is interesting because text("0", 0, 0)

1 is interesting because text("1", 0, 0)

π is interesting because. . .

Question
Is every number computable?



Computability 15

We now know there is something that isn’t computable. But can we find
something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has
written a program:

HALT(P) which returns true when P finishes and false if it doesn’t.

Then, we will find a program CONFUSE which will confuse the HALT
program. . . which means it doesn’t work. So, it can’t be written!
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Halting Problem 16

Suppose we have a program HALT such that:

HALT(P) returns true when P finishes and false if it doesn’t.

Our Program

1 void CONFUSE() {
2 if (HALT(SOURCE_CODE(CONFUSE))) {
3 while (true) {
4 text("ha ha", 0, 0);
5 }
6 }
7 else {
8 return;
9 }

10 }



A Flow Chart 17
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This is a Turing Machine! 18

Some infinite tapes:

(how many doesn’t matter; one tape for input and work, etc.)
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That’s it. These things can decide exactly the same languages as
register machines, and lambda calculus.
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